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Tessier-Lavigne, 1992; Goodman and Shatz, 1993). Because
neurons in the same embryonic environment often follow
different pathways, we believe that the interaction of a growth
cone with its environment requires a code of molecular signals
and receptors to provide the necessary specificity. The ‘labeled
pathways hypothesis’ (Goodman et al., 1982) proposes a
mechanism for this specificity: axon fascicles in the embryonic
nervous system are differentially labeled by surface molecules
that are used for the guidance of growth cones. Many surface
molecules restricted to subsets of axon fascicles have been
found in both vertebrates and invertebrates. They belong to
several families of proteins such as the immunoglobulin super-
family, the cadherins, some members of the integrin family,
and others (reviewed by Bixby and Harris, 1991; Goodman and
Shatz, 1993).

The lipocalins are a family of extracellular soluble proteins
that transport small hydrophobic molecules. They have a well
conserved structure: a calyx formed by a 
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lipocalin family and has a re
nervous system that makes it a candidate for a specific axonal
receptor and/or guidance cue. In the following paper (Sánchez,
Ganfornina and Bastiani, 1995) we indeed demonstrate that it
is required for the navigation of identified commissural
neurons. To the best of our knowledge, the localization,
molecular characteristics and function of this new lipocalin are
unique, both among the members of this protein family and
among the proteins involved in axonal pathfinding during the
development of the nervous system. For its putative role in
axon guidance, we have named this protein Lazarillo after the
main character of a sixteenth century Spanish novel, 

 

Lazarillo
de Tormes, a crafty boy who guided a blind man.

MATERIAL AND METHODS

Grasshopper (Schistocerca americana) embryos were obtained from
a colony maintained at 31°C and 60% humidity at the University of
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nic neurons must extend growth cones along precise
ys, often over long distances, to reach and synapse with
ropriate target cell. The proper execution of this task by
s of neurons is essential to construct a functional
s system. What cues are used by a neuron to direct its
 cone toward a distant target? Since the first observa-
growth cones by Ramón y Cajal, a variety of chemical
sical cues have been invoked as guidance mechanisms
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y were staged by percentage of embryonic development
 to Bentley et al. (1979). The monoclonal antibody (mAb)
s generated by Carpenter and Bastiani (1990) against
c nervous tissue using a subtractive immunization method
, 1987). Immunocytochemistry was carried out as

 by Sánchez, Ganfornina and Bastiani. (1995).

blot analysis of embryonic and adult proteins
c and adult membrane proteins were prepared as described
 et al. (1991), separated by electrophoresis (SDS-PAGE)
otransferred to nitrocellulose membranes. Membranes were
ith a Tris buffer (50 mM Tris, pH 7.6, 150 mM NaCl, 0.2%
1% NaN3) and blocked for 2 hours with 2.5% BSA, 2.5%
in the previous buffer. They were incubated with primary
(1:200 in blocking solution) for 2 hours, washed again,
 with rabbit anti-mouse IgG (1:500 in blocking solution) for
washed and incubated with 125I-protein A solution (0.2
 blocking solution) for 1 hour. After washing, the membrane
ied and exposed to film.

described (Bastiani et al., 1987), using mAb 10E6 immobilized to
Protein G Sepharose beads (Pharmacia). Lysate total protein concen-
tration was measured with the micro-BCA assay (Pierce). Adult lysate
was prepared as described for embryos but using whole adult
grasshoppers whose gut, legs and wings were removed. Amino acid
composition of Lazarillo was performed by transferring 2.7 µg of
protein to PVDF membrane (Problott) followed by acid hydrolysis
and amino acid analysis.

To obtain peptide sequence 13.5 µg of the protein Lazarillo were
separated by SDS-PAGE. The gel piece containing the protein was
rinsed in 250 mM Tris, pH 9.0, 250 mM EDTA and in dH2O at room
temperature, chopped and dried in a vacuum centrifuge. The dried gel
was soaked in 0.1 M NH4HCO3, pH 9.0 containing endoproteinase
Lys-C (Lys-C from Lysobacter enzymogenes, Boehringer-
Mannheim), and incubated at 37°C for 12 hours (enzyme to protein
ratio, 1:20). Digestion products were eluted from the gel by extensive
washing with NH4HCO3 buffer. Peptides were then separated by
reverse phase HPLC using a C-18 300 Å pore column. Fractions were
subjected to microsequencing by automated Edman degradation.
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Amino acid analysis, peptide separation and sequencing, as well as

ical characterization of Lazarillo protein
 the association of Lazarillo with the membrane, high salt
sic pH extractions were carried out. Unsolubilized
 proteins were subjected to a basic pH buffer (10 mM TEA,
50 mM NaCl), a high salt buffer (10 mM TEA, pH 7.8, 500
 or a combination of both conditions for 30 minutes on ice.
re was diluted 10 times with the same buffer and cen-
00,000 g, 2 hours). Both supernatant and membrane asso-
eins were analyzed by immunoblot.

