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Summary

A cDNA encoding L14, the lactose-binding, soluble
lectin of relative molecular mass 14 x 103, has been
isolated in a differential screen designed to identify genes
that are regulated during the differentiation of murine
embryonic stem cells in vitro. The expression patterns of
the gene and of the encoded protein during mouse
embryogenesis are consistent with the lectin playing a
role at several stages of development. Firstly, it is
initially synthesised in the trophectoderm of expanded
blastocysts immediately prior to implantation, sugges-
ting that it may be involved in the attachment of the
embryo to the uterine epithelium. Secondly, in the

postimplantation embryo, the lectin is abundantly
expressed in the myotomes of the somites. This obser-
vation, when taken together with data indicating a role
for the lectin hi myoblast differentiation in culture,
suggests that the protein is important in muscle cell
differentiation. Finally, within the nervous system
expression of this gene is activated early during the
differentiation of a particular subset of neurones.
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Introduction

Lectins are generally defined as non-enzymatic, non-
immunoglobulin proteins, which bind selectively to
specific carbohydrate structures (Goldstein et al.,
1980). Many of the lectins isolated from vertebrate
tissues fall into one of two distinct structural classes
(Drickamer, 1988). The first comprises a large family of
integral membrane and secreted proteins that require
Ca for carbohydrate binding. The second class
consists of smaller, Ca2+-independent lectins character-
ised by two important properties that led to their
original isolation: solubility in aqueous solution and
preferential binding of lactosamine-based structures.
This latter class of molecule has been given several
names: soluble lectins (Barondes, 1984), S-type lectins
(Drickamer, 1988) and S-Lac lectins (Leffler et al.,
1989). The size of this class is not yet established but in
the rat it encompasses at least four members with
relative molecular masses of 14, 17, 18 and 29 x 103

(Leffler and Barondes, 1986; Leffler et al., 1989). The
best characterised of these is the smallest, L14, which is

neither phosphorylated nor glycosylated and appears to
be a dimer in vivo (Sparrow et al., 1987). Like a number
of other proteins that are found outside the cell
(Muesch et al., 1990), L14 lacks a discernible signal
peptide and it has been shown that it is externalized by a
novel mechanism (Cooper and Barondes, 1990).

The expression patterns of carbohydrate-binding
proteins are of particular interest in the context of
development, since potential ligand molecules., i.e.
glycoconjugates, are known to be regulated. The
rapidity and complexity of the changes in carbohydrate
residues suggest that they play important roles during
embryogenesis (reviewed by Muramatsu, 1988; Thorpe
et al., 1988; Fenderson et al., 1990). During fertiliz-
ation, the binding of sperm to the egg depends upon
oligosaccharides carried on the ZP-3 glycoprotein of the
zona pellucida (Wassarman, 1987; Bleil and Wassar-
man, 1988). Similarly, glycoconjugates are implicated in
the process of compaction in which adhesion between
individual blastomeres greatly increases at the morula
stage (Surani, 1979; Atienza-Samols et al., 1980; Rastan
et al., 1985). More specifically, the stage-specific embry-
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onic antigen 1 (SSEA1) has been shown to play a role in
stabilising compaction (Bird and Kimber, 1984; Fender-
son et al., 1984) and it is highly regulated both in space
and time throughout embryogenesis, suggesting that it
may also be important at several other stages (Richa
and Solter, 1986). The carbohydrate moieties of
glycoproteins, glycolipids and proteoglycans, which
together comprise an immense array of structural
conformations, may be directly involved in such cell
surface functions as adhesion and migration or they
may provide signals necessary for morphogenesis. Such
carbohydrate-dependent processes can be mediated
either by interactions among glycoconjugates or by
recognition by carbohydrate-binding proteins such as
lectins. Indeed, several studies on the expression of
various soluble lectins in the developing slime mould
and in Xenopus and chick embryos have suggested that
lectins may be important during the development of
these species (reviewed by Zalik and Milos, 1986).

One possible function for soluble lectins is suggested
by the fact that L14 (Zhou and Cummings, 1990;
Cooper et al., 1991), and other proteins of the same
family (Mecham et al., 1989; Woo et al., 1990), bind
specifically to the oligosaccharides carried on the
extracellular matrix protein laminin. Indeed, it has
recently been shown that in an in vitro culture system
L14 can regulate myoblast detachment from laminin,
thereby promoting the formation of myofibres (Cooper
et al., 1991). These data raise the possibility that one of
the in vivo functions of this lectin is to play a role in cell-
matrix interactions.

