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Genomic characterization of Gli-activator targets in sonic
hedgehog-mediated neural patterning

Steven A. Vokes', Hongkai Ji%3, Scott McCuine*, Toyoaki Tenzen', Shane Giles?, Sheng Zhong>*,
William J. R. Longabaugh?, Eric H. Davidson®, Wing H. Wong? and Andrew P. McMahon'7-t

Sonic hedgehog (Shh) acts as a morphogen to mediate the specification of distinct cell identities in the ventral neural tube through
a Gli-mediated (Gli1-3) transcriptional network. Identifying Gli targets in a systematic fashion is central to the understanding of the
action of Shh. We examined this issue in differentiating neural progenitors in mouse. An epitope-tagged Gli-activator protein was
used to directly isolate cis-regulatory sequences by chromatin immunoprecipitation (ChIP). ChIP products were then used to screen
custom genomic tiling arrays of putative Hedgehog (Hh) targets predicted from transcriptional profiling studies, surveying 50-150
kb of non-transcribed sequence for each candidate. In addition to identifying expected Gli-target sites, the data predicted a
number of unreported direct targets of Shh action. Transgenic analysis of binding regions in Nkx2.2, Nkx2.1 (Titf1) and Rab34
established these as direct Hh targets. These data also facilitated the generation of an algorithm that improved in silico predictions
of Hh target genes. Together, these approaches provide significant new insights into both tissue-specific and general transcriptional

targets in a crucial Shh-mediated patterning process.
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INTRODUCTION

The Hedgehog (Hh) signaling pathway represents one of
approximately six core signaling pathways that dictate development
in most bilateria (Davidson and Erwin, 2006; Hooper and Scott,
2005). Hh ligands regulate diverse processes, including morphogen-
mediated patterning, cell cycle regulation and cell polarity, operating
in a variety of cellular contexts from the forming segments of the
early Drosophila embryo to the digit-forming mesenchyme of the
vertebrate limb (McMahon et al., 2003). Genetic and biochemical
studies indicate that all Hh signaling is likely to be mediated by
Ci/Gli zinc finger domain-containing transcription regulators,
corresponding in vertebrates to Glil-3, through a Gli-consensus
binding sequence, TGGGTGGTC (reviewed by Hooper and Scott,
2005; Jacob and Briscoe, 2003; Ruiz i Altaba et al., 2003). In the
absence of Hh signaling in Hh-responsive tissues in mice, Gli3 and,
to a far lesser extent, Gli2 (Pan et al., 2006) undergo proteosome-
mediated carboxyl cleavage to repressor forms (GliREP) that silences
one set of Hh targets. Hh signaling at low levels counters cleavage,
leading to de-repression of targets. High levels of Hh signaling are
essential for direct activation of a second group of targets. All three
Gli members can function as activators (GIiA“T), although only Glil,
itself a direct target of Hh signaling, is thought to act exclusively as
an activator (Bai et al., 2004; Dai et al., 1999; Wang et al., 2000).
The primary transcriptional activator appears to be Gli2; however,
substitution of Glil into the Gli2 locus rescues the Gli2 null
phenotype. Thus, Glil and Gli2 activator forms have similar
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properties (Bai and Joyner, 2001). While not comprehensively
explored, evidence from Drosophila suggests that Gli3 repressor and
activator forms appear to bind a common set of target sites (Muller
and Basler, 2000).

One crucial role of sonic hedgehog (Shh) lies in patterning of the
vertebrate neural tube. Here, Shh secreted from the midline
notochord acts as a morphogen to specify five classes of ventral
neuronal progenitors in a concentration-dependent fashion; from
dorsal to ventral these are progenitors for VO, V1, V2 interneuron
pools, motoneurons (MN) and V3 interneurons. In addition, the
highest levels of Shh signaling at the ventral midline induce a second
ventral midline domain of Shh-expressing cells, the floor plate (FP),
immediately ventromedial to V3 progenitors (reviewed by Briscoe
and Ericson, 2001; Jessell, 2000; McMahon et al., 2003). Genetic
studies have demonstrated that whereas VO, V1, V2 and MN
identities can be specified in the absence of Hh signaling if GIi®*F is
removed, the most ventral identities, V3 and FP, require Hh
signaling and Gli“" forms (Bai et al.,2004). Recent work indicates
that relatively small differences in the ratio of these forms dictate
distinct transcriptional outputs (Stamataki et al., 2005), suggesting
a fine-tuned response to Gli regulators in the cis-regulatory regions
of target genes expressed at distinct Hh thresholds. Clearly, testing
this or any alternative model requires a thorough understanding of
the cis-regulatory mechanisms in direct target genes that dictate Gli-
mediated regulation.

Here we have initiated a systematic effort to define sets of genes
that are directly regulated by Gli activator. Glil-directed chromatin
immunoprecipitation (ChIP) products isolated during the course of
Hh-mediated patterning of neural progenitors were used to
interrogate custom genomic arrays, successfully identifying and
mapping a large number of novel in vivo target sites. Bioinformatic
analysis and expression studies in cell culture and transgenic mouse
embryos validated these data and provide novel insights into the
regulation of both tissue-specific and more general components of
a Hh transcriptional response. Further, the analysis of in vivo targets
facilitated the development of a novel algorithm for Gli-target site
prediction. Based on our data, we present a model for ventral
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neuronal specification in which Gli-activator and Gli-repressor
forms differ substantially in their selection of binding sites. This
uneven competition drives the transcriptional interpretation of the
morphogen gradient.

MATERIALS AND METHODS

Generation of ES cells and transgenics

A full-length mouse Glil construct was cloned with an in-frame C-terminal
3XFLAG tag (Sigma). The tagged Gli induced luciferase expression 111+6-
fold compared to 254+27-fold with the untagged form. This was cloned
upstream of an IRES2, allowing bicistronic expression of the Venus YFP
protein (Nagai et al., 2002), and the module was cloned into the pBigT
shuttle vector, then into Rosa26PAS (Srinivas et al., 2001). The linearized
construct was electroporated into YFP3-1 (Rosa26 YFP/B-gal) embryonic
stem (ES) cells (Mao et al., 2005) and neomycin-resistant colonies that
passed initial visual screens (loss of B-gal or YFP expression) were assayed
by Southern blot. We used one ES cell line, Gli1™AC, for all further
experiments. To obtain a constitutively active Rosa Glil construct
(constitutive Gli1F“A0), the conditional ES cells were grown for several
passages in 1 wm 4-OH Tamoxifen, and then cloned by serial dilution (three
independent lines were isolated and we utilized one for all subsequent
experiments). For leptomycin B treatment, ES cells were incubated for 5
hours with 5 nM leptomycin B.

The pHSP68lacZ2XINS vector was constructed by PCR amplifying the
2X Chick B-globin insulator motif from XB3+Insulator with primers
containing Asc1 sites and inserting this into the Asc1 site of pHSP68lacZ
(Sasaki and Hogan, 1996). With the exception of the Nkx2.] (also known as
Titfl — Mouse Genome Informatics) peak, where only one copy of the
enhancer was used, transgenic constructs were generated by cloning
four copies of test DNA upstream of the minimal promoter in
pHSP68lacZ2XINS. The sequence coordinates of the Ptchl peak2 enhancer
and the Nkx2.2 (Nkx2-2) Gli enhancers are described in the text. In addition,
a 575 bp sequence (chr12:53,245,800-53,246,374) encompassing the
Nkx2.1 peak and a 291 bp sequence (chr11:77915085-77915375) spanning
the Rab34 peak were used to generate the respective constructs. To construct
mutated Gli sites, we changed the site 5'-TGGGTGGTC-3' to 5'-
TCCCACGTC-3" (NkxM-HSP68lacZ), a mutant form that removes an
invariant G essential for Gli binding and several other residues that contact
the zinc finger motif of Glil (Pavletich and Pabo, 1993).

Embryoid bodies (EBs) were generated using previously described
procedures (Wichterle et al., 2002). After 2 days, the media was changed to
DFENB containing 500 nM retinoic acid and, when applicable, 1 M Hh
agonist (HH-Ag) (Frank-Kamenetsky et al., 2002). EBs were grown for an
additional 3 days to induce neural progenitor stages, at which point cultures
were harvested for ChIP.