s of GPI-anchoring to the membrane was performed as
y Chang et al. (1992). 45% embryos were dissected in sterile
ium containing 6 mg/ml glycine. They were transferred to

edium (Cellgro) containing 50% Schneider’s Drosophila
ibco-BRL), 49% Minimum Essential Medium (α medium,

L), 1% antibiotic-antimycotic solution (Sigma). They were
 without (control embryos) or with phospholipase C (PLC) 3
dium, for 2 hours at 31°C. Two different enzymes were used,
ylinositol-specific PLC (PI-PLC, from Bacillus thuringien-
usly provided by Dr Martin Low, Columbia University) or
ylcholine-specific PLC (PC-PLC, from Bacillus cereus,
r-Mannheim). After the incubation period embryos were
ed and labeled with antibodies. For the immunoblot analysis

 extracted by the treatment, the culture medium after the incu-
 collected and concentrated with Centricon-10 (Amicon).
ere washed, then homogenized and a standard membrane

paration was followed as above.

synthesis of custom oligonucleotide primers for PCR or DNA
sequencing were carried out at the Protein/DNA Core Facility of the
Utah Cancer Center under the direction of R.W. Schackmann.

Molecular analysis of Lazarillo cDNA
Degenerate oligonucleotides were designed from the peptide
sequences to amplify DNA fragments from embryonic grasshopper
cDNA using PCR with Taq DNA polymerase (Saiki et al., 1988). PCR
was conducted in a thermal cycler (Perkin Elmer Cetus) and con-
ditions were as follows: MgCl2 concentration 2.5 mM; one cycle of
94°C for 2 minutes; 35 cycles of 94°C for 30 seconds, 48°C for 30
seconds, and 72°C for 1 minute; and a final cycle of 72°C for 5
minutes. The DNA fragments obtained were tested with a pair of
internal primers that were designed to give a known size DNA
fragment. A PCR product of approx. 400 bp, DL400, was cloned into
pCR-II vector using the TA cloning system (Invitrogen) and
sequenced (see below). The fragment DL400 was radiolabeled with
[32P]dCTP using the random primer method (Prime-It II kit, Strata-
gene) and used as a probe.

Several embryonic cDNA grasshopper libraries were constructed
and screened with the DL400 probe as described in the λZAP system
(Stratagene). We screened 0.5×106 plaque forming units (p.f.u.) from
an amplified library made using nerve cords dissected from 55%
embryos, and 1.3×106 p.f.u. from an unamplified library made from
embryos at 45% development.

Both strands of cDNA inserts were sequenced (Sanger et al., 1977)

rmine whether Lazarillo is a glycoprotein, the affinity
otein was separated by SDS-PAGE and transferred to nitro-
embrane. Blots were preincubated for 30 minutes at room

e in TTBS-Mn-Ca buffer (0.1 M Tris, pH 7.5, 150 mM
 Tween-20, 0.1 mM MnCl2, 0.1 mM CaCl2) and incubated

r with biotinilated concanavalin A (Vector) 10 µg/ml in
-Ca solution. All subsequent steps were as described in
 ABC kit (Vector). In addition, affinity purified protein was
lated with peptide-N-glycosidase F (PNGase F) from
erium meningosepticum (Boehringer-Mannheim). The
s denatured with 10 mM β-mercaptoethanol and boiling
cubated with 3.3 U/ml of PNGase F at 37°C for 18 hours.

otein was denatured in the same way, but incubated without
n parallel, pure protein was heat denatured and incubated
mU/ml of neuraminidase (from Arthrobacter ureafaciens,

urification and microsequencing of Lazarillo

n was purified by affinity chromatography from detergent
ctions of embryonic or adult lysates, prepared as previously

using Sequenase (v2.0, U.S. Biochemicals) and custom primers. dITP
was employed to sequence through areas with GC compressions.
DNA and protein sequences were analyzed with the GCG programs
(Devereux et al., 1984) and the BLAST service (Altschul et al., 1990).
The following data bases were screened: Swissprotein, PIR,
GenBank/EMBL, and Brookhaven PDB. Sequence alignements were
carried out with PILEUP GCG program using a symbol comparison
table that takes into account structurally conservative amino acid sub-
stitutions (Risler et al., 1988).

