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Summary

Two distinct cadherin cDNA clones of Xenopus laevis
were isolated from a stage 17 embryo ¢cDNA library.
Analysis of the complete deduced amino acid sequences
indicated that one of these molecules is closely homolo-
gous to chicken and mouse N-cadherin, while the other
displays comparable homology to both E- and
P-cadherins and was thus denoted EP-cadherin. This
molecule has an apparent relative molecular mass of
125x10° (compared to approx. 138x10° or approx.
140x10° of E-cadherin and N-cadherins, respectively).
Northern and Western blot analyses indicated that
N-cadherin is first expressed at the neurula stage while

EP-cadherin is the only cadherin detected in unfertilized
eggs and cleavage stage embryos. Immunolabeling of
Xenopus eggs with antibodies prepared against a fusion
protein, containing a segment of EP-cadherin, indicated
that the protein is highly enriched at the periphery of the
animal hemisphere. EP-cadherin was also found in A6
epithelial cells derived from Xenopus kidneys, and was
apparently localized in the intercellular adherens junc-
tions.

Key words: cell adhesion, cadherins, adherens junctions,
Xenopus laevis.

Introduction

Cadherins are a family of structurally and functionally
related molecules that mediate Ca’*-dependent inter-
cellular adhesion (Takeichi, 1988). These molecules
were primarily localized in areas of cell-cell contact,
often associated with actin microfilaments adherens
type junctions (Volk and Geiger, 1984; Boller ez al.
1985; Hirano et al. 1987). Based on their spatial relation
to the cytoskeleton, it was suggested that cadherins play
a role in the generation of intercellular and intracellular
forces, which are of fundamental importance in cellular
dynamics and embryonic morphogenesis (Geiger et al.
1984; Edelman, 1985). This notion was also supported
by the spatial and temporal correlation between the
expression of different cadherins during development
and specific morphogenetic events (Hatta er al. 1987,
Duband et al. 1988). Furthermore, transfection of
cadherin-specific cDNA into non-expressing cells affec-
ted cellular morphology, leading to an apparent
epithelialization of the cells (Matsuzaki er al. 1990).
Thus the study of cadherin expression and function is of
major importance for the understanding of the mechan-
isms underlying cellular interactions in development.
In view of the vast information available on the
cellular and molecular aspects of Xenopus develop-
ment, this system appears to be most suitable for

exploring the particular involvement and contribution
of cadherins to embryonic morphogenesis. The pres-
ence of a Ca’*-dependent intercellular adhesion system
in Xenopus embryonic cells was reported by Nomura et
al. (1986). Since then, additional information concern-
ing specific adhesion molecules was obtained. This
includes the identification of a molecule, antigenically
related to E-cadherin, in a cultured epithelial cell line
and in gastrulating embryos (Nomura et al. 1988; Choi
and Gumbiner, 1989), as well as the cloning and
sequencing of Xenopus N-cadherin (Detrick et al.
1990). It was further shown that the latter is first
expressed at the neurula stage. In addition, a cadherin-
like molecule, distinct from both N-cadherin and
E-cadherin, was reported to be present in late stage
oocytes (Choi ez al. 1990).

Here we report on the cloning, sequencing and
analysis of expression of Xenopus N-cadherin as well as
a new cadherin molecule denoted EP-cadherin, which
displays a comparable homology to both E- and
P-cadherins. We show that both the mRNA and protein
products of this gene are present in the unfertilized egg.
Furthermore, immunolabeling with antibodies raised
against a bacterial fusion protein containing EP-
cadherin sequences indicated that the protein is
particularly enriched at the periphery of the animal
hemisphere.
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Materlals and methods

Animals, eggs and embryos

Mature frogs (both wild type and albino) were purchased
from Xenopus 1 Ltd (MI, USA). Females were induced to lay
eggs by injections of hCG according to Newport and
Kirschner (1982). Eggs were collected directly to 1XMMR
(0.1M NaCl, 2mm KCI, 1mM MgSO4, 2mum CaCl,, 0.1mm
EDTA, 5Smm Hepes, pH7.8). Embryos were obtained by in
vitro fertilization and maintained in 0.1xMMR. Eggs and
early embryos were dejellied in 2% cysteine in 1XMMR or
0.1XMMR neutralized to pH 7.8 with NaOH. Embryos were
staged according to the Normal Table of Xenopus laevis
(Nieuwkoop and Faber, 1967).

