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In an era exploding with genome-scale data, a major challenge
for developmental biologists is how to extract significant clues
from these publicly available data to benefit our studies of
individual genes, and how to use them to improve our
understanding of development at a systems level. Several
studies have successfully demonstrated new approaches to
classic developmental questions by computationally integrating
various genome-wide data sets. Such computational approaches
have shown great potential for facilitating research: instead of
testing 20,000 genes, researchers might test 200 to the same
effect. We discuss the nature and state of this art as it applies to
developmental research.

Introduction
The advent of high-throughput technologies (see glossary, Box 1)
has greatly increased the amount of genetic information that is
deposited in the public domain. In addition, the results of thousands
of hard-won individual observations have been compiled in a
consistent format (i.e. curated) in biological databases. Combined,
these two sources have created genome-wide data sets that describe
a wide range of biological processes (Fig. 1, see also Box 1). 

As developmental biologists, we might be more interested in
hypothesis-driven studies that focus on a small set of genes, rather than
on generating genome-wide data. How can we best use all of these
publicly available data to benefit our own research? Data integration
has proven to be an effective strategy to extract biological meaning
from heterogeneous data sets in both developmental research and other
fields. It can be a powerful tool to identify candidate genes worthy of
further study, and by automating the process it can allow the translation
of genome-wide data into small-scale science.

It is highly likely that we have applied the principle of data
integration in our research all along. When seeking regulators of
biological processes or targets of gene functions, a common strategy
is to compile a short list of candidate genes and then experimentally
test them. We are probably all familiar with this type of simple
‘filtering’. In an example of this approach, 766 C. elegans genes
were selected as germ-line enriched judging from their microarray
expression profiles, then the phenotypes of these genes were
analyzed by RNA interference (RNAi) to identify new genes
necessary for germ-line development (Piano et al., 2002). Along the
same line, we might use RNAi to test for known or predicted
signaling proteins (Lehner et al., 2006), transcription factors (e.g.
Parrish et al., 2006; Fernandes and Sternberg, 2007), and so forth.
Other ‘filters’ include a protein or transcript’s potential
phosphorylation sites, microRNA target sites or subcellular
localization. Sometimes, multiple filters are applied. If we are
looking for a transcriptional regulator active in a place and time of
interest, we might look up all the papers on genes expressed at that

time and place, look up all papers on transcription factors and
determine if there is any overlap. Of course, these searches are easier
if there is a comprehensive database that contains this information.
The process of combining two or more data sets to identify their
intersection is the simplest form of data integration.

Although data integration does not actually create new
information, it can create new knowledge for the individual; as
discussed above, it can limit the number of candidates a researcher
should test, thereby allowing more time for an intensive analysis of
each candidate. This strategy becomes even more desirable when a
developmental process or the gene of interest does not have an easily
screenable phenotype.

More-advanced techniques of data integration employ
sophisticated statistical models to improve the extraction of
meaningful information. These techniques may decrease false
negatives, or attach a value of statistical confidence to each data
point. Most of these techniques were developed in studies of
Saccharomyces cerevisiae (e.g. Marcotte et al., 1999; Jansen et al.,
2003), largely owing to the wealth of genome-wide data that is
available for this simple organism. However, the impact of these
techniques will be limited unless their applications can be extended
to other organisms or can reach the large audience of small-scale
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Box 1. Glossary
Bayesian network. A way of using Bayes theorem to calculate the
probability of an outcome based on a network of information. The
information consists of a set of observations correlated with the
outcome, which allows the assignment of a probability of the
outcome given the observation.
Controlled vocabulary. Defined as a set of terms that ensures their
consistent use among many people. Controlled vocabulary terms can
include synonyms. For example, FlyBase developed a vocabulary of
body parts that covers many aspects of Drosophila anatomy.
WormBase has a set of life-stages.
Genome-wide. Covering a large proportion of the genome; for
example, 80% of 20,000 genes.
High-throughput. Rapid data collection, usually using automation
such as robotics and image processing.
Likelihood ratio. The frequency in a positive training set divided by
the frequency in the negative training set. The likelihood ratio is 1 if
there is no difference between the training sets. A likelihood ratio of
>1 indicates a positive predictor; a likelihood ratio of <1 indicates a
negative predictor.
Ontology. A defined set of concepts with defined relationships
among the concepts.
TILLING. The efficient identification of mutations in an organism by
mutagenesis and the resequencing of genes of interest.
Training set. A set of data that can be used to teach (‘train’) a
computer program. Such sets could range, for example, from a set
of human faces and a set of other animal faces, to a set of genes that
are known to interact and a set that are known not to interact. By
using a training set, computer scientists can train computer programs
to discriminate which of two sets of data an unclassified object (or
gene) is likely to belong to.
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research. Recently, several studies have successfully applied
genomics data integration strategies in metazoans, specifically to
explore mechanisms of development (Gunsalus et al., 2005; Zhong
and Sternberg, 2006). In this review, we highlight these examples to
show how typical developmental biology laboratories can use more-
advanced data integration techniques to benefit their own research.
We first discuss the different types of genomic data that are publicly
available, and then describe the resources and methods available to
integrate these data. We also discuss the benefits and limitations of
such approaches in studying developmental biology.

We focus on data integration rather than on approaches to mine
individual genomic data sets because it provides the best use of the
publicly available data. It is thus especially beneficial to
developmental biologists, who might not be able to generate these
genomic data themselves. We focus on the applications of these
strategies in developmental biology investigations, rather than on the
technical advances in data integration methods (for a review, see
Joyce and Palsson, 2006). Therefore, rather than discuss in detail the
bioinformatic techniques that are available in the data integration
field, we introduce a few typical methods and key concepts that are
of particular use to studies of developmental biology. This is also not
a comprehensive review of the genomic data available for each
organism (see Antoshechkin and Sternberg, 2007; Lee, 2005; Eppig
et al., 2007; Crosby et al., 2007; Rhee et al., 2003).

What data to integrate: types of genome-wide
data
In this section, we select five types of commonly used genome-wide
data sets and briefly discuss the current state, strengths and
weaknesses of these data. Although only experimental data are
described here, it should be noted that non-experimental data can
also be used in data integration. For example, the co-occurrence of
gene names in the literature has been used, in addition to
experimental data, in data integration to predict functional
interactions (Lee et al., 2004).

