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Summary

Freshwater pond snailsHelisoma trivolvisand Lymnaea Upon stimulation with the signal, the neurones increase
stagnalisundergo larval development and metamorphosis synthesis and release of monoamines [serotonin (5-HT) in
inside egg capsules. We report that their development is Helisoma and dopamine in Lymnaeg that inhibit larval
permanently under slight tonic inhibitory influence of the  development acting via ergometrine-sensitive internal
anterior sensory monoaminergic neurones, which are the receptors. Thus, the novel regulatory mechanism in larval
remnants of the apical sensory organ. Conspecific juvenile development of molluscs is suggested and compared with
snails, when reared under conditions of starvation and the phenomenon of dauer larvae formation in the nematode
crowding, release chemical signals that are detected by Caenorhabditis elegans.

these neurones in encapsulated larvae and reversibly

suppress larval development, thus providing a link between

environmental signals and developmental regulation. Key words: Mollusc, Conditioned water, Apical sensory neurones,
Induced retardation starts from the trochophore stage and  Larval development, Serotonin, Dopamine, Ergometrine-sensitive
results in up to twofold prolongation of the larval lifespan.  receptor

Introduction masses, and each egg contains a single embryo. Development

The great majority of benthic animals have a complex life cycl@’ @ll embryos in each egg mass is highly synchronous.
with a larval stage prerequisite for juveniles and adultsEMPryos of both species pass the same larval stages as free-
Duration of larval period varies significantly and in any oneSWimming larvae of marine molluscs (blastula-gastrula-
species depends upon multiple environmental factors, i.&0chophore-veliger), undergo metamorphosis inside egg
temperature, salinity and nutrition regimes (see Miller an(_q:apsules and hatch as miniature juvenile sna_uls_. Throughout the
Hadfield, 1990; Pechenik et al., 1996; Pechenik et al., 20028)racapsular development, they have a limited number of
Pechenik et al., 2003). Far less is known about developmeng@dsily identifiable neurones (reviewed by Croll, 2000). At the
roles of conspecific signalling. Perhaps the only elaborateffochophore and veliger stages, only one pair of sensory
model deals with induction of larval settlement andneurones has been described (Diefenbach et al., 1998;
metamorphosis by adults (see Burke, 1984; Burke, 198&/0ronezhskaya et al., 1999). These neurones differ in their
Lambert and Todd, 1994). No data on developmental roles gansmitter content: they express serotonin (5-HHefisoma
conspecific signalling at early larval stages exist in literature(Goldberg and Kater, 1989; Diefenbach et al., 1991;
Freshwater pond snails can be a convenient tool with whicRiefenbach et al., 1995, Diefenbach et al, 1998;
to address this question. In contrast to marine invertebrates thgronezhskaya and Elekes, 1993; Koss et al., 2003), and
mainly have free-swimming larvae, they develop insidedopamine (DA) and FMRFamide-related peptidekyimnaea
transparent egg capsules and, hence, are well-suited for in vi(@roll and Voronezhskaya, 1996; Voronezhskaya et al., 1999;
experimental studies of embryonic and larval developmenforonezhskaya and Elekes, 2003). Until the stage of late
(Koss et al., 2003). Thus, Helisoma trivolvisandLymnaea Veliger these cells are the only monoaminergic neurones in
stagnalis various aspects of neuronal development and larvadloth species.
physiology have been studied (Goldberg and Kater, 1989; Important role of monoamines (catecholamines and 5-HT)
Goldberg et al., 1994; Diefenbach et al., 1991; Diefenbach development is well known. In larval molluscs, they appear
et al., 1995; Croll and Voronezhskaya, 1996; Croll, 2000at the pre-nervous stages (Buznikov et al., 2003), and are
Voronezhskaya and Elekes, 2003). expressed in the earliest larval neurones including the first
The development of both species is very similar, ancherve centre, the apical sensory organ (see Page and Parries,
provides several advantages. Adult snails lay transparent eg@00; Croll at al., 2003). Monoamines are known to mediate
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larval ciliary beat frequency (Kuang and Goldberg, 2001)glass jar in 10 ml of FPW, and kept without food for 12 hours. The
settlement and metamorphosis (Leise at al., 2001; Pechenikssiils that climbed above the water surface were returned to the bath
al., 2002b). Thus, it is reasonable to suggest that the firgtith a soft brush. Then, conditioned water (CW) was pipetted out,
monoaminergic sensory neurones may be also involved fiftered through a 0.2um Millipore filter and used immediately.
developmental regulation. Juveniles were transferred for the next 12 hours to 1 | glass tanks and

