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Summary Statement 

Application of machine learning methods to data collected by the International SCN8A Registry 

identifies clinically meaningful subgroups within the broad spectrum of disorders suffered by 

patients possessing gain-of-function variants. 

 

ABSTRACT 

Distinguishing clinical subgroups for patients suffering with diseases characterized by a wide 

phenotypic spectrum is essential for developing precision therapies. Patients with gain-of-

function (GOF) variants in the SCN8A gene exhibit substantial clinical heterogeneity, viewed 

historically as a linear spectrum ranging from mild to severe. To test for hidden clinical 

subgroups, we applied two machine learning algorithms to analyze a dataset of patient features 

collected by the International SCN8A Patient Registry. We utilized two research methodologies: 

a supervised approach that incorporated feature severity cutoffs based on clinical conventions, 

and an unsupervised approach employing an entirely data-driven strategy. Both approaches 

found statistical support for three distinct subgroups and were validated by correlation analyses 

utilizing external variables. However, distinguishing features of the three subgroups within each 

B
io

lo
gy

 O
pe

n 
• 

A
cc

ep
te

d 
m

an
us

cr
ip

t

mailto:hammeruofa@gmail.com


approach were not concordant, suggesting a more complex phenotypic landscape. The 

unsupervised approach yielded strong support for a model involving three partially-ordered 

subgroups rather than a linear spectrum. Application of these machine-learning approaches 

may lead to improved prognosis and clinical management of individuals with SCN8A GOF 

variants and provide insights into the underlying mechanisms of the disease. 

 

INTRODUCTION 

Rare diseases are estimated to affect approximately 1 of every 10 individuals in the human 

population. The low incidence coupled with the relatively recent introduction of genetic testing 

often means there are too few known cases upon which to establish effective protocols for 

diagnosis, prognosis, and treatments. In addition, the wide phenotypic spectrum often 

associated with many rare diseases makes it challenging to identify targeted treatment 

strategies (Imbrici et al., 2016). Patient registries play an indispensable role in filling gaps in the 

literature for rare and newly discovered diseases that have few published case reports or cohort 

studies. The addition of patient information coupled with advancements in computational 

sciences and machine learning (ML) to streamline the process of organizing, transforming, and 

analyzing large amounts of data hold promise for more efficient pipelines moving from gene 

discovery to precision medicine (Knowles et al., 2022). By using more traditional statistical 

methods alongside ML models, researchers can compare treatment efficacy (Cutter et al., 2019, 

Lee et al., 2017), predict survival probability (Mahadevan et al., 2018) and health risk factors 

(Taushanov et al., 2021), and improve diagnosis (Bica et al., 2021, Hack et al., 2023, Zou and 

Ma, 2020). These methods facilitate construction of clinical tools to describe disease and predict 

a patient’s optimal treatment based on both genotypic and phenotypic characteristics, providing 

the possibility for personalized medicine.  

 

An example of the success of the application of these methods to registry data is the case of 

SCN8A-epilepsy and related disorders (Knowles et al., 2022). Patients with pathogenic variants 

in the SCN8A gene, encoding the voltage-gated sodium channel NaV1.6, exhibit substantial 

clinical heterogeneity, with phenotypes ranging from neurodevelopmental delays with or without 

seizures, to benign familial epilepsy, to a continuum of mild to severe development and epileptic 

encephalopathy (DEE) (Cutts et al., 2022, Hammer et al., 2023, Johannesen et al., 2022, 

Talwar and Hammer, 2021). The SCN8A gene was discovered to cause pediatric epilepsy in 

2012 (Veeramah et al., 2012), and an online registry was established in 2014 that now contains 

an extensive dataset encompassing medical, genetic, developmental, and comorbidity 
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information for over 400 international cases (Andrews et al., 2023, Chung et al., 2023, Encinas 

et al., 2019). Given the wide phenotypic spectrum and numerous pathogenic variants in the 

gene, both with loss-of-function (LOF) and gain-of-function (GOF) effects, clinicians have been 

challenged to provide accurate diagnosis, prognosis, and a course of effective treatment. 

Recent advances have made it clear that the LOF and GOF subtypes differ in biological terms 

given the different effects LOF and GOF variants have on NaV1.6 function and differential 

response to antiseizure medications (ASMs) (Hack et al., 2023, Johannesen et al., 2022, Liu et 

al., 2019, Wagnon et al., 2016). Hack et al. (2023) developed a predictive modeling approach to 

classify GOF and LOF variants based on clinical features present at initial diagnosis. This was 

an important step given that in vitro studies to infer channel function are not feasible in the clinic. 

Despite these gains, currently there are no guidelines for best practices in treating SCN8A-

related epilepsy.  

 

An important unanswered question is whether individuals across the phenotypic spectrum 

associated with variants with GOF effects can be subdivided into subgroups that differ in 

response to ASMs. Indeed, individuals carrying different recurrent GOF variants are known to 

vary in disease course, and possibly in response to ASMs (Chung et al., 2023, Hammer et al., 

2023). In this study, we analyze the International SCN8A Registry data representing 253 cases 

to identify key features present early in disease progression and construct a series of predictive 

models to classify individuals possessing GOF variants as mild, moderate, or severe cases. 