Immunostaining with Pax6, Nkx6.1 (Nkx6-1), Nkx2.2 and FoxA2 was
performed using previously published methods (Wijgerde et al., 2002). For
western blots, samples were run out on 4-12% BisTris gradient gels and
protein levels were normalized using levels of (-gal. The M2 FLAG
antibody (Sigma) or anti-(3-galactosidase (Promega Z3781) were each used
ata 1:2000 dilution. For immunostains, YFP was detected using an anti-GFP
at 1:2000 (Abcam ab290).

Chromatin immunoprecipitation and hybridization

‘We modified a published protocol (Odom et al., 2004) to reduce the number
of input cells to approximately 2X 10° cells per precipitation using a FLAG
M2 mouse monoclonal antibody (Sigma). After isolating chromatin, we
incubated it with previously prepared M2-coated magnetic beads. To prepare
beads, magnetic sheep anti-mouse IgG beads (Dynal) were incubated
overnight with 0.8 g M2 Mouse monoclonal anti-Flag antibody (Sigma) and
10 .l of beads per precipitation. The following day, the beads were rinsed and
added to chromatin and incubated overnight at 4°C. Samples were then rinsed
five times with RIPA buffer, and the antibody was stripped from the beads by
incubating in 1% SDS at 65°C for 15 minutes and cross-linking was reversed
by incubating overnight at 65°C. The next day, samples were sequentially
treated with RN Ase A and Proteinase K, phenol:chloroform extracted, ethanol
precipitated with 20 g glycogen and resuspended in 60 .l 10 mM Tris pH

8.0. ChIP-enriched DNA samples were amplified before hybridization to the
tiling array. For this, DNA samples were blunted using T4 DNA polymerase
(50 pl of each ChIPed sample with 0.6 units of T4 DNA polymerase in a 110
wl volume at 12°C for 15 minutes), phenol:chloroform extracted with 10 g
glycogen, ethanol precipitated and resuspended in 25 pl water. This material
was then blunt-ligated to unidirectional linkers (Ren et al.,2000) using 15 uM
annealed linkers and a Quick Ligation Kit (New England Biolabs) in a 21 .l
volume at 12°C overnight. The reaction was then ethanol precipitated,
resuspended in 25 pl water and PCR amplified using 1 M primer oJW102
with an annealing temperature of 60°C and a 1 minute extension at 72°C for
26 or 29 cycles. To ensure that samples were uniformly amplified, we re-
assayed the samples by qPCR.

For each ChIP, 2 pg amplified ChIP sample or Input control was
labeled with Cy3 or Cy5-dUTP (Perkin Elmer) using the Bioprime
Array CGH kit (Invitrogen) and competitively hybridized using 5 pg
labeled material per channel with the Oligo CGH Hybridization Kit
(Agilent Technologies) on a custom tiled 44K array from Agilent
Technologies (see Table S1 in the supplementary material). Complete
details for array construction and all raw array data may be obtained from
GEO (GEO #GSE5683). Three independent biological samples were
employed in the analysis. Within each sample, dye-swap experiments
were performed in duplicate for a total of four technical replicates per
biological sample.

The hybridizations were done in Agilent SureHyb hybridization
chambers, and in an Agilent rotating hyb oven at a speed of 10 rpm for 72
hours at 65°C. Each hybridization was performed in duplicate and by
exchanging labeled dyes (dye-swapping) for a total of four technical
replicates per biological sample. Samples were washed sequentially for 5
minutes at room temperature using Oligo aCHG Wash Buffer 1 (Agilent
Technologies), 1 minute at 37°C in Oligo aCGH wash buffer 2 (Agilent
Technologies), 1 minute in Acetonitrile at room temperature and 30 seconds
in Stabilization and Drying Solution (Agilent Technologies). Finished arrays
were scanned using an Agilent scanner at a 10 wm resolution with both
channels at a PMT setting of 100. Array images were extracted using
Agilent’s Feature Extraction Software (version 8.5.1.1) using the standard
CGH protocol included with the software. The settings included spatial
detrending of the extracted array data and a linear median normalization.
Log fold changes were obtained for each probe, and the four technical
replicates within each biological replicate were averaged. The correlation
coefficient between any two technical replicates using the same dye labeling
was r=0.948 (5.d.=0.020), and between two technical replicates that use
different dye labeling was r=0.773 (s.d.=0.095). In contrast, the correlation
between two biological replicates was r=0.068 (s.d.=0.075). T-scores were
obtained using TileMap in the moving average mode (Ji and Wong, 2005).
All coordinates in this manuscript refer to the Build 34 assembly of the
mouse genome.

Mapping of Gli sites, determination of conserved regions and
motif identification

Potential binding regions (see Table S2 in the supplementary material) were
extended 200 bp from both ends and repeats were masked (A.F. A. Smit, R.
Hubley and P. Green, RepeatMasker at http://repeatmasker.org). We then
mapped the Gli consensus-binding pattern TGGGTGGTC (Kinzler and
Vogelstein, 1990), allowing only one bp mismatch. Candidate binding
regions were binned into groups of size ten according to their initial rank,
and the number of Gli sites (n;) and the total number of surveyed non-repeat
base pairs (n,) were counted for each tier and reported in Table S3 in the
supplementary material. To determine the background level of Gli
occurrence, the Gli consensus sites were also mapped to all tiled regions
present on the array, yielding 1264 sites in a total of 5,608,267 bp non-repeat
sequences. Gli-binding-site enrichment was then computed for each tier by
comparing its site density to the site density of control regions, i.e.
rl:(n1/n2)1argel/(nl/n2)comrol .

In a separate approach, we examined the degree of cross-species
conservation among binding sites. The multiple species alignment among
mouse, rat, human, dog and zebrafish were used to compute a conservation
score for each position of mouse genome. Sites whose mean conservation
score is among the top 10% of the genome were called conserved sites. The
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Table 1. Summary statistics of ChIP peaks

Rank Gene Peak Chr. Start End qPCR Orientation Gli concensus Gli matrix
1 Ptch1 2 13 60949397 60950371 34 TSS -1.1k =137, 219 -154, =137
2 Nkx2-2 1 2 146644626 146645570 29.2 TSS -1.9k =51 -98, =51
3 Ptch1 3 13 60951377 60952953 453 TSS -3.7k 78, 437 -760, 78
4 Nkx2-9 2 12 53347310 53348354 16.2 TSS -8.7k =25 -222, =25, 45, 289
5 Ptch1 5 13 60956284 60956777 65 TSS 7.9k -78 -78

6 Nkx2-9 1 12 53340519 53341015 37.7 TSS -1.9k -119 =119

7 Rab34 1 11 77915220 77915560 28.1 Intron 1,2 =71, 264 -106, =71
8 Ptch2 1 4 116057320 116057946 5.6 Intron 2 -106 -106

9 Ptch1 1 13 60945578 60945972 30 Intron 2 101

10 Nkx 2-1 1 12 53245748 53246351 9.1 TES +11.5k 152 -355, 152
11 Gli1 1 10 127076571 127078504 7.2/4.7/12.5 Promoter, Intron 1,2 -115, 543, 1422, 1580 =115, 1580
12 Hhip 1 8 79270092 79270492 5.6 Intron 1 =51 -184, =51
13 FoxA2 1 2 147493701 147494245 6.4 TES +5.8k -148, 331 -148, 331
14 Ptch2 2 4 116054385 116054954 48.3 TSS -0.3k =136, 61 -136, 65
15 Cart1 1 10 102925949 102926177 - Intron 3 NA NA

16 Ptch1 4 13 60953950 60955072 9 TSS -6.3k -36 380

17 Prdx2 1 8 84215218 84215559 1.4 TSS -22.5k NA -78

18 Cart1 2 10 102938108 102938308 - Intron 2 =75 =75

19 Ptch1 6 13 61010241 61010714 2.8 TSS -61.9k NA NA

20 Hhip 2 8 79268419 79268867 8.9 Intron 1 NA NA

21 Firt3 1 2 140191468 140191692 - TSS -6.3k NA NA

22 Pax9 1 12 53443055 53443311 - TES +5.3k6 -35 NA

23 Ncor2 1 5 124340743 124341009 - TSS -0.4k 60, 335 54, 60,199
24 Zic3 1 X 52789693 52789967 - TES -0.8k (3’ UTR) NA NA

25 Hand2 1 8 56373391 56373692 2.7 TES +10.3k =154 -181, =154

First-tier peaks (ranked 1-13) include all known Gli enhancer sites (gene name is underlined in ‘Gene’ column). Negative values indicate regions upstream (5') of the specified
reference site in the orientation column, and positive values are downstream (3') of the site. Gli consensus and matrix sites were mapped to the defined peak regions and are
displayed as values relative to the peak center (see Table S2 in the supplementary material). Our Gli-site mapping tolerates only a 1 bp mismatch from the TGGGTGGTC
consensus. Sites that are identified by both consensus and matrix mapping are underlined. Chr., chromosome; NA, not applicable (no Gli sites present); TSS, transcriptional

start site; TES, transcriptional end site; UTR, untranslated region.

number of conserved Gli sites (n3) and the total number of surveyed base
pairs that are conserved (n4) were counted for each tier and control regions.
We computed the enrichment of conserved Gli sites in conserved regions
as:

(D r2:(n3/n4)target/(n3/n4)comrol;
and
2 r3=(n3/n2)target/(n3/n2)comrol-

rp measures the extent to which Gli sites are enriched in conserved regions,
and r3 measures the combined gain we can obtain using both binding-
sequence specificity and cross-species conservation information.