: with lettuce. Then, the cycle repeated (not more then five times
The gp{:\l O.f the _present stgdy was 1o test the.hypotheS|s t"E each group of juveniles). Water was also conditioned by juveniles
conspecific signalling regulating development .eXIStS atthe ear ontinuously fed on lettuce or fish chew (i.e. without preliminary food
larval stages of freshwater pulmonate snails, and the firgeprivation). During conditioning, mortality did not differ from
monoaminergic anterior sensory neurones are involved igontrols (2-3%). To test the stability of CW, it was heated to 80°C for
mediating this signals. We report below that juveniles ofl0 minutes, boiled for 10 minutes, and frozen for up to one month at
HelisomaandLymnaeaeared under conditions of starvation and—-20°C. Developing eggs were also reared in FPW boiled for 20
crowding, release water-born cues, which conspecifically retaminutes to reduce oxygen content. Whenever water was heated or
larval development starting from the trochophore stage. Ttiozen, it was adjusted to 23°C before larvae were added.
test whether the anterior monoaminergic neurones mediaEt;

transduction of the cues released by juveniles thrug incubations
. - . PR he following drugs were used (all from Sigma-RBI, USA, unless
pharmacologically emulated changes in their activity. I:'rStbther specified): serotonin (5-hydroxytryptamine creatine sulphate, 5-

endogenous monoamine level was augmented by incubation i); dopamine (DA); 5-hydroxy-L-tryptophan (5-HTP, metabolic
its immediate biochemical precursor (Sakharov, 1991pecyrsor of 5-HT); L-3,4-dihydroxyphenylalanine (L-DOPA,
Diefenbach et al., 1995). Conversely, the action of 5-HT anghetabolic precursor of dopaminej-methyl-tryptophan and-

DA was reduced by treating the embryos with commonlymethyl-DOPA (-m-T and a-m-DOPA, methylated analogues of
used aromatic amino acid decarboxylase inhibitor 3the precursors); 3-hydroxybenzilhydrazine (NSD-1015);p-L-
hydroxybenzylhydrazine (Treseder et al., 2003), specifichlorophenylalanine (PCPA); ergometrine maleate (EM, antagonist of
inhibitor  of tryptophan  5-hydroxylase activity @ dopamine receptors, Serva, USA); sulpiride; spiperone hydrochloride
chlorophenylalanine (Baker et al., 1993; Diefenbach et al., 1995%";&%%%’3?;3#; %Adér‘ggh%rl'—:jz rer?tZF:]tsoéf,ﬁ m;ﬁgsigt‘azgg:%c“t';ﬂ?;;
Pani and Croll, 1998), methylated analogues of respecti tadi y 1ae, n, ! ;
monoamines  (Sloley ) and (grikasa 1938) and repcept ntagonists of 5-HT receptors). NSD-1015 and PCPA were applied

. ; hours prior to the first application of CW or monoamine precursors.
antagonists  (Goldberg et al., 1994; Paviova, 2001) eceptor antagonists were applied simultaneously. All drug solutions

Developmental changes were correlated with changes in anti-gere prepared immediately before use. Sulpiride was first prepared as
HT immunofluorescence iHelisoma and glyoxylate-induced 1 mM solution in 40% ethanol. Ascorbic acid (#8l) was added to
fluorescence of dopamine itymnaeawithin the first anterior  all solutions to avoid oxidative breakdown. Equal amounts of ascorbic
neurones. Our data indicate that anterior monoaminergic sensagid and ethanol (in case of experiments with sulpiride) were added
neurones detect the cues released by juveniles in conditionstofcontrols, and were shown to have no effect on the development.
food limitation and overcrowding, and increase synthesis of thEmbryos were kept in darkness and solutions were changed daily.
respective monoamine, which retards larval development. ThEell visualization

inhibitory effect is carried out via ergometrine-sensitive
receptors. This work has appeared previously in abstract for
(Voronezhskaya and Khabarova, 2003).

munochemical procedures have been described in detail elsewhere

oronezhskaya et al., 1999). In brief, embryos were fixed in freshly
prepared 4% paraformaldehyde in 0.1 M phosphate buffer (PB, pH
7.4) for 4 hours at 10°C, and washed in 0.1 M PB. For double

i immunolabelling, the specimens were incubated in a mixture of anti-
M_atenals anq methods 5-HT (DiaSorin, USA, #20080, polyclonal, rabbit, diluted 1:3000)
Animals and staging and anti-acetylated-tubulin antibody (Sigma, T-6793, monoclonal,

Egg masses ¢f. trivolvisandL. stagnalisvere collected from inbred mouse, diluted 1:1500) in PB with 10% normal goat serum, 0.25%
colonies at the Institute of Developmental Biology, Moscow. Snaildovine serum albumin, 1% Triton X-100 (TX) and 0.03% sodium
and embryos were maintained at 23-25°C. Snails were raised in glasside for 72 hours at 10°C. The specimens were washed in PB three
aquaria (10-40 L) with a 12/12 hours light/dark cycle. Adults andimes for 20 minutes, incubated in a mixture of goat-anti-rabbit Alexa
juveniles were fed on lettuce. Freshly laid egg masses were collectd88-conjugated 1gG and goat-anti-mouse Alexa 546-conjugated IgG
daily and transferred to 90 mm Petri dishes (Falcon) containingViolecular Probes, USA), both diluted 1:800 in PB-TX, for 12 hours
filtered pond water (FPW). Embryonic development was staged oat 10°C. Alternatively, the specimens were sequentially incubated in
the basis of a specific set of morphological, morphometric andnti-TH antibodies (DiaSorin, #22941, monoclonal, mouse, diluted
behavioural features according to Morrill (Morrill, 1982) and 1:3000) for 72 hours at 10°C, goat-anti-mouse Alexa 488-conjugated
Mescheriakov (Mescheriakov, 1990). At the trochophore stage (stadgG (Molecular Probes) for 12 hours at 10°C, anti-acetylated