Analysis of Lazarillo mRNA expression
Total RNA was prepared from grasshopper embryos at 45% devel-
opment. 500 embryos were dissected in cold RPMI with 6 mg/ml of
glycine, washed in PBS, and homogenized in 0.1 M Tris, pH 7.5, 4
M guanidinium thiocyanate, 1% β-mercaptoethanol. The RNA was
purified by CsCl centrifugation as described in Sambrook et al.
(1989). Poly(A)+ mRNA was isolated from total RNA using the Poly-
ATract mRNA isolation system (Promega) and analyzed by northern
blot analysis with the DL400 probe. Briefly, 5 and 10 µg mRNA were
separated by electrophoresis in a formaldehyde-agarose gel, trans-
ferred to a nylon membrane (Zeta-Probe, BioRad) under alkaline con-
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 and hybridized with the probe at 65°C in the same solution
brary screenings.
u hybridization was performed according to a protocol for
pper whole-mount embryos (J. Broadus, personal communi-
 Briefly, a digoxigenin-11-dUTP labeled RNA probe (Genius-
oehringer-Mannheim) was synthesized using the entire Laz-5
s template. The resulting RNA was subjected to alkaline
sis. Embryos were dissected and fixed in PEM-formaldehyde
rmaldehyde 1:9 in 0.1 M Pipes, pH 6.9, 2 mM EGTA, 1 mM
) for 50 minutes. After washing, the solution was changed
ly to hybridization solution (50% deionized formamide, 4×
0 µg/ml yeast tRNA, 500 µg/ml boiled salmon sperm DNA,
l heparin, 0.1% Tween- 20, 1× Denhardts, 5% dextran sulfate
-treated H2O) at room temperature, with a last incubation at

 hybridization solution for 1 hour. The labeled RNA probe
n added at 0.5 µg/ml and incubation proceeded at 55°C for
ours. Washes for 5 hours, with frequent changes, followed the
ation step. To detect the labeled RNA, an alkaline phos-

-conjugated anti-digoxigenin antibody was used and the color
 was carried out as described in the Genius DNA labelling and

the vMP2 fascicle and some axons in this fascicle express
Lazarillo through adulthood. A coronal section of an adult lon-
gitudinal connective labeled by mAb 10E6 is shown in the
inset of Fig. 1D. Lazarillo shares with Semaphorin I its
expression on the MFT, however, semaphorin I is restricted to
the initial portion of the bifurcated axons while Lazarillo is
located along the entire axonal length (Fig. 1E), reflecting a
different spatial distribution. Two bundles in the posterior
commissure are labeled by Fasciclin II and Lazarillo, but
Fasciclin II expression is transient while that of Lazarillo
remains, reflecting a different temporal regulation. The
expression of the four molecules in distinct but overlapping
subsets of pathways supports the hypothesis that a particular
combination of molecules on the surface of a fascicle functions
as the unique label used by neurons for their specific pathway
decisions.

Lazarillo is also expressed by a subset of neuroblasts in the
CNS, every sensory neuron in the PNS, a group of neurons of
n
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 kit (Boehringer-Mannheim).

TS

b 10E6 recognizes a surface molecule
ted to a subset of neurons and axon fascicles
ression of the antigen recognized by mAb 10E6, the
Lazarillo, is restricted to the surface of an identified
f neurons. It is detected on cell bodies, axons, growth
nd filopodia of live embryos suggesting that the mAb
 an extracellular surface epitope. Fig. 1A shows a pair
led neurons that pioneer an anterior commissural
 at 32% of embryonic development (the AcP cells).

irect their growth cones toward the midline of the
 while extending many filopodia ahead (arrow) to
the contralateral growth cone. Fig. 1B shows some of
icles labeled with the mAb 10E6 in a metathoracic

n at 40% of development. Unlabeled axon fascicles, not
ing Lazarillo, are indicated by open arrows. At this
mental stage pioneer neurons have established a
 of axon fascicles consisting of two commissures (ac,
necting the hemiganglia, two longitudinal connectives
ing adjacent ganglia, and a median fiber tract (MFT).

the enteric nervous system (ENS) and by a few non-neuronal
tissues. The developmental expression pattern is described in
the following paper (Sánchez, Ganfornina and Bastiani, 1994).

Lazarillo is a glycoprotein anchored to the
membrane by a glycosyl-phosphatidylinositol group
We identified Lazarillo by immunoblot analysis of embryonic
membrane proteins separated by SDS-PAGE in the presence
of reducing agents. A smeary band with an average apparent
Mr of 45×103 is recognized by the mAb 10E6 (Fig. 2A, lane
2). In the absence of the mAb the secondary antibody recog-
nizes a nonspecific band of 57×103 Mr (Fig. 2A, lane 3) that
also appears when other unrelated mAbs are used as the
primary antibody. No signal was detectable in the soluble
fraction of embryonic homogenates (not shown). A band of
similar appearance and Mr was also detected by immunoblot
analysis using adult membrane preparations (Fig. 2A, lane 4).
The apparent Mr of Lazarillo does not change significantly
under non-reducing conditions (Fig. 2B). Lazarillo was
purified from embryonic lysates on a mAb 10E6 affinity
column (Fig. 2A, lane 5) with a yield of approx. 1 ng/mg of
total protein.