Cloning and sequencing of Xenopus cadherins

The cadherin cDNA clones were isolated from a stage 17
Agt1l0 cDNA library kindly provided by D. Melton, Harvard
University, Cambridge, MA (Kintner and Melton, 1987). The
library was screened under low-stringency conditions with a
chicken N-cadherin cDNA probe (Hatta et al. 1988). The
isolated clones were subcloned into either pGEM (Promega,
USA) or Bluescript (Stratagene, USA) plasmids. Restriction
enzymes were purchased mainly from New England Biolabs
(USA). Southern blot analysis was carried out according to
Maniatis et al. (1982), using high-stringency conditions. The
nucleotide sequences of the isolated clones were derived from
single-strand templates using the dideoxy chain termination
method of Sanger et al. (1977) as modified for the Sequenase
kit (U.S. Biochemicals, USA).

Northern blot analysis

Total RNA was extracted using the LiCl-urea procedure
(LeMeur et al. 1981). RNA was electrophoresed in agarose—
formaldehyde gels, as described by Maniatis er al. (1982).
25 pg of total RNA were loaded on each lane. The RNA was
blotted onto a Hybond-N membrane (Amersham, UK),
stained with methylene blue and subjected to hg'bridization
using high-stringency conditions. DNA probes (*2P-labeled)
were prepared using a random-priming DNA-labeling kit
(Boehringer, FRG).

Extraction of proteins from cultured cells, tissues and
eggs

Cultured cells and tissues were extracted in 1XLaemmli
sample buffer (Laémmli, 1970). Dejellied eggs were extracted
with 1% NP-40 in 150 mM NaCl, 2mm CaCl;, 10 mm Hepes
pH 7.5, supplemented with protease inhibitors (1 mmM PMSF,
20 ugml™! aprotinin). Detergent-insoluble material was
removed by centrifugation at 12000g for 30 min.

SDS-PAGE and immunoblot analysis

Protein samples were electrophoresed through an 8%
polyacrylamide slab gels. The polypeptides were electroblot-
ted onto nitrocellulose paper (Schleicher and Scheull, FRG)
and immunolabeled using either the R-156 serum or anti-E-
cadherin antibodies (kindly provided by B. Gumbiner, UCSF,
USA) at an appropriate dilution followed by alkaline
phosphate-conjugated (Promega, USA) or I-labeled sec-
ondary antibodies.

Preparation of fusion proteins and generation of
antibodies

The Bg/ll fragment of clone c4 (see Results) was ligated into
the BamHI site of the Path 2 vector (Dieckmann and
Tzagoloff, 1985). Bacteria transfected with this plasmid were

induced to express high amounts of the fusion protein with
IAA (Sigma, USA) and total protein extracts were injected
into rabbits. Following four injections at 2 week intervals,
blood was collected and examined for the presence of
antibodies.

Cell culture and transfections

The A6 kidney cell line (ATCC, USA) was grown in 85 %
DMEM supplemented with 8.5 % fetal calf serum (FCS), at
28°C in a humidified atmosphere of 5% CO; in air. Chinese
hamster ovary (CHO) cells were grown in DMEM sup-
plemented with 10% FCS, at 37°C in a humidified
atmosphere of 7% CO, in air. CHO cells were co-transfected
with a pECE plasmid (Ellis et al. 1986) containing the EcoRI
fragment of clone 4 and the pSV2-neo plasmid (Southern and
Berg, 1982) using the calcium phosphate transfection pro-
cedure (Graham and Van Der Eb, 1973). Transfectants were
selected using 700 ugml~' of G-418 (Geneticin, GIBCO,
USA) in the medium. Positive clones were identified by
immunoblot analysis using the pan-cadherin antibodies R-156
directed against a synthetic peptide corresponding to the 24 C-
terminal amino acids of chicken N-cadherin.