While it has generally been assumed that the
principal roles of carbohydrate-protein recognition
events are in cell-cell or cell-substratum interactions,
both glycoconjugates (Hart et al., 1988) and lectins
(Hubert et al., 1989) are also found in the cytoplasmic
and nuclear compartments. For example, L14 is
intracellular in myoblasts and extracellular in myotubes
(Barondes and Haywood-Reid, 1981; Cooper and
Barondes, 1990), while another soluble lectin is found
in ribonucleoprotein complexes (Laing and Wang,
1988). Glycoconjugates and carbohydrate-binding pro-
teins may therefore also participate in processes other
than those taking place at the cell surface. Further-
more, the carbohydrate recognition and binding
properties of lectins may only represent part of their
functional capabilities (Barondes, 1988). This has
already been shown for two soluble lectins, the slime
mould lectin discoidin (Gabius et al., 1985) and the
mammalian elastin receptor (Hinek et al., 1988), both
of which have protein-binding activity. The work of
Wells and Mallucci (1991) suggests that L14 itself may
be bifunctional. These authors identified an extracellu-
lar factor that exerts a cytostatic effect on cultured
mouse fibroblasts as L14 and showed that its effect on
the cell cycle is apparently not mediated via carbo-
hydrate binding. Earlier work had suggested that this
lectin is mitogenic for certain cell types (Lipsick et al.,
1980; Pitts and Yang, 1981), and it has recently been
reported that it can act as a transforming growth factor
(Yamaoka et al., 1991), raising the possibility that it can

have opposite effects on cell proliferation depending on
the cell type used and the experimental conditions, as is
well established to be the case for TGF-/3 (see review by
Moses et al., 1990).

We have been interested in isolating genes that are
regulated during the early stages of mouse develop-
ment, more specifically at the time of implantation. Our
approach exploited the properties of embryonic stem
(ES) cells (Evans and Kaufman, 1981; Martin, 1981)
which can differentiate in vitro following a programme
that mimics events occurring during early mouse
embryogenesis. Using differential cDNA cloning tech-
niques, we have isolated a number of genes that are
regulated during ES cell differentiation (Poirier et al.,
1991) and are therefore likely to be important during
embryogenesis. One of these encodes L14. We have
performed a systematic in situ hybridisation analysis of
the expression of this gene and determined the
distribution of the encoded protein in developing
mouse embryos. Our results indicate that this lectin
may play a role at several stages of embryogenesis, most
notably in the process of implantation, during muscle
development and in the differentiation of particular
classes of neurones.

Materials and methods

Recombinant plasmids
The cDNA clone LCI was isolated from a AgtlO cDNA library
constructed from poly(A)+ cytoplasmic RNA from ES cells
and shown to hybridise to a 0.6kb mRNA which is present in
ES cells but strongly down-regulated upon differentiation to
embryoid bodies (Poirier et al., 1991) LCI was used to
rescreen the ES cell cDNA library and we thus isolated a
longer clone, LCI.13.

LCI. 13 was used to screen a cosmid library of strain 129/Sv
mouse DNA in the vector pcos2EMBL (the kind gift of B.G.
Herrmann) and two overlapping cosmid clones, pcos 1.4 and
pcos 1.2, were isolated Both contain the entire coding
sequence of the gene.

Nucleotide sequence determination
Nucleotide sequences were determined in both orientations
using the dideoxynucleotide termination method of Sanger et
al (1977) as modified for double-stranded templates. The
EcoRI insert fragments of LCI. 13 were sub-cloned into the
plasmid Bluescnpt KS+ and clones with overlapping deletions
were generated using exonuclease III and mung bean
nuclease (Hemkoff, 1984). As none of the cDNAs extended
to the 5' end of the mRNA, we also sequenced an Apal-Xbal
fragment derived from pcos 1.2 which contains the first exon
of the gene (C.-T. J. C. and P. W. J R., unpublished data).

Mouse strains
C57BL/6Pas, SPE/Pas (an inbred strain of the Mus spretus
species) and the interspecific backcross progeny (C57BL/6 x
SPE) Fx x C57BL/6 were raised in Institut Pasteur, Pans.

Probes
The probe used for northern blots and for in situ hybridisation
was a T7 RNA polymerase transcript of a 247 base pair
fragment at the 3' end of the cDNA.



