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How does the cytoskeleton read the laws of geometry in aligning the

division plane of plant cells?

CLIVE W. LLOYD

Department of Cell Biology, John Innes Institute, John Innes Centre for Plant Science Research, Colney Lane, Norwich NR4 7UH, UK

Summary

Since Robert Hooke observed the froth-like texture of
sectioned plant tissue, there have been numerous
attempts to describe the geometrical properties of cells
and to account for the patterns they form. Some aspects
of biological patterning can be mimicked by compressed
spheres and by liquid foams, implying that compression
or surface tension are physical bases of patterning.
The 14-sided semi-regular tetrakaidecahedron en-
closes a given volume most efficiently and packs to fill
space. However, observations of real plant tissue (and of
soap bubbles) in the first half of this century established
that plant cells only rarely form this mathematically
ideal figure composed predominantly of 6-sided poly-
gons. Instead, they tend to form a topologically
transformed variant having mainly pentagonal faces
although there is variability in the number of sides and
the angles formed. But the one irreducible component of
normal cell and tissue geometry is that only three edges
meet at a point in a plane. In solid space, this gives rise to
tetrahedral junctions and it is from this that certain
limitations on sidedness flow. For three edges to meet at
a point means that there must be an avoidance
mechanism which prevents a new cell plate from
aligning with an existing 3-way junction. Sinnott and
Bloch (1940) saw that the cytoplasmic strands which
precede the cell plate, predicted its alignment and also
avoided 3-way junctions in unwounded tissues. Re-
cently, F-actin and microtubules have been detected in
these pre-mitotic, transvacuolar strands. The question
considered here is why those cytoskeletal elements avoid

aligning with the vertex where a neighbouring cross wall
has already joined the mother wall. An hypothesis is
discussed in which tensile strands - against a back-
ground of cortical re-organization during pre-mitosis -
tend to seek the minimal path between nucleus and
cortex. In this way, it is suggested that unstable strands
are gradually drawn into a transvacuolar baffle (the
phragmosome) within which cell division occurs. Ver-
tices are avoided by the strands because they constitute
unfavoured longer paths. The demonstrable tendency of
tensile strands to contact mother walls perpendicularly
would seem to account for Hofmeister’s and Sachs’ rules
involving right-angled junctions. As others have dis-
cussed, such right-angled junctions give way to co-equal
120° angles between the three walls during subsequent
cell growth. It is this asynchrony of cell division — where
attachment of a cell plate causes the neighbouring wall to
buckle — that forms a vertex to be avoided by subsequent
pre-mitotic strands in that neighbouring cell. In this
way, successive division planes would not co-align. It is
therefore suggested that the exceptional formation of
4-way junctions in wounded tissue results from the fact
that adjacent cells divide simultaneously; the lack of pre-
buckling of a common wall under these circumstances
means that there is no vertex to be avoided by the
minimal path mechanism.

Key words: plant cells, packing patterns, cytoskeleton,
geometry.

The form of an object is a ‘dlagram of forces’,
D’Arcy Thompson (1942)

Honeycombs, compressed spheres (such as lead shot
and pea seed), solid and liquid foams and plant cells in a
tissue show fascinating, attractive and rather similar
packing patterns. Some — like the honeycomb — appear
to be highly regular, composed of identical cells. Others
may be less well ordered, composed of units of different
size and shape. But the ways in which cells (in the wider
sense) can pack is limited and the limitations have been
distilled over the years, into various rules suggesting a

basic conformity. The geometrical constraints on filling
space apply as much to plant cells as to inanimate
objects. However, although patterns may be homolo-
gous, and reflect the same underlying laws, the ways in
which they are achieved may be quite different. Plant
cells are more than just compressible bodies and it is
their ability to regenerate packing patterns by the
process of cell division that is of interest here.

Up until about 1950, there was great interest in
describing cellular geometry by scientists such as,
D’Arcy Thompson, 1942; Lewis, 1923-1943; Matzke,
1939, 1945; Marvin, 1939. Most of this work dealt with
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comparing real cellular polyhedra with mathematically
ideal figures, and with soap bubbles which readily
exemplified principles of surface tension in achieving
stability. In a sense, the living, biological dimension was
missing from such descriptions, since more emphasis
was placed on the shape achieved than on the act of
placing a cell plate across a mother cell. Nineteenth
century continental scientists did attempt to crystallize
their observations on wall placement, into rules. As we
shall see, such rules are not always adhered to, but the
fact that they are at least good approximations suggests
the action of a common underlying cellular mechanism.
Because daughter cells conform to the restrictions of
packing space, the mechanism for dividing the cells
must be sensitive to, and somehow read, those
restrictions. The empirical rules provide no clue to the
cytoplasmic mechanism of establishing the cell plate but
the important and central work of Sinnott and Bloch in
the 1940s (1940, 1941a.b) did show that the alignment
of the plate could be predicted by the orientation of pre-
mitotic cytoplasmic strands. The question is therefore,
how is the behaviour of cytoplasmic strands compatible
with the laws of solid geometry that lead to efficient cell
packing?

A reasonable description can now be proposed for
how actin filaments and microtubules, (particularly
those in transvacuolar cytoplasmic strands), reorganize
and predict the plane of cell division. The aim of this
essay is to set these recent advances against the
geometrical pre-occupations of the first half of this
century.

The efficient packaging of space: polygons into
polyhedra

The sphere represents the most efficient way (surface
area/volume ratio) of enclosing space but a collection
of spheres is not, because of the gaps between. But solid
bodies can be compressed together to eliminate the
interstices, and bubbles aggregate. As they do, their
circular cross-sections are deformed to make polygons.
The solid bodies thus constructed pack together but
what forms do these polyhedra take and which
represents the most efficient packaging of space?

By joining regular polygons at their edges, without
distorting them, five regular convex polyhedra can be
produced. Four triangles combine to form a tetra-
hedron, eight triangles form the octahedron, twenty
triangles can be joined to form the icosahedron.
Respectively, these regular polyhedra have 3-way,
4-way and 5-way corners. Six squares can be joined to
form the cube (with three-way corners) and twelve
regular pentagons can be combined to form a dodeca-
hedron with 3-way corners. Space cannot be enclosed
by combining only 6- or 7- or 8-sided polygons and thus
there are only 5 simple polyhedra. As long as the
polygons, and the angles they form, are kept regular,
there can be no more than 5. These regular solids were
known to the Greeks and are referred to as the Platonic
bodies. Joining regular plane figures of more than one
type — but keeping the corners or vertices the same -
yields semi-regular polyhedra. Excluding prisms, only

14 such Archimedean bodies can be made (Stevens,
1976). Of these, the tetrakaidecahedron is of the
greatest interest. It has eight hexagonal and six square
sides and is perhaps most easily conceived as a cube
with extra facets produced by shaving the corners (a
truncated octahedron).

