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Introduction
Epithelial and endothelial tubes are the essential functional
units of many organs including the vascular system, kidney and
lung. All of these organs contain tubes of characteristic but
widely ranging sizes because efficient flow through any tubular
network requires the size of a tube be matched to the flow it
supports. A tube that is too small in diameter will have
insufficient flow (e.g. obstructive heart diseases), whereas a
tube that is too large in diameter can impinge on surrounding
tissue (e.g. enlarged kidney tubules in polycystic kidney
disease) or have an undesirably slow rate of flow (e.g. blood
clotting in cavernous hemangiomas). Thus, control of tube
architecture presents fundamental cell biological and
developmental problems with medical implications. However,
the molecular mechanisms by which epithelial cells measure,
change, and then maintain tube diameter and length are not
known.

To identify and study the functions of genes required for
epithelial tube-size control we are using molecular genetic
approaches with the Drosophilatracheal system. The tracheal
system is the gas exchange organ of the fly, but also resembles
and performs some of the same functions as the vertebrate
vascular system by directly delivering oxygen through a
ramifying network of tubes (Manning and Krasnow, 1993).
The tracheal system is created from clusters of invaginated
epithelial cells that organize into branches which extend and

interconnect to create a complex tubular network (Affolter and
Shilo, 2000; Samakovlis et al., 1996). The genetic tools
available in Drosophila, coupled with the reproducible and
rapid development of the tracheal system, make it a powerful
system for studying the genetic and molecular basis of tube-
size control (Beitel and Krasnow, 2000; Lubarsky and
Krasnow, 2003).

Epithelial tube morphogenesis has been shown to require
coordinated cell shape changes and dynamic adjustments of
cell junctions (Lubarsky and Krasnow, 2003; O’Brien et al.,
2002; Hogan and Kolodziej, 2002). Adherens junctions have
been shown to play an important role in tracheal
morphogenesis (Tanaka-Matakatsu et al., 1996; Uemura et al.,
1996; Oda and Tsukita, 1999; Chihara et al., 2003; Lee and
Kolodziej, 2002) and in vertebrate epithelial tube formation
(Pollack et al., 1997; Pollack et al., 1998). However, to date,
the involvement of Drosophila septate or vertebrate tight
junctions in epithelial tube morphogenesis has not been
examined.

Insect septate junctions form the trans-epithelial diffusion
barrier that regulates passage of solutes through the spaces
between adjacent cells in an epithelium (Tepass et al., 2001).
In vertebrates, the paracellular diffusion barrier in epithelial
cells is provided by tight junctions (Tsukita et al., 2001;
Anderson, 2001). Despite their common barrier function,
septate and tight junctions are generally referred to as
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analogous structures because they have very different
morphologies when examined using electron microscopy and
because septate junctions are located basolateral to the
adherens junction while tight junctions lie apically.
Nonetheless, Drosophilaseptate and vertebrate tight junctions
contain some similar proteins that are crucial for their function
(Tepass et al., 2001). For example, Drosophila discs large
encodes a PDZ domain-containing MAGUK scaffold protein
similar to vertebrate ZO-1; coracle is similar to band 4.1; and
scribbleto human scribble (Willott et al., 1993; Takahisa et al.,
1996; Fehon et al., 1994; Bilder and Perrimon, 2000;
Nakagawa and Huibregtse, 2000). These observations raise the
possibility that the functional similarities of septate and tight
junctions may reflect similarities in molecular architecture.

In previous work, we showed that the tracheal system
undergoes highly regulated tube-size increases during
development and identified eight ‘tube expansion’ genes that
are specifically required for remodeling the size of the tracheal
tubes once the initial network has formed (Beitel and Krasnow,
2000). We show that one of those genes is the nrv2 locus,
which encodes two isoforms of a β subunit of the Na+/K+

ATPase, and that mutations in the ATPα α subunit (Atpalpha
– FlyBase) locus also cause similar tracheal tube-size defects.
Further, we show nrv2 and ATPα mutations disrupt septate
junction function.

The Na+/K+ ATPase is an α/β heteromultimer that creates
the essential electrochemical gradient across the plasma
membrane by transporting two K+ into and three Na+ out of
the cell for each ATP hydrolyzed (Blanco and Mercer, 1998;
Chow and Forte, 1995). The α subunit is a ten transmembrane-
domain protein containing the Na+ and K+ channels and the
phosphorylation and nucleotide binding sites (Chow and Forte,
1995). The single transmembrane domain β subunit is required
for transport of the α subunit out of the ER (Geering et al.,
1996; Hasler et al., 1998) and is thought to modulate the
affinity of the α subunit for Na+ and K+ (Blanco and Mercer,
1998; Chow and Forte, 1995; Hasler et al., 1998). In flies there
are three β subunit loci, nrv1 and nrv3 (CG8663), each of
which produce one isoform, and nrv2 which encodes two
isoforms, Nrv2.1 and Nrv2.2. There are two α subunit loci,
ATPα that produces at least 12 α subunit isoforms (Palladino
et al., 2003), and CG17923, which appears to be minimally
expressed because its transcripts are poorly represented in
existing cDNA libraries. Of these loci, only nrv1, nrv2 and
ATPα have been characterized in detail, primarily for their
roles in the nervous system (Lebovitz et al., 1989; Palladino et
al., 2003; Sun and Salvaterra, 1995b; Sun et al., 1998). A
tracheal phenotype was recently described for ATPα mutants,
although β-subunit mutants were not analyzed (Hemphala et
al., 2003).

In vertebrates, different Na+/K+ ATPase isoforms have been
proposed to have unique functions because they are expressed
with tissue and temporal specificity, and because different
isoforms have distinct biochemical and pharmacological
properties in vitro (Blanco and Mercer, 1998). However, in
vivo experiments have so far failed to provide support for this
hypothesis (Weber et al., 1998). Our results show that septate
junctions and specific Na+/K+ ATPase isoforms have
previously unidentified roles in tracheal tube-size control and
that the tube-size control and trans-epithelial barrier functions
of septate junctions are distinct.