Northern blot analysis
All RNA samples were prepared by precipitation with LiCl
(Auffray and Rougeon, 1979) RNA was electrophoresed in
1.5% (w/v) agarose gels containing 20 mM MOPS, pH 7.0, 5
mM sodium acetate, 1 mM EDTA and 0.7% (w/v) formal-
dehyde (Maniatis et al., 1982) and transferred to Amersham
Hybond-N nylon paper

For antisense RNA probes, hybridisation was carried out in
60% (v/v) formamide, 1 M NaCl, 50 mM Tris-HCl, pH 7.5,
lOx Denhardt's solution, 1% (w/v) SDS, 0.1% (w/v) sodium
pyrophosphate, 100 /ig/ml yeast RNA, 10% (w/v) dextran
sulphate at 65°C. Filters were washed in 0.2x SSC, 0.2%
(w/v) SDS at 70°C for 1 hour

For ohgolabelled cDNA probes (Feinberg and Vogelstein,
1983), hybridisation was performed in 50% (v/v) formamide,
50 mM sodium phosphate, pH6.8, 2x Denhardt's solution,
0.5x SSC and 0.05% (w/v) SDS at 42°C Filters were washed
in 0.2x SSC, 0.2% (w/v) SDS at 65°C for 1 hour

In situ hybridisation
The procedure of Wilkinson and Green (1990) was used
throughout. Sections of morula-stage embryos were prepared
by processing whole oviducts at 2 5 days post coitum (dpc).
Blastocysts at 3 5 dpc and expanded blastocysts at 4.5 dpc
were flushed from the uterus, fixed for 30 minutes in 4% (w/v)
paraformaldehyde/phosphate-buffered saline (PBS), and
introduced into the swollen oviductal ampulla of a host female
on the day after mating (procedure of Copp, 1978). The host
oviduct, containing embryos at 0 5 dpc plus reintroduced
embryos at 3.5 or 4.5 dpc, was then processed and sectioned
as a whole. Spinal cords were dissected from newborn and
adult animals after perfusion with 4% paraformaldehy-
de/PBS. 6 jan paraffin wax sections were hybridised with 35S-
labelled antisense RNA probe. Autoradiographic exposure
times were either 4 or 7 days, except as detailed in the legend
to Fig 3.

Immunohistochemistry
Embryos were fixed in 4% (w/v) paraformaldehyde for either
30 minutes (blastocysts) or 3 hours (10.5 dpc embryos)
Blastocysts were introduced in the swollen ampulla (see
above) and fixed again for a further 30 minutes. Samples were
transferred to a solution of 30% (w/v) sucrose in 0.1 M sodium
phosphate buffer, pH 7 5, and incubated overnight prior to
embedding in Tissue Tek 13 jm\ frozen sections were
prepared

The anti-L14 antibody used in these experiments was an
affinity purified rabbit serum raised against the rat protein
(Cooper and Barondes, 1990) and was the kind gift of D.N.W
Cooper (University of California, San Francisco).

Detection of the lectin in frozen sections was performed
using a 1:250 dilution of the affinity purified serum and
fluorescein-conjugated, goat anti-rabbit antiserum according
to the procedure of Dodd et al. (1988).

Results

Isolation and sequence of LCI cDNA
We have used differential screening of a cDNA library
constructed from poly(A)+ cytoplasmic RNA from ES
cells to isolate clones corresponding to mRNAs which
are expressed in ES cells and down-regulated during in
vitro differentiation. One of these clones, named LCI,
hybridises to a 0.6kb transcript which is abundant in ES
cells but barely detectable in embryoid bodies (Poiner
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1 CGTCTCTCGGGTGGAGTCTT CTGACTGCTGGT6GAGCAGG TCTCAGGAATCTCTTCGCTT 60