Several lines of evidence suggest that Lazarillo is associated
with membranes, in addition to the 10E6 labeling obtained in
sshopper central nervous system (CNS) is connected to
pheral nervous system (PNS) by two main nerves; the
tal (SN) and intersegmental (ISN) nerves. Fig. 1C
he ISN, where only the motoneurons (mn) and periph-
sory neurons (sn) navigating along its posterior branch
 Lazarillo. The anterior branch, pioneered by the U
urons, are never labeled by the mAb 10E6 (open

fascicles expressing Lazarillo were identified and
ed with those expressing other surface molecules
d to subsets of fascicles in the grasshopper embryo. In
 the distribution of Lazarillo is compared with that of
n I. Fig. 1E represents the 10E6 fascicle map compared
scicles expressing Fasciclin I, Fasciclin II, and Sema-

I/Fasciclin IV (Bastiani et al., 1987; Harrelson and
an, 1988; Kolodkin et al., 1992). The longitudinal con-
 at 40% of development are composed of three distinct
s differentially labeled by these surface glycoproteins.
o is currently the only one on the surface of axons in

non-permeabilized live embryos. The mAb recognizes the
protein in the membrane but not in the soluble fraction of
embryonic homogenates. Neither high salt, alkaline solutions,
nor both combined, extract Lazarillo from the membrane
fraction (not shown) suggesting that the protein is associated
with the membrane by hydrophobic interactions. To determine
whether Lazarillo is linked to the membrane by a GPI moiety,
embryos were treated with PI-PLC prior to fixation and
labeling with the mAb 10E6. Fig. 3 shows the results from
control (A,B) and treated embryos (C,D). Following PI-PLC
treatment, no signal was obtained with the mAb 10E6 in the
CNS or in the PNS. As a control, we labeled embryos with
mAb 3B11, which recognizes the GPI-anchored glycoprotein
Fasciclin I (Hortsch and Goodman, 1990). As expected, the
labeling disappeared after the enzymatic treatment. In contrast,
when treated embryos were labeled with 8C6, a mAb against
Fasciclin II, which has a transmembrane domain in grasshop-
pers (Harrelson and Goodman, 1988), the immunoreactivity
did not change after PI-PLC treatment (not shown). To test the
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Fig. 1. Lazarillo expression is restricted to a specific subset of neurons and axon fascicles in the embryonic nervous system of the grasshopper.
(A-D) Presence of Lazarillo in the CNS visualized by immunocytochemistry with mAb 10E6. Whole embryos are viewed from the dorsal
surface with DIC optics. Anterior is up. (A) The identified pioneer neurons of the anterior commissure (AcP cells) are labeled with mAb 10E6
in a subesophageal segment at 32% of embryonic development. Each neuron sends a growth cone (arrowhead) toward the midline where it will
encounter its contralateral homologue. Filopodial extensions are darkly stained with this antibody. The arrow points to a long filopodium
almost reaching the contralateral growth cone. (B) Thoracic ganglion at 40% of development. Only a subset of axon bundles is labeled.
Compare the labeled medial longitudinal fascicle (solid arrow) with the unlabeled lateral longitudinal fascicles (open arrow). lc, longitudinal
connectives; ac, anterior commissure; pc, posterior commissure; SN, segmental nerve. (C) The intersegmental nerve (ISN) exits between
adjacent segmental ganglia. The growth cone of a sensory neuron (sn) finds the axon of a motoneuron (mn), both labeled by mAb 10E6, and
enters the CNS by the posterior branch of the ISN. The anterior branch, or U fascicle, is not labeled by mAb 10E6 (open arrow). The midline is
indicated by a dashed line. (D) Double labeling with mAb 3B11 (anti-Fasciclin I, brown) and mAb 10E6 (blue). Three distinct longitudinal
fascicles are present at 38% of development that are differentially labeled with these surface molecules. Lazarillo is present only in the vMP2
fascicle (arrows) while Fasciclin I is in a lateral longitudinal fascicle (including the A/P fascicle) and the U fascicle (arrowheads). The
unlabeled one (open arrow) is the MP1/dMP2 fascicle. Midline is on the right. The inset shows a transverse section of an adult longitudinal
connective showing a ventral median tract labeled by mAb 10E6. Ventral is down and midline on the left. (E) Schematic diagram showing the
complete subset of fascicles that expresses Lazarillo at 40% (on the left) compared to Fasciclin I, Fasciclin II and Semaphorin I expression (on
the right). MFT, median fiber tract; pISN, posterior branch of ISN; aISN, anterior branch of the ISN (or U fascicle); SN, segmental nerve; A/P,
MP1/dMP2, vMP2, Q, L and RP1 are fascicles named after the neurons that pioneer them. Scale bars: A-C and inset in D, 50 µm; D, 25 µm.
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specificity of the effects of PI-PLC, we treated embryos with
PC-PLC. None of the labeling (10E6, 3B11 or 8C6) decreased
after the treatment (not shown) suggesting that the conditions
used selectively remove GPI-anchored proteins and do not
cause nonspecific release or damage of membrane proteins.
Accordingly, the 45×103 Mr band is present only in the
membrane preparation from control embryos, but is entirely
released to the culture supernatant after treatment with PI-PLC
(Fig. 3E). The nonspecific band (Mr, 57×103) is not extracted
by PI-PLC. These results suggest that the 45×103 Mr protein is
linked to the membrane by a GPI tail and corresponds to the
Lazarillo pattern observed in embryos.
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th the presence of internal disulfide bonds in Lazarillo
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the mRNA coding for the peptides obtained f
grasshoppers is present in embryos. The undeterm
acids referred to as possible N-glycosylation sites w
asparagines.