Materials and methods
Fly strains, genetic manipulations and EMS mutagenesis
Flies were obtained from the Bloomington Stock Center or published
sources, except for the following: nrv223B and nrv2l(2)k13315e22c-
GAL4 from J. Genova and R. Fehon (personal communication) and
btl-GAL4 UAS-GFP from M. Metzstein and M. Krasnow
(unpublished). nrv2nwu3 was generated by imprecise excision of the
l(2)k04223 P-element insertion and deletes the first two and most of
the third common exons. The genomic sequence across the deletion
breakpoints is AAGGCCCTCGCTATAACCAAGGAGAATAAC.
This allele is likely to be a molecular null because the deleted region
encodes transmembrane domain and extracellular regions, which are
required for assembly with the α subunit and for export of the Na+/K+

ATPase from the endoplasmic reticulum (Geering et al., 1996; Hasler
et al., 1998). Germline clones were produced with the nrv2nwu3, FRT
40A chromosome using the FLP-ovoD method (Chou and Perrimon,
1996). EMS mutagenesis generated two nrv2nonsense mutations, one
in the first common exon (nwu5: CTGCATGTGG→CTGCATGTGA)
and one in the second common exon (nwu6: CAAGCACTGG→
CAAGCACTAG) that were identified by non-complementation with
nrv2 l(2)k4223. Third chromosome lines were balanced by either
currently available balancers or the TM6B Hu Sb1 e Tb1 ca1

chromosome onto which we mobilized the dfd Hz2.7lacZ element
(McGinnis et al., 1990).

Immunohistochemistry, microscopy and morphometric
analysis
Antibodies 2A12 and TL1, embryo fixation, staining and staging
procedures are described elsewhere (Samakovlis et al., 1996). Other
antibodies used were AS55 (Reichman-Fried et al., 1994), H5F7 (Sun
and Salvaterra, 1995a), anti-α5 (Lebovitz et al., 1989), anti-Armadillo
(Riggleman et al., 1990), anti-Coracle (Fehon et al., 1994), anti-DLG
(Woods et al., 1996), anti-DLT (Bhat et al., 1999), anti-Neurexin
(Baumgartner et al., 1996) and anti-β-Galactosidase (Capel). Embryos
stained with α5 anti-α were fixed in 4% paraformaldehyde and hand
devitellinized. For H5F7 anti-β, standard formaldehyde/heptane
fixation and methanol devitellinization produced basolateral staining
that overlapped with Coracle and Neurexin, while paraformaldehyde
fixation and hand devitellinization yielded cytoplasmic/perinuclear
staining. Using either method, ectodermal staining was reduced to
background levels in nrv2 null mutants. H5F7 staining of embryos
expressing UAS- nrvX transgenes revealed that for the btl-Gal4 and
e22c-Gal4 drivers, nrv2.1, nrv2.2 and nrv3 had equivalent staining
levels and subcellular localizations, but that although detectable, nrv1
staining was significantly weaker.

Dorsal trunk and transverse connective lengths were measured as
described by Beitel and Krasnow (Beitel and Krasnow, 2000), except
Metamorph software (Universal Imaging) was used for the
morphometric analysis. Confocal images were captured using a Leica
TCS SP2 maintained and supported by the Northwestern Biological
Imaging Facility. To assess protein levels, heterozygotes and
homozygous mutants were imaged at the same settings on the same
slide in the same session. Adjustments performed in Photoshop were
applied equally to all images. All embryos were stage 16 unless
otherwise noted.

Dye exclusion and RNAi
Texas Red-conjugated 10 kDa dextran was injected into embryos as
described by Lamb et al. (Lamb et al., 1998). We believe that
abnormally rapid leakage across tracheal epithelia indicates septate
junction defects and not other tracheal defects as the disconnected
tracheal segments of hnt mutant or homozygous balancers embryos
do not leak dye (data not shown). 

Double-stranded RNAs were generated by PCR amplification of
templates with primers containing the T7 promoter sequence, in vitro
transcription, and were injected into early embryos following standard
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protocols (Kennerdell and Carthew, 1998). btl-Gal4 UAS-GFP
homozygote embryos were used to visualize the tracheal system.
RNAi-injected embryos were allowed to develop until stage 16-17,
injected with 10 kDa dye and viewed with a Zeiss Axioplan2
microscope. Common exon regions were chosen for dsRNAs
templates for all genes tested, except for nrv2.1 and nrv2.2 where
unique 5′ exons were targeted. Specificity of isoform-targeted
dsRNAs was demonstrated by injecting nrv2.1 or nrv2.2 dsRNA into
btl-GAL4 UAS-nrv2.2 embryos. nrv2.2 dsRNA injections caused
tracheal phenotypes and reduced levels of the overexpressed Nrv2.2
(5/5 embryos), while nrv2.1 dsRNA injections caused tracheal
morphology defects but did not affect Nrv2.2 levels (9/9 embryos).

Molecular biology
The sequence of nrv3, the predicted Na+/K+ ATPase β subunit
CG8633, was determined from cDNA GH12088 (GenBank Accession
Number AY314744). UAS-nrv1, UAS-nrv2.1, UAS-nrv2.2and UAS-
nrv3 were constructed by inserting nrv1, nrv2.1, nrv2.2 (Sun and
Salvaterra, 1995b) and nrv3 cDNAs into the pUAST vector (Brand
and Perrimon, 1993). nrv2 alleles were sequenced by PCR
amplification of genomic DNA from heterozygous flies, followed by
cycle dye termination sequencing.