6 1 CAGCTTCAATCATGGCCTGT GGTCTGGTCGCCAGCAACCT 6AATCTCAAACCTG66GMT 120
M A C G L V A S N L N L K P G E

1 2 1 GTCTCAAASTTCG6G6AGAG GTGGCCTCGGACGCCAAGAG CTTTGTGCT6AACCTGS£AA 180
C L K V R G E V A S D A K S F V L N L G K

1 8 1 AAGACAGCAACAACCTGTGC CTACACTTCAATCCTCGCTT CAATGCCCATGGAGACGCCA 240
O S N N L C L H F N P R F H A H G D A N

2 4 1 ACACCATTGTGTGTAACACC AAG6AAGATG66ACCTGG66 AACCGAACACCGGGAACCTG 300
T I V C N T K E D G T W G T E H R E P A

3 0 1 CCTTCCCCTTCCAGCCC6GG AGCATCACAGAGGTGTGCAT CACCTTTGACCAGGCTGACC 360
F P F Q P G S I T E V C I T F D Q A D L

3 6 1 TGACCATCAAGCTGCCAGAC GGACAT6AATTCAAGTTCCC CAACCGCCTCAACATGGAGG 420
T I K L P O G H E F K F P N R L N M E A

4 2 1 CCATCAACTACATGGCGGCG GATG6A6ACTTCAAGATTAA GTGCGTGGCCTTTGAGTGAA 480
I N Y M A A D G D F K I K C V A F E

4 8 1 GCCAGCCAGCCTGTAGCCCT CAATAAAGGCAGCTGCCTCT GCTCCCCATATAAAAAAAAA 540

5 4 1 AAAAA 5 4 5

Fig. 1. Nucleotide 1 corresponds to the cap site. The 545
nucleotides include an open reading frame of 384
nucleotides with an ATG codon at position 72 and a stop
codon at position 477. The sequence of this cDNA is
identical to the partial munne sequence of Wilson et al.
(1989) except at position 499 (—C) in the non-coding
region. However, it differs from the sequence of Wells and
Mallucci (1991) as follows: T not C at 304, C not T at 308,
317, C not A at 401, +A at 507 and T not A at 531 The
difference at 304 leads to a change of a phenylalanine
codon to serine but the changes at 308, 316 and 401 only
represent third position conservative changes of the prohne
codon while those at 507 and 531 are in the non-coding
region

et al., 1991). The complete nucleotide sequence of this
mRNA, derived from both cDNA and genomic clones,
is shown in Fig. 1. Computer-assisted searching of the
databases showed that this sequence corresponds to
L14, a soluble lectin that has been previously character-
ised in a number of species: mouse (Wilson et al., 1989;
Cooper and Barondes, 1990; Wells and Mallucci, 1991),
rat (Clerch et al., 1988; Hynes et al., 1990), human
(Hirabayashi et al., 1988; Couraud et al., 1989), cow
(Abbott et al., 1989) and chick (Ohyama et al., 1986;
Hirabayashi et al., 1987). The sequence contains a
single open reading frame of 405 nucleotides, which can
encode a protein of relative molecular mass 14.9 x 103.
This protein sequence does not contain a signal peptide.
The gene encoding this protein has been assigned the
symbol Lectl4.

Mapping of Lectl4 to chromosome 15
High molecular weight DNA samples were prepared
from the spleens of 65 (Mus spretus x C57BL/6)F! x
C57BL/6 backcross animals. DNA was digested with
5au3A, an enzyme that allowed the detection of a
restriction fragment length polymorphism, using the
cDNA as a probe, between the Mus spretus DNA (a 5
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Table 1. Linkage data for Lectl4

Pvt-1
Pva
LectU
D15Pas3
Numbers

B
B
B
B
24

S
S

s
s
33

B
B
B

S
0

tn

S
S
S
B
1

the

B
B

S
S
0

Distribution of haplotypes
(C57BL/6XSPE) FiXC57BL/6

S
S
B
B
1

B
S
S

s
3

s
B
B
B
2

B S
B S
S B
B S
0 0

B
S
B
B
1

progeny

S
B
S
S
0

s
B
B
S
0

B
S
S
B
0

B
S
B
S
0

s
B
S
B
0

A panel of 65 DNA samples prepared from the offspring of a (C57BL/6x/Wns spretus) F!XC57BL/6 backcross have been checked for
their phenotypes with the four DNA probes Pvt-1 (Banerjee et al , 1985), Pva (Zulke et al., 1989), LectU and D15Pas3 (anonymous
DNA segment). When considered altogether these data give a linear arrangement of the genes as follows'

- Pvt-1 - 9.2±3 5 cM - Pva - 3.0±2.1 cM - LectU - 1 5±1.5 cM - D15Pas3 -

kb fragment) and the C57BL/6 DNA (a 4.5 kb
fragment). The 5 kb fragment was thus considered
diagnostic for the Mus spretus contribution and the
DNA from each individual backcross mouse was then
typed as heterozygous when this fragment was detected
or homozygous when it was not. The pattern of the
segregation of the 5 kb fragment among the 65 animals
was then matched to previously collected data to find
evidence for linkage (Gurnet et al., 1988). We found
that the Lectl4 gene maps to chromosome 15, to a locus
3.0±2.1 cM distal of Pva (Zuhlke et al., 1989) (Table
1). So far this site is not associated with any known
mutation.

Northern blot analysis of Lectl4 expression
We initially studied the expression pattern of the Lectl4
gene in both embryos and adult tissues by northern
blotting. Fig. 2 shows that the Lectl4 transcript, of
about 0.6 kb, was barely detectable in RNA from
embryos at 9.5 days post coitum (dpc) but subsequently
increased in abundance until 12.5 dpc. The high level of
transcript detected at this stage was maintained
throughout the rest of embryonic development. The
gene was expressed in adult tissues including thymus,
kidney, heart, muscle, lung and testis, and at lower
levels in intestine, spleen and stomach. Very low
amounts of mRNA were detected in adult brain,
salivary gland and liver.