The DL400 DNA was used as a probe for north
ization (Fig. 5B). A single band of approximate
detected in a poly(A)+ mRNA preparation from e
45% of development, a stage that corresponds w
expression as seen by immunocytochemistry with t

Isolation of Lazarillo cDNA clone. The predi
amino acid sequence has the characteristic
GPI-linked membrane protein 
We screened several λZAP embryonic grasshop

 is deglycosilated due to the low efficiency of the PNGase F in these conditions (native protein not shown). The non-redu
grates as a 23×103 Mr band. Molecular mass markers (Mr×10−3) are shown on the left.
ion of a Lazarillo DNA probe. Hybridization
le species of embryonic mRNA
protein was purified from adult lysates by affinity to
bilized mAb 10E6. Adult lysates were the source of
r the protein purification due to their larger yield (15
f total protein). Attempts to obtain N-terminal
were unsuccessful. An amino acid composition

was performed and we chose Lys-C to produce
of reasonable length. After HPLC separation, four
were sequenced: (1) NLQLDLNK; (2) WYEYAK;
SAASTEISWILLRSRxSSxMTLERVEDELK; (4)
SPSVGNYxILSTDYDxYSIV; where x stands for

ined amino acids. The presence of a serine or a
 two residues after some undetermined amino acids
es 3 and 4 suggested that the latter would be
es bound to oligosaccharides (N-linked).
airs of degenerate primers (sense and antisense) were
from peptide 2, and from the N- and C-terminal

libraries with the DL400 probe and identified three positive
clones. Two of them (Laz-9 and Laz-10) were identical clones
from an amplified nerve cord specific library. They contain an
insert of 2.8 kb and were truncated at the 5′ end. The third clone
(Laz-5) was from an unamplified library and contains an insert
of 3075 bp that corresponds in size to the mRNA detected by
northern hybridization. Both DNA strands of the Laz-5 insert
were sequenced. Sequences corresponding to the four peptides
are contained in this clone. The cDNA and the predicted amino
acid sequence of Laz-5 are shown in Fig. 5A. It contains a 5′
untranslated region (UTR) of 137 bp, an ORF of 642 bp, and
a 3′ UTR of 2296 bp. The sequence of the four peptides are
underlined. The DL400 probe hybridizes to bp 273-653.

The first methionine codon encountered in frame in the Laz-
5 clone is in an appropriate context to be the translation
initiation site (Cavener and Ray, 1991). The length of the ORF
agrees with the analysis of period three compositional con-
straint (TESTCODE GCG program) and the codon usage and
compositional bias in the third position of each possible codon
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or a GPI-linked membrane glycoprotein and is represented by a single embryonic transcript.
ce of Laz-5 cDNA clone. Nucleotide numbers are on the left and amino acid numbers are on
heads point to the potential cleavage sites of the signal peptide and GPI tail. The potential N-

s. Cysteine residues are circled. The peptides obtained by Lys-C digestion are underlined.
The sequence of Lazarillo cDNA codes f
cleotide and predicted amino acid sequen
t (referred to the first methionine). Arrow

glycosylation sites are noted by black dot
NPREFERENCE GCG program with a codon usage
ade from Schistocerca and Locusta coding sequences

in the cited data bases).
 the N- and C-terminal ends of the protein predicted by

RF are hydrophobic (Fig. 5C). These fragments may
nt, respectively, the signal peptide necessary for the
cation of the protein into the lumen of endoplasmic
um and the hydrophobic tail necessary for the attach-
o a GPI group. The predicted cleavage site for Lazarillo
cated in Fig. 5A before Ala22, though it could also be
 Gln23. In both cases the rule ‘-3,-1’ described by von
 (1990) is fulfilled. The 16 C-terminal amino acids of