Numerous databases have been developed to accommodate the
growing amount of genomic data. Often, the data that we are
interested in are covered by multiple databases. Which databases
shall we use? Table 1 lists some popular, publicly accessible
resources for the genomic data mentioned above. This is by no
means a comprehensive list.

Three criteria are useful when choosing your data sources. (1)
Support for batch download. Batch download allows a user to
download all data into one large file, so that the user does not have
to send one query for each gene. Some databases – for example, the
Nematode Expression Pattern Database (NEXTDB, http://
nematode.lab.nig.ac.jp/index.html) – provide excellent in situ
hybridization images for C. elegans genes, but without batch-
downloadable data it is almost impossible to perform any
bioinformatics analysis on these data. (2) Controlled vocabulary.
Although detailed descriptions, such as phenotypic information in
the Saccharomyces Genome Database (SGD, http://www.
yeastgenome.org), or images, such as the in situ results in the Brain
Gene Expression Map (BGEM, http://www.stjudebgem.org), are
extremely valuable for obtaining information on single genes, they
are difficult to process in computational applications. We chose data
sets that are annotated in a controlled vocabulary (see glossary, Box
1) that can be readily processed by computers. (3) Comprehensive
and up-to-date data collection. Some data sets can be accessed from
multiple databases. For example, the global yeast two-hybrid
mapping of Drosophila protein interactions can be obtained from the
General Repository for Interaction Datasets (BioGRID, http://
www.thebiogrid.org/index.php) or the Flynet Server (http://
www.jhubiomed.org/perl/flynet.pl), among others. BioGRID also
contains other interaction data and we have therefore chosen to
access BioGRID because it is more comprehensive. The collection
of data from various databases is tedious because different databases
have different gene IDs, different data formats and different access
methods. Therefore, for computational usages, it is highly preferable
to obtain the same amount of data from the fewest possible sources
and to avoid databases that only contain a subset of data from
another database. 

Expression data
There are two major types of gene expression data: (1) annotation-
based data obtained from experiments such as reporter gene assays
and in situ hybridization and (2) data from microarray experiments.

Annotation-based data indicate the developmental stage and the
tissue of gene expression, often using consistent nomenclature.
High-throughput studies in this category mostly employ RNA in situ
hybridization or promoter-reporter gene fusion assays. Large-scale
in situ hybridization data are available for: gene expression patterns
during D. melanogaster embryogenesis (Tomancak et al., 2002); all
stages in C. elegans development (NEXTDB, http://nematode.lab.
nig.ac.jp/index.html); Xenopus embryogenesis (Pollet et al., 2005);
mouse embryogenesis (Visel et al., 2004; Christiansen et al., 2006);
and expression patterns in the adult mouse nervous system (Gray et
al., 2004; Magdaleno et al., 2006; Lein et al., 2007). Large-scale
reporter gene assays require transgenic strain construction; thus, it
can be difficult to reach high-throughput efficiency in certain
organisms. The technique was first successfully applied on a genome
scale to study protein subcellular localization in S. cerevisiae
(Kumar et al., 2002; Huh et al., 2003). Subsequently, several high-
throughput projects have emerged to study developmental profiles
in C. elegans (McKay et al., 2004; Dupuy et al., 2004; Dolphin and
Hope, 2006) and gene expression in the mouse central nervous
system (Gong et al., 2003).
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Fig. 1. Experiments that establish relationships between genes,
proteins, cells and functions. Most genome-wide data sets describe
biological entities or draw connections between entities. For example,
DNA sequence is linked to genes by gene prediction and experimental
annotation (e.g. cDNA sequencing). Genes are associated with other
genes by genetic interactions. Proteins are related by physical binding,
e.g. as detected in yeast two-hybrid assays. Proteins are shown to
interact with DNA through chromatin-immunoprecipitation (ChIP) and
yeast one-hybrid assays (e.g. Deplancke et al., 2006). Genes and
protein are assigned functions based on perturbations (mutations,
overexpression, RNAi). Cells are associated with genes and proteins by
gene expression. Cells (or tissues) are associated with functions by
mechanical (e.g. laser ablation) or genetic (e.g. mutation) lesion
experiments or by generating genetic mosaics.
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Microarray studies measure mRNA levels on a genome scale and
have become a powerful tool with which to study development.
Soon after the invention of the technique (Schena et al., 1995),
developmental gene expression profiles were studied in several
model organisms, including C. elegans (Hill et al., 2000; Kim et al.,
2001) and D. melanogaster (White et al., 1999; Furlong et al., 2001).
Now, microarray techniques have been extensively applied to the
study of development in various mutant backgrounds and under
different conditions. Accordingly, strategies for analyzing
microarray data have also advanced tremendously. An interesting
example is a cross-species microarray data integration study
conducted by Stuart et al. (Stuart et al., 2003). Stuart et al. first
identified conserved genes (meta genes) that have orthologs in
humans, fruitflies, C. elegans and yeast. By examining expression
data from these species, ~22,000 pairs of meta genes were found to
be co-expressed across species, revealing conserved functional
modules in core biological processes, such as the cell cycle, during
transcription, and signaling. Their discoveries demonstrated the
power of cross-species data integration.

Thanks to the establishment of data standards in the field
(Quackenbush, 2004), microarray data have the advantage of being
made available in a single format (per platform). However, recent
studies suggest that more standards are needed to enable the results

from different experiments, laboratories and platforms, to be more
comprehensively and accurately compared (Irizarry et al., 2005;
Larkin et al., 2005; Members of the Toxicogenomics Research
Consortium, 2005). One disadvantage of microarray experiments is
that the data often contain a high background. Data from in situ
hybridization gives good spatial and temporal resolution, but there
is still noise present resulting from sample preparation and
processing. Reporter gene assays, using lacZ or GFP variants, give
superb spatial and temporal resolution but might not reflect the
endogenous gene owing to the inclusion of incomplete sequences in
the transgene, or artifacts resulting from factors such as the stability
of the reporter. In addition, reporter gene constructs often do not
include the gene’s 3� UTR, a major source of post-transcriptional
regulation – for example, by microRNAs (Ambros and Chen, 2007).