Results
nrv2 , a Na+/K+ ATPase β subunit locus, is required
for tracheal tube size control
In previous work, we showed that embryos homozygous for the
l(2)k04223 strain had tracheal tube-size regulation defects
(Beitel and Krasnow, 2000). Using inverse PCR, we determined
that the transposable element in this strain was inserted in an
intron in the nervana2 (nrv2) locus, which encodes two
alternatively spliced isoforms of a Na+/K+ ATPase β subunit
(Sun and Salvaterra, 1995a; Sun and Salvaterra, 1995b). Two
lines of evidence demonstrate that the tracheal phenotype of
l(2)k04223 homozygotes results from disruption of the nrv2
locus. First, an independent transposable element insertion in
the nrv2 locus, l(2)k13315, causes the same tracheal phenotypes
as l(2)k04223 and fails to complement l(2)k04223 for tracheal
phenotypes and viability (data not shown). Second, in an EMS
non-complementation screen we isolated two additional
mutations that fail to complement l(2)k04223 (see Materials
and methods). Both of these mutants contain a single nonsense
base change in the exons common to both nrv2 isoforms, and
both have the same tracheal phenotypes as l(2)k04223.
Together, these results show that a Na+/K+ ATPase β subunit is
required for tracheal tube-size control.

To better define the role of nrv2 in epithelial morphogenesis,
we generated a putative nrv2 null allele, nrv2nwu3, that deletes
the first three common nrv2 exons which encode
transmembrane and extracellular domains (see Materials and
methods). In addition, Genova and Fehon (Genova and Fehon,
2003) provided a second putative null allele, nrv223B, that
removes all nrv2 common exons. The phenotypes caused by
nrv2nwu3 or nrv223B do not become more severe in trans to a
chromosomal deficiency known to delete nrv2, providing
genetic evidence that these are null alleles.

In nrv2-null embryos, beginning at the time of tracheal tube
expansion, multicellular tracheal tubes become increasingly
abnormal so that most tube lengths are significantly increased
and all tube diameters are irregular with expansions and
constrictions along their lengths (Fig. 1B,F-I; Table 1). Defects

are also present in regions of single cell tubes formed by
autocellular junctions, particularly near the ends of the
ganglionic branches where there are lumenal staining
discontinuities (Fig. 1G).

Although the process of tracheal tube expansion is drastically
disrupted in nrv2-null mutants, the earlier of phases of tracheal
tube morphogenesis, including early tube-size regulation, are
normal (Table 1). Furthermore, overall embryonic
morphogenesis of nrv2-null mutant embryos also appears to be
grossly normal as evidenced by the correct outgrowth of all
tracheal branches to their target tissues and the absence of major
patterning or morphogeneic defects as assessed using DIC
optics (Fig. 1B,G). One possible explanation for the apparent
specific morphogenic requirement of nrv2 in tracheal tube
expansion is that there is a maternal contribution of nrv2 that
provides enough activity to support early morphogenic
processes, but not enough to support tracheal tube expansion,
which occurs late in embryonic development. However, in situ
hybridization and microarray analysis did not reveal any
significant maternal nrv2 transcript (data not shown and
Berkeley Drosophila Genome Project) and embryos lacking
both maternal and zygotic nrv2are indistinguishable from nrv2
zygotic null embryos (Fig. 1H). Thus, nrv2does not play a role
in early epithelial formation or general embryonic
morphogenesis, but instead appears to be specifically required
for remodeling the length and diameter of tracheal tubes.

ATPα, a Na+/K+ ATPase α subunit locus, is required
for tracheal tube size control
To test whether nrv2 functions as part of the Na+/K+ ATPase
to control tracheal tube size, we examined the embryonic
phenotypes of mutations in the major Na+/K+ ATPase α
subunit locus, ATPα (Lebovitz et al., 1989; Sun et al., 1998;
Palladino et al., 2003). The transposable element insertions
ATPα l(3)1278, ATPα l(3)04694 and ATPα l(3)07008 caused tracheal
defects similar or identical to nrv2-null mutations, including
tube length increases, diameter expansions and ganglionic
branch discontinuities (Fig. 1M,N). The ATPα–null mutations
ATPαDTS1R1 and ATPαDTS1R2 (Palladino et al., 2003) also
caused nrv2-like length and ganglionic branch defects, but
caused only mild diameter defects (Fig. 1O). Although one
would normally expect the ATPα-null mutations to cause more
severe phenotypes than partial loss-of-function mutations, the
hypomorphic ATPα mutations might cause strong nrv2-like
phenotypes by producing inactive α subunits that could
unproductively interact with Nrv2 and deplete the pool of Nrv2
available for productive interactions with other binding
partners, such as α subunits expressed from the secondary
Na+/K+ ATPase α subunit locus CG17923. However, despite
some differences between the phenotypic effects of different
ATPα mutations, the observation that both null and partial loss-
of-function mutations cause nrv2-like tracheal tube-size
defects demonstrates that the ATPα locus is required for
tracheal tube-size control and suggests that the nrv2 β and
ATPα α subunits function together in this process.

The Na+/K+ ATPase is required for septate junction
function
During our investigations of the role of the Na+/K+ ATPase in
tube-size control, J. Genova and R. Fehon reported that Na+/K+

ATPase mutants had salivary gland septate junction defects
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(personal communication). We therefore tested whether
tracheal septate junction barrier function was defective in
Na+/K+ ATPase mutants using the dye exclusion assay of Lamb
et al. (Lamb et al., 1998), which tests the ability of an epithelium
to exclude a 10 kDa dye. In wild-type embryos, tracheal septate
junction barriers become functional and excluded dye starting
at late stage 15 (e.g. Fig. 2a). However, the tracheal and salivary
gland epithelia in nrv2 and ATPα mutants do not acquire the

ability to regulate paracellular transport and cannot prevent the
dye from inappropriately diffusing into the tracheal and salivary
gland lumens (Fig. 2b,c).