In discussing the theory of polyhedra, Euler's Law
(see Thompson, 1942; Gibson and Ashby, 1988) has a
central importance. This states that for every polyhed-
ron, the sum of the faces and corners outnumbers the
edges by two. Various corollaries flow from this: no
polyhedron can exist without a certain number of
triangles, squares or pentagons in its composition: and
no polyhedron can be constructed entirely of hexagons.
Furthermore, it follows from Euler's Law that an
irregular 3-connected aggregation of polyhedra has an
average of six sides per face. A 5-sided face can only be
introduced if a 7-sided face is created, for balance.

As D’Arcy Thompson (1942) states, the broad
general principle to be learned is that we cannot group
as we please any number and sorts of polygons into a
polyhedron, but that the number and kind of facets in
the latter is strictly limited to a narrow range of
possibilities.

Soap films illustrate the juncture angles of space-filling
bodies

The apparent similarity between soap bubbles in a foam
and plant tissue has long been noted, and gives rise to
some interesting demonstrations.

By sandwiching three drawing pins (thumb tacks)
between two plates of glass (Fig. 1), soap films are
observed to form between the pins when the whole
apparatus is removed from a soap solution (see Stevens,
1976). The films meet at co-equal angles of 120°
(Fig. 1A). Surface tension drives the films to seek the
minimal path and V-shaped and A-shaped figures do
not form since they would use significantly more
material.

A fourth thumb tack can be added, defining the
vertices of a square (Fig. 1B). When removed from the
soap solution, the film does not enclose three sides of

A B

Fig. 1. Soap films formed by thumb tacks sandwiched
between two glass plates then dipped into a soap solution.
In A, the films do not form a triangle around the boundary
but meet in the 3-way junctions of 120°; this uses less
material. Even when the shape of the triangle is altered by
moving the pins, the 3-way junction remains the same. The
second illustration (B) demonstrates that soap films
naturally form double 3-way junctions within a 4-pin
arrangement. Again, this uses less material than any path
around the edges (see Stevens, 1976).



Fig. 2. The Belgian physicist Plateau (1801-1883)
demonstrated how soap films spanned the contour of
various wire cages, forming a minimal surface of least area.
The above illustrates the arrangement formed within a
tetrahedron. This shows that only 3 films meet at an edge,
and that only 4 fluid edges meet at a point — all at co-equal
angles. As D'Arcy Thompson (1942) noted, this symmetry
applies for any close-packed tetrahedral aggregate of co-
equal spheres: a froth of soap suds or a parenchyma of
cells.

the square, nor does it form an X. The X - if formed -
would use 6 % less material than needed to enclose the
square on 3 sides. Instead, the film unerringly forms a
double, 3-way junction (see Fig. 1B) which is more
economical still, in using 9 % less material. Formation
of 3-way junctions by elements capable of exerting
equal tension is a crucial process in biological pattern
formation, as we shall see later.

This sandwich system of films is essentially
two-dimensional, demonstrating that three films meet a
point at equal angles of 120°. Plateau’s beautiful
demonstration (see D’Arcy Thompson, 1942) shows
what happens when films meet in three dimensions
(Fig. 2). He constructed a tetrahedral wire cage and
dipped it into soap solution. When withdrawn, six films
could be seen to meet in threes, at four edges. This
demonstrates the principles of minimal area that only
three films meet at an edge, and no more than four
edges meet at a point. The four edges meet at co-equal
angles which, in this case, are 109°28’ 16". This is the
tetrahedral angle which runs throughout the simple
homogeneous partitioning of three-dimensional space.

Bubbles, unencumbered by frames, are free to form
foams; these coarsen with time, demonstrating the
constant readjustment of fluid walls as surface tension
constantly strives to compartmentalize maximum space
with minimal surface area. Although we can talk about
limits that define the numbers of edges and the size of
angles, such foams are heterogeneous. Contemplating
the difficulty, in nature, of making a regular foam, Lord
Kelvin (Sir W. Thomson, 1887; 1894) proposed the
tetrakaidecahedron to be the ideal volume-containing
form with space packing properties (Fig. 3A). Of the
space-filling polyhedra with plane sides of a similar
shape, the rhombic dodecahedron possesses the mini-
mal surface area/volume ratio but this is improved
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Fig. 3. (A) Lord Kelvin demonstrated that the semi-
regular polyhedron - the tetrakaidecahedron — most
efficiently divided space with minimal partitional area, ie it
encloses a given volume with minimal surface area and
close-packs to fill space. The figure has three pairs of equal
and opposite quadrilateral faces, and four pairs of equal
and opposite hexagonal faces. This figure — in which all the
facets are plane - is the ortho-tetrakaidecahedron.
However, this is not a minimal figure. (B) shows such a
minimal 14-hedron in which the quadrilaterals have curved
edges and the hexagons have slightly curved surfaces. This
curvature meets the stability requirements demonstrated by
froths of bubbles, such that it forms the tetrahedral angle
of 109° 28’ upon packing. Although these figures represent
mathematical solutions, they do not embody the sidedness
displayed by real plant tissues. (C) shows Williams’ (1968)
B-tetrakaidecahedron produced by topologically
transforming the Kelvin body. This has a predominance of
pentagonal faces.

upon by the semi-regular tetrakaidecahedron. How-
ever, no planar polyhedron that packs to fill space also
satisfies the stability requirement that juncture angles
should be 109°28'. From observing other experiments
of Plateau, showing that congruent soap films gently
curve, Lord Kelvin proposed the minimal tetrakaideca-
hedron (Fig. 3B). By distorting this 14-hedron so that it
has doubly curved hexagonal faces, and quadrilateral
faces with bowed edges, the so-called Kelvin body can
be made to satisfy the requirements of 109°28’ juncture
angles.
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But plant cells are not ideal figures

Of the regular and semi-regular polyhedra, the dodeca-
hedron and the tetrakaidecahedron are the most
efficient in packing space. However, there has been a
long history in attempting to define whether any such
ideal figure is actually the one that nature uses to
compartmentalize cellular space.