Laz-5 are hydrophobic, and preceded by a hydrophilic spacer
domain (Glu195 to Val198). Both domains define the potential
GPI-anchoring signal with a cleavage site before or after
Ala192 (Coyne et al., 1993). The predicted mature protein
after cleavage of both signal sequences would have a Mr of
approximately 20×103. The deduced protein has seven
potential N-glycosylation sites (Fig. 5A and C), some of them
indeed glycosylated as deduced from the experiments using
PNGase F (Fig. 4). The four cysteine residues present, noted
in Fig. 5A, can form internal disulfide bonds that would
explain the different electrophoretic mobility produced by
reducing agents (Fig. 4C). Four potential polyadenylation

f the polyadenylation sites and mRNA instability sequences are shown double underlined. (B) Northern hybridization analysis.
)+ mRNA (5 and 10 µg) from embryos at 45% of development was hybridized with DL400 probe after electrophoretic separation and
 to a nylon membrane. A single transcript of approximately 3 kb is detected. Size markers in kb are on the left. (C) Hydropathy plot of
icted protein sequence determined by the Kyte and Doolittle method (1982) using a window of 9 residues. The hydrophobic domains of
al peptide and the GPI-anchoring signal are noted by the filled pattern. Black dots represent glycosylation sites.
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nd four message instability sequences are found in
R (Fig. 5A).

o mRNA colocalizes with the mAb 10E6

al localization of Lazarillo mRNA was studied by per-
in situ hybridization in whole-mount grasshopper

. A digoxigenin-labeled RNA probe was generated
e entire Laz-5 cDNA. A comparison of the RNA
tion pattern with the mAb 10E6 labeling in embryos
e age is shown in Fig. 6. Lazarillo mRNA expression

d in a group of neuronal cell bodies in the head (Fig.
ese same neurons, whose axons contribute to the
commissure of the brain and to the fascicles connect-
the segmental ganglia, are labeled with the mAb (Fig.

several data bases and the searches id
of the family of proteins called lipocal
of small hydrophobic ligands.

Lazarillo shows significant seque
members of this family. It shares wi
residue identity between 19-30%, v
between family members (Flower et a
similarity when taking into account s
amino acid substitutions (see M
Lipocalins share a highly conserved 
the low identity values found in the fam
have analyzed the structure and seque
the lipocalin family. By superimpo
dimensional structure of four lipocalin
structurally conserved regions (SCR1-

ce
o
th
lo
th
se

oracic legs of embryos at 40% of development (arrowheads) are shown as examples of the correlation betw
e protein (D) in the PNS. Bar, 200 µm.
AcP cells of the second subesophageal (S2) segment,
ly labeled by the mAb, also show hybridization with
rillo RNA probe (arrowhead in Fig. 6A and B).
lusters of cells expressing Lazarillo are seen in the
cic leg (Fig. 6C), which corresponds to the develop-
ry organs recognized by the mAb (Fig. 6D). The dis-
of Lazarillo mRNA matches that of the protein in all
s of the CNS and PNS, and in other embryonic struc-
acteristically labeled by mAb 10E6, such as the ENS
ophageal body (not shown). Hybridization is absent
s exposed to the sense RNA probe (not shown), indi-
t the signal we observe with the anti-sense probe is
ecific hybridization with the endogenous mRNA.
eriments suggest that the antigen recognized by mAb
 surface glycoprotein Lazarillo, is encoded by the
presented in the cDNA clone Laz-5.

 belongs to the lipocalin family
ced Lazarillo protein sequence was compared with

sequence motifs highlighted in Fig. 7A. They have proposed
these SCRs as an essential requirement for belonging to the
lipocalin family. Fig. 7A shows a multiple alignment of
Lazarillo with the family members bearing the highest per-
centage identities. The three SCRs are largely conserved in
Lazarillo, and other sequence stretches also show a consider-
able similarity.

The size and diversity of the lipocalin family is growing sig-
nificantly; currently over 60 different proteins have been iden-
tified as family members. They can be further divided into
several non-orthologous groups according to structural features
that might reflect common functional properties, such as ligand
binding specificities or interactions with other proteins (Cowan
et al., 1990; Peitsch and Boguski, 1990). Because of this het-
erogeneous family organization we assessed whether Lazarillo
belongs to a particular clade of lipocalins in order to form a
hypothesis about its functional properties. A multiple sequence
alignment with all lipocalins present in the data bases was
performed. The dendrogram representing the clustering order
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Fig. 7. Lazarillo belongs to
the lipocalin family.
(A) Multiple alignment of
Lazarillo mature protein with
several members of the
lipocalin family. The
alignment was done with a
gap weight of 3 and a length
weight of 0.5 (see Material
and Methods). Black boxes
highlight residue identity
with Lazarillo with a
threshold of 40%. Gray
boxes highlight positions
with structurally conserved
 

amino acid substitutions with
a threshold of 60%. The
structurally conserved
regions defining the lipocalin
family are indicated (SCR1,
2 and 3). Cysteine residues
conserved among Lazarillo
and its closest relatives are
indicated by black triangles.
The residues indicated by
asterisks are in close
proximity to the
hydrophobic ligand in Bbp,
Icya, and Apd.
(B) Phylogram of selected
members of the lipocalin
family derived from protein