To perform de novo motif discovery, Gibbs motif sampler was applied to
the top 13 tier 1 peaks after extending each defined peak 100 bp from both
ends. The Gli matrix identified by motif analysis were visualized using
WebLogo (Crooks et al., 2004). To map Gli consensus sites, the core-binding
pattern TGGGTGGTC was used to scan genomic sequences; up to one
mismatch was allowed. We computed cross-species conservation scores
using mouse, rat, human, dog and zebrafish alignments. Motif sites that
reside within the top 10% most conserved regions in the mouse genome are
defined as phylogenetically conserved sites.

In silico predictions of Gli target genes and enhancers

To generate an experimental dataset for predictions, retinoic acid-treated EBs
were grown in the presence or absence of HH-Ag. We did not observe
induction of ventral Hh markers in RA-treated constitutive Gli1™-AC EBs and
used these for the control, baseline set. To pick genes that were upregulated by
Hh signaling, a modified t-statistic (Ji and Wong, 2005) was computed for each
gene to test if its expression level is higher in Hh-induced samples compared
with non-induced samples and the top 365 probe sets corresponding to 249
non-redundant genes were used in further analyses (see Table S5 in the
supplementary material). We then identified their orthologs from human, dog,
cow, chicken and zebrafish. Each gene was extended 50 kb upstream from
transcription start and 50 kb downstream from transcription end, and
predictions were made based on these sequences.

In order to make EEL predictions, EEL was run using the same parameters
as Hallikas et al. (Hallikas et al., 2006). In addition to the previous 107 motif-
position-specific weight matrices, we also included the Gli matrix recovered
in this current study (see Fig. S2 in the supplementary material). Pairwise
alignments between mouse-human, mouse-dog, mouse-cow, mouse-chicken
and mouse-zebrafish were generated. As EEL did not provide a way to
combine these pairwise alignments into multiple alignments and to rank
predicted enhancers accordingly, we decided to use mouse-human alignments
as the basis for making our predictions. Each predicted enhancer was then
annotated to reflect whether it was also found in other pairwise alignments.
Predictions shorter than 2000 bp, with an EEL score =100 and a combined
Gli score =25 were picked, retained and ranked by their combined Gli scores.

To perform MCA, we first collected conserved, non-coding genomic
segments from the mouse genome. Cross-species conservation scores were
computed based on percent identities measured in a 50 bp sliding window
using multiz mouse, rat, human, dog and zebrafish alignments (downloaded
from http://genome.ucsc.edu). The scores ranged from 0 to 255, with 255
corresponding to the most conserved status. We collected all continuous
segments with a score =40 (top 10%), discarding segments shorter than 50
bp. These first-stage segments were joined to form second-stage segments if
their end-to-end distance (gap) was <50 bp. The second-stage segments were
filtered further to remove segments <200 bp or if they did not contain at least
one first-stage segment >100 bp. The remaining segments were termed third-
stage segments, comprising the final collection of conserved genomic regions.

To measure Gli enrichment, we mapped the Gli matrix recovered from
the ChIP to all third-stage conserved genomic regions. The Gli matrix was
compared to a third-order background Markov model, and a likelihood ratio
=500 was used as a cutoff to define Gli sites. The occurrence of Gli sites in
conserved genomic segments was then modeled as Poisson processes. If a
segment is a Gli-binding region (the alternative hypothesis H;), the
occurrence rate of Gli sites was assumed to be \; (site/bp) and each Gli site
was assumed to be generated from the Gli-binding matrix. In contrast, if a
segment is not a Gli-binding region (the null hypothesis Hy), the occurrence
rate of Gli sites was assumed to be Ay and all such sites were assumed to be
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Table 2. Global versus tissue-restricted enhancers

Region Coordinates Size (bp) Conserved Gli sites Gli1 induction St. dewv.
Ptch1 peak 1 chr13:60,945,834-60,946,202 369 chr13:60946069-60946077(-) 13.5 2.3
Ptch1 peak 2 chr13:60949285-60949464 180 chr13:60949424-60949435(-) 11.2 3.7
Ptch1 peak 3 chr13:60952107-60952356 250 chr13:60952273-60952284(+) 3.3 0.8
Ptch1 peak 4 chr13:60,954,478-60,955,071 594 chr13:60954710-60954718(-) /// 3.8 0.4
chr13:60954791-60954799(-)
Ptch1 peak 5 chr13:60956197-60956431 235 chr13:60956316-60956327(+) 2.6 0.5
Ptch1 peak 6 chr13:61,010,209-61,010,707 499 - 3.1 1.3
Ptch2 peak 1 chr4:116,057,081-116,057,672 592 chr4:116057540-116057551(+) 7 2.1
Ptch2 peak 2 chr4:116,054,618-116,055,117 500 chr4:116054800-116054808(+) /// 129 24
chr4:116054812-116054823(+) ///
chr4:116054906-116054914(+)
Hhip1 peak 1 chr8:79,269,855-79,270,597 743 chr8:79270163-79270171(+) /// 7.7 2.2
chr8:79270296-79270304(-)
Hhip1 peak 2 chr8:79,268,170-79,268,855 686 - 1.8 0.7
Nkx2.2 chr2:146645052-146645290 239 chr2:146645185-146645196(+) 3.2 1
Negative control  chr12:53255352-53255521 170 - 2.6 0.6
Rab34 chr11:77915199-77915431 233 - 6.2 1.1
Empty vector - - - 2.1 0.5

Conserved Gli motifs in ChIPed regions near predicted global responders to Hh signaling were used to obtain putative Gli enhancer elements that were cloned into a minimal
promoter luciferase vector and transfected into murine NIH3T3 fibroblasts in the presence or absence of Gli1. We detect no specific induction for the neural-specific Nkx2.2
peak, suggesting that this assay only identifies global responders of Hh signaling. chr, chromosome; St. dev., standard deviation.

false sites and generated from the background Markov model. The rate Ao
was estimated based on the mapping results in general conserved regions
(Ao=0.0002/bp), and \; was estimated using conserved regions covered by
the top 25 peaks (A1=0.0015/bp). For each segment, the log likelihood ratio
between H; and Hy was computed as:

S =n X logio(M1/No) = (\1=Ao) X I X logio(e) +logio(L1) —logio(Lo)-

Here, [ is the length of a conserved segment, n is the number of Gli sites
in the segment obtained by matrix mapping, L, is the probability to generate
the sites according to Gli matrix, and Lo is the probability to generate the
sites by background Markov model. Finally, S was used to measure the Gli
enrichment and rank conserved segments.

We also mapped Gli consensus TGGGTGGTC (allowing <1 mismatch)
to the third-stage conserved genomic regions. All regions that contain at least
one Gli consensus site were selected as a potential Gli cis-regulatory module
(CRM). The Gli CRMs are then ranked by Gli enrichment score S. For each
gene, all Gli CRMs located within introns, UTRs, 50 kb upstream regions
(from transcription start) and 50 kb downstream regions (from transcription
end) were collected and the enrichment scores were added together to derive
the combined Gli-binding strength for that gene.