We performed a detailed in situ hybridisation analysis
in order to study expression during earlier stages of
embryogenesis and to establish the cell-type specificity
of the Lectl4 transcripts detected in whole embryo and
organ RNA. We have chosen to present a detailed
account of three aspects of Lectl4 expression during
embryogenesis, namely its regulation prior to gastru-
lation, during the second half of gestation and in the
developing nervous system.

Expression of Lectl4 before gastrulation
Fig. 3 shows the expression of this gene during the first
seven days of development. No hybridisation signal was
observed over fertilized eggs (0.5 dpc, panels 1,2),
morulae (2.5 dpc, panels 3,4) or early blastocysts (3.5
dpc, panels 5,6). The first detectable Lectl4 transcripts
appeared in the trophectoderm cells of hatched blasto-
cysts at 4.5 dpc; the inner cell mass (ICM) cells of these

1 2 3 4 5 6 7

B
1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 2. RNA blot analysis of Lectl4 expression during
embryogenesis and in adult tissues. (A) Expression during
embryogenesis. 10 ng of total RNA were loaded in each
lane. The filter was hybridized with an ff-tubulin probe as a
control (lower panel). (1) 9.5 dpc, (2) 10 5 dpc, (3) 11 5
dpc, (4) 12.5 dpc, (5) 13.5 dpc, (6) 14.5 dpc, (7) 17.5 dpc.
(B) Expression in adult tissues 10 fig of total RNA were
loaded in each lane.(l) brain, (2) eye, (3) salivary glands,
(4) thymus, (5) liver, (6) kidney, (7) spleen, (8) heart, (9)
skeletal muscle, (10) lung, (11) intestine, (12) stomach,
(13) testis.
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expanded blastocysts remained negative (panels 7,8).
Moreover, immunofluorescence studies show that L14,
the lectin encoded by the LectM gene, accumulates in
the trophectoderm cells of the 4.5 dpc blastocyst
whereas it is not present in the cells of the ICM, nor in
any cells of earlier embryos (Fig. 4, panels 1 to 4).
Hatching of the blastocyst from its zona pellucida
immediately precedes attachment of the trophectoderm
cells to the uterine epithelium at the site of implan-
tation. The cells of this epithelium do not contain
detectable LectM mRNA (data not shown).

At 5.5 dpc, when implantation is complete, LectM
transcripts were found in the ectoplacental cone, the
trophoblastic giant cells and, to a lesser extent in the
extraembryonic ectoderm of the conceptus (Fig. 3,
panels 9,10). The pattern of expression in these
trophectoderm-denved cell types is similar at 6.5 dpc
(Fig. 3, panels 11,12). In contrast, there was no
detectable expression at these stages in any of the ICM-
derived cells which give rise to the embryo proper.
During subsequent development, expression of LectM
persisted in certain extraembryonic tissues of the
conceptus. In particular, we observed expression in the
placenta, the amnion and the mesoderm of the visceral
yolk sac (VYS) at 12.5 dpc, while the VYS endoderm
and the parietal endoderm were both devoid of LectM
transcripts at this time (data not shown).

Expression of LectM during the second half of
gestation
Fig. 5 shows that in a 10.5 dpc embryo high levels of
LectM RNA were specifically found in the myotome of
each somite and in the wall of the dorsal aorta. These
sites were also positive in adjacent sections which were
hybridised with a probe for cardiac a-actin (Sassoon et
al., 1988) in order to identify the myotome cells (not
shown). Low levels of LectM expression were detect-
able in most of the other cells of the embryo at this
stage, except for the brain and neural tube which were
negative. We again observed that the distribution of the
protein parallels that of the mRNA. In 10.5 dpc
embryos only the myotome region of each somite
contained detectable lectin immunoreactivity (Fig. 4,
panels 5 to 7).

The expression pattern of LectM at later stages of
development is illustrated at 14.5 dpc in Fig. 6. Panels 1
and 2 show that most organs contain LectM transcripts
and that these are differentially expressed by the
constituent tissues. In the kidney, gut and lung (also see
panels 3,4), it is clear that expression is high in
mesodermal cell types, but undetectable in endodermal
(epithelial) cells. A more homogeneous signal distri-
bution was observed over the liver and muscle blocks.