Interactome data
Interactome data provide an invaluable source to study molecular
mechanisms that underlie development. Interactome data include
both physical and genetic interactions. High-throughput studies on
protein-protein physical interactions have become a rapidly
developing field. In S. cerevisiae, there have been multiple genome-
wide studies from different research groups, who have made use of
different techniques, such as yeast two-hybrid assays (Ito et al.,

Table 1. Publicly available sources of genomic data
Species Database URL

Expression

C. elegans WormBase http://www.wormbase.org
Drosophila FlyBase http://www.flybase.org

BDGP http://www.fruitfly.org
Zebrafish ZFIN http://zfin.org
Mouse MGI/GXD http://www.informatics.jax.org/menus/expression_menu.shtml 
Multiple GEO http://www.ncbi.nlm.nih.gov/geo
Multiple SMD http://smd.stanford.edu
Multiple ArrayExpress http://www.ebi.ac.uk/arrayexpress

Phenotype

S. cerevisiae CYGD http://mips.gsf.de/genre/proj/yeast
C. elegans WormBase http://www.wormbase.org

RNAiDB http://www.rnai.org
Drosophila FlyBase http://www.flybase.org

FlyRNAi http://www.flyrnai.org
GenomeRNAi http://www.dkfz.de/signaling2/rnai/ernai.html

Arabidopsis TAIR http://www.arabidopsis.org
Zebrafish ZFIN http://zfin.org
Mouse MGI/MPD http://phenome.jax.org/pub-cgi/phenome/mpdcgi?rtn=docs/home
Human OMIM http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM

Interaction

S. cerevisiae SGD http://www.yeastgenome.org
CYGD http://mips.gsf.de/genre/proj/yeast

C. elegans WormBase http://www.wormbase.org
Drosophila FlyBase http://www.flybase.org
Multiple IntAct  http://www.ebi.ac.uk/intact/site
Multiple DIP http://dip.doe-mbi.ucla.edu
Multiple BioGRID http://www.thebiogrid.org/index.php
Multiple BIND http://www.bind.ca
Multiple MINT http://mint.bio.uniroma2.it/mint/Welcome.do

Function

Multiple GO http://geneontology.org

Abbreviations: BDGP, Berkeley Drosophila Genome Project; BIND, Biomolecular Interaction Network Database; BioGRID, General Repository for Interaction Datasets; CYGD,
Comprehensive Yeast Genome Database; DIP, Database of Interacting Proteins; GEO, Gene Expression Omnibus; GO, Gene Ontology; MGI, Mouse Genome Informatics
[which provides integrated access to several projects, including the Mouse Phenome Database (MPD) and the Mouse Gene Expression Database (GXD)]; MINT, a Molecular
Interaction Database; OMIM, Online Mendelian Inheritance in Man; SGD, Saccharomyces Genome Database; TAIR, The Arabidopsis Information Resource; ZFIN, Zebrafish
Information Network.
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2001; Uetz et al., 2000) and affinity purifications coupled with mass
spectrometry (Gavin et al., 2006; Gavin et al., 2002; Ho et al., 2002).
Genome-wide yeast two-hybrid studies have also been conducted in
flies (Giot et al., 2003), worms (Li et al., 2004) and humans (Rual et
al., 2005; Stelzl et al., 2005).

In comparison to physical interaction studies, there have been
relatively few high-throughput genetic interaction studies. The first
genome-wide genetic interaction study was a synthetic lethality screen
conducted in S. cerevisiae using a library of deletion mutants (Tong et
al., 2001; Tong et al., 2004). These studies indicated the topology of
the genetic interaction network (Boone et al., 2007), as well as specific
discoveries such as genes involved in DNA replication in response to
DNA damage (Budd et al., 2005). In multicellular organisms, RNAi
technology (Fire et al., 1998) enables researchers to overcome the
problem of using only a small number of available mutants and to
design high-throughput (or at least genome-wide) genetic interaction
screens (Baugh et al., 2005; Lehner et al., 2006; van Haaften et al.,
2004; Dietzl et al., 2007). The scope of these studies has extended
from studying a specific process, such as the DNA-damage response
(van Haaften et al., 2004), to investigating a broad spectrum of
multiple signaling pathways (Lehner et al., 2006). We have also seen
the advent of sophisticated analyses of quantitative data to detect
genetic interactions (Baugh et al., 2005; Schuldiner et al., 2005;
Collins et al., 2007). Quantitative interaction data typically describe
the fraction of organisms that have a wild-type phenotype (e.g.
survival); thus, if wild type is 100% viable, mutant A is 80% viable
and mutant B is 60% viable, a synergistic effect of A and B would be
inferred if the A-B double mutant were significantly less viable than
48% (the product of 0.60 and 0.80), the expected value if A and B
affect independent processes.

In addition to such high-throughput data sets, the extent of
interaction data compiled from small-scale studies has also grown
dramatically. In some model organisms, such as S. cerevisiae and C.
elegans, the number of these interactions has reached the same scale
as the number of interactions discovered by high-throughput
methods (Reguly et al., 2006; Bieri et al., 2007).

However, interactome data are far from perfect. Only a small
portion of physical interactions has been confirmed by more than
one data set or by genetic interactions (von Mering et al., 2002;
Reguly et al., 2006), suggesting that these data are far from
complete. In addition, the yeast two-hybrid method can have high
false-positive rates, up to 50% in some cases (Fields, 2005), but false
positives are likely to vary between experiments and among
individual results in a given screen. Several factors can contribute to
false positives. For example, two proteins might interact in yeast
nuclei but might never be expressed in the same cell in vivo. The
particular construct used can also affect the results, so one domain
might interact, but the full-length protein might not. However, large-
scale analyses include estimates of error rates, and users of these
data can have more confidence in them if they understand the
methods used in each study. In addition, it is desirable to develop
computational methods to explore potential interactions and to
improve data reliability.

Transcriptional regulation data
There are many rich sources of data about transcriptional regulation
from which developmental biologists would like to infer genetic
regulatory networks. We will not review in detail the methods
involved in data integration because this active area of
bioinformatics deserves its own review, but instead will provide two
examples of where automated data integration is useful. Much data
integration in this area deals with the association of transcriptional

regulators with the sites to which they bind and with gene
expression. Individual types of analyses are often successful but
have limits, which can be overcome partially by data integration.