Stephen Hales, in 1727, compressed pea seed in a pot
to form pretty regular dodecahedrons. This, of the
regular polyhedra with identical faces, has the least
surface area/volume ratio, but Matzke (1939, 1950)
could not confirm the observations of this frequently
cited classical experiment. Matzke suggested that Hales
might have been influenced by the stacking of cannon
balls, where 12 surround a central one. Compressing
such an aggregation (without slippage) would produce a
rhombic dodecahedron. providing that the regular units
were first stacked in that configuration and not, as
presumably was the case for Hales' peas, poured into
the container. Marvin (1939) and Matzke (1939)
repeated this experiment with lead shot and found that
regular units, when stacked like cannon balls, did
compress to form dodecahedra, but that poured shot
produced irregular 14-sided bodies. Mixing large and
small shot produced bodies with more or less than 14
sides, the average being less than 14. This agreed with
Lewis’ (1923) detailed observations of undifferentiated
plant tissue, showing an average of 14 faces.

In a similar investigative vein, Matzke (1945) re-
examined bubbles in a foam and found an average of
13.7 contacts. Just as he could not find a single cell with
the 6-0-8 formula (numbers of 4-, 5- and 6-sided
polygons respectively) required by the Kelvin body,
neither did he find a single central bubble amongst 600
to have the ideal configuration. Indeed, the commonest
was 1-10-2, revealing a predominance of pentagonal
faces. As Stevens (1976) discusses, polygons meeting at
the tetrahedral juncture angle of 109°28’ 16” must have
5.1 edges, and in order to make a polyhedron, 13.394 of
those polygons must join at 22.789 corners. These are
the geometrical constraints necessary to make continu-
ous three-dimensional networks. Matzke’s direct obser-
vations established that the theoretical ideals are
approached in averages — an average of 5-6 edges per
face, 13-14 faces and 22-23 corners in a froth of
bubbles. Clearly, bubbles cannot be stacked, bubbles
are of different sizes, and unlike pre-arranged cannon
balls, bubble walls slip and adjust as the foam degrades.
Similarly, plant cells are produced asynchronously, cells
are not of equal size. the network expands and such
growth is often polar. For plant cells, therefore, the
history of divisions is an important aspect of shape since
the majority of cell facets are inherited by daughters,
from the mother cell. Plant walls too, are not produced
as a compression of spheres but by the deposition of an
initially non-rigid cell plate.

Searching for minimal tetrakaidecahedra amongst
leaf parenchymal cells, in order to record the curvature
of the walls, Macior and Matzke (1951) had great
difficulty in identifying minimal figures. Again,
although the average number of cell faces tended

towards 14, the authors illustrate great variation in
achieving the average. And again, the occurrence of
S-sided faces was stressed. Williams (1968, 1979)
collected these examples, together with those from
uniform bubbles, mixed bubbles and B-brass grains to
illustrate the point that 5-edged faces occur most
frequently. This detracts from Kelvin's tetrakaideca-
hedron as a paradigm but Williams did show that this
figure could be topologically transformed to another 14-
sided figure — the fS-tetrakaidecahedron — with space
packing properties (Fig. 3C). The ffigure has two
quadrilateral, eight pentagonal and four hexagonal
faces. This has an average of 5.143 sides per face. This
accommodates the tendency towards 5-sidedness ob-
served in the faces of naturally packed polyhedra
although it requires about 4 % more surface than the
Kelvin body to enclose the same volume.

The message for plant material is that there is no one
way of enclosing space; cells may tend to have 14 sides
but they vary in their number of edges, five edges being
preferred to six. There are several reasons why
vegetable polyhedra are variable but the way in which
they divide is likely to be an important aspect of this. In
the next section, the impact that division has on the
patterning of plant cells is examined.

Some feature of cell division is concordant with cell
packing principles

Lewis (1926) studied the anticlinal division of cells in
the epidermal mosaic of cucumber epidermis. Epider-
mal cells are different from those of internal tissue, for
the absence of external neighbours replaces four facets
with a free surface, giving an average of 11 instead of 14
sides. Lewis considered the two-dimensional epidermal
mosaic as being composed, basically, of hexagons.
Although it is clear that the number of cell sides and cell
sizes is variable, Lewis was engaged in explaining how
division tended to restore the hexagonal average. In
epidermis, periclinal divisions are generally suppressed,
inhibiting stratification, and so anticlinal (radial)
divisions are visible — like hedges across a patchwork of
fields — as they divide cells in a mosaic. When a
hexagonal polygon divides (Fig. 4), avoiding forming
4-rayed intersections, it forms two pentagons. Two
adjacent cells are facetted in this process — acquire an
extra face — and become heptagons. This maintains the
average of six sides.

An octagon sometimes replaces two heptagons and as
division proceeds, the active division of cells and the
passive acquisition of facets by neighbours tends to
restore the primary hexagonal form.

This relates to division of polygons within a two-
dimensional mosaic but Lewis (1928) does, parentheti-
cally, extend the case to solid bodies in a tissue.
Division of a I4-hedron adds 14 surfaces to the
assemblage of polyhedra. Each half of the divided 14-
hedron has 11 surfaces, and 6 adjacent polyhedra each
receive one added surface: 22+6—14=14. A related
observation, known as the Aboav/Weaire Law (see
Gibson and Ashby, 1988), and derived from soap
bubble honeycombs, is that cells with more sides than



Fig. 4. From a study of cucumber epidermis (A), Lewis
(1926) concluded that a hexagonal cell was just as likely to
divide in planes a, b or ¢ but not in plane d, which would
result in a 4-way junction. When such a cell divided (B) it
produced two daughters with pentagonal outer faces.
Attachment of the cell plate to two neighbouring cells
divided the attached walls, giving each an extra facet. One
division therefore produced two pentagonal and two
heptagonal cells, maintaining the hexagonal average.

average have neighbours with fewer sides than average.
Gibson and Ashby use Euler’s Law and the Aboav/
Weaire Law in characterizing cellular solids such as
foams, but they also make use of a rule ascribed to
Lewis (1943): that the area of a cell varies linearly with
the number of edges. These latter two rules help
describe the effects of coarsening in foams but
biological cells can mitigate the effects of coarsening by
adding new walls, ie biological cells can regenerate. The
message to be extracted from this is that the passive
acquisition of facets, by cells surrounding a dividing
cell, increases the size of neighbours. And, according to
Lewis (1943), the epidermal cells studied were more
likely to divide perpendicular to the free surface, the
more sides they possessed; the net result of dividing
large cells was to reduce their number of sides towards
the average.