Cell culture

Gli luciferase assays in murine NIH3T3 cells used methods described
previously (Nybakken et al., 2005). We used 25 ng Glil cloned into pCIG
(Megason and McMahon, 2002) or empty pCIG vector for controls.
Candidate enhancers (Table 2) were PCR-amplified from genomic DNA and
cloned into the pGL3-Promoter vector (Promega).

Transcriptional profiling

To generate the list of Gli target candidate genes, a variety of mouse stages
and Hh-pathway mutants (Ptchl, Smo and Shh) conditions were analyzed
by transcriptional profiling (T.T. and A.P.M., unpublished). Briefly, for each
combination, three different samples were profiled using a combination of
Affymetrix mouse U74Av2 and MOE430 A&B arrays. The screen included
6-8-somite embryo (E8.5), 10-13-somite embryo (E8.75), head (E10.5) and
limb (E10.5). Data were analyzed by dChip (Li and Wong, 2001) and
PowerExpress (H.J. and W.H.W., unpublished) to identify and rank putative
Hh targets. The EB transcriptional profiling screen was conducted by
screening quadruplicate samples of neuralized EBs treated with Hh agonist
(Frank-Kamenetsky et al., 2002) and 500 nM retinoic acid (under identical
conditions to the ChIPs) versus EBs treated with 500 nM retinoic acid alone.
Samples were profiled using the Affymetrix MOE4302.0 arrays and results
were analyzed using dChip (GEO #GSE4936).

RESULTS

Gli1 ES cell line and differentiation into

neuralized embryoid bodies

Our analysis focused on Glil, the only Gli member that appears to
function exclusively as an activator in Hh signaling. In order to
circumvent the lack of useful Gli antibodies, we generated a
biologically active C-terminal FLAG-tagged Glil construct. Gene
targeting introduced this into the constitutive ROSA26 locus such
that Cre-mediated excision of a selection cassette was required to
activate Gli1™4S production (see Fig. S1A in the supplementary
material). The Cre-dependent inducibility of the Gli1F-AC construct
in ES cells was confirmed by immunostaining and western blot
analysis (see Fig. S1B,D in the supplementary material) and a clonal
line was established in which Gl1i1¥-4G was constitutively produced
(see Fig. S1C in the supplementary material). As previously
reported, Gli1™-4C was predominately restricted to the cytoplasm
but accumulated rapidly in the nucleus when nuclear export was
inhibited by the addition of leptomycin B (Kogerman et al., 1999)
(see Fig. S1C in the supplementary material).

As astrategy for isolating Glil targets in the ventral neural tube, we
focused on the demonstrated ability of Shh to recapitulate its ventral
neuralizing activity in the specification of ES cells differentiated to
form neuralized EBs (Wichterle et al., 2002). In this assay, addition of
Shh, or small molecule agonists that activate the Shh pathway, led to
a quantitative ventralization of neural progenitors closely mirroring
the neural patterning activity of Shh in the ventral neural tube. In the
absence of Hh agonist (Hh-Ag), the Gli1F-4S line was not sufficient
to specify Nkx6.1*- (V2, MN, V3, FP progenitors), Nkx2.2*- (V3
progenitors) or FoxA2*- (FP) producing cell types (Fig. 1B-D J-L).
The only differential response detected between the induced Gli17-AS
line and control, parental EBs was a large decrease in the number of
Pax6"eh cells, although the total number of Pax6-producing cells was
not altered (70% o=10% of cells are Pax6"" in control EBs compared
with 2% o=4% for Gli1™-C EBs; Fig. 1A.1,Q); Pax6 repression has
been shown to be Shh-dependent (Ericson et al., 1997). In contrast to
this weak response, Gli1™-4C resulted in a strong synergy with Hh-Ag
(Frank-Kamenetsky et al., 2002). At a dose of 1 wM, EBs were only
weakly ventralized (Nkx6.1*, Nkx2.2™, FoxA2"). In contrast, when
Gli1*4G was present, an identical dose of Hh-Ag resulted in the
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Fig. 1. EBs containing Gli1"*AS exhibit an amplified response to
Hh stimulation. (A-P) Immunostaining of EBs to detect neural
progenitor types in mouse. While both control (A-H) and Gli1™AG
samples (I-P) respond to Hh signaling by activating Nkx6.1 expression
(FN), only the latter samples contain Nkx2.2* and FoxA2* cells on Hh-
Ag treatment (O,P). (Q) Distinct neural progenitors demarcated by
expression of progenitor-type-specific markers were counted and
represented as a percentage of all DAPI-positive cells in three
independent EBs. The error bars represent the standard deviation. Scale
bar: 100 pm.

induction of ventralmost neural (Nkx2.2*, V3 progenitor) and FP
(FoxA2") identities (compare Fig. 1F-H with N-P), as well as a
substantial reduction in Pax6* cells consistent with Nkx2.2 repression
of Pax6 (Fig. 1E M) (Ericson et al., 1997). Nkx2.2* and FoxA2* cells
comprised approximately 10% each of the EB-derived population.
The requirement of Shh for Glil activation —even when under control
of an ectopic promoter — was previously noted by Bai and Joyner (Bai
and Joyner, 2001).

Chromatin immunoprecipitation and statistical
validation of putative Gli-binding sites

In an independent study, the developing neural tube and several
additional Hh target populations in the early mouse embryo were
transcriptionally profiled in an attempt to identify possible targets
(positive and negative) of Hh signaling (Tenzen et al., 2006)
(T.T. and A.P.M., unpublished). We ranked these genes using
PowerExpress  (http://biogibbs.stanford.edu/~jihk/CisGenome/
microarray.htm) (H.J. and W.H.W., unpublished) and chose the top

122 genes to place on the custom tiling array. For each gene, this
method uses the TileMap probe level hierarchical model to compute
a posterior probability that the gene has a positive or negative Hh-
responsive expression pattern. Among the top targets on this list
were several general Hh pathway components, including Ptchl,
Glil, HhipI and Gli3, and previously reported direct neural (FoxA2)
(Sasaki et al., 1997) and mesodermal (Myf5) (Teboul et al., 2003)
targets of Hh signaling. A total of 122 genes were selected, together
with approximately ten additional genes drawn from the literature
to generate arrays for ChIP-mediated identification of Glil targets
(see Table S1 in the supplementary material). The inclusion of non-
neural targets provides an important control for context-dependent
regulation in these studies. Custom arrays were generated after
repeat masking in which genomic sequence encompassing 25 to 75
kb 5’ and 3’ of the transcriptional start site (TSS) was represented
by a 60-mer DNA probe at a spacing of one 60-mer every 125 bp for
a total of approximately 5.6 mb of surveyed genomic sequence.
Because of the large variability in the size of a given transcriptional
unit, probes covered an extensive region 5’ to the TSS, but a variable
extent of intronic and/or other 3’ regions.

To verify GlilFLAC_specific enrichment of expected cis-
regulatory regions in Hh-Ag-induced EBs, we adapted a standard
ChIP protocol to perform ChIP on 2X10° cells (Odom et al.,
2004). Chromatin extracts were incubated with anti-FLAG
antibody and following IP, the enrichment of known Gli targets in
IP fractions was examined by quantitative RT-PCR (qPCR). qPCR
confirmed specific enrichment of Gli-binding sites in several
known target regions, including the FoxA2 FP enhancer (Sasaki
etal., 1997), a conserved cis-regulatory region upstream of Ptchl
previously associated with Shh-dependent regulation in human
Ptchl (Agren et al.,2004), and Gli/ itself (Dai et al., 1999). Glil
expression is absolutely dependent on prior Hh signaling (Bai et
al.,2004).

Having verified the ChIP procedure, we screened the custom
tiling array. The regions significantly enriched in the IP fraction
were ranked by a T-score, identifying 47 peaks having a false
discovery rate of <25% (see Table S2 in the supplementary
material). As the top 13 ranked sites contained all previously
known Gli targets known to be expressed in the neural tube (Table
2, underlined), we used these regions to determine if we could
uncover any enriched motif that might represent a transcription-
factor-binding site without any prior knowledge of that site.
Employing a Gibbs motif sampler (Lawrence et al., 1993; Liu,
1994), we obtained two distinct motifs. The first motif (Fig. 2I)
was very similar to the Gli-binding motif (TGGGTGGTC:; Fig.
2J; see Fig. S2 in the supplementary material) determined by
oligonucleotide binding to recombinant proteins (Hallikas et al.,
2006; Kinzler and Vogelstein, 1990; Vortkamp et al., 1995), a
confirmation that our strategy specifically isolates sequences
directly bound by Glil™AS, Further, the analysis predicted
nucleotide preferences extending beyond the core Gli consensus
region (Fig. 2I). A second, lower scoring motif with a GC-rich
pattern was the only other significantly enriched sequence; this is
not enriched in conserved regions and is also present in multiple,
unrelated ChIP datasets, suggesting that it is non-specific (data
not shown).