The only mesodermal tissue where we did not detect
LectM expression at this stage is cartilage. The specific
down-regulation that occurs when this tissue differen-
tiates from mesenchyme is exemplified in the develop-
ment of the vertebral column. In the 10.5 dpc embryo
the cells of the sclerotomes contain low levels of LectM
transcripts (Fig. 6). When these cells differentiate to
form the cartilaginous vertebrae and the intervertebral

discs, only the latter continue to express this gene (Fig.
6, panels 3,4). In addition, we did not detect LectM
RNA in the chondrifying vertebrae, ribs and appendi-
cular skeleton (data not shown).

LectM transcripts do not accumulate in the epidermis
or in the majority of the cells of the brain and spinal
cord (see below). Thus most cells of ectodermal origin
are devoid of LectM transcripts.

Expression of LectM in the developing nervous
system
Strong hybridisation signal was detected in the ventral
horns of embryonic and adult mouse spinal cord, over
regions that are occupied by motor neurones (Fig. 7).
This restricted pattern of expression is already estab-
lished at 12.5 dpc, when neuronal differentiation has
just begun (panels 3,4). It is maintained throughout
embryogenesis (panels 5,6), in the newborn (panels
7,8) and in the adult animal (panels 9,10). A section
through the brain stem of a 12.5 dpc embryo reveals
that the signal is also restricted to motor neurones in
this area of the central nervous system (panels 1,2).

LectM transcripts were also detected in the sensory
neurones of the dorsal root ganglia (DRG) of embryos
and newborn animals (panels 3 to 8). The density of
grains was very high but not uniform, the strongest
signal being associated with neurones of small and
intermediate diameter.

Discussion

The present study provides the first evidence that
soluble lectins may play a role in mammalian develop-
ment at stages as early as implantation. The possible
importance of soluble lectins during early embryogen-
esis has already been shown in two other species. In
Xenopus embryos a soluble lectin of relative molecular
mass 43 x 103 is first detected in fertilised eggs and later
secreted into the extracellular matrix during gastru-
lation (Roberson and Barondes, 1983; Outenreath et
al., 1988), while in chick embryos two similarly sized
lactose-binding proteins (one of them being L14) are
detected in some migrating cells during gastrulation
(Zalik et al., 1987, 1990; Levi and Teichberg, 1989).
These authors have suggested that interactions between
lectins and associated glycoconjugates may play a role
in the dynamic changes of the extracellular environ-
ment during embryogenesis in these species. Our work
indicates that this may also be true during mouse
development.

Isolation of the LectM gene
We isolated the LectM cDNA by virtue of the fact that
the corresponding mRNA is expressed at high levels in
ES cells and is strongly down-regulated during in vitro
differentiation to embryoid bodies (Poirier et al., 1991).
Our in situ hybridisation analyses show that the gene is
first activated in the trophectoderm of late blastocysts
and that it is not detectably expressed in the ICM cells,
or in any of their immediate derivatives. Although ES
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Fig. 3. In situ hybridisation of 35S-labelled antisense Lectl4
RNA probe to sections of mouse embryos from fertilisation
to gastrulation. Even-numbered panels are dark-field views
of the sections shown in the corresponding odd-numbered
bright-field panels. Panels 1-8 show embryos at various
preimplantation stages. The surrounding tissue in these
panels is oviduct (see Materials and Methods). Panels 9-12
show implanted embryos within their decidua. (1,2) 0.5
dpc; (3,4) 2.5 dpc; (5,6) 3.5 dpc (early blastocyst); (7,8)
4.5 dpc (late, expanded blastocyst); (9,10) 5.5 dpc; (11,12)
6.5 dpc. C, ectoplacental cone; D, deciduum; E, embryonic
ectoderm; I, inner cell mass; M, morula stage embryo; O,
oviduct; T, trophectoderm; X, extraembryonic ectoderm.
Scale bars=50 ,um. Autoradiographic exposure times were
4 days for panels 7-12 and 2 weeks for panels 1-6.

cells have the same developmental potential as the cells
of the ICM once introduced into an embryo (Bradley et
al., 1984), these results, and others that we have
obtained (Poirier et al., 1991), indicate that the
maintenance of ES cells in culture perturbs gene
expression. It is possible that expression of the Lectl4
gene in ES cells is functionally significant in that L14
may play a role in attachment to the substratum in vitro.