To understand the nature of the septate junction defects in
Na+/K+ ATPase mutants, we determined the subcellular
distribution of septate junction and cell polarity components in
stage 16 nrv2 and ATPα null mutants. We examined three
ectodermally derived epithelia – trachea, epidermis and
salivary glands – and found similar defects in all three tissues.
The effects were most clearly seen in the large columnar cells
of the salivary gland in which the septate junction occupies
only a small region of the lateral surface of the cell (Fig. 3)
(Tepass and Hartenstein, 1994). By contrast, septate junctions
occupy most of the lateral surface of tracheal cells, making
visualization of mislocalized septate junction components
more difficult. In both nrv2 and ATPα mutants, the septate
junction components Coracle, Neurexin and Discs Large
mislocalize along the lateral and sometimes the basal cell
surfaces, rather than being tightly localized to the apicolateral
septate junction (Fig. 3A-D and data not shown). In some
cases, the levels of these proteins appeared to also be reduced
(e.g. Fig. 3D). The septate junction component Fasciclin III
was undetectable in nrv2and ATPα mutant salivary glands and
strongly reduced in trachea (Fig. 3F and data not shown).

Although every septate junction marker tested is severely
affected by the Na+/K+ ATPase mutations, the effects appear to
be specific for septate junctions since the localizations and
levels of the adherens junction components E-cadherin
(Shotgun) and β-catenin (Armadillo), and the apical
determinant Discs Lost were unaffected in nrv2 and ATPα null
mutants (Fig. 3F,H). Together, these data demonstrate that
Na+/K+ ATPase mutations specifically disrupt septate junctions.

The Na+/K+ ATPase localizes to septate junctions
independent of Coracle
The function of the Na+/K+ ATPase in the septate junction
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Fig. 1.nrv2 and ATPα mutations cause tracheal length and diameter
defects. When compared with wild-type (WT) animals (A,C-E),
nrv2 (B,F-I) and ATPα (M-O) mutant trachea have increased length,
diameter expansions and missing lumen segments. The tracheal
defects in nrv2 homozygotes can be completely rescued by
expressing the nrv2.2 isoform using the e22c-Gal4 driver (J,K) or
partially rescued using the btl-Gal4 driver (L). Similarly, expression
of the nrv2.1isoform by the e22C-Gal4 driver could also completely
rescue all tracheal defects in nrv2 mutants (Fig. 6H), whereas the
btl-Gal4 driver produced only the same partial rescue seen with
nrv2.2(data not shown). (A-C,F,J,L,M,O) Lateral views of the
dorsal trunk (DT) and transverse connective (TC).
(D,G,K,N) Ventral views of the ganglionic branches (GB).
(E,H,I) Dorsal views of the dorsal trunk. The animal in H lacks both
zygotic and maternal nrv2. All images are of stage 16 embryos,
except E,H,I, which show stage 15 embryos. Examples of lumenal
gap regions are indicated with brackets. UAS-nrv2.1or UAS-nrv2.2
expressed under the control of the e22c driver rescued the nrv2
tracheal phenotype to wild type in 8/9 and 19/21 animals
respectively. Genotypes: (A,C-E) Oregon R; (B,F,G,I) nrv2nwu3;
(H) nrv2nwu3/nrv2-23B from nrv2nwu3germline clone (glc);
(J,K) nrv2k13315e22C-Gal4/nrv2l(2)k04223UAS nrv2.2; (L)
nrv2l(2)k04223btl-Gal4/nrv2l(2)k04223UAS nrv2.2; (M,N) ATPα04694;
(O) ATPαDTS1R1. Scale bar: in B, 10 µm for A,B; in O, 5 µm for
C,F,J,L,M,O; in N, 5 µm for D,G,K,N; in E, 10 µm for E,H,I.
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could be direct as structural component, indirect through its
generation of the electrochemical gradient, or both direct and
indirect. To assess a possible direct role, we investigated the
subcellular localization of the ATPα and Nrv2 proteins. In
salivary glands, epidermis and trachea, ATPα staining
predominantly colocalizes with Coracle and Neurexin at the

apicolateral septate junction region, although some variable,
low intensity ATPα staining of the basolateral cell surfaces that
did not correlate with genetic background was also observed
(Fig. 4A-C and data not shown). In nrv2 null mutants, ATPα
levels are significantly reduced in the trachea and essentially
absent in salivary glands (Fig. 4D). Where ATPα staining is

Table 1. Summary of tracheal phenotypes of septate junction mutants*

Diameter Missing
DT defects in 2A12 AS55 lumen in

Gene DT TC diameter other primary staining staining ganglionic Onset of
(alleles)† length‡ length‡ defects branches defects§ defects§ branches§ phenotypes

nrv2 (nwu3) 113±2% 99±3% ++ ++ + + + Stage 15
(23B) 126±2% 109±6% ++ ++ + + + Stage 15
coracle(4, 5, 4/5) 122±2% 104±3% ++ ++ + + + Stage 15
neurexin IV (4865, 4025) 116±4% N/D ++ ++ ++ ++ + Stage 15
neuroglian (14, 17) 121±2% 94±3% ++ ++ + + + Stage 15
gliotactin (J29-41bl, AE2-4) 146±6% N/D + + +/– N/D – Stage 15

*Phenotypes of stage 16 embryos. For all mutants, early tracheal development, including primary branch budding and outgrowth, lumen formation and
morphology, and TL1 antigen expression occurred normally during stages 11-14. In all cases, tracheal branches fused at the correct stages to form the contiguous
tubular networks. –, normal; +, mild; ++, moderate; +++, severe, N/D, not determined.

†Where multiple alleles are listed, all alleles of each gene had comparable tracheal phenotypes.
‡Values shown (mean±s.e.m., n>5) have been normalized to stage 16 wild-type values (embryo length, 361±4 µm; DT length, 194±1 µm; TC length, 47±1 µm)

as described by Beitel and Krasnow (Beitel and Krasnow, 2000). Values different from wild type (P<0.005) are in bold. Measurements were made on
cor[4]/cor[5] , nrx[4865]/nrx[4025], nrg[17], and gli[J29-41bl] embryos. Average lengths of embryos were nrv2[nwu3], 349±6 µm; nrv2[23B], 365±10 µm; cor,
372±4 µm; nrx, 375±6 µm; nrg, 330±3 µm; gli, 377±19 µm.

§Defects included non-staining regions of ganglionic branches and/or delayed or reduced staining in the dorsal or other branches.