An increasingly important technique, chromatin immuno -
precipitation (ChIP), detects protein-DNA interactions in vivo and
thus indicates where proteins bind to DNA. Genome-wide ChIP
analysis has been achieved by detecting DNA fragments precipitated
with a particular protein using whole-genome tiling microarrays, the
conventional sequencing of fragment ends or, more recently, by
sequencing the DNA fragments themselves (Johnson et al., 2007).
However, proteins can bind to DNA without having a known
functional consequence. These data can be integrated with sequence
motifs, conservation of sequence alignment, and with gene
expression data in order to make predictions about the genes
regulated by a particular transcription factor.

Sandmann et al. (Sandmann et al., 2007) found ~2000 regions that
bind the DNA-binding protein/transcriptional activator Twist in
Drosophila using ChIP and a whole-genome tiling array. They
narrowed down these results to ~500 candidate gene regions by
integrating information about the co-expression of an associated
gene and Twist, and genetic trans-regulation data. Six TWIST-bound
regions were tested and all were sufficient to drive reporter gene
expression in vivo. In a similar approach, Zeitlinger et al. (Zeitlinger
et al., 2007) found hundreds of regions that bind three factors
(Dorsal, Twist and Snail). Up to 80% of these regions had motifs for
a given factor, as compared with ~35% of randomly chosen
sequences. Conservation across 12 Drosophila species was used to
gain further confidence in these enhancer regions, of which seven
were shown to function as transcriptional enhancers in vivo. In both
studies, ChIP data were combined with other data to accurately
predict enhancer function.

Genomic DNA sequence comparisons of orthologous genes can
identify conserved sequence alignments, as well as over-represented
sequence motifs. Of course, a single important DNA site can be
indistinguishable from a background of sequence if, for example,
every gene on average has one copy of a sequence. However, with
other information, a single site can be identified. For example, in C.
elegans the RFX-family regulator DAF-19 binds a 14-mer site
(called the Xbox) (Blacque et al., 2005). Blacque et al. compared
mRNA from ciliated neurons with all neurons to identify transcripts
enriched in ciliated neurons. They then selected those that had an
Xbox near the start codon, and successfully predicted expression in
ciliated neurons. However, only 42% of genes with correctly
positioned Xboxes were expressed in ciliated neurons.

Phenotypic data
Phenotypic data are accumulating at an exponential rate, boosted by
technologies such as RNAi and TILLING (Wienholds et al., 2003;
Henikoff et al., 2004) (see glossary in Box 1). Genome-wide high-
throughput phenotype characterizations have been conducted in
yeast using a deletion library (Giaever et al., 2002), in worms by
RNAi (Kamath et al., 2003; Simmer et al., 2003) and in Drosophila
by RNAi on cell lines (Boutros et al., 2004) or by expression of
inverted repeats in transgenic flies (Dietzl et al., 2007). Although
there is no doubt that high-throughput in vivo studies have identified
gene functions during various developmental events, studies in
Drosophila and mammalian cell lines have also contributed to our
knowledge of development by identifying new pathway components
and by characterizing drug responses and cellular events (e.g. Berns
et al., 2004; Eggert et al., 2004). In addition to high-throughput
results, data from small-scale studies of individual genes are also
being compiled through the literature curation that is provided by
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model organism databases such as FlyBase and Mouse Genome
Informatics (MGI). These data provide more-detailed information
than do high-throughput data, whereas the high-throughput data
have better consistency. Some high-throughput studies focus on a
subset of genes instead of the entire genome, which allows results to
be analysed in more detail. For example, the study by Piano et al.
(Piano et al., 2002) described in detail 47 different early embryonic
phenotypes created by the inactivation of 766 genes in C. elegans.

Phenotypes that can be associated with genes are often derived
from studies in which gene function has been perturbed, such as in
mutagenesis screens, targeted knockouts, RNAi screens, by using
morpholinos, or in transgenic studies in which genes are
overexpressed or modified to produce a constitutively active or
dominant-negative protein. No one method is best. For example, the
knockout of a gene might reveal only its earliest embryonic function,
whereas RNAi or a particular missense mutation obtained in a
genetic screen might identify other functions. The overexpression of
a redundant gene can reveal its function even though the knockout
of a single member of its family produces no discernible phenotype
[e.g. alpha factor in yeast (Kurjan and Herskowitz, 1982)]. RNAi
experiments may not effectively knockdown the function of many
genes. For example, in genome-wide RNAi experiments in C.
elegans, only 10% of tested genes displayed visible phenotypes on
the standard wild-type laboratory strain (Kamath et al., 2003). When
a more sensitive strain, rrf-3, was used, the number of genes
associated with phenotypes increased to 23% (Simmer et al., 2003);
however, this still leaves most genes without functional information.

Ontologies and functional annotation
The most common format of these genomic data is a list of genes
that have been annotated with their expression patterns or associated
with phenotypes in a controlled vocabulary. A more resourceful
annotation method involves the use of ontologies, a more structured
and controlled vocabulary (see glossary in Box 1 and Fig. 2).
Ontology defines each annotation term and the relationship among
terms, enabling us to associate genes with related, but not identical,
functions (Fig. 2). For example, if one gene is annotated as causing
embryonic lethality and another as defective gastrulation, they will
not be associated unless a phenotype ontology is used that defines
defective gastrulation as a specific case of embryonic lethality.
Currently, the Mouse Phenome Database (MPD) and WormBase
(see Table 1) have constructed mouse and worm phenotype
ontologies, respectively, and provide annotations using these
ontology terms. Anatomy ontologies have also been developed by
the Zebrafish Information Network (ZFIN) (Sprague et al., 2006)
and WormBase (see Table 1).

The Gene Ontology (GO) Consortium (GO Consortium, 2006)
provides one of the most widely used platforms of gene function
annotations. The ontology contains three sets of controlled
vocabularies to describe gene functions: biological process (e.g.
embryonic development), cellular component (e.g. nucleus) and
molecular function (e.g. protein kinase activity). To ensure
consistency, the ontology (see Fig. 2C, for example) was defined by
professional curators from multiple model organisms. Each gene is
associated with these annotation terms and an evidence code (e.g.
IEP, Inferred from Expression Pattern).