Lewis (1936, 1943) also developed ideas on how
elongating cells in a shaft divide in a manner that retains
particular cell proportions and relationships with
neighbours. He considered a 14-hedral elongate cell as
a hexagonal prism (Fig. 5). The edges on the lateral
faces alternate 1/3,2/3 etc. around the cell thus making
alternating pairs of rectangular hexagons and quadrila-
terals. The important feature of this particular configur-
ation is that it demonstrates a uniform and maximum
avoidance of 4-rayed vertices within the figure itself ie
corners are only made as the meeting of three edges.
Plotting the level at which transverse walls are actually
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Fig. 5. Lewis’ (1936) prismatic tetrakaidecahedron. The 4,
% alternation of lateral cross walls shows maximal
avoidance of 4-way junctions (which would form an
encircling belt) and maintains the original cell proportions.

attached in 100 cells, Lewis found that this 1/3, 2/3
alternation on opposite sides of a cell did exist and it is
claimed that this 1/3, 2/3 succession is the only pattern
in which bisection maintains hexagonally-sectioned
cells in their original proportions. And since division
affects the sidedness of neighbours, some rhythm would
appear to be required in the timing of divisions if the
original proportions are to be maintained during
growth.

As we have seen, such a prismatic tetrakaideca-
hedron of the 6-0-8 formula (a distorted version of the
Kelvin body) does not seem to be favoured by real cells.
Nevertheless, the principle demonstrated by this
illustration seems to hold (and was later taken up by
Sinnott and Bloch, 1941a), namely, that formation of
14-hedra and their maintenance during subsequent
divisions, requires the maximum avoidance of 4-rayed
intersections. The latter, if produced, would lead to a
checkerboard of cells in ranks and files, instead of the
bonded brick appearance of cells packed (in section)
with 3-way junctions.

Framing the rules for division plane alignment

Three laws or rules have been drawn from direct
observation of the way that cell plates meet existing
walls. The first belongs to Hofmeister (1863) who stated
that the partition wall always stands perpendicular to
what was previously the principal direction of cell
growth, ie generally perpendicular to the long axis of
the cell. Sachs (1878) proposed that the cell tends to
divide equally, and each new plane of division tends to
be perpendicular to the previous plane. Errera (1888)
further proposed that the cell plate is the minimal area
for halving the cell’s volume.

In a series of papers, Korn re-examined the utility of
these rules — a valuable exercise which placed the
mechanics of cell plate alignment in centre stage rather
than seeing cell shape as the expression of packing
forces or mathematical inevitabilities. In 1974, Korn
modelled cell growth by cutting three-dimensional
blocks according to two rules only: Hofmeister’s rule
that cell division is perpendicular to the long axis, and a
rule ascribed to Sinnott and Bloch (1941a), that cells
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divide to form only 3-rayed vertices even if it requires
unequal division. Using these rules, blocks could be cut
repeatedly to yield cells whose sides closely correspond
to those observed in real tissue. Since the application of
these two rules was sufficient to yield data comparable
to those derived from real tissues, Korn concluded that
proposing further shaping forces was unnecessary.
Although he dismissed ‘mutual pressure’ as a shaping
force in plant tissue, Korn did muse upon why the
geometry of cells formed by progressive halving, and
those of soap bubbles contoured by mutual pressure
forces and slippage of films, should both average 14
sides.

Perpendicular attachment of cell plates and the
generation of 120° angles

A common strand running through the laws of
Hofmeister, Sachs and Errera is the perpendicularity of
the cell plate to existing walls. How does this give rise to
the 120° edge angles approximated when three mature
walls meet? D’ Arcy Thompson (1942) explained this on
the basis of relative tensions (Fig. 6). A new partition
wall meets an old wall at 90° because its tension is small
compared to what theirs has become. It is not the
meeting of three co-equal partners that occurs when
bubble walls meet. However, with subsequent growth,
the tension of the walls becomes equal, realigning the
juncture to co-equal angles of 120°.

Even where expansion is asymmetric, such that the
cells markedly elongate to form rectangular hexagons,
D’Arcy Thompson illustrates local curvature around
the triple junction in an attempt to meet — if only
microscopically — the 120° angles. The 120° and 90°
angles are found in a wide variety of materials. D’ Arcy
Thompson (1942) notes that fine veins on a dragonfly’s
wing meet in threes at 120°, whereas such fine veins
meet the stronger ribs at 90°. Similarly, wax walls in a
honeycomb meet each other at 120°, but meet the
wooden walls of the hive at 90°. Soap films meet in

A B

Fig. 6. The 120° angles of Fig. | depend upon the meeting
of 3 films of equal tension. D'Arcy Thompson (1942)
observed (A) that the new partition walls generally meet
mother walls perpendicularly because the tension in the
former is smaller. However, as the new wall strengthens
(B) it is able to exert equal tension and the network adjust
to form co-equal angles of 120°,

threes at 120°, but contact the containing vessel at 90°.
These angles are also the ones in which materials tend
to crack. Elastic materials such as rock and mud form
cracking patterns based on sudden production of 3-way
joints (Stevens, 1976). By contrast, inelastic material,
such as the glaze on a piece of pottery, cracks to relieve
the stress first in one direction and then at right angles
to relieve the perpendicular stress. This latter, essen-
tially orthogonal pattern, is produced by sequential
formation of new cracks perpendicular to older ones.
This returns us to D’Arcy Thompson's conclusion for
biological materials, that Sachs’ rule is limited to cases
where one wall grows stiff or solid before another
impinges upon it. The difference in strength between
the mother wall and the cell plate is suggested to yield
perpendicular junctions, which, when the new plate
gains strength (or can exert equal tension), allows the
three facets to re-arrange, forming co-equal angles of
120°.

Korn (1980) offers a variant of this explanation
(Fig. 7). He finds that the cell plate does not expand for
one generation. Certairly, the new cell plate is callosic
such that its initial lack of expansion might be attributed
to its slow conversion to a regular cellulosic wall. A cell
becomes marked by the external attachment of a cell
plate deposited across a dividing neighbour. As the cell
expands, its wall in contact with the cell plate becomes
facetted, that is, the non-expanding plate causes the
older wall to hinge at that junction. Perpendicular
junctions thereby change, and planar surfaces become
curved as the cell plate acts as a brake on its faster-
expanding neighbour.

According to Korn (1980) therefore, this change in
juncture angles occurs because of differential expansion
while the plate is immature, not when the plate
becomes strong enough to exert equal tension.

Whatever the reason, lack of expansion or lack of
toughness, the curvature caused by the recession of the
cell plate away from the centre of the expanding
neighbour provides one explanation for the curvature
of leaf parenchymal cells illustrated by Macior and
Matzke (1951), and required of minimal, as opposed to
orthic, polyhedra.

A | B

Fig. 7. Korn (1980) measured new cell walls and concluded
that they did not expand for one generation. Meanwhile,
other cell walls continued to expand (A-B), causing them
to curve away from the non-expanding attached wall. This
‘buckling’ depends upon asynchrony of division between
neighbours. It is suggested to generate the curvature
required for minimal space-packing polyhedra.