Fig. 2.Tracheal tube size defects do not result from trans-epithelial diffusion barrier defects. The integrity of the septate junction diffusion
barrier in tracheal and septate junction mutants was assessed by a dye permeability assay. For each mutant, DIC images of the trachea are
shown in black and white (A-H) and the matched fluorescence image taken in the same focal plane is shown in color (a-h). Wild-type trachea
exclude fluorescently labeled 10 kDa dextran dye injected into the body cavity (a; dotted lines outline tracheal tubes), while the trachea of
Na+/K+ ATPase and other mutants are permeable to the dye which enters and fills their lumens (b-g). Permeability defects do not cause the
observed tube-size defects as cor14* mutants have defective diffusion barriers (e) but have normal tracheal morphology (E). Furthermore,
convoluted (conv) mutants have the identical tube-size defects as nrv2 (compare H with B) but do not have permeability defects (h). All mutants
that failed to exclude dye from the trachea also failed to exclude it from the salivary gland. Genotypes: nrv2nwu3, ATPαDTS1R2, cor14* is
coracle14 plus additional unidentified genetic background, cystick13717b, megatracheaEA97, convolutedk6507b. In addition, coracle5, varicose3953b,
neurexin IV14, neuroglian17, gliotactinJ29-41bl, nrv2l(2)k04223btl-Gal4/nrv2l(2)k04223UAS-nrv2.1 and nrv2l(2)k04223btlGal4/nrv2l(2)k04223UAS
nrv2.2 animals have tracheal diffusion barrier defects, while coracle15, hindsight1142, nrv2k13315e22C-Gal4/nrv2l(2)k04223UAS-nrv2.2,
nrv2k13315e22C-Gal4/nrv2l(2)k04223UAS nrv2.1 and coracle14(backcrossed)do not (data not shown). Scale bar: 10 µm.
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visible, it is no longer localized to the apicolateral septate
junction region, but instead along the entire lateral surface.
Thus, the ATPα localizes to the septate junction, and this
localization is Nrv2 dependent.

Staining nrv2-null heterozygotes and homozygotes with an
anti-β subunit antibody (Sun and Salvaterra, 1995a) revealed
that Nrv2 accounts for the essentially all of anti-β subunit
staining in ectodermally derived tissues, but the subcellular
localization of Nrv2 could not effectively be assessed because
β subunit localization depended on fixation conditions and
ranged from basolateral to perinuclear (see Materials and
methods). As localization of the ATPα subunit is dependent on
Nrv2 (Fig. 4D-D′′ ), and the ATPα and nrv2 mutants have the
same phenotype, it seems likely that the functional Nrv2
protein will be localized to the septate junction.

Significantly, although Coracle and Neurexin are
mislocalized and their levels may be reduced in ATPα and nrv2
mutants (Fig. 3B and data not shown), the localizations and
levels of ATPα are unaltered in coracle mutants (Fig. 4E).
Together, the above results suggest that the Na+/K+ ATPase is
a structural component of the septate junction, and that it is

required for stable formation of a complex containing Coracle
and Neurexin.

Tracheal tube size control requires septate junctions
but not paracellular barrier function
To investigate the relationship between septate junctions and
tube-size control, we determined the effects of mutations in
other septate junction components on tracheal morphology.
Null mutations in coracle and neurexin cause tracheal
morphology defects that are essentially identical to those of
nrv2 and the tube expansion mutants varicose, sinuousand
convoluted (Fig. 5C-E,I,K; Table 1) (Beitel and Krasnow,
2000). Furthermore, mutations in gliotactin and neuroglian,
two genes required for the blood-brain barrier formed by the
septate junction (Auld et al., 1995; Dubreuil et al., 1996;
Genova and Fehon, 2003; Schulte et al., 2003), also cause
tracheal morphology defects similar to those caused by
mutations in the tube-expansion genes (Fig. 5B,G; Table 1).
Thus, the septate junction complex appears to be required for
tracheal tube-size control.

To determine whether the paracellular barrier function of the
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Fig. 3.Septate junction components are mislocalized or dramatically reduced in Na+/K+ ATPase mutants. In nrv2mutants (B,D,F,H), Coracle
(red, B,H), Discs Large (green, D) and FasIII (red, F) appear to be reduced and/or no longer have the septate junction localization seen in wild-
type animals (A,C,E,G). Neurexin staining closely resembled Coracle staining and was mislocalized in nrv2mutants (data not shown).
Localization of Discs Lost (green, E,F), E-cadherin (green, G,H) and Armadillo (data not shown) was unaffected by nrv2mutations (F,H).
ATPα null mutations caused the same mislocalization and defects in protein levels as do nrv2 mutations (data not shown). Basal surfaces are
outlined in white, apical/lumenal surfaces in blue. For each marker examined, the wild-type and mutant images are matched pairs (e.g. A and B,
and C and D), where the wild type is a heterozygous embryo imaged with the same settings, on the same slide, and in the same session as the
mutant embryo to provide an internal reference for protein levels. Scale bar: in H′′ , 5 µm for A-D,A′′ -D′′ ,E-H′′ ; in D′, 5 µm for A′-D′.
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septate junction is important for tracheal tube-size control, we
examined the correlation between the tracheal and paracellular
barrier phenotypes caused by tube expansion and septate
junction mutants. In mutants with paracellular barrier defects,
there is no relationship between paracellular defect and the
type or severity of tracheal morphology defect. For example,
although megatracheaand cystic mutant epithelia are both
permeable to a 10 kDa dye (Fig. 2f,g), they have strikingly
different types of tracheal phenotypes – megatracheamutants
have extremely long tubes with almost no diameter defects,
whereas cysticmutants have dramatic diameter expansions and
constrictions without any increase in length (Fig. 2F,G) (Beitel
and Krasnow, 2000). Furthermore, a strain containing a weak
coracle allele (Ward et al., 2001) has minimal tracheal
morphological defects despite having epithelia permeable to a
10 kDa dye (Fig. 2E). If septate junction permeability defects
caused the tracheal defects, then mutants with similar
paracellular barrier defects should cause similar tracheal
phenotypes. Because we find no correlation between the type
or severity of tube-size and barrier defects, it appears that
tracheal tube-size control by the septate junction does not
depend on paracellular diffusion barriers.