19; 20% of embryonic development), embryos were transferred to 3bbulin antibody diluted 1:3000 in PB-TX, for 4 hours at 10°C, and
mm Petri dishes with 2 ml FPW (20-25 eggs per dish) for subsequegbat-anti-mouse Alexa 546-conjugated IgG for 2 hours at 10°C. The
drug incubation. In case bfelisoma intact or cut into two-three parts specimens were washed in PB, immersed in 50% glycerol in PB and
egg masses were used. Epmnaeaegg capsules were isolated from mounted on glass slides in 80% glycerol in PB.

egg masses unless other specified. Isolation of egg capsules purposedhe specimens were examined as wholemounts with an LSM-510
to uniform the exchange of substances with the environment, ar@bnfocal laser-scanning microscope (Carl Zeiss, Germany) with
avoid uncontrolled adsorption and oxidation of the drugs within eg@ppropriate wavelength-filter configuration settings. For illustrations,

mass jelly. series of optical sections were projected into one image with greater
. focal depth using LSM-510 software, and imported into Photoshop 7
Conditioned water (Adobe, USA) where only brightness and contrast were adjusted if

For conditioning, 200 juvenile snails (length 1.5-2 mm) deprived ofhecessary. The number and step size of optical sections are given for
food for 24 hours were rinsed in several changes of FPW, put in @ach image in the legends.
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The specificity of the ABs used in our experiments has been show Stage of development
for various molluscan larvae (see Croll, 2000). Controls includec 19202122 23 24 25 26 272829
replacement of the primary ABs with non-immune serum. No specifi LA T ' ' ' RN
staining was observed in control preparations. Reverse of the coloL gl2f ¢ e Lymnaea G
of the secondary ABs (anti-rabbit Alexa 546 1gG and anti-mous¢ £ ' “a_ Helisoma )
Alexa 488 IgG) gave identical results. g10r ' LT
For glyoxylic acid reaction (De la Torre, 1980; Voronezhskaya e 208k . Pt
al., 1999), embryos were removed from egg capsules and immers E Trochoo '
in a freshly prepared, buffered glyoxylic acid-sucrose solution (50( < 0.6 phore ; :
mM sodium glyoxylate, 150 mM sucrose, 50 mM Tris buffer, pH 7.4) S04 : » Adult-
on glass slides at 4°C. After 60 minutes of incubation, the solutio g : Veliger i like
was removed, and the embryos were air-dried at room temperature 0.2 : ; form
30 minutes. Preparations were then heated to 60°C for 30 minute I B S SR S RN R
embedded in paraffin oil, and examined and imaged by using Jena\ 20 30 40 50 60 70 80 90%
(Zeiss) microscope equipped for ultraviolet epifluorescence (D filte Percentage of embryonic development

block) and a CCD camera. . . L
Fig. 1.Normal larval development ¢felisoma trivolvign=215) and

Measurements and statistics Lymnaea stagnalié=340) from the trochophore stage till the adult-

The embryos were imaged daily at approximately the same time (froffke form showing interrelations between timing of embryogenesis in
9 to 12 AM) with a CCD camera attached to a stereomicroscope MB$ercents (lowex-axis), developmental stages after Mescheriakov

10 (L-ZOS, Russia), and their maximal length was measured witiMescheriakov, 1990) (uppe+axis), and the length of embryags (
Photoshop 7. To measure brightness of fluorescence after glyoxyfeis)-

acid reaction, the cells were imaged with constant exposure time, and

averaged brightness of cell bodies was measured with PhotoshoRpe adult-like form (stage 27) was 6.6+0.9 daysHefisoma

usingdthe Histogram Tool. Me?surements of c?nfoclal imaggs We;g.lzggo) and 6.8+1.1 days fotymnaea (n=1324). No

carried out using LSM-510 software. Statistical analysis and graph: T e

plotting were carried out using Statistica 6 (StatSoft, USA) an ifferences f_rom _controls were observed during larval

Grapher 3 (Golden Software, USA). Results were expressed ;géevelopment in boiled FPWi£193).

meanszstandard deviation (s.d.). The significance of differencelgﬁc f diti d

among groups was evaluated using Studerigst. Differences were ect of conditioned water

considered significant #<0.05. Incubation of embryos oHelisoma (n=122) andLymnaea
(n=180) in water conditioned by conspecific juveniles (CW)
induced developmental retardation, which was expressed as

Results elongation of each developmental stage (Fig. 2A,B). This
N | devel retardation manifested itself starting from the trochophore
ormal development stage 19 (20% of embryonic development), and followed the