sequence alignments conducted as in A. A heuristic
search of the most parsimonious unrooted tree was
carried out with the taxa shown. The total tree length is
1396, with a consistency index of 0.81 and a retention
index of 0.58. Calibration bar equals a branch length of
50 residue changes. Bbp: bilin-binding protein from
Pieris brassicae; Icya: Insecticyanin A from Manduca
sexta; Apd: human and rat Apolipoprotein D; Cra2: A2
subunit of Crustacyanin from Homarus gambarus;
Retb: serum retinol-binding protein from humans and
ed in the alignment was used to choose the proteins
lated to Lazarillo and also examples of more distantly
lipocalins. The program PAUP 3.0s (Swofford, 1991)
ed to find an unrooted phylogenetic reconstruction of
roteins by a heuristic search approach. A single optimal
s found (Fig. 7B) that clearly relates Lazarillo with the
omposed of Apolipoprotein D (Apd), Bilin-binding

 (Bbp) and Insecticyanin A (Icya). This clade is called
phyrin-binding lipocalins because Bbp and Icya bind

biliverdin IXγ (Holden et al., 1987; Huber et al., 1987) and Apd
can bind bilirubin (Peitsch and Boguski, 1990). The internal
phylogenetic organization of the two main branching lineages
was further analyzed using an exhaustive search procedure,
including in each case a member of the opposite group. This
study confirmed the basic branching pattern within each group
and that Lazarillo belongs to the Apd+Bbp+Icya clade. To
evaluate the reliability of the inferred tree, a Bootstrap analysis
was also conducted that revealed that Lazarillo is linked to a

Xenopus laevis; Ret1: serum retinol-binding protein
from Oncorhynchus mykiss; Purp: chicken Purpurin;
24p3: mouse oncogene product; PGDs: human brain
GSH independent prostaglandin D synthetase; Co8g: γ
subunit of C8 component of complement cascade; Hc:
human α-2-microglobulin; Mup5: mouse major urinary
protein 5; Lacb: bovine β-lactoglobulin.
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mmon to Apd+Bbp+Icya plus the retinol-binding
 (Rbp) in 87% of 103 replicates (not shown).
alins share a highly conserved folding pattern: a β-
tructure composed of eight antiparallel β-strands
 two orthogonal sheets with a hydrophobic pocket in
. Two α-helices at the N- and C-terminal regions also
te to the main scaffold of the protein. The tertiary
s of Bbp (Huber et al., 1987) and Icya (Holden et al.,
ve been resolved and that of Apd was modeled from

 and Icya coordinates (Peitsch and Boguski, 1990).
rmation makes it possible to predict some character-

Lazarillo secondary structure based on homology. The
e alignment of Lazarillo, Apd, Bbp and Icya contains
ps or insertions in Lazarillo that fall within loops

 β-strands or α-helices in the other lipocalins. The
ry structure of Lazarillo estimated with the statistical
of Chou and Fasman (1974) closely aligns with that of

GPI linkage to the membrane was performed at 35-45% of
development, we cannot rule out that a temporal regulation of
release exists later in development or in adulthood.

Lazarillo protein sequence shows significant similarity to
members of the lipocalin family, lipid-binding proteins that
share a tertiary structure consisting of a β-barrel scaffold with
a hydrophobic ligand binding pocket. The lipocalins are
divided into several clades reflecting their diversity of
functions and ligand specificities. We performed a phyloge-
netic analysis to assess which particular clade of proteins
includes Lazarillo and found that it is associated with the
porphyrin-binding lipocalins. Further comparisons revealed
the conservation of important features: the main scaffold of β-
strands and α-helices is consistently predicted by homology,
the pattern of cysteines forming disulfide bonds is conserved,
as well as some of the amino acids participating in salt bridges
and involved in ligand interaction. All these data unequivocally

. D. Ganfornina, D. Sánchez and M. J. Bastiani
ed lipocalins whose tertiary structure is known (not
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establish Lazarillo as a new member of the lipocalin family.

The four cysteines participating in the conserved
 alternating disulfide bonds in Bbp, Icya and Apd are
y aligned in Lazarillo (Fig. 7A). Bbp, Icya and Apd
ino acids that participate in four salt bridges, two of
 also present in Lazarillo. Disulfide bonds and salt
ontribute to the position of certain β-strands that
 size of the hydrophobic pocket. Furthermore, the

istics of the binding pocket are conserved among the
teins, including the location of hydrophobic patches
tial hydrogen bonds (Peitsch and Boguski, 1990).
shares the six most conserved of the 18 residues
 be in close proximity to the ligand (noted with
in Fig. 7A), and has conservative substitutions in
er amino acids. We propose that Lazarillo contains
on structural core of the lipocalins, the SCRs, which
ly involved in protein-protein interactions, and those
critical for the ligand binding specificity of the
-binding clade.