Each model is assessed for accuracy via confusion matrices or mean error to test the 

hypothesis that the population of patients possessing GOF variants is composed of three 

distinct groups.  

 

 

RESULTS 

Loss-of-Function Exclusion 

Application of the LOF Classifier (Hack et al., 2023) identified 180 of 253 individuals in the 

International SCN8A Patient Registry (Andrews et al., 2023, Encinas et al., 2019) as having a 

high probability of possessing a pathogenic GOF SCN8A variant. These 180 individuals 

constituted the dataset used in this study, and justification for inclusion of the variant is provided 

in Table S1. The average and standard deviation of age at onset in this subpopulation was 

3.6±2.86 months and all individuals reported experiencing seizures. The average developmental 

quotient was 36.8±39.87 with 81% reporting developmental delay. The frequencies of seizure 
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types are described in Table 1. Of 115 variants, 87 were singletons, 18 were doubletons, and 10 

were reported in at least three individuals. 100 variants (119 individuals) were inferred to be 

GOF (Hack et al., 2023) and 15 of these variants (61 individuals) were known to be GOF based 

on electrophysiological data. 

 

Cluster Assignment  

Unsupervised clustering analysis using partitioned around medoid (PAM) clustering showed the 

optimal number of clusters in this dataset was three. We denote these clusters U3, U2, and U1. 

This finding is consistent with the common understanding that mild, moderate, and severe 

groups exist in the SCN8A GOF population, as shown in previous work (Hack et al., 2023) 

(Figure 1A). Testing of the optimal number of clusters using kernel density estimation further 

supported this finding (Figure 1B). The average age at onset and developmental quotient (DQ; 

see methods for definition) were used to determine an order to the assigned clusters, and it was 

found that there was an increase in age at onset from Cluster U3 to Cluster U1 (Table 1). This 

suggested Cluster U3 correlated to a severe phenotype, Cluster U2 to a moderate phenotype, 

and Cluster U1 to a mild phenotype. Notably, developmental quotient did not follow this trend 

and was 26.6±32.6 and 36.5±33.1 in Clusters U3 and U1, respectively, while being higher in 

Cluster U2 at 65.6±47.3. (A quotient of 100 is considered neurotypical) The distribution of 

individuals in each category showed a strong imbalance favoring Cluster U3 (Figure 1C). Three 

clusters were also assigned as part of a Supervised Approach by using clinical severity cutoffs. 

These clusters were considered severe, moderate, and mild DEE and we denote these clusters 

S3, S2, and S1, respectively. Similar to the Unsupervised Approach, there was a strong 

imbalance in cluster size favoring S3 (Figure 1D). 

 

Dimension Reduction 

Principal component (PC) analysis on the data shows that 66.6% of the variance in the dataset 

was explained using the first three dimensions (Figure 2A). A 2-dimensional PC plot showed 

developmental quotient and age at onset having the greatest contribution to the variance in the 

dataset (Figure 2B). It was apparent that there was a significant overlap in the groups assigned 

by the Unsupervised Approach. However, utilizing a 3-dimensional PC plot showed increased 

differentiation between groups (Figure S1). While there were distinct centroids for each group, 

there was high variability within Cluster U2. The Cluster U3 group appeared to be the most 

uniform, with the majority being located to the left of the y-axis with its centroid close to the x-
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axis. Across the three groups, there was a general trend of increasing age at onset from Cluster 

U3 to U1. 

The Supervised Approach showed distinction between the three groups in 2 dimensions (Figure 

2C). Individuals in Cluster S3 were centered to the left of the y-axis and above the x-axis. 

Individuals in the Cluster S2 or Cluster S1 group were centered progressively more positively 

along the x-axis with a clearer division between the two phenotypic groups than seen in the 

Unsupervised Approach. Most individuals in Cluster S1 were also above the x-axis, suggesting 

better development and lower rates of bilateral tonic clonic (BTC) and convulsive seizures at 

initial presentation. The distinction between each group was more visible in a 3-dimensional PC 

plot (Figure S2). 

 

Penalized Ordinal Logistic Regression Model 

A penalized ordinal logistic regression model (p-ORM) was constructed for both the 

Unsupervised and Supervised Approaches. Both approaches utilized k-fold cross-validation 

where k=5. In the Unsupervised p-ORM, the misclassification error across five iterations was 

0.105±0.04. Tuning of the model resulted in seizure freedom, DQ and developmental delay, age 

at onset, infantile spasms, convulsive, myoclonic, absence, focal, and tonic seizures being 

selected (Table 2). Following penalization, the optimal tuning parameter (best lambda index) 

was λ=18 and a confusion matrix was constructed using this parameter, resulting in an error of 

0.089 (Table 3). The Supervised p-ORM resulted in a misclassification error of 0.144±0.04. 