Embryonic and larval developmentofmnaeaandHelisoma  appearance of the first anterior sensory neurones. As a
has already been described in detail (Raven, 1966; Morrilsonsequence of this retardation, at the time when control
1982; Mescheriakov, 1990; Diefenbach et al., 1991; Maroignimals completed metamorphosis and became miniature
and Croll, 1991; Voronezhskaya et al., 1999). In both speciegdult-like snails (stage 28, Fig. 2C,E), the treated animals were
the cleavage results in formation of a ciliated tro_chophore Iarygt the veliger stage (stage 23) well before metamorphosis (Fig.
(stage 19; 20% of development), which rotates in the egg fluigdp F). The overall effect of CW resulted in up to twofold

By the stage 22 (33-35% of development), the trochophorgrolongation of the larval lifespan (see Fig. 7). No differences
develops into a veliger and the rotary movement isn the action of CW were detected after incubation of intact or
supplemented by a forward swimming movement. By the stagg;t egg massesn$201 and 215 embryos, respectively) of

27 (82%), when the foot is functionally developed, swimmingHelisoma and intact egg cocoons or isolated egg capsules

movements cease and the embryo attaches to the inner surf@§€284 and 189 embryos, respectively)Lgmnaea(data not
of the egg capsule and starts to creep along it. This correspongifown).

to the settlement and metamorphosis of free-swimming larvae. The effect of CW was reversible, and the tempo of
In 2-3 days, the juvenile snail rasps a hole through the eggevelopment was restored when CW was replaced with
capsule and hatches. Each developmental stage is determinge\y (Fig. 2A,B). Freezing to —20°C for up to one month
by a specific set of characters: the degree of shell, tentacles afil not change the activity of CWi£71), though heating to
foot development, position of the heart, eye pigmentation, fogd0°C for 10 minutesnE74) completely abolished it (data
and tentacles pigmentation, frequency of rotation, buccal maggt shown). Water similarly conditioned by fed juveniles
activity, pneumostome opening/close ratio and glidingn=148) showed no effect on development (Fig. 2A,B and
locomotion (Morri“, 1982; MESCheriakOV, 1990; Diefenbach etF|g 7) Water after |Ong term pre-incubation of juven”e
al., 1991; Voronezhskaya et al., 1999). The increase in leng#hails (100 snails per 1 | for 1 month, fed on lettuse;60)
of embryos precisely corresponds to successive developmenigds also ineffective.
stages (Fig. 1) therefore below we express staging as length of
embryos. The role of monoamines in developmental

Embryos from each single egg mass develop synchronousigtardation
though the timing between different egg masses mayo test the hypothesis that the retarding effect of CW is
insignificantly vary. At the mean temperature 24+1°C, themediated by the pair of monoaminergic anterior sensory
duration of development from the trochophore (stage 19) untiteurones, we pharmacologically emulated changes in their
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Fig. 2.
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Effects of conditioned water (CW) on

larval development dflelisoma(A,C,D)
andLymnaeaB,E,F). (A,B) Incubation in
CW induced developmental retardation in
bothHelisomaandLymnaeaThe effect
disappeared after washout (CW-wash; the
beginning of washout is indicated by
arrows). Water conditioned by juveniles
raised with plentiful food (CW-f) was
ineffective. At the time when control
animals developed into postmetamorphic
adult like forms (C,E), the animals in CW
were still at the veliger stage (D,F). Scale
bars: 10Qum.

Length of embryos, mm

Research article

A Helisoma B Lymnaea

0.7k T = 0.8tk E}: I
~._ CW R . S CW =o ¥
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1234567 8 91011121314 1
Day of incubation
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23456

activity. As the developmental effect of CW manifested itselHelisoma the precursor of 5-HT, 5-HTP (1 mM) retarded the
starting from the stage 19 (20% of embryonic developmentlevelopment similar to CWh€96), while the precursor of DA,
only, all subsequent drug applications started from this stage-DOPA, was ineffective =205; tested up to 10 mM) (Fig.
Incubation in solutions of monoamine precursors inhibitedA). By contrast, in.ymnaeathe retardation was induced by
larval development in a species-specific manner. Thus, ih mM L-DOPA (=128), while 5-HTP 1§=217; tested up to

A
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“e.. Control

0.1

1 2 3 4 5 6 7 8 9 10 11

1 2 3 4 5 6 7 8 9 101

Day of incubation

Fig. 3. Effects of monoamine precursors on larval development. (Aelisoma 5-HTP
(1 mM) retarded the development similar to CW, while L-DOPA (10 mM) was
ineffective. (B) InLymnaealL-DOPA (1 mM) retarded the development, while 5-HTP

(20 mM) insignificantly slowed the development at the late stages only. (C,D) In both
species, the effect of the precursors disappeared after washout (the beginning of washdii

is indicated by arrows).

10 mM) insignificantly slowed the
development only at the time when
embryos reached metamorphic stages 25-
27 (65-85%) (Fig. 3B). The effects of
monoamine precursors were reversible and
ceased after washoui«102) (Fig. 3C,D).
The overall effect of respective monoamine
precursors was similar to that of CW (Fig.
7).