SION

emical properties we have analyzed define Lazarillo
ly glycosylated small protein, with internal disulfide

However, Lazarillo has several properties that are unique
among lipocalins. Lazarillo is the most glycosylated of its
clade and possibly of the lipocalin family. Only a few
lipocalins are reported to be glycosylated, and none as exten-
sively as Lazarillo (Urade et al., 1989; McConathy and
Alaupovic, 1976). The presence of abundant glycosylation
might be modulating the interactions of Lazarillo with other
molecules in ways different from the rest of the lipocalins. The
GPI tail links Lazarillo to the extracellular side of the plasma
membrane and prevents it from being an extracellular carrier
of hydrophobic ligands as is commonly the case for lipocalins.
PGDs is the only other example of a lipocalin associated with
membranes, the endoplasmic reticulum and nuclear
membranes, but it is readily dissociated from them in the
absence of detergents (Urade et al., 1985). Finally, the
restricted tissue distribution of Lazarillo does not have a
parallel in the lipocalin family. There are few lipocalins asso-
ciated with the nervous system, and none of them is confined
to a subset of developing neurons. PGDs is first expressed in
developing neurons and then changes to oligodendrocytes in
the adult animal (Urade et al., 1987). Apd is expressed in a
variety of tissues, but accumulates at injured peripheral nerves
where it is proposed to help remove toxic heme metabolites
produced by hemorrhage (Boyles et al., 1989). Finally,
d linked to the extracellular surface of the plasma
e by a GPI tail. The GPI linkage is a common feature
ing number of proteins expressed during development
cipating in a variety of biological processes in both
s and invertebrates (Cross, 1990; Ferguson, 1992).

y significant in this context are the experiments by
 al. (1992) that demonstrate that removal of GPI-
teins from the surface of cells in the developing limb
 grasshopper causes several pathfinding errors by the

ensory axons. Thus, alone or in concert, GPI-linked
re certainly contributing to the signaling processes
ce between growth cones and their environment. A
way to regulate cell-cell or cell-matrix interactions
PI-linked proteins is to be able to release them from
ranes at appropriate times and locations. Although a

leaved form of the GPI-linked molecule Fasciclin I
proposed (Hortsch and Goodman, 1990), we do not
ence for a released form of Lazarillo, at least at levels
 by immunoblot analysis. Since our analysis of the

Purpurin is a Rbp secreted by retinal photoreceptor cells that
is involved in cell adhesion and transport of retinoids (Schubert
et al., 1986; Berman et al., 1987).

Lipocalins are the extracellular elements of a trafficking
system for small hydrophobic molecules that also includes the
fatty acid-binding proteins (FABP), mainly located in the
cytoplasm (Matarese et al., 1990), and nuclear receptors, such
as those for retinoic acid that are involved in transcriptional
regulation (Petkovich et al., 1987). Although different biolog-
ical roles are attributed to these proteins, such as lipid transport
and metabolism, evidence is accumulating that they function
in signaling systems, regulating various developmental
processes (Ross, 1993). The recently described brain lipid-
binding protein (BLBP) is a neural-specific member of the
FABPs whose expression is correlated with neuronal differen-
tiation and is proposed to be required for the establishment of
the radial glial fibers and the migration of cerebellar granule
cells (Feng et al., 1994). In addition, cellular retinol and
retinoic acid-binding proteins, CRBPs and CRABPs respec-
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could be involved in the guidance of spinal commissural
s (Maden and Holder, 1991). Some members of the
 have been reported in invertebrates and proposed to
role in nervous system morphogenesis (Muehleisen et
3). However, the lipocalins described so far in arthro-
e mainly circulating transporters of pigments related to
age, photoprotection and photoreception (Holden et
7; Clarke et al., 1990; Huber et al., 1987).
restricted expression, membrane localization, and the
nal results described in the following paper (Sánchez,
nina and Bastiani, 1995) suggest a role for the lipocalin
lo in the signaling events necessary to direct the trajec-
 growing axons in the grasshopper embryo. Based upon
formation available on the molecular interactions
ed for the lipocalins, we suggest three testable hypothe-
ut how Lazarillo could function in a signaling system
r axon guidance. First, the ligand that binds to the

hobic pocket could act as a guidance cue by inducing

Carpenter for generating mAb 10E6. This work was supported by NIH
grant to M. J. B. (NS25387). D. S. is the recipient of a NIH postdoc-
toral fellowship (1F05TW04686-01), and M. D. G. holds a fellowship
from the Fulbright/MEC of Spain.

Accession numbers for Lazarillo sequence: GenBank U15656;
EMBL Z38071.
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