GO data are considered to be of high quality by bioinformaticians
because they are manually inspected to ensure accuracy, and because
they provide detailed information for a large number of genes.
Although a developmental biologist might prefer more detail
concerning gene function, there is a balance between granularity and
coverage when conducting computational studies. In the context of

genome-wide coverage, GO provides impressive data quality.
Because of this, the GO data set has been used not only as a type of
data to be integrated (Jansen et al., 2003), but also as a benchmark
to test the performances of various data integration methods (Lee et
al., 2004).
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CNS development

Spinal cord development
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 A  Phenotype ontology

Vulval development abnormal

Reproductive system development abnormal
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Fig. 2. Examples of bio-ontologies. An ontology captures
relationships among terms and their definitions in a structured way. A
structure used in many of the current ontologies is a ‘directed acyclic
graph’ that differs from a tree or outline in that one term can connect
to many terms but the connection is oriented (shown by arrows rather
than by lines) and no cycles are allowed. Commonly used relationships
are ‘Is a’ and ‘Part of’: term A is an example of term B; structure A is
part of structure B (see www.geneontology.org or
www.bioontology.org for more information). (A) Phenotype ontology.
Reproductive system development defects include vulval developmental
abnormalities, which include more-specific phenotypes, such as
vulvaless and abnormal cell-fate specification. (B) Anatomy ontology.
The intestine is part of the ‘digestive tract’ and ‘alimentary system’ and
is an ‘organ’. The intestine comprises intestinal cells, intestinal lumen
and intestinal muscle. (A and B from WormBase WS180.) (C) Biological
processes in the Gene Ontology (GO). ‘Spinal cord development’ is a
case of ‘anatomical structure development’ and is part of ‘central
nervous system (CNS) development’. Spinal cord development
comprises the development of sub-structures and includes both cell
differentiation and patterning. (From GO Biological Process.)
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When using GO data, it is important to remember that data with
different evidence codes should be processed differently. For
example, data with the IEA (Inferred from Electronic Annotation)
code may be less reliable than manually curated data. Some GO data
may overlap with other biological data sets. For example, in C.
elegans the RNAi phenotypic data have been converted into GO
biological process annotations (e.g. the phenotype ‘embryonic
lethal’ has been converted to the GO process ‘embryonic
development’). The redundancy of these data sets should be noted if
a computational method requires each data set to be independent.

Data integration: why?
Data integration is a useful tool for biologists to navigate through
this seemingly overwhelming amount of sometimes contradictory
genomic data. By combining various types and sources of
information, we can achieve a better assessment of what is known
about a protein or process, which will then facilitate our own
research.

Take our own experience, for example. We integrated phenotypic,
expression, interactome and GO data from yeast, flies and worms to
predict genetic interactions in worms (Zhong and Sternberg, 2006).
Among the results was a set of novel predicted interactors for let-60,
which encodes a member of the RAS family and is a crucial
regulator of the extent of vulval induction (Beitel et al., 1990; Han
et al., 1990; Han and Sternberg, 1990). These interactions were
tested by RNAi in a let-60(gf) background for suppression or
enhancement of the multivulva phenotype. Twelve of 49 of the
predictions yielded significant effects. As a striking confirmation of
these results, the functional interaction between let-60 and tax-6, one
of our verified predicted interactions, was also identified in an
independent classical genetic-interaction analysis (W. Johnson and
M. Han, personal communication). In our study of let-60 modifiers
in vulva development, data integration facilitated our research by
prioritizing which candidates to test.

To further illustrate the benefit of applying data integration to
one’s own research, we compare two scenarios in which the same
study would be conducted with and without data integration.
Without computational data integration, genetic screens would be
undertaken by a conventional method to study genetic interactions.
Lehner et al. (Lehner et al., 2006) conducted an RNAi screen for
modifiers of ~30 genes. They applied RNAi to mutants and
searched for synthetic phenotypes, such as lethality and growth
defects. They found 345 genetic interactions from a total of ~65,000
pairwise tests, making their efficiency (measured as the ratio of
discovery versus effort) 345/65,000=0.53%. In the second
hypothetical scenario, the same study would be conducted but now
with the data integration results. Our computational data predicted
83 interactions for the same genes at a stringent threshold, and 325
interactions at a lower threshold (Zhong and Sternberg, 2006). Had
Lehner et al. tested only these 83 (or 325 using the lower threshold)
pairs instead of the original 65,000 pairs, they would have
recovered 14 (or 41 using the lower threshold) genetic interactions.
The efficiency under this strategy is thus 14/83=16.9% (or
41/325=12.6% using the lower threshold). The efficiency
improvement in using data integration is thus 32-fold (16.9/0.53)
or 24-fold (12.6/0.53) for the two thresholds. Therefore, data
integration can greatly decrease the screening and increase the
efficiency of discovery, which would be highly desirable when
studying complex phenotypes. However, this example also
illustrates one limitation of this technique: only a subset of all real
interactions (41/345=11.9%) would be recovered. In this section,
we discuss what data integration can and cannot do.

Data integration can fill in missing data
Although ongoing literature curation by model organism databases
is constantly extending our knowledge of new gene functions, most
genome-wide data sets do not cover every gene in multicellular
animals and plants. For example, in C. elegans, only ~20%
(3802/20,000) genes are associated with an anatomical expression
pattern in WormBase (WormBase WS166). Genes that are not
associated with an annotation constitute a missing data problem.
This problem severely limits the scope of our research if we rely on
only one data set to conduct the computation (as in the example of
C. elegans expression, we will miss out 80% of genes). A quick and
effective solution to the missing data problem is to increase genome
coverage by combining multiple data sets that cover different groups
of genes. For example, in our study of genetic interaction
predictions, we noticed that only 292 C. elegans genes were
annotated for all three data types of phenotype, anatomical
expression and GO process (Zhong and Sternberg, 2006). By adding
cross-species data, we were able to expand our scope and predict
genetic interactions for over 2200 genes. Integrating other data sets
enabled us to ‘borrow’ information from other experiments and other
species to piece together a more complete picture. Each type, source
and quality of data will carry a different weight. For example, in our
study, not surprisingly, anatomical-level expression data from C.
elegans was more informative than similar data from D.
melanogaster; however, Drosophila phenotypic information was
more informative than similar data from C. elegans because there
were only a limited number of phenotypic annotations in WormBase
at that time.