Immunofluorescence of A6 cells

Cells were cultured on glass coverslips, permeabilized for
3min with 0.5% Triton X-100 in 3% formaldehyde and
further fixed with 3 % formaldehyde for additional 25 min.
Staining of cells was carried out by the indirect immunofluor-
escence technique. Affinity-purified R-156 antibodies were

“used at Sugml~!. Sera of rabbits injected with the fusion

protein (designated R-827, see above) were used at a 1:500
dilution and preimmune serum up to 1:50 dilution. Rhoda-
mine-labeled secondary antibodies were either prepared as
described (Brandtzaeg, 1973) or purchased from Jackson labs
(USA).

Staining and sectioning of eggs

Albino Xenopus eggs were stained according to the method of
Dent et al. (1989), using either R-827, R-156 or irrelevant
rabbit antibodies and goat anti-rabbit antibodies conjugated
to peroxidase (Jackson, USA). Following the enzymatic
reaction, eggs were dehydrated in alcohol and embedded in
JB4 resin (Polysciences, Inc., PA). The embedded eggs were
sectioned (2-3 um) using the LKB Nova microtome (Sweden)
and examined in a Zeiss Axiophot microscope.

Results

Cloning of Xenopus cadherins

In order to clone Xenopus laevis cadherin molecules,
we have screened a Agtl0 cDNA library of stage 17
embryos (Kintner and Melton, 1987) with a cDNA-
encoding chicken N-cadherin (Hatta et al. 1988). Using
low-stringency conditions, seven independent clones
were isolated. Cross-hybridization studies, under high-
stringency conditions, indicated that the isolated clones
could be subdivided into two groups, one containing
clones Nos. 1, 3, 6 and 8 while the other contained
clones 2, 4 and 5. The physical maps of the isolated
cDNA clones (Fig. 1) also suggested that they represent
two distinct cDNA molecules. It was nevertheless noted
that clone 3 varies somewhat from clones 1, 6 and 8 in
its restriction map. This variation may be attributed to
polymorphism, which is common in the pseudotetrap-



XENOPUS CADHERIN cDNA CLONES
R1PB R1 BPBP P H3 R1
cl —tl — L1t 1 11 1
ey
c3 1 1 L1 1 I 1 J
c6 —ll Jd F I | - | J
c8 1 Ll 1 [ | )
R1 B H3 R1
c2 |_\/ 1 1 N
c4 L 1 1
[ ]
cS RI 1 1 .
P 1 2 3 4 S C

Protein domains [ I T 1 1 ]

1 Kbp

Fig. 1. Restriction maps of the various cDNAs encoding
Xenopus N-cadherin (C1, C3, C6, C8) and EP-cadherin
(C2, C4, C5). The restriction sites marked include: EcoRI:
(RL;) BamHI: (B); HindIIl: (H3); PstI (P). The boxes
under C1 and C4 represent the fragments that were used
as probes. A scheme outlining the various cadherin protein
domains (including presequences (P), ectodomains 1-5 and
the cytoplasmic (C) domain) is shown at the bottom.

loid clawed frog (Kobel and Du Pasquier, 1986). Some
variation was also found in the 5’ region of the other
group of clones, manifested by the presence of 209 bp in
clone 4, which were absent from clone No. 2. Notably,
the sequences missing from the latter were flanked by
G(233)TG and A(439)GA. These sequences show
similarity to the splicing consensus (Mount, 1982),
though the presence of splicing variants was not directly
established here.