Interim summary

Although the minimal 14-hedron represents the ideal
solution for cellular packing, plant cells evidently fall
short of the ideal. Ideal figures can be produced by
compressing regular stacked spheres but lack of
regularity and asynchronous division frustrate a math-
ematical best fit.

Cell plates tend to attach to mother walls perpendicu-
larly, but this subsequently changes, if only locally, to
form co-equal angles of 120°.

A key feature of actual cell packing is the formation
of 3-way junctions. Avoidance of attaching a cell plate
to an existing vertex, where three facets already meet, is
therefore crucial in generating and maintaining cellular
geometry.

Avoidance of 4-way junctions

Minimally-packed figures have curved edges that meet
the angular stability conditions in liquid films. Observ-
ing curved edges and facets in plant tissue, Macior and
Matzke (1951) mooted that cell walls must be laid
down in a liquid or semi-liquid state. The argument
against a liquid-film-like explanation for division plane
alignment is that the structure that precedes and
predicts the cell plate is not a continuous structure and
should not therefore be confused with analogues such
as bubble walls (although, as we shall see, similar
principles do apply). Two structures are known to
foretell the position of the cell plate: the phragmosome
and the preprophase band. Only a brief description of
these structures can be given here; their history and
cytoskeletal composition are fully referenced elsewhere
(Lloyd, 1991).

The transvacuolar phragmosome predicts the division
plane

Sinnott and Bloch (1940) described the phragmosome
as a pre-mitotic fusion of transvacuolar strands that
supported the central nucleus across the vacuole and
predicted the eventual division plane. Importantly, they
emphasized that cell plate alignment could be predicted
prior to mitosis. Furthermore, they noted that the
phragmosome avoided aligning with transverse walls in
adjacent cell files. These authors made use of wounded
tissue since nucleus-anchoring strands could be seen
clearly in large vacuolated cells where the nucleus, in
preparation for mitosis, was induced to migrate into the
centre of the cell. In wounded tissue, however, groups
of cells are induced to divide synchronously in contrast
to the asynchronous mitosis in normal tissue. A
corollary of the synchronous divisions is that cell plates
in this case line up from cell to cell, parallel to the cut
made in the tissue. In normal tissue this is avoided in
favour of staggered 3-way junctions. Sinnott and Bloch
(1941a) offered the tentative explanation that if the
phragmosome tended to carry on, at its point of
attachment to the wall, an active exchange of nutrients
between its own cell and the next, then the junction
with the adjacent transverse wall, would form a ‘blind
spot’ to be avoided. Korn (1980) later proposed that
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diffusion of some substance, ie from the vertex,
inhibited placement of the cell plate there.

The preprophase band contains actin and MTs that
radiate from the central nucleus

The preprophase band (PPB) is a cortical ring of MTs
that anticipates where the cell plate will fuse with the
maternal wall (Pickett-Heaps and Northcote, 1966). It
does this for meristematic cells but, importantly, also
predicts the division plane in vacuolated cells that are
induced, by wounding, to divide outside the normal
developmental programme. A puzzling feature of the
PPB is that it disappears well before the cytokinetic
apparatus deposits the cell plate along the predeter-
mined division plane. However, recent studies using
rhodamine—phallotoxins to label actin filaments in
dividing suspension cells have indicated that these
filaments remain in the division plane throughout; they
anchor the central nucleus and guide the outgrowing
phragmoplast to the cortical site once marked by the
PPB (Traas er al. 1987; Kakimoto and Shibaoka, 1987;
Lloyd and Traas, 1988). One model proposed from
observations on carrot suspension cells (Lloyd, 1989) is
that the actin filaments, radiating from the nucleus by
means of transvacuolar strands associate with MTs at
the cortex. As the cortical MTs bunch up during PPB
formation, the radial strands re-align so that they
occupy a plane defined at its perimeter by a PPB of MTs
and actin filaments. The cortical cytoskeleton depolym-
erizes by metaphase, but the radial F-actin component
of the transvacuolar phragmosome remains to mark the
division plane until cytokinesis. This model is now
revised to accommodate the more recent observations
that MTs also radiate from the pre-mitotic nucleus
(Flanders et al. 1990; Katsuta ef al. 1990). This indicates
that PPBs may be constructed, at least in part, from
nascent MTs. However, these radiating MTs, within the
transvacuolar strands, share the same fate as the
cortical MTs of the PPB - both classes disappear by
metaphase, leaving the radial actin strands to memorize
the division plane.

As discussed, the characteristic texture of
unwounded plant tissue is heavily dependent upon the
avoidance of forming intercrossing septa, and now that
actin filaments and microtubules radiating from the
nucleus are established as being part of the predictive
system, the question reduces to how these cytoskeletal
elements avoid lining up with existing 3-way junctions.
In Datura stramonium stem epidermal cells, the pre-
mitotic cytoskeletal strands, which gradually re-align to
form the phragmosome, certainly do avoid contacting
vertices. The pattern of strand alignment in different
cells provides additional clues. Stem epidermal cells
form two kinds of pattern, containing cells of different
shape. In one, elongated cells occur in files with
transverse cross walls forming a pattern like a path of
bonded bricks. In the other, isodiametric cells form an
irregular patchwork with cross walls at various angles to
the stem axis (Flanders et al. 1989). Both display
avoidance of 4-way junctions but in one, directional cell
expansion is accompanied by transverse partitions,
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Fig. 8. Summarizing the observations of Flanders er al.
(1990). (A) During pre-mitosis. the nucleus adopts a
central position in elongated, vacuolated stem epidermal
cells of Datura stramonuun. The nucleus is suspended by
strands containing MTs and actin filaments. As the cortical
cytoskeleton re-organizes to form the preprophase band
(B), the strands radiating from the nucleus re-align. Those
to the end walls remain as polar strands, whilst those
within the confines of the PPB establish the transvacuolar
phragmosome. Phragmosomal strands avoid contacting
3-way junctions. In epidermai cells of hexagonal section
(C), the strands align with the mud-edge. These strands
also avoid vertices but. being equi-axed, constitute more
potential division planes than in elongated cells (compare
with Fig. 4).

whilst in the other cells expand isotropically with no
apparent preferred plane of division.

In the case of the elongated cells, the MT-containing
strands radiate in all directions from the central pre-
mitotic nucleus. Interphase MTs wind transversely
around such cells (Flanders er al. 1989) and during this
pre-mitotic stage, form initially broad transverse PPBs.
But as the PPB bunches up to form a tight transverse
ring (Fig. 8), so the radial strands that contacted the
cortex within the confines of the initially broad PPB also
re-align. Eventually, most of the radial strands come to
lie within the plane outlined by the PPB, leaving only a
few polar strands to run perpendicularly away to end
walls or distant locations on side walls (Fig. 8B).