The inhibitor of monoamine synthesis,
NSD-1015 in concentration of 10-318v
did not affect the developmem=79) but
significantly attenuated the effects of CW
in Helisoma(n=112) and.ymnaean=94),
as well as 5-HTPnE120) inHelisoma and
L-DOPA (n=107) inLymnaea(Figs 4, 7).
The selective inhibitor of 5-HT synthesis,
PCPA in 5uM concentration accelerated
normal development oHelisoma (n=83)
and suppressed the inhibitory effect of CW
(n=98) (Fig. 5A,B; Fig. 7). InLymnaea
PCPA affected neither normal development
nor the CW induced retardation (Fig. 7).

The antagonist of monoamine receptors,
ergometrine, at a concentration of up to 50
uM, did not affect normal development of
Helisoma (n=196; Fig. 7) but attenuated
the effects of CW r=138) and 5-HTP
(n=128) (Fig. 5C,D). InLymnaea 10
ergometrine accelerated normal
development r=92) and attenuated the



inhibitory effects of CW 1t=85) and L
DOPA (n=94) (Fig. 6). The rescue action
ergometrine was concentration depende
0.1-10 uM (n=150) (Fig. 6D). Sulpiride
spiperone, mianserine, cyproheptad
ritanserin and ketanserin were ineffectiv
concentrations up to 5M (data not showr
200-250 embryos of each species v
tested for each drug).

For both species, incubation in 1-5 nolV
m-T ora-m-DOPA had no significant effe
on their development (Fig. 7). Neither |
nor 5-HT (1pM-1 mM) had any significal
effect on development (Fig. 7), wh
behavioural effects of the neurotransmit
were present. Thus, 5-HT increased the
of embryonic rotation, and DA increased
buccal mass activity at post-metamorg
stages (data not shown; 200-250 embryc
each species were tested for each drug)
overall effect of the drugs on the lar
lifespan is summarized in Fig. 7.

Cellular correlates of developmental
retardation

In bothHelisomaandLymnaeaat the stage
19-24 (20-55% of development), the o
cells containing biogenic monoamines
thus being candidates for mediating
described developmental effects were
anterior pairs of neurones (Fig. 8) (see
Voronezhskaya et al., 1999; Koss et
2003). InHelisoma these cells were 5-+
immunopositive (Fig. 8A). Irymnaeathe
cells were mainly producing dopamine
thus best visualized by glyoxylic ac
histochemical reaction (Fig. 8B) or us
anti-tyrosine hydroxylase antibodies (F
8C), although they also demonstrated w
anti-5-HT immunoreactivity (Fig. 8D).
both species, at the trochophore stag:
(20% of embryonic development), the ¢
looked similar. They were symmetrice
located dorsolateral to the mouth oper
(Fig. 8A,B). Each neurone had a short tt
apical fibre that penetrated the epithel
and bore a tuft of short non-motile cilia
long basal fibre and two to five short t
fibores emanating from the soma
terminating  without ramifications
surrounding tissues (Fig. 8D,E). The b
fibore ramified extensively and form
varicose fibre network underneath the ag
ciliary plate in Lymnaea (Fig. 8C) ant
underneath the ciliated areas on the fo
Helisoma(Fig. 8A,F).

Incubation ofHelisomaembryos in th
solution of 5-HTP in the concentration t
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A Helisoma B Lymnaea
N -
07T = NSD+cW LOF “u NSD+CW .
06 F S CcwW 0.9 ?\CW - /t'/
“e.._Control 0.8 ‘e.. Control -
05| 0.7
04k 0.6
' 0.5
03 Ff 0.4
0.3
E 02y 0.2
(n— 0 1 1 1 1 1 1 1 Ol 1 1 1 1 1 1
S 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8
e C D
7] 1.0
g 0.7  ~w_NSD+5-HTP v 0.9 - “m_NSD+L-DOPA
206 DNSHTP 0.8 F . L-DOPA
e “s.. Control “e.. Control
| 0.7
051 0.6
0.4 r 05
03 0.4
0.3
02 Ff 0o
0.1 1 1 1 1 1 1 1 1 01 1 1 1 1 1 1

Day of incubation

Fig. 4. Decarboxylase inhibitor NSD-1015 (1) significantly attenuated the retarding
effect of CW in botiHelisoma(A) andLymnaeaB). When added together with 1 mM
5-HTP inHelisoma(C) or 1 mM L-DOPA inLymnae&aD), NSD-1015 also attenuated

their effects.

A B
0s 0.7 “m. CW+PCPA
' “x_ PCPA 06 L NCW
05+ “e... Control ' ‘... Control
'A'.;.- 0.5
0.4
0.4
0.3 f 0.3
g 02f 0.2
=
KI; 01 1 1 1 1 1 Ol L L ! : : :
S 1 2 3 4 5 6 1 2 3 5 6 7
Qo
e C D
(]
507k - - | o7
é u. CW+EM 4 4'. >  HTP+EM :%‘ «_Tr
D06 \CW 0| ol TElEM T
g “e. Control .8 A HTP AL
05 s 0.5 “e.. Control
0.4 + 04
03 0.3
02t 0.2
01 1 1 1 1 1 1 01 1 1 1 1 1 1