Nrv2.1 and Nrv2.2 both have tracheal tube-size
control and junctional barrier activity
Although the above results demonstrate that the nrv2 locus
plays a crucial role in tracheal tube-size control and septate
junction function, they do not address possible functional
differences between the two Nrv2 protein isoforms, Nrv2.1 and
Nrv2.2, because the available nrv2 mutations affect exons
common to both (Fig. 6A; see Materials and methods). Nrv2.1
and Nrv2.2 share the same predicted transmembrane and
extracellular domains, but differ dramatically in their ~49
amino acid intracellular domains in which they are only 29%
identical and 48% similar. To investigate possible functional
differences between the isoforms, we used dsRNAs

corresponding to either the nrv2 common exons or to nrv2.1-
or nrv2.2-specific exons in RNAi experiments to ‘knockdown’
either both nrv2 transcripts or the nrv2.1 or nrv2.2 transcripts
specifically (see Material and methods). We found that
injection of any of nrv2 common, nrv2.1 or nrv2.2 dsRNAs
caused the same tracheal tube length and diameter defects as
nrv2 null mutations, and all three dsRNAs caused defects in
septate junction barrier function (Fig. 6D-F). These results
suggest that in normal development, both Nrv2 isoforms are
required for tracheal tube-size control and septate junction
function.

To determine whether the apparent requirement for both
Nrv2.1 and Nrv2.2 resulted from inherent functional
differences between the two isoforms, we used the two
component expression system of Brand and Perrimon (Brand
and Perrimon, 1993) to express nrv2.1 and nrv2.2 transgenes
using a variety of drivers. Driving one or two copies of either
UAS-nrv2.1or UAS-nrv2.2or both together specifically in the
tracheal system of nrv2 homozygotes using one or two copies
of the btl-Gal4 driver (Shiga et al., 1996) resulted in the same
partial rescue of tracheal defects (Fig. 1J; Fig. 2, legend).
Specifically, the diameter defects and ganglionic branch
lumenal gaps were almost completely rescued, but the length
and paracellular transport defects were not significantly
rescued. Driving UAS-nrv2.1 or UAS-nrv2.2 with the e22c-
Gal4 driver, which is expressed throughout the ectoderm and
ectodermally derived tissue and begins expressing much earlier
in development than btl-Gal4 (stage 5 versus stage 10),
completely rescued all tracheal morphological and junctional
barrier defects in the large majority of nrv2homozygotes (Fig.
1J,K; Fig. 2, legend; Fig. 6H). These results suggest that for
full rescue, nrv2 is required at a window of time extremely
early in tracheal development, possibly before ectodermal cells
are specified to be tracheal cells.

The above results also demonstrate that both nrv2.1 and
nrv2.2 have tube-size control and paracellular transport

Fig. 4.Na+/K+ ATPase localization to the septate junction depends on Nrv2 but not Coracle. In wild-type (A,B,C) and coraclemutant animals
(E), the Na+/K+ ATPase (red A,C,E) localizes to the septate junction marked by Coracle in wild-type animals (green A,B). However, in nrv2
mutants (D) Na+/K+ ATPase staining is reduced and/or not localized to the septate junction. Na+/K+ ATPase staining (α5 anti-α subunit
monoclonal) is undetectable in ATPα mutants (data not shown). Basal surfaces are outlined in white, apical/lumenal surfaces in blue. Scale bar:
in E′′ , 5 µm for A-E,A′′ -E′′ ; in E′, 5 µm for A′-E′.
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activities. However, given that all combinations of Na+/K+

ATPase α and β subunits form functional ion pumps (Lemas
et al., 1994; Schmalzing et al., 1991; Schmalzing et al., 1997),

these results also raise the possibility that neither nrv2 isoform
has specific functions and that any β subunit could substitute
for Nrv2. We therefore tested whether either of the two other
Drosophila Na+/K+ ATPase β subunits, nrv1 (Sun and
Salvaterra, 1995b) or nrv3 (CG8663), had tube-size or barrier
activities. Driving UAS-nrv1 or UAS-nrv3 constructs with
either btl-Gal4 or the e22c-Gal4 driver did not rescue any of
the tracheal tube-size or septate junction barrier defects of
nrv2 mutants (e.g. Fig. 6I,J; Fig. 2, legend), despite the fact
that expression from the UAS-nrv2.1, UAS-nrv2.2 and UAS-
nrv3 transgenes appeared equivalent as assessed by
immunohistochemical staining (see Materials and methods).
Consistent with these results, injection of dsRNA
corresponding to nrv1 or nrv3 into wild-type embryos did not
cause either the characteristic tube-expansion defects or
septate junction barrier defects (Fig. 6G and data not shown).
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Fig. 5.Septate junctions control tracheal tube size through multiple
pathways. Null mutations in the known septate junction genes
coracleand neurexincause the identical tracheal tube size
phenotypes as null nrv2mutations (C-E). Double null mutant
combinations of nrv2and coracle have the same phenotype as either
single mutant (compare F with D and E), suggesting nrv2and
coracleact in the same pathway. Similarly, double null mutant
combinations of nrv2and gli are not more severe than the nrv2-null
mutants (compare H with D). By contrast, varicose, convolutedand
cysticmutations exacerbate the tracheal phenotypes of null nrv2
mutations (compare J with D,F,H,I; L with D,F,H,K; N with
D,F,H,M), suggesting that varicose, convoluted andcysticdo not
function only in a single linear pathway with nrv2. Dotted lines
indicate tracheal lumens. Genotypes: (A) Oregon R; (B) nrg17; (C)
nrx4865; (D) nrv223B; (E) cor5; (F) nrv2nwu3cor5; (G) gliAE2-45; (H)
nrv2nwu3gliJ29-7b; (I) convk6507b; (J) nrv2nwu3convk6507b; (K) vari3953b;
(L) nrv2k04223vari3953b; (M) cysk13717b; (N) nrv2nwu3cysk13717b. Scale
bar: 5 µm.