Such elongated cells occasionally form double PPBs
that straddle the plane that would - if selected — bring
the new cell plate in alignment with cross walls between
cells in neighbouring files. This is not easy to
comprehend in terms of PPB placement per se, since
cortical interphase MTs previously lined these facetted
cell edges without showing signs of avoidance. But
focusing upon the underlying radial, MT-containing
strands reveals that they avoid contacting the existing
vertices where neighbouring walls attach. If band
placement depends upon the alignment of underlying
strands (particularly if new MTs pass out from the
nuclear surface, along the strands, to contribute to the

PPB), then, again. an understanding of division plane
alignment may be more readily gained from under-
standing strand behaviour.

The isodiametric cells are intriguing because
examples are readily found in which strands radiate
from the central nucleus to the mid-edge of subtending
walls (Fig. 8C). This appears to be a stable configur-
ation, for strands remain in this star-like configuration
instead of forming a transverse phragmosome with
perhaps only two polar strands, as can occur in
elongated cells. The PPBs in such cells are weak, not
dense and tight; they may even be angled on the outer
epidermal wall, following non-diametrical radii. This
irregularity cannot be attributed to the isodiametric
nature of the cells, since non-elongate orthogonal cells
form tight PPBs with the majority of the transvacuolar
strands in a corresponding phragmosome. It seems
instead to be due to an inability of planar PPBs to form
across opposite cell edges with non-parallel sides; either
because the underlying radial strands do not massively
re-organize into a single plane and/or because of the
geometrical difficulty of constructing a band around
polyhedra without a defined long axis.

Lewis (1926) figured the possible division planes of a
cell which - like isodiametric D. stramonium epidermal
cells — tended to form regular hexagons in section
(Fig. 4A). He suggested that whereas planes a,b.c were
equally likely, plane d was unlikely because: (1) it
would give rise to unstable tetrahedral angles at either
end; (2) it would contravene Errera’s rule of least area:
or (3) it would place the poles of the mitotic spindle in a
short axis of the cell.

Modelling this situation with springs or bubbles in
flexible hexagonal frames produces another answer
(Flanders ef al. 1990).

Soap films model the avoidance of 4-way junctions
exhibited by transvacuolar strands

In Fig. 9, glycerol-stabilized soap bubbles are held in a
frame arranged as a rectangular hexagon (A). When
the central pin-joints down the long edges are pulled
slightly outwards (B) to form vertices, bubble walls
slide away from the vertices. When the frame is
distorted further (C) into a regular hexagon, bubble
walls take up the maximal avoidance configuration in
which they attach to each mid-edge. Although bubble
walls meet in the centre of the frame, in threes, at co-
equal angles of 120°, a bubble wall tends to meet the
stiffer edge of the frame, perpendicularly (as was
discussed earlier for the walls of a honeycomb). The
other feature of minimal area systems demonstrated
here is that elements under tension adopt short paths to
the perimeter, not the longer paths required to meet a
vertex. In Fig. 9C, for example, it can readily be seen
that the bubble walls to the mid-edge constitute radii of
an in-circle (of which the edges are tangents) whereas a
larger radius would be required to reach the vertices
which lie on the circum-circle. Where cells divide
asynchronously, the attachment of a cell plate to a
neighbouring wall causes that wall to buckle or to form
a facet as the wall (but not the cell plate) subsequently
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Fig. 9. Modelling the behaviour of cytoplasmic strands with bubble walls. Glycerol-stabilized bubbles are held in a flexible,
prismatic hexagonal frame. In A, the frame forms a rectangular hexagon. In B, the long side walls are pulled slightly
outwards to form vertices. The bubble walls now avoid the pin-joints at the vertices, just as they avoid making contact with
the outer corners of the frame. As the frame is pulled into an isodiametric hexagon, bubble walls show maximum
avoidance of vertices by aligning perpendicularly with the mid-edges of the frame. A similar demonstration was shown
(Flanders et al. 1990) using springs in a frame. The minimal path avoidance hypothesis is based on the fact that tensile
elements, which are free to move, will tend to avoid the long path to a vertex and to contact side walls perpendicularly. In
asynchronously dividing tissue, the pre-buckling of a cell by a neighbouring cross wall (see Figs 6 and 7) forms a vertex to
be avoided when that buckled cell later divides. Thus successive cross walls would not touch. However, this does occur in
wounded tissue where cross walls are deposited simultaneously and should also occur in un-wounded tissue where lack of

expansion has failed to generate the necessary buckling. (Reproduced from Flanders et al. 1990, by permission of the

Journal of Cell Biology).

expands (Thompson, 1942; Korn, 1980). This feature of
asynchronous division to form vertices, together with
the tendency for elements under tension (which are free
to move) to seek a minimal path, provides a mechanism
for the avoidance of forming 4-way junctions. Such a
mechanism, which tends to form tetrahedral angles in
3-D, is sufficient to account for the quasi-14-hedral
geometry that follows from such an arrangement.
Although strands that connect the nucleus to the cortex
are not continuous like bubble walls, the similarity
between plant tissues and foams is not fortuitous, for
both depend upon minimal path mechanisms. But what
evidence is there that pre-mitotic strands are under
tension? They are certainly free to move and this has
been observed by time lapse microscopy by Goodbody
and Lloyd (1990) in wound-stimulated Tradescantia
epidermal cells. Hahne and Hoffman (1984) used laser
microsurgery to demonstrate that transvacuolar
strands, holding the central nucleus in Hibiscus
protoplasts, are under tension and cause in-pullings on
the protoplast surface. We have recently confirmed (K.
C. Goodbody, C. J. Venverloo and C. W. Lloyd,
unpublished observations) that the pre-mitotic radial
strands in epidermal cells stimulated to divide by
explantation are also under tension: laser ablation of a
strand between nucleus and cortex causes the nucleus to
recoil towards the opposite cortex and the cut ends of
the strand to retract.

To summarize, the reorganization of the cortex at

preprophase allows tensile strands, which radiate from
the nucleus, to adopt minimal paths; such paths are
generally perpendicular to the cortex. In elongated cells
the majority of strands will seek the transverse axis, but
will avoid a vertex since this is not a minimal path. In
isodiametric cells, strands adopt a favourable configur-
ation on each cell face without the massive long-edge
re-distribution observed in elongated cells. This offers
alternative axes for division plane alignment as testified
by the irregular patchwork arrangement of such cells.