Day of incubation

Fig. 5.In Helisoma 5-HT synthesis inhibitor PCPA {BM) accelerated larval
development (P<0.05) (A) and reduced the retarding effect of CW (B). The antagonist
of monoamine receptors, ergometrine (EMuM) attenuated the effect of CW (C) and 1

mM 5-HTP (D).

induced developmental retardation (1 mM), resulted in thef immunofluorescencent30). In Lymnaea incubation in
increase of anti-5-HT immunofluorescence in the anterioboth CW (=24) and 1 mM L-DOPA r=25) similarly
neuronesr(=22). Bathing in 5 mMx-m-T decreased the level increased the brightness of blue-green glyoxylic acid induced
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A B Discussion
o8p - A& 091 . Wt EM o Our main finding is the existence of natural
07t \:\ S 08 . cw : cues, which are released by juveniles of
06 L ‘ 07 F e Control 0 HelisomaandLymnaeaunder conditions of
05 - 06 ’ o starvation and crowding, are detected by
05| anterior monoaminergic sensory neurones
041 04l (ASNs) in embryos, and reversibly retard
03r 03k embryonic development. The nature of the
€02 02 b released factor(s) is yet unclear. Lack of
g oa . . . . . 0. differences in its action on isolated egg
g 1 2 3 4 5 6 1 2 3 4 5 8 7 8 capsules and intact cocoons shows that it
§C D easily penetrates through their jelly mass.
;50_9_ \ N 0.9 L = CW+10 uM EM - -~ Heating is known to eliminate volatile
B gl o EMHL-DOPA a0 oL > .cws0luMEM 2 - organic substances, lipids and large proteins,
g L-DoPA s 08 ~ow AT thus suggesting this cast as potential
-1 0.7 Te. Control 0.7 | "e. Control R

candidates for molecules inducing

gﬁ L g:z developmental retardation. Some of the
04l 0.4 retarding effects of CW could be in theory
03k 03 due to accumulation of metabolites after
02 | g o2 b -% conditioning and hypoxia, as anterior
o b op b monoaminergic cells mediate behavioural
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 10 responses to hypoxia (Kuang et al., 2002),

Day of incubation and hypoxia is known to slow down larval

velopment (Maroi n roll, 1991;
Fig. 6.In Lymnaeaergometrine (1@M) accelerated normal developmenP&0.05) development  (Marois and Croll, 1991,

(A), and attenuated the retarding effect of CW (B) and L-DOPA (C). The rescue effect §trathmann and  Strathmann, 1995).

ergometrine was concentration dependent (D). Arrow shows the start of ergometrine OHowever, in our expepments, ne'th.er bo'.led
administration. water nor water conditioned by fed juveniles

affected the development, thus making such
possibility unlikely.
fluorescence of catecholamines in the anterior cells, whereas 5The involvement of the anterior monoaminergic cells is clear
mM a-m-DOPA ©=32) suppressed it (Fig. 9). by several reasons. First, at the tested embryonic stages
Bathing in 5uM PCPA resulted in suppression of anti-5-HT (trochophore and early veliger) these neurones were the only
immunofluorescence in the anterior neuronesielisomato  monoaminergic cells present and the only sensory cells
72+10% (=24) of the control{=20) (Fig. 10). No changes described (Goldberg and Kater, 1989; Voronezhskaya et al.,
were observed inLymnaeaanterior neurones after PCPA 1999; Koss et al., 2003). Second, the inhibitory effect of CW

treatment 1t=51; data not shown). expressed only after the appearance of these cells in
Helisoma Lymnaea
80 100 120 140 160 180 200 100 120 140 160 180 200 220%
x | | | | | o | | | | | | |
Cow—f+— * F—cw—JF— >
tH Cw-f H CW-f
F 5-HTP}——1 * t———F— 5-HTP
H——F— L-DOPA  L-DOPA——— *
Fig. 7. Effect of the tested drugs on the = 5-HT HH 5-HT
duration of larval development in (- DA —— DA
HeIisomaéAf) and Lymnaea(ll?) HH a-m-T HIH a-m-T
measured from stage 19 till stage 27,
and normalized by controls HH a-m-DOPA HH a-m-DOPA
(*significantly different from control;
P<0.05). CW, conditioned water; CW- HH NSD = NSD
f, water conditioned by fed juveniles; = NSD+CW | F——F—* NSD+Cw
5-HTP, 5-hydroxy-L-tryptophan; L- | * NSD+5-HTP | FF+* NSD+L-DOPA
DOPA, L-3,4-dihydroxyphenylalanine;
: , * HH | PCPA H PCPA
5-HT, 5-hydroxytryptamine creatine = PCPA+CW PCPATCW *
sulphate; DA, dopamine&-m-T, a-
methyl-tryptophang-m-DOPA, a-
methyl-DOPA; NSD, 3- = EM * -] EM
hydroxybenzilhydrazine; PCPA, - | —F— % EM+5-HTP | * EM+L-DOPA
chlorophenylalanine; EM, ergometrine T 1% EM+CW T * EM+CW
maleate.
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Helisoma Lymnaea