Fig. 6.Both nrv2.1and nrv2.2, but not nrv1and nrv3,are required
for and possess tube-size control activity. (A) Organization of the
nrv2 locus. Exons common to both nrv2 isoforms are shown as red
boxes, while exons specific for the nrv2.1and nrv2.2isoforms are
shown in blue and green, respectively. (B-G) Tracheal tube diameter
and length defects are caused by the injection of dsRNA
corresponding to coracle(C), nrv2common exons (D), nrv2.1and
nrv2.2specific exons (E,F) into otherwise wild-type animals with
tracheal GFP expression. Injection of these dsRNAs also causes
septate junction barrier defects (data not shown). Injection of buffer
(B) or nrv3dsRNA (G) did not cause tracheal tube-size defects.
(H,I) Expression of nrv2.1 in nrv2homozygotes using the e22C-Gal4
driver rescued all tracheal morphology defects (H), but expression of
nrv1 (I) or nrv3 (J) did not detectably rescue the nrv2defects. Rescue
by nrv2.2is shown in Fig. 1H. Genotypes: (B-G) btl-Gal4 UAS-
GFP; (H) nrv2k13315e22C-Gal4/nrv2k04223UAS-nrv2.1; (I)
nrv2k13315e22C-Gal4/nrv2k04223UAS-nrv1; (J) nrv2k13315e22C-
Gal4/nrv223BUAS-nrv3. Scale bar: 5 µm.
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We therefore conclude that Nrv2.1 and Nrv2.2 both have
specific tube-size and septate junction barrier activities not
present in other Na+/K+ ATPase β subunits.

Genetic interactions define multiple pathways for
tracheal tube size control 
The nearly identical tracheal morphological defects in nrv2,
coracle, varicose and convoluted(Fig. 5D,E,I,K; Table 1)
suggested that these genes may act in a single linear genetic
pathway. If so, then double mutant combinations of nrv2-null
alleles and mutations in other tube-expansion genes should
have the same tracheal phenotypes as a nrv2-null single
mutant. This prediction is true for coracleand gliotactin (Fig.
5F,H), and is consistent with Coracle mislocalization in nrv2
mutants (Fig. 3B). However, the double mutant combination of
a nrv2-null mutation and a convolutedmutation that does not
cause septate junction barrier defects (Fig. 2h) causes more
severe phenotypes than nrv2-null mutations (Fig. 5J).
Similarly, the double mutant combination of a nrv2-null
mutation and a varicosemutation that causes septate junction
barrier defects (Fig. 2, legend) causes more severe phenotypes
than nrv2-null mutants (Fig. 5L), indicating that these genes
are unlikely to act in a simple linear pathway. The nrv2 cystic
double mutant phenotype was indistinguishable from cystic
(Fig. 5M,N), suggesting that cystic acts in parallel or
downstream of nrv2.

Discussion
Despite the importance of epithelial tubes to the function of
many of organs, little is known about the pathways and proteins
responsible for controlling multicellular tube size. Our results
show that the Na+/K+ ATPase and septate junctions have
previously unidentified roles in Drosophila tracheal tube-size
control. They further provide the first in vivo evidence for
functional differences between Na+/K+ ATPase isoforms as
Nrv2 but not other Drosophilaβ Na+/K+ ATPase subunits have
tube-size and septate junction activity. Below, we discuss
models for how tracheal tube size is controlled by septate
junctions and implications of our results for vertebrate tube-
size control.

Septate junction control of tube size is not mediated
by paracellular barrier function
A simple explanation for the abnormal sizes of tracheal tubes
in mutants having septate junction defects would be that ionic
or hydrostatic disequilibria across the tracheal epithelium
disrupts tracheal cell morphogenesis. If so, then all mutants
with similar paracellular barrier defects should have equivalent
tracheal morphologies. However, we found that barrier mutants
had tracheal morphologies ranging from near wild type in the
case of cor14* to diameter- or length-specific defects in cystic
and megatrachea. These results support the conclusion that
septate junction control of tube size is not dependent on
regulation of paracellular diffusion.

Multiple pathways of septate junction tube size
control and paracellular transport
The mutant phenotypes and genetic interactions among
tracheal tube-expansion and septate junction mutants suggest
there are at least two genetic pathways by which septate
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Fig. 7.Models for the role of the Na+/K+ ATPase in tube-size
control via the septate junction. See text for detailed discussions.
(A) One possible formulation of the genetic pathways controlling
tracheal tube size and septate junction barrier function. This model
is based on the barrier phenotypes of the shown mutants and on
genetic interactions between these mutants and nrv2-null mutants.
Comparison of these phenotypes and interactions divides the
mutants into three classes. nrv2 appears to act in a linear genetic
pathway with gliotactin and coracle(shown in blue) but in a
parallel, partially redundant, or branching pathway to varicoseand
cystic(shown in red). convolutedmay act either downstream of a
varicose/cysticpathway (indicated in red) and/or in parallel
pathways (indicated in green). (B) A molecular representation of the
pathways shown in A to illustrate how nrv2/coracle(blue) and
varicose(red) could both be required for septate junction barrier
function, but act in genetically distinguishable pathways for tube-
size control. Question marks indicate uncertainty in identity or
subcellular localization. Only a subset of known septate junction
proteins are shown.
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junctions regulate tracheal tube size (Fig. 7A). For example,
nrv2 and coracleappear to act in the same genetic pathway as
nrv2 and coracle null mutants have the same tracheal
phenotypes as each other and as nrv2 coracledouble null
mutants (Fig. 7A, middle column). This genetic evidence is
supported by our observations that the localization of Coracle
to septate junctions is disrupted in nrv2and ATPα mutants. By
contrast, although nrv2-null and varicose mutants have the
same tracheal phenotypes, nrv2 and varicoseare unlikely to
act in the same linear genetic pathway because nrv2 varicose
double mutants have more severe tracheal phenotypes than
nrv2-null mutants (Fig. 7A, left column). This result suggests
that either varicoseand nrv2 function in separate pathways to
control tube size, or there is redundancy between the functions
of these genes. We present the separate pathway model as a
formal logic diagram in Fig. 7A and as a molecular model in
Fig. 7B.