Data integration can reduce noise
Data sets are often noisy, containing false positives and false
negatives. Also, a data set may be a good predictor of one type of
prediction, but a weak predictor for another type of prediction. Data
integration improves data reliability by confirming a conclusion with
several independent experiments. Therefore, we can filter out
erroneous information and increase the overall predictive strength
by combining several weak predictions.

In one example, Natarajan et al. (Natarajan et al., 2006) integrated
a set of data obtained by the Alliance for Cell signaling in which they
treated a macrophage cell line with single and multiple ligands and
measured multiple readouts, including calcium and cAMP
dynamics, cytokine expression and phosphorylation of signaling
proteins. The data for each cell biological readout was converted to
a z-score, which is essentially the number of standard deviations
from the relevant control, and then the z-scores summed to obtain an
integrated view of each ligand treatment. This integration allowed
them to compare treatments, learning, among other things, that
receptor-stimulated calcium mobilization increases cAMP
production stimulated by a distinct signal transduction pathway.

It is, however, debatable whether increasing the number of data
sets will necessarily improve data quality in terms of reducing false
positives and false negatives. When predicting protein-protein
interactions, a study of yeast genomic data integration has suggested
that there is a limit to improving performance by the integration of
more data sets (Lu et al., 2005). At some point, the utility of adding
more data sets saturates and thus clustering additional data sets,
especially those constituting weak predictors and data of poor
quality, introduces confusion instead of further reducing noise (Lu
et al., 2005). With current multicellular organism data sets, we are
probably still far from this saturation point, and the benefit of
reducing missing data might outweigh the concern of data
saturation.

REVIEW Development 134 (18)
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Caveats of data integration
As shown by our example of comparing brute force and prediction-
guided tests, although data integration can promote discovery, it
often can recover only a subset of all hits. The scope of data
integration is limited to the genes that exist in data sets. As a result
of the biased genome coverage of some data sets (especially those
compiled from small-scale studies), data integration tends to favor
genes that have been well studied and genes that are conserved in
multiple organisms. Therefore, data integration cannot replace
genetic screens for predicting gene function and interactions because
genetic screens provide unbiased coverage of the genome: genes can
be identified without any prior assumption or knowledge.

In most cases, data integration requires experimental validation.
To various degrees, most data integration techniques rely on certain
assumptions and simplifications of biological data. For example,
cross-species data integration assumes that gene functions are
conserved in different organisms. We thus have to apply other
methods to cross-validate these computational results. Experimental
verification is a direct and convincing way to detect exceptions to
these assumptions. When computational predictions are proved to
be correct, experiments can also provide more-detailed biological
information.

Because of these limitations, we consider data integration as a
means of prioritizing experiments rather than dictating which
experiments to pursue.

Data integration: how?
We explain in this section, with a few examples, the basic steps of
data integration. In brief, the steps are: to obtain data in a consistent,
structured form that can then be fed into a computer program; to
define orthologs when data are to be integrated across species; to
select a statistical model with which to integrate data; and to choose
a threshold by which to interpret the output of the computer
program.

Make data computable
Although numeric data are desirable because they can be used
directly, data in the format of annotated text can be converted into a
form that is amenable to information extraction and mathematical
computation. One simple way to convert text annotations to numbers
is to use a binary code (0, 1) to denote the absence and presence of
an annotation term. Piano et al. (Piano et al., 2002) used this method
to convert C. elegans embryonic phenotype annotations into a string

of binary numbers. This enabled them to compare the similarity in
phenotype of two genes by computing the correlation of the two
strings of 0s and 1s (shown as yellow and blue in Fig. 3).

Annotation statistics can provide additional information,
especially when an ontology is used. For example, in GO, the
general term ‘developmental process’ is associated with as many as
17,281 genes, whereas the more specific term ‘embryonic
development’ is associated with only 4826 genes (http://
www.geneontology.org, as of July 2007). The number of genes
associated with an annotation term thus indicates how specific the
term is. Such information can prove to be very useful when
predicting functional interactions because if two genes share a more
specific term then they are more likely to interact than genes that
share a general term (Jansen et al., 2003; Zhong and Sternberg,
2006).

Another method is to convert heterogeneous data into weighted
scores. A popular scoring scheme uses likelihood ratios (see
glossary, Box 1) (Jansen et al., 2003; Lee et al., 2004; Rhodes et al.,
2005; Zhong and Sternberg, 2006). This requires a training set (see
glossary, Box 1) with known positives and negatives. The likelihood
ratio is the value of the frequency of a feature appearing in the
positive training set divided by the frequency in the negative training
set. A high likelihood ratio indicates that more positives than
negative have the feature. If an unknown gene has this feature, a high
likelihood ratio is awarded indicating that the gene is more likely to
have a positive outcome.

Map orthologs
Orthologs are homologs that diverged concomitant with the
divergence of species. When performing cross-species data
integration, one important step is to select a good method to identify
orthologs among species. Most of us are familiar with assessing
orthology for individual genes of interest, but when the process is
scaled up to ~20,000 genes, some automation is necessary.

A number of automated strategies to detect orthologs have been
proposed, and several databases have been devoted to ortholog
mapping (Fig. 4). Many methods detect reciprocally best-matching
proteins from BLAST searches (Altschul et al., 1997) as orthologs;
for example, NCBI KOG [euKaryotic Orthologous Groups,
http://www.ncbi.nlm.nih.gov/COG/ (Tatusov et al., 2003)],
InParanoid [http://inparanoid.sbc.su.se (Remm et al., 2001)] and its
multi-species extensions, such as OrthoMCL [http:// orthomcl.
cbil.upenn.edu/cgi-bin/OrthoMclWeb.cgi (Li et al., 2003)] and
MultiParanoid [http://www.sbc.su.se/~andale/ multiparanoid/
html/index.html (Alexeyenko et al., 2006)]. Using a different
approach, TreeFam (http://www.treefam.org) constructs
phylogenetic trees and uses manual curation to annotate orthologs
(Li et al., 2006).