Nucleotide and amino acid sequences

The nucleotide and the deduced amino acid sequences
of clone 1 are shown in Fig. 2. The amino acid sequence
shows a high degree of homology to chicken
N-cadherin, and we thus refer to this clone as the
Xenopus N-cadherin. Our sequence differs only slightly
from the one recently published by Detrick et al. (1990).
The differences found between the two are marked in
Fig. 2.

The nucleotide and the deduced amino acid se-
quences of clone 4 are shown in Fig. 3. Comparison of
the protein sequence to that of known cadherins
revealed considerable degree of homology to both E-
and P-cadherin is shown in Fig. 4. As can be seen, the 5’
region of clone 4 contains two in-frame ATG se-
quences. Based of the homology to other cadherins and
comparison to the Kozak consensus sequence (Kozak,
1987), it is difficult to select one of the two as the
definitive initiation site. We have, thus, chosen the first
one as the start of translation. Since this cDNA clone is
comparably homologous to the two cadherin molecules
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and in view of its distinction from E-cadherin (see
below), we have designated it EP-cadherin.

Sequencing of the 3’ ends of the clones encoding both
N- and EP-cadherins disclosed poly (A) stretches as
well as consensus poly-adenylation signals. The length
of the 3’ non-coding region in the two clones was about
1kb, which is similar to the homologous region in other
cadherins.

Cadherin expression during early embryogenesis

In order to study the involvement of the newly cloned
cadherins in embryonic morphogenesis, we have
followed the pattern of expression of EP-cadherin and
N-cadherin in early Xenopus embryos. The expression
of both cadherins was first studied using Northern blot
analysis. Total RNA was extracted from embryos at a
variety of developmental stages including: unfertilized
eggs, blastula at mid-blastuia transition (MBT), neurula
and tail bud.

As shown in Fig. 5, the EP-cadherin transcript was
detected already in the unfertilized egg, indicating that
it was a maternal transcript. The levels of EP-cadherin
decreased in later stages. The EP-cadherin transcript
was about 3.5kb, in accordance with the size of the
cDNA clone. The N-cadherin transcript was first
detectable at the neurula stage and persisted in the tail
bud. The transcript was about 4.2kb, again indicating
that the cDNA clone is essentially a full-length clone.

The expression and immunolocalization of cadherins

Having found the EP-cadherin transcript in the
unfertilized egg, we proceeded by checking whether a
cadherin protein was also detectable at that early stage.
A protein extract of unfertilized eggs was run on a
SDS-PAGE and subjected to immunoblot analysis,
using the pan-cadherin rabbit serum (R-156), prepared
against a synthetic peptide corresponding to the 24
carboxy-terminal amino acids of chicken N-cadherin
(Geiger et al. 1990). These antibodies recognize all the
cadherins thus far identified. The pan-cadherin anti-
bodies reacted with a 125x10° M, polypeptide in
Xenopus egg extract (Fig. 6B). Furthermore, the EP-
cadherin cDNA was ligated into the pECE eukaryotic
expression vector (Ellis ef al. 1986) and transfected into
CHO cells, together with the pSV2-neo vector
(Southern and Berg, 1982). Positive clones were
identified by Western blotting with R-156 antibodies,
disclosing a protein band comigrating with the one
found in the eggs (Fig. 6A). This band was not present
in non-transfected CHO cells.