In an initial effort to determine the biological significance of these
regions, we used the enrichment and phylogenetic conservation of
Gli motif sites as a measurement of the likelihood that a given peak
represents specific Glil binding. The ranked sites were grouped into
bins of ten, the Gli consensus motif TGGGTGGTC (=1 mismatch)
was enriched in peak regions with high T-scores, when compared
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Fig. 2. Chromatin immunoprecipitation of neuralized murine EBs. (A-H) Selected positive targets showing the mean fold enrichment of
Gli1™AG ChiPs representing three biological replicates, each with four technical replicates. The plots show the mean fold enrichment of ChiPed
sequence versus input. Approximately half of the peaks lie outside the proximal promoter region. Multiple peaks are numbered to correspond to
the peaks listed in Table 1 and in Table S2 in the supplementary material; arrows indicate previously described Gli regulatory regions. Below each
graph, the position of exons (rectangles) and the direction transcription (arrows) are shown relative to the ChiPed region. (I,J) De novo motif
analysis recovers a consensus site (1) similar to a previously described Gli1 consensus sequence (J) (Transfac # M01037) ().

with control regions; however, we observed a distinct drop in  studied here. These 25 regions contained 28 Gli consensus motif
enrichment from about 5-fold in the first two bins to 3.5-fold inthe  sites in a total of 23,656 bp of non-repeat sequences. The width of
third bin (see Table S3 in the supplementary material). Of the five  the peak itself is predicted to depend both on the number of Gli sites
motif sites detected in the third bin, four of them occurred in regions ~ within a particular region and the length of chromatin fragments
ranked 21-25, and only one in regions ranked 26-30. Consequently,  generated on DNA shearing. The first, second (median) and third
we focused on the top group of 25 predictions in subsequent quantiles of region length were 295,474 and 707 bp, respectively.
analyses. Fig. 2 shows examples of the data for a subset of genes ~ Many, but not all, peaks are centered about a strong Gli consensus
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sequence. In total, we observed a 5.25-fold enrichment of predicted
Gli target sites within peaks when compared with all regions tiled
on the array.

If we were to assume that the top 25 ChIP peaks represented all
the Gli-binding events on the array, only 28/1264 Gli consensus sites
(2.22%) were bound by Gli (some ChIP peaks had multiple
consensus sites, while others did not contain any consensus sites).
Among the 1264 consensus sites tiled in the array, 299 were
phylogenetically conserved, and 20 of these (6.69%) were
associated with Gli binding. These regions were associated with 16
genes, indicating that a significant fraction of the targets contained
multiple Gli-binding modules. Interestingly, only seven of the
regions identified (28 %) were within the 5 kb proximal promoter
region. Remaining sites were located in the first or second intron at
varying distances from the TSS (24%), at a range greater than 5 kb
5" of the TSS (24%), after the end of transcription (TES) (16%) or
elsewhere within the transcript (8%) (Table 1). These results
highlight the problem of local promoter analyses for large-scale
mining of transcriptional regulatory mechanisms in the mammalian
genome.

To verify that ChIP-chip screening reflects enrichment of a
given region of DNA before amplification, we assayed most of the
top 25 regions by qPCR using unamplified ChIP material and
input chromatin (pre-ChIP baseline) that was a technical replicate
of one of the amplified samples. When compared with baseline
negative control values (see Table S4 in the supplementary
material), all of the peaks present in the top half showed
significantly higher qPCR signal in the ChIPed samples. In
contrast, this was true for only half of the assayed peaks in the
second half of the ranking (3/6; Table 1). Some of these peaks (i.e.
Hhipl peak?) lacked a Gli matrix site but still exhibited a very
significant enrichment by qPCR (Table 1), suggesting that other
mechanisms, not simply direct DNA binding, might bring Gli
factors to their target sites (see Discussion). As an additional
specificity control, analysis of ChIP products in the parental ES
cell line before GlilFXAS activation failed to show any
enrichment, indicating that the ChIP results were indeed
GlilFLAG—dependent (data not shown).

Identification of neural Gli enhancers

We next examined this list for the presence of known Gli-binding
sites that mapped within reported cis-regulatory regions in Ptchl
(Agren et al., 2004; Hallikas et al., 2006), Glil (Dai et al., 1999),
Nkx2-9 (Santagati et al., 2003) and FoxA2 (Sasaki et al., 1997);
each of these predicted target sites was identified (arrows in Fig.
2A,G,CH, respectively). To the best of our knowledge, these
represent all published, mapped Gli-binding sites in targets
expected to be expressed within the EB-generated ventral neural
target population. Based on the presence of these previously
validated sites, we further divided the ranked list into a first tier of
13 regions that included all the previously characterized Gli
enhancer sites and a second tier of 12 regions that represented
additional peaks of high statistical quality (Table 1, Table S2 in the
supplementary material, and data below). As expected from our
previous transcriptional profiling data, the transcripts adjacent to
these peaks were upregulated in Ptch1'*?"“Z embryos (Goodrich
etal., 1997) and downregulated in Smo~~ embryos (Zhang et al.,
2001), where Hh signaling was enhanced or absent, respectively
(see Fig. S3 in the supplementary material). In addition to the one
previously reported Gli enhancer in Nkx2.9 (Santagati et al., 2003)
(Fig. 2C, peak 1), we detected an additional site (Fig. 2C, peak 2)
approximately 8.7 kb 5’ to the TSS. In human Ptchl, a single 2981

bp enhancer/promoter fragment has been reported from studies in
NIH3T3 and HEK293T cells; two conserved, predicted Gli-binding
sites are predicted in this region, one of which has been shown to
be functional (Agren et al., 2004). The homologous region was
detected in our analysis (peak 2, arrow in Fig. 2A). We also
identified five additional peaks, including three that were highly
enriched (Fig. 2A). One of these, peak 5, lies immediately upstream
of an uncharacterized alternatively spliced full-length form of
Ptchl. While human Ptchl contains three alternatively spliced full-
length transcripts (Agren et al., 2004), there are only two full-length
forms represented among mouse expressed sequence tags (ESTs).
A peak immediately upstream of Gli/ is unusually broad, possibly
reflecting an extended region of Gli/ that also binds Gli3 (Fig. 2G)
(Daietal., 1999). We also detected strong peaks in Ptch2 (Fig. 2E,
two peaks), Hhipl (data not shown, two peaks), Nkx2.2 (Fig. 2B,
one peak), Nkx2.l (Fig. 2F, one peak) and Rab34 (Fig. 2D, one
peak); with the exception of Nkx2.2 (Lei et al., 2006), none of these
putative Gli-regulatory regions have been previously reported (Fig.
2). Ptch2 and Hhipl are members of the Hh pathway that have been
reported to show Hh-dependent regulation (Chuang and McMahon,
1999; Motoyama et al., 1998); Nkx2.2 encodes a transcriptional
determinant of the Shh-dependent V3 interneurons (Briscoe et al.,
1999); Nkx2.1 encodes a Shh-dependent transcriptional regulator
within ventral neural populations of the forebrain (Pabst et al.,
2000); and Rab34 encodes a small GTP-binding protein not
previously associated with Hh signaling that is predicted from our
transcriptional array data to be a rather general target of Hh
regulation in several tissues.