A good ortholog mapping method should identify all members in
an ortholog group and avoid large groups of paralogs. For example,
in the hypothetical protein family of Fig. 4C, applying a two-species
InParanoid analysis of species B and C will correctly identify two
ortholog groups, (B1, C1) and (B2, C2, C3); but including a distant
species A in a KOG analysis might erroneously lead to all the
proteins being grouped together as one group. Based on its
phylogenetic approach and manual supervision, TreeFam probably
provides the highest data quality.

A good ortholog mapping method should also be updated with the
latest gene model and annotation changes. Since gene models are
updated continually as genome sequence, assembly and gene finding
improves, ortholog analysis needs to be based on the latest sequence
data. InParanoid, OrthoMCL and MultiParanoid provide open

Fig. 3. Correlating a spectrum of phenotypes. A set of 14
phenotypes for eight genes is indicated by the presence (blue) or
absence (yellow) of the phenotype. In this example, genes A and B are
perfectly correlated (14 of 14 phenotypes), genes C and D are tightly
correlated (12 of 14 phenotypes), and genes A-D are more correlated
with each other than with E-H. This data representation allows genes
and phenotypes to be clustered and calculations of pairwise correlation
coefficients to be made.
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source codes at their websites and thus can be installed to analyze
any desired genome sequences. However, it might require a
substantial computational resource to conduct these analyses when
a large number of genomes are included.

Select a statistical model
The simplest statistical model to use for integrating multiple data
sets is a voting system (Fig. 5A). For example, one data set gets one
vote, and the total number of votes is then added up for final
decisions. The voting system makes it easy to vary the stringency
with which data are selected. At one extreme, when the threshold
vote number is set to one, the system selects the union of all data
sets. At the other extreme, when the threshold is as high as the total
number of data sets, then only the intersection of all data sets is
allowed and the system becomes a filtering model (intersection).
Because of its simplicity and no requirement of any training data set,
the voting method has been extensively used in various

developmental studies. For example, in C. elegans, the strategy has
been applied to integrate phenotype, expression and protein-protein
interaction data to study germline development (Walhout et al.,

REVIEW Development 134 (18)

Fig. 4. Three methods of assigning orthology relationships.
Species are designated by letters and paralogs by numbers. (A) KOG.
The NCBI KOG detects reciprocally best-matching proteins from BLAST
searches as orthologs. An ortholog group is thus defined as the union
of best BLAST hits among all pairwise comparisons of multiple species.
In the example shown, species A and species B each have a 1:1
ortholog, but species C has two orthologous proteins. (B) InParanoid.
Since inter-genome reciprocal best BLAST analysis forces a one-to-one
relationship, InParanoid also detects intra-genome best BLAST hits as
co-orthologs. Solid arrows, inter-genome BLAST; dashed arrows, intra-
genome BLAST. (C) TreeFam. In this approach, the relationships among
proteins are defined by phylogenetic analysis. 
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Fig. 5. Four examples of statistical models for data integration.
(A) Voting system. Each circle represents one data set and has one vote.
Gray numbers indicate total votes. Data that are confirmed by multiple
data sets have multiple votes. In this example, there are three data sets;
thus, three is the maximum number of possible votes. (B) Support vector
machine. Blue circles indicate positives in the training set and yellow
squares represent negatives. In this example, there are two attributes (as
represented by the x- and y-axes) for each data point. The data are
plotted based on the values of these attributes. A function f is used to
convert the data points so that they become linearly separable. The
training set is used to derive the one-dimensional plane (red line) that
separates positives from negatives. (C) Decision tree. In this hypothetical
tree, the goal is to classify the input items into two categories, X and Y,
which are denoted as blue circles and yellow squares, respectively. The
category of each item is hidden, but we know the values of its three
attributes (A,B,C). We use a set of conditions (represented by pink
diamonds) to evaluate these attributes. Based on their values, we
separate the items into subsets. The separation continues until the final
outcome of the items (leaf nodes, represented by green boxes) is
reached. (D) Bayesian network. In Bayesian networks, nodes represent
variables and edges represent variable dependencies. Here, each node
represents a Boolean variable, the value of which is denoted as true (T)
or false (F) in conditional probability tables. The edges indicate that the
value of B is dependent on the value of A and that the value of D is
influenced by both the values of A and C. The conditional probability
tables detail such dependency. For example, the probability of B being
true is 0.8 if A is true; the probability drops to 0.4 if A is false. This
network enables us to derive probabilities from different attribute values
– for example, the probability of A being true given that B is true.
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2002) and embryogenesis (Gunsalus et al., 2005) (see Box 2).
When training sets are available, more-sophisticated statistical

models can be used. S. cerevisiae has been a test-bed for such
bioinformatic methods. For example, yeast protein and genetic
interactions have been inferred by Bayesian networks (Troyanskaya
et al., 2003), decision trees (Wong et al., 2004) and kernel methods
(Ben-Hur and Noble, 2005) (see below). Whereas some of these
methods require substantial amounts of programming, most of the
statistical models can be constructed with the assistance of freely
available software packages. The computational principle behind
these methods is to formalize different data types into a number of
attributes, to detect the patterns of these attributes in known positives
and negatives, and to define a process (function) to differentiate
positives from negatives based on their attribute values.

For example, if there are a total of n attributes, then each data point
in the training set is a vector of n values, and is associated with an
outcome. Kernel methods, in particular support vector machines
(SVMs), use a kernel function (often non-linear) to transform these
attribute values so that they are linearly separable, and then use a
regression (often a simple linear regression) to derive a hyperplane that
achieves the maximum separation between positives and negatives
(Fig. 5B). We can then use this hyperplane to classify an unknown
item into a positive or a negative outcome based on its attribute values.

A decision tree judges one condition at a time and reduces the
problem at each step (Fig. 5C). Starting from the root node, a
condition (e.g. do the two genes have the same phenotype?) is
applied, and the unknown item is classified into one of the daughter
nodes based on its values. The decision-making step continues until
a leaf node is reached where the unknown item is classified into a
final category.

Bayesian networks (see glossary, Box 1) use a directed acyclic
graph to represent variables and their relationships. The network is
composed of nodes that represent variables, directed edges that link
two dependent nodes, and probability tables (Fig. 5D). The training

set tells us the conditional probability of an outcome given the values
of all variables. Bayesian networks can use this information together
with the prior probabilities to compute the inverse problem, that is,
given a set of values, what the probability of an outcome is (Eddy,
2004). 