Wounding produces 4-way junctions

Sinnott and Bloch (1941b) induced large, vacuolated
cells to divide by wounding the tissue. They observed
that the new phragmosomes formed parallel to the
course of the wound and often lined up, from cell to
cell, without staggering the joints. A major difference
between this response (which produces 4-way junc-
tions) and normally occurring divisions (producing
3-way junctions) is that the former divisions are
synchronous whereas the latter are not. Korn's (1980)
concept of cell buckling or facetation depends upon
asynchrony: a new cell plate causes the neighbouring
attached walls to buckle before the neighbouring cells
themselves divide. According to the minimal path
explanation (Flanders et al. 1990) such prior facettation
produces a vertex to be avoided subsequently by pre-
mitotic strands in neighbouring cells. The synchronicity
of wound-induced divisions allows no such pre-buckling



64 C. W. Lloyd

of walls and division planes are free to align across files
of un-facetted walls. Why a particular line, parallel to
the wound, is selected is a different and much larger
question. Goodbody and Lloyd (1990) recently found
that prior to division, in leaf epidermal cells surround-
ing a slit wound, actin cables lined up across groups of
the cells. Not only were the cables in the same plane but
they aligned, point to point, upon the separating wall.
This does suggest the existence of preferred sites for
actin filament attachment, shared either side of a
common wall. If this proves to be the case, such
common junctions would be absent from the site where
a cell plate attaches to a side wall, providing another
potential explanation for the avoidance by actin strands
of 3-way junctions. Alignment of strands parallel to the
wound, and the encircling of a punctured leaf epidermal
cell by new cell plates (Goodbody and Lloyd, 1990)
does imply strain alignment. However, the drastic
nature of wounding could equally involve chemical,
ionic and electrical gradients. In normally growing
tissue, though, such stimuli might be under subtler
control. The sensitivity of individual cell division to cell
geometry, under un-wounded conditions. does suggest
that factors which influence field axiality (eg plant
growth regulators such as gibberellic acid) will have an
in-built effect on division planes.

Conclusion

Plant cells grow in various patterns that only approxi-
mate mathematically ideal solutions for packing space.
The common feature that unites them, however, with
other (minimal) space packing bodies is that only three
edges meet at a point on a plane. It is this avoidance of
4-way junctions that imposes conditions of sidedness
(although other features that control directional expan-
sion affect the final shape of the figure). Strands that
radiate from the central, pre-mitotic nucleus contain
actin filaments and microtubules. Against a background
of a re-organizing cortical cytoskeleton during pre-
mitosis, these radial strands adopt minimal path
configurations that can be modelled by bubble walls or
springs held in hexagonal frames. Elements under
tension move away from the vertex where a neighbour-
ing cross plate previously attached and caused the wall
to buckle at that joint. In cells, these elements gradually
accumulate into the phragmosome (the device that
predicts and constitutes the division plane) and the
avoidance of vertices by elements under tension is
sufficient to account for the staggering of cross walls
between successively dividing cells.

Postscript on isodiametric versus elongated cells

Korn and Spalding (1973) state that although the rules
of Hofmeister and Errera do produce appropriate
arrangements of cells in tissues, they cannot be held as
the initial conditions of spatial order within the cell. In
addition, there must be some mechanism by which a cell
measures itself into halves, recognizes the long axis and
orientates the cell plate by that axis. The two classes of
D. stramonium epidermal cells illustrate the point:
elongated cells demonstrably divide with a heavy bias

towards transverse division whereas isodiametric cells
divide in other planes. What is it that (generally)
entrains elongated cells to transverse division? Again,
Korn (1974) offers a different description of the
phenomenon. Cells with some perpendicular adjacent
walls are found in tissues expanding in one direction,
whereas in cells enlarging in three directions all
adjacent walls form angles greater than 90°. This has
implications for MT ordering during interphase. In
tracing the path of cortical MTs around elongated
epidermal cells, using computer-aided microscopy, we
(Flanders er al. 1989) found that parallel sets of
transverse MTs could be traced around the cell until
they circumnavigate the transverse axis. Cortical MTs
can wrap around the cortex of free-growing elongated
cells (such as cotton fibres, hairs and suspension cells) in
helices of variable pitch. But this smooth continuous
pattern depends upon parallelism between neighbour-
ing MTs and a cellular geometry that allows aggregated
sets of MTs to wrap around the cell. This transverse
encircling (or en-spiralling) of a cell by MTs is believed
to be the basis for cell elongation, since the co-aligned
cellulose microfibrils produce a restraining jacket which
encourages cell expansion at 90°. Increased interaction
between adjacent MTs has been suggested to form a
self-cinching device that maintains transverseness of the
cortical array (Lloyd, 1984). Even in elongated cells
that are facetted by neighbours, MTs can still wind
continuously around the cell edges. But in isodiametric
epidermal cells, such smooth patterns are not always
seen. It would appear that the lack of parallelism
between opposite cell faces (the non-orthogonal angles
between adjacent faces) causes different sets of parallel
MTs to criss-cross upon some surfaces. Criss-crossing,
or some such discontinuity, is unavoidable in placing
sets of parallel lines upon a continuous surface. In
elongated cells with transversely wound MTs, the
discontinuities can be pushed to the end walls, but such
neat encircling of the cell is considerably more difficult
in isotropically expanding cells with non-orthogonal
edges. (Consider the ease of wrapping a ribbon around
the sides of a tetrakaidecahedron in the form of a prism
(Fig. 5) versus the difficulty of the Kelvin body
(Fig. 3)). Whether PPBs are made by a bunching-up of
interphase MTs or as a new structure, the ability to
concentrate cortical MTs into a ring, and to bring radial
phragmosomal strands into the plane so defined, is
more easily achieved in cells that had been elongating in
one direction. Unless other factors override, there can
be several potential division planes in isodiametric cells.
The switch from serial transverse divisions to other
division planes might therefore be expected to arise
from an enhanced rate of division (which would tend to
produce equi-axial cells), or from a failure to elongate.

I thank my colleagues in the Department of Cell Biology,
who collaborated with me 1n these studies: David Flanders,
Kim Goodbody, David Rawlins and Peter Shaw. I am grateful
to Gay Adams for typing and Andrew Davis for photography.
The work was supported by The Royal Society and by the
Agricultural and Food Research Council by way of a grant-in-
aid to the John Innes Institute.



References

ERRERA, L. (1888). Uber Zellformen and Siefenblasen. Boranisches
Centralblant, 34, 395-399.