Differences between generic and tissue-restricted
Gli enhancers
The genes identified as targets in our analysis exhibited either a
global (multiple Hh-responsive tissues) or tissue-restricted pattern
of expression (see Fig. S3 in the supplementary material). To test
Gli-mediated regulation in a putative cis-regulatory enhancer region,
we identified 12 candidate enhancers (Table 2) and asked if these
could respond to Glil stimulation. These assays were performed in
the presence and absence of Glil using murine NIH3T3 cells, a
fibroblast line that has been used to define several cis-regulatory
regions, including a Ptchl enhancer region (Ptchl, peak 2) identified
in this screen (Agren et al., 2004). We focused our analysis of
candidate sites among global Hh responders (Ptchl, Ptch2, Hhipl
and Rab34) and compared it with the putative regulatory region in
Nkx2.2, the expression of which has only been shown to require Hh
signaling in the context of neural progenitor specification (see Fig.
S3B-B” in the supplementary material). As expected, we did not
detect any specific Gli-mediated induction for the neural-specific
Nkx2.2 candidate enhancer in the reporter assay (Table 2). Nor did
we observe reporter activation for either of the peaks in Ptchl (Fig.
2A, peak 6) or HhiplI (peak 2, data not shown) that failed to show a
consensus Gli motif. However, we observed a robust induction with
the Gli site in Ptchl peak 2 (Fig. 2C), as well as in previously
unknown sites in Ptchl Intron2 (Fig. 2C, peak 1), and Ptch2 (Fig.
2E, peak 2). A more modest response was detected in Ptch2 peak 1
(Fig. 2E), HhipI peak 1 (data not shown) and Rab34 (Fig. 2D).
Taken together, these data (Table 2) indicate that many Gli-
responsive elements are confirmed in this assay; those that are
not may reflect the absence of context-dependent factors (see
Discussion).

To further explore the properties of a subset of these putative
enhancers in more detail, we selected four of the regions for more
extensive transgenic analysis. We chose a 180 bp Ptchl peak 2
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Fig. 3. Transgenic validation of Gli-binding
regions demonstrates Gli-dependent
expression in Hh target tissue. Selected
candidate enhancers (Ptch1 peak2 and Nkx2.2
peak1, Rab34 peak1 and Nkx2.1 peak1) were
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enhancer region (Fig. 2A; Table 2) representing a global target gene.
As tissue-specific candidates, we chose a 239 bp region (a region
non-responsive in the NIH3T3 assay) representing the single, Gli
target prediction within a peak located approximately 1.9 kb 5’ of
the TSS in Nkx2.2, a transcriptional regulator with neurally
restricted activity associated with V3 interneuron progenitor
specification (Fig. 2B; Table 2). Very recently, this site was shown
to be Gli responsive (Lei et al., 2006). In addition, we selected a 575
bp region encompassing the single peak in Nkx2.1 11.5 kb
downstream of the TES (Fig. 2F) of this forebrain restricted gene
(see Fig. S3F in the supplementary material). Finally, we selected a
291 bp region around the single, novel peak in Rab34 intron 1 (see
above, Fig. 2D).

Three of the four independent Ptchl Peak2-lacZ transgenic
founder lines exhibited similar B-gal activity. We focused on one of
these lines for more extensive analysis, comparing the activity with
that of Ptch1'“?* reporter embryos in which a lacZ cassette had
been knocked into the Ptchl locus (Goodrich et al., 1997). Ptchl
Peak2-lacZ transgenics expressed [3-gal in the ventral forebrain,
midbrain, hindbrain, spinal cord and in the notochord in a similar,
although more ventrally restricted and mosaic, pattern within the
developing CNS compared with Ptchi'®?* embryos (Fig. 3C,1,0
with D ,J,P). However, the absence of reporter expression in the
branchial arches and most notably in the limb mesenchyme indicates

mutated (G,M,S). In situ hybridizations of Rab34
(W,A") and transgenic Rab34-/lacZ embryos (X,B’).
In situ hybridizations of Nkx2.7 (Y) and transgenic
Nkx2.1-lacZ embryo (Z). The arrows in X and Z
indicate the domain of expression within the
ventral diencephalon. Unlike the other
transgenics, Nkx2.1-lacZ is driven by only one
copy of the enhancer. All limb specimens are
oriented with anterior to the left and distal up.
Scale bars: 200 wm in H-S; 1 mm in
A-G,T-ZA'B".

that other cis-regulatory regions are essential for these components
of the ‘generic’ response to Shh signaling (Fig. 3U,V). Several
expected aspects of Hh regulation were observed at later stages in
Shh and Thh target fields (e.g. whisker and chondrocytes
respectively, data not shown). In summary, Ptchl peak 2 is sufficient
for the correct spatial and temporal readout of Hh signaling in some
but not all Hh target tissues. Further, its activity in the neural tube is
consistent with its identification in the neuralized EB patterning
assay.

Nkx2.2-lacZ transgenic embryos were analyzed directly at E10.5;
nine of 15 showed detectable 3-gal activity; of these, seven had
ventral-specific staining in the presumptive brain and spinal cord
that clearly encompassed the normal Nkx2.2 domain (Fig.
3E,FK.L,Q,R). Examination of sections indicated two ectopic
regions of transgenic activity when compared to Nkx2.2 expression
in the neural tube at this stage (Fig. 3E,K,Q). One was in the floor
plate (arrowhead in Fig. 3L), the other dorsal to the normal Nkx2.2
domain (arrow in Fig. 3L). To determine whether the observed
expression was Gli-dependent, the single predicted Gli site was
mutated, and expression of the resulting Nkx2.2M lacZ transgene
was analyzed in GO embryos at E10.5. In contrast to the previous
results, only four out of 11 transgenic embryos showed any (3-gal
activity, and activity was generally weaker and more restricted.
Expression in the normal Nkx2.2 domain (in both the brain and
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spinal cord) and ectopic expression in the floor plate were entirely
dependent upon the Gli-binding region (Fig. 3G ,M,S); the weak
ectopic, ventrolateral spinal cord domain, however, was Gli-site-
independent (arrowhead in Fig. 3M). In summary, this peak region
encodes a CRM that regulates Gli-dependent expression of Nkx2.2
in a domain that encompasses its native expression domain.
However, Gli-site dependent expression in the FP region indicates
that additional cis-regulatory elements are required to repress
Nkx2.2 in the floor plate; Nkx2.2 is first activated within ventral
midline cells and is co-expressed together with the FP determinant
FoxA2 at the outset of FP formation (Jeong and McMahon, 2005).
In addition, ectopic ventrolateral Gli-independent activity suggests
that additional regulatory regions normally silence non-Hh
dependent activation of Nkx2.2 outside its normal domain.
Previous data indicate that Pax6, and potentially, Tcf4 play an
important role in the ventral restriction of Nkx2.2 (Ericson et al.,
1997; Lei et al., 2006).

Nkx2.1 exhibits neural, Hh-dependent expression in a domain in
the ventral diencephalon and an additional domain in the ventral
telencephalon. Of the two transgenics we obtained, one clearly
showed [-gal activity specifically within the expected ventral
diencephalic domain (arrows in Fig. 2Y,Z). The absence of
expression within the ventral telencephalon suggests that additional
sequences are required for expression in this region. Given that the
in vitro assay system reflects more posterior neural progenitors, the
more anterior progenitors representing the telencephalon were not
expected.

Rab34 has a broad expression pattern that would not normally be
suggestive of a Hh target gene (Fig. 3W). Nonetheless, transgenic
embryos expressed a restricted subset of this expression that
correlates well with Hh-responsive regions — 11/17 transgenics
expressed [3-gal and 10/11 were in a similar, restricted pattern (Fig.
3X). For example, expression of Rab34 in the limb bud is diffuse,
but B-gal driven by the predicted Gli target region was sharply
restricted to the posterior, Hh-responsive portion of the limb bud in
7/10 transgenics (Fig. 3A’B’). This expression seemed to
commence after the onset of Hh expression, as the three transgenics
without limb bud expression were slightly younger and only the
oldest transgenics exhibited expression within the later arising
hindlimb.

Gli target specificity is determined by the nuclear
availability of Gli1

After characterizing these enhancers, we asked if Glil could bind to
targets in the absence of gene expression. As shown in Fig. 1,
Nkx2.2,FoxA2 and other markers of Hh-dependent ventral neuronal
cells were not expressed in RA-treated EBs in the absence of Hh
agonist. We examined the degree of Glil binding to the enhancer
sites of several of these tissue-restricted genes as well as the degree
of Glil binding to several enhancers that have more global response
using the standard ChIP assay. As an additional experiment, we also
asked whether we could facilitate Glil binding to targets by
sequestering it in the nucleus by treatment with leptomycin B
immediately prior to harvesting.