A simplified Bayesian network model, naïve Bayes classifier, has
become one of the most popular methods for integrating data to
predict gene functions (Jansen et al., 2003; Lee et al., 2004; Rhodes
et al., 2005) (see example in Box 3). This method assumes all
variables to be independent, and thus simplifies the computation
down to an easy product calculation: the final score is the product of
the likelihood ratios of all features of the input gene(s). The higher
the scores, the more likely that the genes are positives. A cut-off
value is then applied to the final score. 

Although numerous approaches have been developed, there has
been no systematic study of the different statistical models.
However, the bottleneck in data integration is likely still to be the
data collection step. The impact from statistical models seems
relatively minor considering the severity of the missing data problem
and the unreliable nature of the data quality in multicellular
organisms. When the performance of a logistic regression model to
predict C. elegans genetic interactions was compared with that of a
simple naïve Bayes classifier, only minor improvements were
observed (Zhong and Sternberg, 2006), suggesting that improving
data quality should be of higher priority than finding better statistical
models.

Choose a threshold
The threshold stringency directly affects the ratios of false positives
and false negatives in the final computational predictions. As
developmental biologists, we care more about individual genes and
proteins than about statistical properties of the genome and data sets,
but such properties provide important clues. False positives can only
be eliminated by experiment. If 80% of inferences are false
positives, then on average we have to test five inferences to obtain
one true result. If the experiments are relatively straightforward
(double mutants; examining gene expression), then such rates might
be acceptable. If the experiments are less straightforward (making a
conditional knockout mouse; determining a crystal structure), then
those rates are probably not acceptable. 

Box 2. Using data integration to study C. elegans
embryogenesis: a success story
In 2005, Gunsalus et al. integrated RNAi phenotypic data, microarray
profiles and large-scale yeast two-hybrid results from C. elegans to
predict a gene function network that regulates C. elegans early
embryogenesis. In this study, they constructed a graph in which each
of 661 genes is a node. Edges are drawn in this graph if the protein
products of genes interact, or if the spectrum of phenotypes
associated with the perturbation of two genes is highly correlated,
or if the expression of two genes is highly correlated. By doing this,
they obtained 31,173 connections among the 661 genes. A multiple-
support graph was then developed in which two genes were linked
if there were two or more edges linking them in the previous graph.
This graph contains 305 nodes and 1,036 edges. It was this multiple-
support graph that was analyzed computationally to identify highly
interconnected sets of genes (sub-graphs), which can be interpreted
as sets of gene products that act together, possibly as
macromolecular machines. Indeed, the tight sub-graphs identified in
this study correspond to known machines, such as the anaphase
promoting complex (APC). Gunsalus et al. tested the predictive
power of their approach by examining the subcellular localization
dynamics of ten novel proteins using GFP translational fusions. In
most cases, the localization was highly consistent with their
predictions. For example, proteins connected to those involved in
DNA synthesis licensing factors localized to condensed chromosomes
at metaphase. The success of this study is due in part to its focus on
one aspect of C. elegans development, and the authors’ great
expertise in the biological detail of this process.

Box 3. Putting it together: an application of advanced
data integration techniques
Jansen et al. (Jansen et al., 2003) have successfully applied Bayesian
networks (see glossary, Box 1) to integrate various genomic data sets
to predict protein-protein interactions in yeast. Four data types were
used: yeast mRNA expression, biological function, phenotype (viable
or not), and protein physical interaction data. Jansen et al.
constructed a training set using hand-curated protein-protein
interactions as positives and proteins located in separate subcellular
compartments as negatives. Equipped with this training set, they
computed the likelihood ratios (see glossary) for each data set to
convert them into weighted scores. The scores were computed at a
detailed level. For example, different scores were assigned to GO
terms with different annotation statistics so that a GO term
describing a specific biological process had a higher score than a
broadly defined GO term. These scores were combined using a
Bayesian networks approach to produce a final, probabilistic protein-
protein interaction network. Mass spectrophotometric analysis of 98
affinity-purified protein complexes (tandem affinity purification ‘TAP-
tagging’ experiments) verified 424 predicted interactions, validating
the accuracy of their predicted network.
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The extent of false negatives depends on the threshold set for
predictions. If one followed up on all predictions, then there would
be no false negatives, but then one would gain nothing from the
computation. There is no correct threshold, but rather it depends on
the value and costs placed on following predictions.

Conclusions
We have discussed how data integration, pioneered in yeast, has
been extended to metazoans, especially C. elegans. Data integration
is likely to be especially important in studies of mammalian
development, where the interest, complexity and cost of experiments
are typically higher than in invertebrate systems. The desire to
maximize the yield per experiment should lead a developmental
biologist to want to use automated data integration.

This review has focused on integrating large-scale data sets to
learn about individual genes, but the analyses of features of whole
interaction networks promises additional, global insights (reviewed
by Albert, 2005). Features of networks, such as the degree of sub-
structure and the average connectedness of genes, are likely to be
related to functional features. In addition, stereotyped features of
networks (network motifs) raise general questions about
relationships among genes. Protein-protein interactions can be
analyzed at the level of individual domains, and many genetic
interactions can be analyzed in terms of specific alleles that affect
parts of proteins. Taken together, these data might provide a higher
resolution view of interaction networks.

Data integration is not an isolated field. Further improvements in
data integration are closely tied to the progress of source databases,
such as the synchronization of data annotation with gene model
changes, the standardization of ortholog mapping techniques and the
development of bio-ontologies and their consistent compilation,
often by a professional curator.

Negative data are relatively underreported in the published
literature. As discussed above, sophisticated data integration
methods often use positive and negative training sets. Authors,
reviewers and editors could help the cause by encouraging the
inclusion of negative observations (‘gene A does not interact with
gene B for phenotype C’) in papers, for example as supplemental
data.

Many of the model organism databases and the Gene Ontology Consortium
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Schwarz, Xiaodong Wang and anonymous reviewers for comments on the
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Howard Hughes Medical Institute, with which P.W.S. is an Investigator and
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