Receptor-carbohydrate interactions in implantation
Lectl4 transcripts are not detectable during the first
four days of gestation but the gene is activated by 4.5
dpc in the trophectoderm cells of the hatched blasto-
cyst, the ICM cells remaining negative. We have used
antibodies raised against the rat L14 to show that the

Fig. 4. Immunolocalisation of L14 in mouse embryos. (1,2) 3.5 dpc embryo; (3,4) 4.5 dpc embryo; (5,6,7) 10.5 dpc
embryo. Panels 1,3 and 5 show phase-contrast images, panels 2,4,6 and 7 show immunofluorescence images. Panel 7 is a
section similar to those in panels 5 and 6: the primary antibody was omitted during processing. The surrounding tissue in
panels 1-4 is oviduct (see Materials and Methods). The bright spot in panel 2 is a speck of dirt. D, dermatome, I, inner
cell mass; M, myotome; T, trophoblast. Arrows indicate the limits of adjacent somites.
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N

Fig. 5. In situ hybridisation of 35S-labelled antisense Lectl4 probe to a longitudinal section of a 10.5 dpc embryo under
bright-field (1,3) and dark-field (2,4) illumination. Panels 3 and 4 show detail of the Lectl4 expression in the myotomes. A,
dorsal aorta; D, dermatome; E, epidermis; M, myotome; N, neural tube; S, somites; Y, yolk sac. Scale bar panel 1=0.25
mm; panel 3=50 ^m.
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Fig. 6. In situ hybndisation of 35S-labelled antisense Lectl4 probe to longitudinal sections of a 14.5 dpc embryo under
bright-field (1,3) and dark-field (2,4) illumination. Panels 3 and 4 show detail of the Lectl4 expression pattern in the
developing lung and vertebral column. B, brain, D, intervertebral disc; H, heart; I, intestine; K, kidney; Li, liver; Lu,
lung; R, ribs; SC, spinal cord; V, vertebra. Scale bars, panel 1=1 mm; panel 2=0.25 mm

protein is also present in the trophectoderm cells. This
result is of considerable interest with regard to the new
cell-cell interactions that are established at this stage.

Changes in cell surface and, in particular, in
glycoconjugate composition are known to be associated
with the process of implantation (Kimber, 1990). It has
been proposed that components of the extracellular
matrix participate in this process (Farach et al., 1987;
Carson et al., 1988). However, it is more Likely that
interactions of this sort are involved in secondary steps,
i.e. the invasion of the uterine lining by the trophoblast
cells, while the primary step, i.e. attachment of the
embryo, probably involves more specific ligand-recep-
tor interactions. One possible ligand is lacto-N-fuco-
pentaose 1 (LNF-1) which Lindenberg et al. (1988)
have shown to be able to inhibit the attachment of
blastocysts to cultured uterine endometrial cells when
added exogenously. LNF-1 is found in vivo on the
surface of the uterine epithelium where it becomes
more abundant and restricted to specific areas immedi-
ately prior to implantation (Kimber et al., 1988). The
LNF-1 epitope itself is not present on early embryos but
LNF-1 receptors appear on the surface of the blastocyst
during the fourth day of gestation immediately before
the hatching stage (4.5 dpc) (Lindenberg et al., 1990).
Therefore, one of the key events controlling implan-
tation may be an interaction between LNF-1 carrying
glycoconjugates on the uterine epithelium and a specific
receptor(s) on the surface of the expanded blastocyst.
We note that the appearance of L14, which is known to
bind LNF-1 (Leffler and Barondes, 1986; Sparrow et
al., 1987), in the trophectoderm cells exactly parallels
that of the putative LNF-1 receptor, raising the

possibility that this lectin is the LNF-1 receptor and that
it mediates the attachment of the blastocyst to the
uterine wall. It is, however, the case that the rat and
human L14s also bind the related carbohydrate LNT
(Leffler and Barondes, 1986; Sparrow et al., 1987) and,
on the basis of sequence homology, the mouse protein
would be expected to also bind this molecule. In a
limited set of experiments, Lindenberg et al. (1988) did
not observe any inhibition by LNT of the attachment of
blastocysts to endometrial cells, an apparent discrep-
ancy which requires further investigation.

Nervous system
In the nervous system, Lectl4 transcripts accumulate in
most or all of the motor neurones of the brain stem and
spinal cord and in the sensory neurones of the dorsal
root ganglia. Our results confirm and extend those
previously reported in the developing rat nervous
system (Regan et al., 1986; Hynes et al., 1990), which
show that L14 and lactoseries glycoconjugates are co-
expressed by the same functional set of dorsal root
ganglia sensory neurones, suggesting that this molecule
may be mediating carbohydrate recognition events that
are known to be critical during the development of the
nervous system (Hynes et al., 1989). The L14 could be
involved in specifying pathways of axon migration by
mediating interactions between neurones and carbo-
hydrate structures present either on other cells or in the
extracellular matrix or it could be exerting a direct
signalling action through binding to carbohydrates on
growth cones. It is noteworthy that expression of Lectl4
is detectable in motor neurones at a very early stage of
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Fig. 7. In situ hybridisation of 35S-labelled antisense Lectl4 probe to sections of embryonic and postnatal mouse central
nervous system. Even-numbered panels are dark-field views of the sections shown in the corresponding odd-numbered
bright-field panels Dorsal is towards the top of each panel (1,2) Coronal section of the fourth ventricle of the brain at
12.5 dpc. (3,4) Section through spinal cord of 12 5 dpc embryo. (5-10) Transverse sections through the spinal cord: (5,6)
14.5 dpc embryo, (7,8) lumbar region of newborn, and (9,10) lumbar region of adult mouse. C, central canal, DRG, dorsal
root ganglion; P, lateral choroid plexus. Scale bars=0.25 mm.