In order to identify and localize the cadherin
molecule, we have raised antibodies against a trpE
fusion protein containing amino acids 149-366 of EP-
cadherin. The antibodies obtained, denoted R-827,
intensely stained cultured epithelial cells of Xenopus
origin. The antigen recognized by the R-827 serum was
localized along areas of cell contacts displaying patterns
closely related to those obtained with the pan-cadherin,
R-156 antibody (Fig. 7). It was, however, noted that the
staining with the latter antibody was somewhat more
extensive showing specific labeling along the peripheral
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Fig. 2. Nucleotide and deduced amino acid sequences of Xenopus N-cadherin (clone No. 1). The N-terminal amino acid of
the mature protein is encircled and the transmembrane domain underlined. Amino acid variations from the previously
published sequence of Xenopus N-cadherin (Detrick er al. 1990) are indicated below the sequence. Notice that the dash
under lysine (650) marks an in frame deletion.

lamellipodia of the cells (Fig. 7B). It was further found  bodies, one of which comigrated with the major egg
by Western blotting that A6 cells contained three major ~ molecule and with the EP-cadherin present in trans-
immunoreactive bands when assayed with R-156 anti-  fected CHO cells (Fig. 6C). Unfortunately the R-827
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Fig. 3. Nucleotide and deduced amino acid sequences of Xenopus EP-cadherin (clone No. 4). The N-terminal amino acid
of the mature protein is encircled and the transmembrane domain underlined.

antibodies did not react in either immunoblot or  cadherin protein in the egg. Fig. 8 shows that the

immunoprecipitation assays and thus its exact speci-
ficity (especially its capacity to distinguish between E-
and EP-cadherin) is not unequivocally defined.

The R-827 antibodies were subsequently used to
determine the spatial distribution of the respective

cadherin in the eggs was specifically localized at the
periphery of the animal hemisphere. Immunolabling
without prior permeabilization did not yield specific
labeling, suggesting that the cadherins were not
available to the antibodies on the surface of the egg.
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Fig. 4. Comparison of the predicted amino acid sequences of Xenopus N-cadherin to chicken N-cadherin (Hatta et al.

1988) and of Xenopus EP-cadherin to both mouse E- and P-cadherins (Nagafuchi et al. 1987 and Nose et al. 1987,

respectively). Gaps were inserted such that all five molecules will be grossly aligned. The approximate borders of the

various cadherin domains (signal peptide (sig), presequences (pre), ectodomains 1-5 (EC1-ECS5), the transmembrane
(TM) and cytoplasmic domain (cyt)), are marked.

Expression of cadherins in the adult frog we have studied the tissue distribution of N-cadherin
In order to check whether the cadherins expressed and EP-cadherin at the RNA level. Total RNA was
during embryogenesis are also found in adult tissues, extracted from heart, lung, liver, skin, intestine and
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Fig. 5. Northern blot analysis of RNA from early embryos
reacted with either an EP-cadherin (EP-cad) or a
N-cadherin (N-cad) probe. 25 ug of total RNA from
unfertilized eggs, blastula at MBT, neurula and tail bud
embryos were run on an agarose—formaldehyde gel and
transferred onto a Hybond-N membrane. All samples
showed the same intensity following methylene blue
staining of the blot. The position of 285 and 18S ribosomal
RNAs is indicated.

testis and subjected to Northern blot analysis at high
stringency. As shown in Fig. 9, EP-cadherin displayed a
rather restricted distribution, being expressed at signifi-
cant levels only in skin and lung. Thus, its tissue
distribution is generally similar (though not identical) to
that of E-cadherin, as observed by immunohisto-
chemistry (Choi and Gumbiner, 1989 and see Dis-
cussion).

N-cadherin was highly expressed in the heart and a
considerable level of expression was also observed in
the testis, in line with the reported distribution of the
homologous molecule, in the chicken (Hatta et al. 1987;
Duband er al. 1988). It is noteworthy that Xenopus
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Fig. 6. Immunoblot analysis of protein extracts from non-
transfected CHO cells (nt), CHO cells transfected with EP-
cadherin (a), eggs (b), A6 cells (¢) and heart tissue (d)
reacted with either the pan-cadherin R-156 antibodies (A)
or anti-E-cadherin antibodies (B).

N-cadherin was previously reported to be also ex-
pressed in the brain of developing embryos (Detrick et
al. 1990).