FLANDERS, D. J., RawLins, D. J., SHAw, P. J. anD LLovD, C. W.
(1989). Computer-aided 3-D reconstruction of interphase
microtubules in epidermal cells of Datura stramonium reveals
principles of array assembly. Developmenr 106, 531-541.

FLANDERS, D. J., RawLins, D. J., SHaw, P. J. aND LLoYD, C. W.
(1990). Nucleus-associated microtubules help determine the
division plane of plant epidermal cells: Avoidance of four-way
junctions and the role of cell geometry. J. Cell Biol. 110,
111-1122.

GiBson, L. J. aND AsHsy, M. R. (1988). Cellular Solids. Structure
and properiies. Pergamon Press: Oxford.

Goopsony, K. C. aNp Lroyp, C. W. (1990). Actin filaments line-
up across Tradescantia epidermal cells, anticipating wound-
induced division planes. Protoplasma (in press).

HaLes, S. (1727). Vegetable Staticks. London. Exp. 32, 94-96.

HaHNE, G. aND HoFFMAN, F. (1984). The effect of laser
microsurgery on cytoplasmic strands and cytoplasmic streaming
in isolated plant protoplasts. Eur J. Cell Biol. 33, 175-179.

HoFMEISTER, W. (1863). Zusatze und Berichtigungen zu den 1851
veroffentlichen Untersuchungengen der Entwicklung hoherer
Kryptogamen. Jahrbucher fur Wissenschaft und Botanik. 3,
259-293.

KakmmoTo, [. AND SHIBAOKA, H. (1987). Actin filaments and
microtubules in the preprophase band and phragmoplast of
tobacco cells. Protoplasma 140, 151-156.

KATsuUTA, J., HAaSHIGUCHI, Y. AND SHIBAOKA, H. (1990). The role
of the cytoskeleton in positioning of the nucleus in pre-mitotic
tobacco BY-2 cells. J. Cell Sci. 95, 413-422.

Korn, R. W. (1974). The three-dimensional shape of plant cells
and its relationship to pattern of tissue growth. New Phytol. 73,
927-935.

Korn, R. W. (1980). The changing shape of plant cells:
transformations during celi proliferation. Ann. Bor. 46,
649-666.

KorN, R. W. anND SpaLDING, R. M. (1973). The geometry of plant
epidermal cells. New Phytol. 72, 1357-1365.

Lewis, F. T. (1923). The typical shape of polyhedral cells in
vegetable parenchyma and the restoration of that shape
following division. Proc. Am. Acad. Arts Sci. 58, 537-552.

Lews, F. T. (1926). The effect of cell division on the shape and
size of hexagonal cells. Anat. Rec. 33, 331-355.

Lewis, F. T. (1928). The correlation between cell division and the
shapes and sizes of prismatic cells in the epidermis of Cucumus.
Anat. Rec. 38, 341-376.

Lewis, F. T. (1936). A volumetric study of growth and cell
division in two types of epithelium - the longitudinally prismatic
epidermal cells of Tradescaniia and the radially prismatic
epidermal cells of Cucumis. Anat. Rec. 47, 55-99.

Lewss, F. T. (1943). The geometry of growth and cell division in
epithelial mosaics. Am. J. Bot. 30, 766-776.

LLovp, C. W. (1984) Toward a dynamic helical model for the

Cytoskeleton and cell geometry 65

influence of microtubules on wall patterns 1n plants. /nr. Rev.
Cytol 86, 1-51.

Lioyp, C. W. (1989). The Plant Cytoskeleton. Current Opinion in
Cell Biology 1, 30-35.

Lroyp, C. W. (1991). Cytoskeletal elements of the phragmosome
establish the division plane in vacuolated higher plant cells. In
The Cytoskeletal Basis of Plant Growth and Form (ed. C. W.
Lloyd). Academic Press: London (In press).

Lroyp, C. W. aND Traas, J. A. (1988). The role of F-actin in
determining the division plane of carrot suspension cells. Drug
studies. Development 102, 211-221.

Macior, W. A. AND MaTzkE, E. B. (1951). An experimental
analysis of cell-wall curvatures and approximations to minimal
tetrakaidecahedra in the leaf parenchyma of Rhoeo discolor.
Am. J Bo:t. 38, 783-793.

MarviN, J. W. (1939). The shape of compressed lead shot and its
relation to cell shape. Am. J. Bor. 26, 280-288.

Matzke, E. B. (1939). Volume-shape relationships 1n lead shot
and their bearing on cell shapes. Am. J. Bor. 26, 288-295.

Martzke, E. B. (1945). The three-dimensional shapes of bubbles in
foams. Proc. natn. Acad. Sci. U.S.A. 31, 281-289.

Martzke, E. B. (1950). In the twinkling of an eye. Bull Torrey
bot. Club, 77, 222-227.

PickerT-HEAPs, J. D. aND NortHCOTE, D. H. (1966). Organization
of microtubules and endoplasmic reticulum during mitosis and
cytokinesis in wheat meristems. J. Cell Sci. 1, 109-120.

SacHs, J. (1878). Uber die Anordnung der Zellen in jungsten
Pflanzentheilen. Arbeiten des Boranisches Institut Wurzburg 2,
46-104.

SiNNoTT, E. W. AND BLocH, R. (1940). Cytoplasmic behaviour
during division of vacuolate plant cells. Proc. namn. Acad. Sci.
U.S.A. 26, 223-227

SinNOTT, E. W. aND BLOCH, R. (1941a). The relative position of
cell walls in developing plant tissues. Am. J. Bot. 28, 607-617.

SinNotT, E. W. aND BLocH, R. (19416). Division 1n vacuolate
plant cells. Am. J Bot. 28, 225-232.

STEVENS, P. S. (1976). Patterns in nature. Penguin Books Ltd.,
Harmondsworth, Middx, England.

THoMpsoN, D. W. (1942). On Growth and Form. Cambridge
University Press, Cambridge.

THoMsON, W. (1887). On the division of space with minimal
partitional area. Phil Mag. 24, 503-514.

THoMsoN, W. (1894). On homogeneous division of space. Proc R.
Soc. Lond. 55, 1-17.

Traas, J. A., DooNaN, J. H., RawLins, D. J., SHAw, P. J..
Wartts, J. anp Lroyp, C. W. (1987). An actin network 1s
present in the cytoplasm throughout the cell cycle of carrot cells
and associates with the dividing nucleus. J Cell Biol. 105,
387-395.

WiLLiams, R. E. (1968). Space-filling polyhedron: its relation to
aggregates of soap bubbles, plant cells, and metal crystallites.
Science, NY 161, 276-277.

WiLriams, R. E. (1979) The geomerrical foundation of narural
structure. A source design book. Dover Publications Inc., New
York.