Our experiments demonstrate that tissue-specific Gli enhancers
generally contain little or no Glil binding in RA-only treated EBs.
For example, the Nkx2.2 enhancer exhibited 6.9-fold enrichment
in ChIPs from Hh-stimulated EBs where gene expression occurs,
but was enriched only 1.3-fold in RA-only samples; the Nkx2.9
enhancer was enriched 10-fold in Hh-stimulated versus 1.7-fold in
the RA-only samples. Similar trends were seen for Nkx2.1 and
FoxA2 (data not shown). In contrast, global enhancers were

Table 3. Predicted Gli target genes in the ventral neural tube

EEL predictions MCA predictions
Rank EEL qPCR MCA qPCR
1 Ptchi + Ncam1 -
2 BC017647 - Ptch1 +
3 Kif5a - Ctnna2 -
4 Ntn1 - Gpc3 +
5 Ngfr - Robo2 +
6 4831426119Rik + Nkx2-9 +
7 Abcb8 - D230005D02Rik -
8 Olfm1 - Ebf3 -
9 Nkx2-9 + Ebf1 +
10 2600003E23Rik - Ascl1 -
1 Phox2a - FoxA2 +
12 Rad541 - 3732412D22Rik NA
13 Hoxb5 - Lrrtm1 NA
14 Snx26 - Ssh3 NA
15 1810059G22Rik - Hoxb8 -
16 FoxA2 + Gpmé6b -
17 Mtap1b - Trom3 -
18 Cmkor1 NA Neurog2 -
19 Tgfbr3 NA Ret +
20 5730411018Rik NA Pappa NA
Total positive 417 Total positive 7/16

Predictions, derived using a pool of Hh-upregulated candidates obtained from
transcriptional profiling of embryoid bodies, were ranked according to either EEL or
MCA and candidate enhancers were tested by qPCR. Underlined genes were also
detected in the preceding ChiP-chip studies. Columns marked NA indicate that the
cis-regulatory modules were not tested for that gene. EEL, enhancer element
locater; MCA, module cluster analysis; gPCR, quantitative real-time polymerase
chain reaction.

enriched by Glil in both the presence and absence of Hh
stimulation. Here, Ptchl peak 2 was enriched in both RA-only
samples (14.5-fold) and in Hh-stimulated EBs (25.2-fold).
Enrichment of Gli binding in the absence of Hh stimulation was
also seen for the other global enhancers Ptchl peakl1, Ptch2peak2,
Rab34 and Glil (data not shown). Thus, Glil is able to bind to
global enhancers in the absence of Hh stimulation, but is unable to
bind efficiently to tissue-specific enhancers in the absence of
corresponding gene expression. Surprisingly, when RA-only EBs
were treated with 5 nM leptomycin B (Lepto) for 4 hours before
ChIP to cause nuclear accumulation of Glil (see Fig. S1C in the
supplementary material), they exhibited marked increases in the
levels of binding to tissue-specific enhancers. Glil enrichment of
the Nkx2.2 enhancers was 3.3-fold in RA+Lepto samples compared
with 1.3-fold in RA-only samples; similarly, the Nkx2.9 enhancer
was enriched 9 .4-fold in RA+Lepto-treated samples compared with
1.7 fold in RA-only samples. Leptomycin treatment caused similar
increases in enrichment for Nkx2.1 and FoxA2, while maintaining
the levels of enrichment seen previously for global enhancers in
RA-only samples (data not shown). These data argue that Glil
nuclear concentration is a major determinant of enhancer-binding
specificity.

In silico prediction of Gli targets in the ventral
neural tube

Next we sought to incorporate information from the Gli target
identification to develop a general, testable method for predicting
Gli targets in a tissue-specific fashion. We generated a pool of
candidate targets by transcriptional profiling of EBs in the presence
and absence of Hh signaling and selected 249 genes upregulated in
response to Hh-Ag treatment, a group that includes relevant Gli
targets in the ventral neural tube (see Table S5 in the supplementary
material).
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We then applied two distinct methods: one a recently published
algorithm, Enhancer Element Locater (EEL) (Hallikas et al., 2006);
and the other a novel method, Module Cluster Analysis (MCA). Our
ChIP-chip data indicated that several Gli targets contain multiple
peaks that presumably correspond to multiple CRMs (e.g. Ptchl,
Nkx2.9).In MCA, Gli-binding affinities from multiple CRMs were
combined, and the combined signal was used as a predictor of Gli
target genes (see Materials and methods).

When EEL was applied to the 249 genes upregulated in the Hh-
treated EBs, the top 20 predicted enhancers, ranked by their
combined Gli-binding strength, included five regions identified in
our ChIP screens. We performed qPCR on the remaining 15
predictions and verified one additional peak corresponding to an
EST (see Table S6 in the supplementary material), resulting in an
effective prediction rate of 1/15 enhancer sites.

When MCA was applied on a genome-wide basis, Ptchl and
Hhipl were both present in the top 10 genes (see Table S7 in the
supplementary material), suggesting that the combined Gli-binding
strength serves as a good predictor of Gli target genes. We intersected
this genome-wide dataset with the Hh-EB upregulated gene list to
predict Gli target genes specifically within the ventral neural tube.
We then ranked all predicted CRMs that were associated with the top
20 neural Gli target genes and tested the top 20 individual CRMs by
gPCR on ChIPed material. Within these top-ranking CRMs, 45%
(9/20) were indeed Gli-activator targets by this assay (see Table S8
in the supplementary material). This set included six peaks that had
been previously identified by our ChIP-chip studies, giving a new
discovery rate of 3/14, compared to 1/15 with EEL.

To summarize, 5/22 of the MCA predicted enhancers (or 11/28
including predictions covered by ChIP peaks) were bound by Glil.
At the gene level, at least 7/20 MCA predicted genes were verified
to be direct Gli targets. Thus, pooling information from multiple
potential CRMs in the MCA approach improved the ability to
predict Gli target genes computationally.

DISCUSSION

In this study, we have developed a general approach for detecting
targets of Gli transcriptional regulation by ChIP and applied this to
a model of Shh-mediated patterning of the developing mammalian
neural tube. The approach was validated by the identification of all
previously reported ventral neural tube and general Gli-responsive
enhancers that were represented on the custom oligonucleotide
arrays, and confirmed by multiple statistical and biological methods.
These analyses provide considerable confidence that the nine
previously uncharacterized peaks present in the top tier of Table 1
represent genuine Gli targets. In total, the six new Gli target genes
represented by the peaks in the top tier of Table 1 and the five new
target genes predicted by the MCA in silico analysis and validated
by qPCR of ChIP products almost double the total number of known
mammalian Gli targets (summarized in Table S9 in the
supplementary material). Because Hh-mediated neuronal
specification is a relatively well-characterized system, this model
provides a particularly good opportunity for validating candidate
targets. The core of the strategy, a genetically inducible system for
epitope-tagging transcription factors, should be broadly applicable
to the study of other transcription factors. Further, the method can
be adapted to enable Gli target identification in embryonic and adult
tissues using either pre-selected or whole-genome tiling arrays.
Modifying the endogenous Glil transcript to encode an epitope-
tagged Glil protein is an alternative strategy; however, this approach
restricts analysis to the normal Glil expression domain, often
representing only a subset of the potential target field.

Identification of enhancer elements during neural
tube development

Genome-scale transcription factor binding approaches have been
used with great success in yeast, and more recently in ES cells (Lee
et al., 2006) and Drosophila embryos (Alekseyenko et al., 2006;
Sandmann et al., 2006). Embryonic analysis in mammalian systems
presents several challenges, including the limited number of cells
present in a given target population at a crucial regulatory stage and
the dynamic expression of transcription factors during
development. By modifying existing protocols we were able to
generate robust results with an approximately 50-fold reduction in
input ChIP product (approximately 2X 10° cells per ChIP). The
degree of enrichment we obtained with the Gli1F-A construct is
impressive considering that: (1) Glil is predominately cytoplasmic,
and Hh signal-directed nuclear accumulation is transient
(Kogerman et al., 1999); (2) the epitope-tagged construct must
compete with endogenously transcribed, untagged Gli-activator;
and (3) the target population is a mosaic in which relatively few
cells represent a given ventral progenitor type (Fig. 1Q). Indeed, we
were able to identify bona-fide Gli-activator target sites within
enhancers in Nkx2.2 and FoxA2, where Nkx2.2* and FoxA2" cells
represented only 10% of the input population. Interestingly, a subset
of predicted peaks did not contain any Gli consensus sites. These
regions might be directly Gli-responsive despite the absence of a
consensus Gli DNA-binding site. Alternatively, they might
represent binding sites for other transcriptional regulators that could
then make secondary protein-protein interactions with Glil. While
no specific interactions have been demonstrated for Gli-activator
forms, Gli3 proteins have previously been shown to interact with
members of the histone deacetylase complex (Cheng and Bishop,
2002; Dai et al., 2002) as well as with Smad proteins (Liu et al.,
1998).

