The Spindle Assembly Checkpoint (SAC) prevents erroneous chromosome segregation by delaying mitotic progression when chromosomes are incorrectly attached to the mitotic spindle. This delay is mediated by Mitotic Checkpoint Complexes (MCCs), which assemble at unattached kinetochores and repress the activity of the Anaphase Promoting Complex/Cyclosome (APC/C). The cellular localizations of MCCs are likely critical for proper SAC function, yet remain poorly defined. We recently demonstrated that in mammalian cells, in which the nuclear envelope disassembles during mitosis, MCCs diffuse throughout the spindle region and cytoplasm. Here, we employed an approach using binucleate yeast zygotes to examine the localization dynamics of SAC effectors required for MCC assembly and function in budding yeast, in which the nuclear envelope remains intact throughout mitosis. Our findings indicate that in yeast MCCs are confined to the nuclear compartment and excluded from the cytoplasm during mitosis.

This content is only available via PDF.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

Article PDF first page preview

Article PDF first page preview

Supplementary information