differentiation when neural fibres are growing out of
the neural tube (12.5 dpc).

Muscle differentiation
A role for L14 in myogenesis is suggested by the fact
that the onset of Lectl4 transcription and translation in
the postimplantation embryo occurs in the myotomes
that give rise to muscle cells. Myotome cells become
visibly distinct within the somites during the tenth day
of development by which time they are already
expressing some muscle-specific genes (Sassoon et al.,
1988) and contain much higher levels of Lectl4 mRNA
and L14 protein than any other cells in the embryo. The
Lectl4 gene appears to be expressed prior to myoD
(Sassoon et al., 1989), since we detect expression as
early as 9.5 dpc.

We do not know the subcellular localisation of L14 in

the myotome. However, our results are consistent with
a role for it in the new cell-cell and cell-substratum
interactions which are known to occur in the somites at
this time. For example, expression of the cadherins,
which mediate cell adhesion, is regulated at this stage of
embryogenesis (Duband et al., 1987). It is also of
interest that a related soluble lectin is abundant in chick
myotomes (Levi and Teichberg, 1989). Myoblasts
migrate out of the myotome, invading the peripheral
mesenchyme where they terminally differentiate and
fuse to form the axial skeletal muscles. During myoblast
differentiation in vitro, the lectin is initially localised in
the cytoplasm but is then released into the extracellular
space (Cooper and Barondes, 1990) where it can bind to
laminin thus detaching cells from their substratum and
allowing fusion to myofibers (Cooper et al., 1991).
These observations strongly suggest a role for the L14 in
the later stages of myogenesis.
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Expression in other mesodermal cell types
As organogenesis proceeds Lectl4 transcripts become
widely but not uniformly distributed. Ectodermal
derivatives, namely the epidermis and the nervous
system (with the exception discussed above), do not
express detectable levels of Lectl4 mRNA. Similarly,
the endodermal components (epithelium) of the vis-
ceral organs, for example lung, gut, kidney and oviduct,
are also negative. In contrast, most of the remaining
tissues, which are composed of cells derived from
mesoderm, express Lectl4 at significant levels. The
obvious exception to this is the developing cartilage, in
which the mRNA is undetectable.

These results suggest that L14 is important not only
during certain developmental processes, such as im-
plantation and muscle cell differentiation, but also in
the maintenance of mature tissue phenotype. Previous
studies have shown that the lectin is localized outside
the cells in the connective tissues of muscle, intestine
and lung (Barondes and Haywood-Reid, 1981; Beyer
and Barondes, 1982; Cerra et al., 1984). Such obser-
vations have led to the hypothesis that this molecule
might play a role in the organization of the extracellular
matrix that regulates the differentiation of some tissues
of mesodermal origin (Catt and Harrison, 1985). It is
notable that, in the chick embryo, another soluble
lectin appears to have the opposite pattern of ex-
pression in visceral organs, i.e. it is specific for epithelia
(Levi and Teichberg, 1989), suggesting that different
members of the same family could be involved in the
elaboration of different types of extracellular matrix.

Conclusions
We have found that the expression of L14 is tightly
regulated during a number of stages of embryogenesis.
We believe that the striking regulation of its synthesis at
the time of implantation strongly suggests that this
carbohydrate-binding protein may play a key role in the
attachment of the hatched blastocyst to the uterine
epithelium. It is also likely that this lectin is important
in the differentiation of both muscle cells and motor
neurones. In these latter situations, it may be either the
ability of this protein to regulate proliferation or its
carbohydrate-binding activity that is significant. To
address these questions, it will be necessary to generate
highly specific immunological reagents in order to
define the exact subcellular localisation of the L14 at
each stage of development by immuno-electron mi-
croscopy. Antibodies that specifically block either
carbohydrate-binding or proliferation regulation will
enable the relative importance of these two activities
during development to be assessed. Moreover, the role
of this gene in the process of implantation can be
directly addressed by experiments currently in progress,
which seek to inactivate the gene via homologous
recombination in ES cells.
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