In addition to previously characterized FoxA2 and Nkx2.9
enhancers, we identified Nkx2.2, Nkx2.1 and Rab34 as direct targets
through transgenic analysis and several new additional targets
through validated bioinformatics predictions. However, direct
transgenic analysis of Nkx2.2 illustrates one major challenge the
researcher faces in constructing regulatory circuitry from this data:
that is, the identification of other cis-regulatory regions that act in
conjunction with Gli factors to give appropriate temporal and spatial
regulation. In the example of the Nkx2.2 element we assayed,
sequences that repress Gli-dependent FP expression and silence non-
Gli dependent ventrolateral neural expression were not present and
remain to be identified.

Surprisingly, our data indicate that a global Hh response
represented by Ptchl , the best characterized transcriptional response
to Hh signaling, may in fact be controlled by cell-type-specific
response elements. Our analysis of one of four strong, independent
Gli-binding regions demonstrates that the region selected represents
a subset of the full range and activity of the Ptchl transcriptional
response. This leaves open the possibility that other regions may
encode limb response elements, or that a specific limb response
element that normally acts in conjunction with the Gli site in Ptchl
peak 2 lies outside the regulatory module assayed here. Our assay
for putative enhancers using NIH3T3 cells allows us to predict
several additional enhancers that are strong candidates for global
regulators of a Hh signaling response (Table 2). Consistent with this
interpretation, several genes associated with these enhancers are
expressed in multiple Hh-responsive tissues (see Fig. S3 in the
supplementary material), and all these targets seem to participate in
negative feedback loops to regulate expression levels (see model in
Fig. 4A).
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Fig. 4. BioTapestry models of Hh-driven cis-regulatory networks
in mouse. Transcriptional targets of the Hh pathway can be defined by
a globally responsive signaling cassette (A), containing components
that are either known (unbroken lines) or likely (broken lines) to be part
of a negative feedback loop. (B) A model for a Shh-driven
transcriptional network underlying ventral neuronal specification. In this
diagram, depicted in standard BioTapestry nomenclature (Longabaugh
et al., 2005), neuronal specification is depicted as a sequential series of
cell states. All genes not expressed are in gray, whereas currently
expressed genes are in black or other colors. Similarly, inactive links
(active in previous stages of specification) are depicted in gray, whereas
active activation or repression is depicted using lines of other colors. An
animation of these events can be viewed in Movie 1 in the
supplementary material. This diagram focuses explicitly on ventral cell
specification; thus previous events in general neuronal specification are
not shown. Validated Gli targets (all identified or confirmed in our
study) are indicated by blue diamonds (ChIP peak), orange diamonds
(transgenic validation) or green diamonds (mutation of binding site in
transgenic embryos).

Among the novel targets, Rab34 is particularly intriguing given
the role of another small GTP-binding protein, Rab23, as a crucial
regulator of Hh responsiveness (Eggenschwiler et al., 2006;
Eggenschwiler et al., 2001) and an independent link between Smo
and Ptchl activity in endosomal trafficking (Zhu et al., 2003). While
transcriptional profiling identified Rab34 as a general, positive target
of Hh action in many tissues, Rab34 is itself rather broadly
expressed and therefore, based on expression alone, would not be
viewed as a strong candidate for a specific role in the Hh pathway.
However, the ChIP data, coupled with studies of Rab34 expression
in Ptchl and Smo mutants (see Fig. S3D-D” in the supplementary
material), indicate that a component of the Rab34 expression pattern
is Hh/Gli-dependent, an observation supported by our transgenic
studies (Fig. 2W.X A’ B").

Gli sites and target gene regulation

Our data have allowed us to develop, and importantly, to then
experimentally test, improved algorithms for the detection of Gli-
binding sites, a significant advance for an experimental mammalian
dataset. By combining ChIP analysis with transcriptional profiling
data and MCA analysis, we were able to correctly predict Gli target
genes with an optimal predictive rate of greater than 40% accuracy.
Surprisingly, MCA predicts multiple Gli sites within a given locus,
whereas only a subset were actually bound by Glil. This raises the
question of whether these are bound by other Gli factors, and if so,
whether there is a mechanism that could impart specificity given that
all Gli factors bind a similar consensus sequence (Hallikas et al.,
2006; Vortkamp et al., 1995). One possibility is that in vivo target
sites may have differential affinities for Gli factors.

As noted, we have failed to detect Gli-binding sites in 150 kb of
tiled sequence flanking the Nkx6.l, one of the very earliest
responders to the Hh pathway (see Table S1 in the supplementary
material) (Jeong and McMahon, 2005). Whereas the possibility of a
more distant Glil-binding enhancer region remains open, an
alternative explanation is that Gli activator binds only to the subset
of Gli targets that are expressed in the ventralmost FP and pV3
domains. Because Nkx6.1 is still expressed in mice lacking the
activity of all Gli proteins (both activator and repressor) in the neural
tube, its expression depends principally upon loss of Gli repression
rather than Gli activation (Bai et al., 2004; Lei et al., 2004; Wijgerde
etal., 2002).
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Our findings, together with published reports that have
documented the relationship between Gli factors and Shh signaling
in specification and the interactions among specific transcriptional
regulators downstream of Shh input, lead to the model depicted in
Fig. 4B (Briscoe et al., 2000; Ericson et al., 1997; Fogarty et al.,
2005; Novitch et al., 2003; Santagati et al., 2003; Sasaki and Hogan,
1996; Vallstedt et al., 2001; Wijgerde et al., 2002). Shh signaling
within the neural tube is effectively interpreted by region-specific
combinations of Gli activator and Gli repressor forms. Initially only
two cell types are present — one is a VO/V 1 bipotential progenitor
that depends only indirectly on a loss of Gli repression, which would
in turn result in the loss of an inhibitory dorsal signal (Fogarty et al.,
2005; Wijgerde et al., 2002). In the second cell state, there is an
initial V2 progenitor, which would then sequentially give rise to V2-
FP progenitor domains. Most dorsally, where Shh is never received,
Gli repressors silence all Hh target genes. At the dorsal limits of Hh
signaling (at the dorsal-ventral intersect), Gli repressor would be
reduced, thereby relieving the inhibitory action of an unknown
factor X on Dbx1 and Dbx2. Dorsal BMP signals have previously
been hypothesized to play such a role (Wijgerde et al., 2002); this
interaction with Gli repressor is especially attractive, as Gli3 has
previously been shown to bind Smad proteins, transcriptional
mediators of BMP signaling (Liu et al., 1998). Importantly, the
regulation of these domains would not depend on any differential
activity of Gli repressor — only on the attenuation of the dorsal
inhibitory input. In domains that receive a higher Hh input, Gli
repression would be progressively attenuated to the pMN domain,
and loss of this repressor is sufficient for activation of targets. Within
the pV3 and FP domains, however, specification requires varying
levels of Gli-activator activity. Recent experiments in chick argue
persuasively for a ratiometric assessment of Gli repressor and
activator in dictating the position-specific Hh response both in the
limb and the neural tube (Davey et al., 2006) (E. Dessaud and J.
Briscoe, personal communication). Finally, the available data
indicate an important dynamic component to ventral patterning, in
which specific neural progenitor populations may change their
identity on integrating Hh signaling over time (see Movie 1 in the
supplementary material).

In summary, by applying biochemical and bioinformatics
approaches, we have a new view of Hh targets, their regulation and
the general parameters that characterize a Gli-activator response in
patterning the vertebrate neural tube. These data provide a solid
grounding for explaining the possible roles of newly defined targets
(e.g. Rab34) and for determining the relationships between Gli
proteins and other transcriptional regulators in coordinating precise
transcriptional outcomes through local cis-acting regulatory
modules in central Hh target genes.
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