Additional genetic pathways may also be revealed by the
differential effects of tube-expansion mutations on septate
junction barrier integrity. For example, in contrast to nrv2 and
other mutations, the existing convolutedmutations do not
affect septate junction barrier integrity and therefore may
define a size-control pathway that acts in parallel to septate
junction pathways (Fig. 7A, right column, green
‘convoluted?’). Consistent with this proposal, the double
mutant combination of a nrv2 null mutation and a convoluted
mutation result in more severe tracheal morphology defects
than either nrv2-null or convoluted mutations alone.
Alternatively, genes such as convolutedmay function in a
branch of a septate junction pathway to link septate junctions
to tube size control as shown in Fig. 7A (right column, red
‘conv?’). Although these models are necessarily incomplete,
they offer testable predictions about gene interactions and
subcellular localizations of uncharacterized gene products that
should help define tube-size control and paracellular barrier
pathways at the molecular level.

Possible mechanisms for Na +/K+ ATPase and
septate junction regulation of tube size
A central issue raised by our findings is the nature of the
molecular functions(s) of the Na+/K+ ATPase and septate
junctions in tube-size control. Although the Na+/K+ ATPase
has been studied intensively for more than 40 years for its
function as an ion pump (Chow and Forte, 1995; Blanco and
Mercer, 1998), our data indicate that the tracheal tube-size
function of the Na+/K+ ATPase is intimately associated with its
role in septate junction function. Furthermore, as described
above, the paracellular barrier and tube-size control functions
of the septate junction are separable.

In one class of model that accounts for these observations,
the role of the Na+/K+ ATPase is to organize septate junctions,
which control tube size by an undetermined mechanism. The
many functions of vertebrate tight junctions provide possible
examples of non-barrier mechanisms by which septate
junctions could control tube size. In particular, tight junctions
organize polarized apical secretion mediated by the exocyst
(O’Brien et al., 2002), bind cytoskeletal components such as
ankyrin and fodrin (Fanning et al., 1999), contain potential
signaling molecules such as the tyrosine kinases Src, Yes and
protein kinase C (Fanning et al., 1999), and have recently been
shown to regulate the activity of a Y-box transcription factor

(Balda et al., 2003). In addition, both septate and tight
junctions complexes contain proteins that organize epithelial
cell apical/basal domains (Tepass et al., 2001).

Of the tube-size control models that do not invoke ion-
transport functions of the Na+/K+ ATPase, models involving
apicobasal domain organization are particularly attractive.
Apical surface regulation is a common theme in tubulogenesis
(Lubarsky and Krasnow, 2003; Buechner et al., 1999; O’Brien
et al., 2002), and has been shown to play an important role in
tube-size control in the Drosophilasalivary gland (Myat and
Andrew, 2002). Several observations support the possibility
that septate junctions control tracheal tube size through the
apical cell surface. First, the differential regulation of tracheal
apical and basal cell surfaces suggests that tracheal tube size
control is mediated at the apical cell surface (Beitel and
Krasnow, 2000). Second, the increased tracheal tube lengths
and diameters present in tube-expansion mutants necessitate an
increased apical cell surface area. Given that the Dlg/Scrib/Lgl
complex normally present in septate junctions has an early
embryonic function to negatively regulate the extent of the
apical membrane domain (Bilder et al., 2003; Tanentzapf and
Tepass, 2003), this complex could also act later to negatively
regulate tracheal apical surface area.

In an alternative class of models that are not exclusive of the
above possibilities, the ion-pump activity of the Na+/K+

ATPase may directly or indirectly mediate tube-size control.
For example, pharmacologically blocking Na+/K+ ATPase ion-
transport activity leads to increased intracellular Ca2+ levels in
some cell types (Ravens and Himmel, 1999), and Ca2+

signaling abnormalities may be the molecular defect that
causes the enlarged tubules of polycystic kidney disease (PKD)
(Calvet, 2002; Hou et al., 2002; Yoder et al., 2002a; Yoder et
al., 2002b). Another example is that the low intracellular Na+

level maintained by the Na+/K+ ATPase is required for
formation of tight junctions and stress fibers in Madin-Darby
canine kidney (MDCK) cells, an epithelial cell line that can
form tubules in response to hepatocyte growth factor
(Rajasekaran et al., 2001). Septate junction formation might
also require low intracellular Na+ levels. Finally, disruption of
the cellular Na+/K+ electrochemical gradient could impact
secondary active transport of other solutes that may be
important for proper tube-size regulation.

Although the exact biochemical roles of the Na+/K+ ATPase
and septate junctions in tube-size control are unclear,
identification of these complexes as parts of a tube-size control
mechanism is an important step towards further understanding
these mechanisms at the molecular level.

Na+/K+ ATPase in vertebrate epithelial tube-size
disorders
The Na+/K+ ATPase has been implicated in vertebrate tube-
size control by the abnormal subcellular localization of the
Na+/K+ ATPase in the inappropriately expanded tubules in
individuals with PKD and in several animal models of cystic
kidney diseases (Avner et al., 1992; Carone et al., 1995;
Ogborn et al., 1995; Wilson et al., 2000; Wilson et al., 1991).
However, it has not yet been determined whether this
mislocalization contributes to the progression of cystic diseases
or whether it is merely a secondary effect of other cellular
defects. Our finding that the Na+/K+ ATPase is required for
normal tube-size control in the Drosophila tracheal system
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suggests that the vertebrate Na+/K+ ATPase may play an
important role in maintaining the normal size of kidney and
other epithelial and endothelial tubes. Ultimately, a molecular
understanding of the tube-size control mechanisms should
allow development of new strategies for preventing and
treating PKD and other diseases resulting from epithelial and
endothelial tube defects.
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