Fig. 8. The first monoaminergic neurones in trochophordsaisomaandLymnaea

at stage 19 (20%). (A,C-F) Anti-tubulin Immunostaining (red). i&)isoma anti-5- a-m-DOPA

HT immunolabelling (green). Anterior sensory neurones (arrows) are located on b

sides of the mouth (m), and project to the pedal ciliary band (pb); pn, cilia in Fig. 9.(A) Changes of average anti-5-HT
protonephridia (LSM projection, 48.6 um). (B) Lymnaeaglyoxylic acid-induced immunofluorescence in the anterior neurones of
fluorescence of catecholamines; conventional epifluorescence. The pair of the firstHelisoma after 6 hours of incubation with 5-HTP
anterior cells (arrows) is located above the mouth (m)Ly@)naeaanti-tyrosine anda-m-T; normalized to controls. (B) Changes of
hydroxylase immunolabelling (green). Anterior neurones (arrows) make a varicose average glyoxylic acid-induced fluorescence of
network underneath the apical ciliary plate (LSM projectiomx136m). catecholamines in the anterior neuronekyoinaea

(D) Lymnaeaanti-5-HT immunolabelling (green). High power image of the anterior after 6 hours of incubation with CW, L-DOPA and
neurone with a short thick ciliated apical fibre, thin basal fibre and two short lateral a-m-DOPA normalized to controls. *Significantly
fibres (arrows) emanating from the soma (LSM projectiorQZEum). different from controlP<0.05. (C) Representative
(E) Helisoma anti-5-HT immunolabelling (green). The anterior neurone also has a micrographs of glyoxylic acid-induced fluorescence
thick ciliated apical fibre, a thin basal fibre and two short lateral fibres (arrows) (LSh the anterior neurones bymnaeashowing
projection, 4%0.3um). (F)Helisoma anti-5-HT immunolabelling (green). Varicose increase after incubation with L-DOPA, and
network made by the fibres of the anterior neurones underneath the pedal ciliary baaduction after incubation with-m-DOPA. Scale
(pb) (LSM projection, 280.4 um). Scale bars: 2(m in A,B; 10um in C-F. bar: 20pm.

development. Third, the effect was emulated by biochemicaleurones (e.g. McCaman et al.,, 1984; Sakharov, 1991,
precursors of monoamines (5-HTP and L-DOPA)Diefenbach et al., 1995; Fickbohm and Katz, 2000; Pires et al.,
corresponding to the transmitter content of the anterior cell@000a), which is generally thought to be a result of neuronal
(5-HT in Helisomaand DA inLymnaed. Fourth, the effects of activation. Methylated analogues and synthesis inhibitors are
both CW and the respective precursor were equally attenuatkdown to significantly reduce concentrations of respective
by the monoamine synthesis inhibitors NSD-1015 and PCPAmonoamines as demonstrated by HPLC (e.g. Hunter et al,,
and the receptor antagonist ergometrine. 1993; Diefenbach et al., 1995; Linard et al., 1996; Pani and
In pre-metamorphic veligers (stage 24; 60%), moreCroll, 1998; Pires et al., 2000b). In addition, visible changes in
monoaminergic cells are added in both species, e.g. two pairmmunofluorescence of 5-HT in identified neurones have been
in pedal ganglia and sensory cells in the foot (Marois anghown to correspond to more than twofold changes in its content
Croll, 1992; Voronezhskaya et al., 1999). Nonetheless, we araeasured by HPLC (Diefenbach et al., 1995; Croll et al., 1997),
confident that the developmental retardation described aboemd to change the potency of its synaptic and modulatory
was mediated by ASNs only. First, it already became profoundctions (Fickbohm and Katz, 2000). In our experiments,
at the trochophore stage 20 (25%), long before the cells in thiecubation in the respective precursor resulted in both increase
foot appeared. Second, the transmitter contents of the cellsah histo- or immunofluorescence within the ASNs and
the foot and pedal ganglia are the sameHelisomaand developmental retardation similar to that induced by CW. By
Lymnaeawhereas the inhibitory effect of CW was mimicked contrast, methylated analogues or synthesis inhibitors did not
by different chemicals that corresponded to the transmitteaffect and, sometimes, even facilitated larval development.

content of ASNs in each species. Together these facts indicate that ASNs are more probably
activated rather then inhibited by the factor present in CW.

Apical cells are activated rather than inhibited in Attenuation of the retarding effect of monoamine precursors

response to the environmental stimuli by the synthesis inhibitor, NSD-1015, shows that conversion

Applications of biochemical precursors are widely used t®f the precursors into the respective monoamines is required.
increase synthesis and release of monoamines in respectiveus, the active substance in this process is the respective
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monoamine but not the precursor itself. Nonethelessnonoamines are constantly released from the ASNs and
applications of 5-HT and DA did not affect the developmentfonically inhibit the development. The degree of inhibition
though exogenous 5-HT is known to induce metamorphosdepends on the activity of this neurones subjected by
acting via internal receptors in the marine gastrdp@hassa environmental stimuli. Spontaneous release of transmitter from
obsoleta (Couper and Leise, 1996). One of the possiblegrowth cones has been shown for embryonic neurones in
explanations is that penetration of monoamines is much easienlture (Young and Poo, 1983). Diefenbach and co-authors
in marine larvae than in fresh-water ones. Indeed, in the marir{@995) have demonstrated intensive neurite outgrowth of the
polychaetePhyllodoce maculatadevelopmental effects of 5- anterior serotonergic neurones Hhelisoma trochophores,