Immunoblot analysis of adult tissues using the R-156
antibody revealed a multitude of immunoreactive
polypeptides. These include the three definitive cadher-
ins (N-cadherin, E-cadherin which migrates slightly
faster on these gels and EP-cadherin which has a lower
apparent molecular weight) as well as additional bands.
Further characterization will be needed to determine
whether these are additional unidentified cadherins or
rather are precursor forms or breakdown products.

Discussion

We have used, in this study, a molecular genetic
approach for the identification and characterization of
novel cadherins from Xenopus laevis. We have cloned
two distinct cDN A species showing variable homologies
to known cadherins. The Xenopus N-cadherin clone
isolated here is highly homologous to all the
N-cadherins so far studied. Particularly relevant is its
comparison to the molecule recently described by
Detrick et al. (1990). While the two were nearly
identical at the deduced amino acid level, we have
detected significant differences in the 5’ non-coding
sequences of the two clones and some scattered
substitutions along the coding region. It is interesting to
note that some of these variations lead to non-
conservative sequence changes as may be appreciated
from Fig. 2. It might prove most interesting to compare
the functional properties of the products of the two
clones. As far as the genetic basis for these variations is
concerned, it seems most likely that they stem from
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Fig. 9. Northern blot analysis of RNA from adult frog tissues reacted with either an EP-cadherin (EP-cad) or a N-cadherin
(N-cad) probe. 25 ug of total RNA from heart, lung, liver, skin, intestine, testis and eggs were run on an agarose—
formaldehyde gel and transferred onto a Hybond-N membrane. The methylene blue staining pattern of all samples was
comparable. The position of the 28S and 18S ribosomal RNAs is indicated.

animal hemisphere. It is thus anticipated that the
animal blastomeres might contain higher levels of the
EP-cadherin molecule. This might be related to the fact
that the animal blastomeres apparently form tighter
intercellular junctions and that most primary epithelia
are derived from them (Jones and Woodland, 1986). To
substantiate this possibility and determine its physio-
logical significance, it will be necessary to study mRNA
distribution in the egg as well as cadherin expression in
cleavage-stage embryos both at the protein and mRNA
levels.

It is nevertheless noteworthy that the EP-cadherin
present at the periphery of the egg is, most likely, not
exposed on the egg’s surface. This observation is in line
with the report by Choi et al. (1990) and is based mainly
on the observation that positive staining of the egg was
obtained only following proper permeabilization. This
finding raises the interesting possibility that the EP-

cadherin is sequestered into cortical vesicles and may
become functional only following fusion of these
vesicles with the membrane. This hypothesis is cur-
rently under investigation.

Another observation that bears on the specificity of
cadherin-mediated interactions is the presence of
multiple forms of cadherins in the same tissues and even
on the same cells. It has been shown previously that
coexpression of two cadherins may occur during
epithelial differentiation (for example, N- and
E-cadherin in developing kidney (Geiger et al. 1989)).
It was also demonstrated that, while cadherins may
exhibit a preference for homophilic interactions (Nose
et al. 1988), heterophilic cell junctions may also be
formed (Volk er al. 1987; Geiger et al. 1989). The use of
the pan-cadherin serum clearly indicated that coexpres-
sion of different cadherins is a rather common
phenomenon (Geiger ef al. 1991 and on Fig. 10 below).
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Fig. 10. Immunoblot analysis of protein extracts from
heart, skin, liver, lung, testis and eggs reacted with the
pan-cadherin, R-156, antibodies.

In agreement with that notion we also show that a
cloned cell line such as A6 expresses several (probably
3) distinct cadherins. Does each of these adhesion
molecules function independently of the others or do
they all act synergistically? Do all the different adhesion
molecules participate in junction formation, are they
capable of heterophilic interactions and do they
similarly trigger the construction of cell junctions and
affect cell dynamics and behavior? These issues appear
to be among the major challenges of future studies on
the molecular basis for cell adhesion.
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