HT and 5-HTP are similar (E.E.V. and L.P.N., unpublished). Invhich was promoted by PCPA and inhibited by 5-HTP, and
fresh-water animals however, at the tested larval stagesuggested that the neurones use their own transmitter in
exogenous monoamines can act only on the surface receptars autoregulatory fashion to regulate neurite formation
inducing the increase in embryo rotation speed, but do naluring embryonic development. Perhaps neurite growth
penetrate into the embryo and reach the internal targetaitoregulation is one of the mechanisms involved in the
responsible for developmental retardation. However, thédevelopmental effects of monoamines described above. Further
precursors can be taken up and can induce both the increaseegperiments are required to verify this supposition.
monoamine synthesis in selective sets of neurones and the

directional release of monoamines. This issue is unclear afftnterior sensory cells in trochophore animals

needs further examination. Two anterior monoaminergic sensory cells, which develop

before the onset of the CNS formation, express 5-HT, innervate
Monoamines act through the ergometrine-sensitive locomotory cilia, and degenerate after metamorphosis, have
receptor been described in various pulmonate embryos (Goldberg and

None of the tested specific DA and 5-HT receptor antagonistsater, 1989; Voronezhskaya and Elekes, 1993; Diefenbach et
rescued retardation effect induced by CW and monoamina., 1998; Voronezhskaya et al., 1999; Kuang and Goldberg,
precursors. Only ergometrine, the derivate of ergot alkaloid®001; Koss et al., 2003; Voronezhskaya and Elekes, 2003), and
averted the developmental retardation in bidglisomaand are generally believed to be the remnants of the apical sensory
Lymnaea This and relative substances have been used earliergan (ASO), the structure characteristic for trochophore
as dopamine receptor antagonists in molluscs (Juel, 1988nimals (Nielsen, 2001). The basic plan of the ASO is highly
Sawada and Maeno, 1987; Sakharov and Salanki, 1982onserved regardless of the planctotrophic or intracapsular
Pavlova, 2001). Besides that, some of the 5-Hiid 5-HEB  developmental mode (Kempf et al., 1997; Marois and Carew,
receptors in vertebrates exhibit high affinity to ergot derivate4997; Dickinson et al., 1999; Page and Parries, 2000; Nielsen,
(Gerhardt and Heerikhuizen, 1997). Thus, the receptd2001; Schaefer and Ruthensteiner, 2001). It is known to take
mediating the process of developmental retardation seems part in the induction of larval settlement and metamorphosis
be an internal monoamine ergometrine-sensitive receptdChia and Rice, 1978; Baxter and Morse, 1992; Hadfield et al.,
similar to that described earlier in the CNS Aplysia  2000; Leise at al., 2001). However, the ASO fully develops
(Shozushima, 1984; Shozushima et al., 1987), and itsuch earlier (from several days to several weeks) than the larva
pharmacological profile is different from the receptors, whichhecomes competent for metamorphosis (Page, 2002a), and in
are known to be involved in embryonic behaviour ofsome species partly degenerates before metamorphic

developing gastropods (Goldberg et al., 1994). competence (Page, 2002b; Wanninger and Haszprunar, 2003).

] ] o The essential neurotransmitter of the apical neurones, 5-HT,
Normal development is under slight tonic inhibition was able to induce metamorphosis in one species only (Couper
by the activity of ASNs and Leise, 1996). These observations contradict speculations

Acceleration of larval development lielisomaby PCPA, and about a general role of the ASO for the metamorphic event.
Lymnaeaby ergometrine was slight but statistically significant Our data suggest that the function of the apical sensory
(Fig. 7). This may indicate that in normal conditionsneurones in early development of pulmonates is to control
premetamorphic larval development and inhibit it in response
to negative environmental stimuli. Based on structural
uniformity of the ASO in diverse larvae, one may speculate
that the developmental mechanism we describe is uniform
throughout molluscs. Perhaps, after larvae reach metamorphic
competence, the functions of the ASO change. The supposition
that the ASO plays different roles in pre-metamorphic and
competent larvae resolves the contradictions mentioned above.

Comparison with  Caenorhabditis elegans

Inhibition of larval development by chemosensory neurones
was first described in the nematddeelegangBargman and
Fig. 10.Representative fluorescence micrographs of PCPA induced Horvitz, 1991; Thomas, 1993). Under conditions of crowding

reduction of anti-5-HT immunofluorescence (green) in the anterior and starvation, a specific pheromone was released by young
neurones oHelisoma cilia are labelled in red (LSM projections; animals, and detected by chemosensory neurones of larvae. In

20%x0.5um). (A) Control. (B) After 3 days of incubation withus/ the presence of the pheromone, after the second larval molt
PCPA. Scale bar: 1om. they differentiated into a so called dauer larva, an alternative
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