Features that were selected by tuning the model included age at onset, seizure freedom, DQ, 

tonic, convulsive, and BTC seizures (Table 2). Penalization resulted in λ=14 and a confusion 

matrix with an error of 0.139 (Table 3). 

 

Stacked Meta-Learner 

Both datasets were analyzed using a stacked meta-learner (Stacked) three times. The dataset 

was first sampled in five separate ways before a random forest model was trained and tested 

using k-fold cross validation where k=4 using the methods described in (Desprez et al., 2022). 

The predicted outcome classification from each sampling method were utilized as training 

features in an ordinal logistic regression model while the probabilities were used in a linear 

regression model as a meta-learner. In the Unsupervised Stacked Model, the mean absolute 

error (MAE) was 0.06±0.01 and 0.04±0.03 for, respectively, the outcome classification and 

probability from the random forest model (Table 4). The root-mean-square error (RMSE) was 

0.16±0.01 and 0.15±0.07 and the percentage of correct classification (PCC) 94.8±0.8 per cent 
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and 95.2±2.70 per cent for classification and probability, respectively. In the Supervised Stacked 

Model, performance resulted in MAEs of 0.37±0.09 and 0.35±0.07, RMSEs of 0.54±0.07 and 

0.52±0.08, and PCCs of 81.0±4.58 per cent and 81.0±1.00 per cent for classification and 

probability, respectively (Table 4). 

 

External Validation 

To determine if the Unsupervised Stacked and Supervised p-ORM have biological and clinical 

relevance, each model was validated using external data (Johannesen et al., 2022). Biological 

relevance was tested using variants that have undergone electrophysiological studies and have 

an associated score based on 6 distinctive features. Linear regressions using values from the 

Unsupervised Stacked model showed a significant correlation against a test of no correlation 

between Cluster U3 and electrophysiological score and the Combined score and 

electrophysiological score (p-value=0.016 and 0.022, respectively, and adjusted R-squared= 

0.094 and 0.084, respectively) (Figure 3A-D). Additionally, the probability of being Cluster U1 

showed a nearly significant relationship with electrophysiological score (p-value=0.054; adjusted 

R-squared= 0.055). R1872W has been suggested to be an outlier regarding its 

electrophysiological score and phenotypic severity, potentially due to its difference in peak 

current from R1872Q, which was not included in the calculation of electrophysiological score 

(Chung et al., 2023, Johannesen et al., 2022). To account for this, regression was again 

performed excluding R1872W. All p-values were found to decrease while R-squared values 

increased, with Cluster U3, Cluster U1, and Combined showing significant correlation against a 

test of no correlation (p-value= 0.002, 0.010, and 0.004, respectively, and adjusted R-squared= 

0.207, 0.141, and 0.181, respectively).  

 

In the Supervised p-ORM, linear regressions of all four severity scores show significant 

relationships with electrophysiological score with p-values of 2.84x10-5, 1.95x10-5, 0.022, and 

2.48x10-4 for Cluster S3, S2, S1, and Combined, respectively, and adjusted R-squared of 0.266, 

0.276, 0.077, and 0.208, respectively (Figure 3E-H). Further validation of the Supervised p-

ORM was conducted using a dataset of individuals with clinical decisions made regarding their 

severity (Johannesen et al., 2022). The Supervised p-ORM was used to predict on this dataset, 

using the same features. Prediction resulted in a mean error of 0.209.  
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Discussion 

The application of machine learning techniques resulted in statistical support for three distinct 

patient subgroups within the wide phenotypic spectrum associated with SCN8A GOF variants. 

Utilizing features with severity cutoffs that were determined by clinical conventions, the 

Supervised Approach categorized individuals into three groups that supported the historical 

view of Mild, Moderate, and Severe DEE subgroups. The Unsupervised Approach confirmed the 

presence of three disease GOF subgroups using a strictly data-driven strategy (i.e., without the 

bias of prior clinical interpretation). However, the distinguishing features of the three subgroups 

were not concordant between the two approaches. A key finding of the Unsupervised Approach 

is the clinical separation of epileptic and developmental encephalopathies. In the following 

sections we discuss the pros and cons of each approach and the significance of the finding of 

distinct disease subgroups. 

 

Both the Unsupervised and Supervised Approaches were modeled using penalized ordinal 

logistic regression to identify features that were critical to distinguishing the three clusters and 

again using a stacked meta-learner to account for sample size imbalance within groups. In the 

Unsupervised Approach it was found that both modeling methods performed well in classifying 

individuals, with the average error being 0.11 and 0.04 for the p-ORM and stacked models, 

respectively (Tables 3-4). The primary concern for both the Unsupervised Stacked and 

Unsupervised p-ORM is the potential for over-reliance on seizure freedom as a predictive 

feature. While the p-ORM shows a strong impact from seizure freedom (Table 2), the effect is 

limited in the Unsupervised Stacked. This, taken together with the improvement in performance 

metrics, makes the stacked meta-learner the preferred choice.  

 

In the Supervised Approach, only the p-ORM performed well enough to be considered viable in 

further analysis. This model recorded an average error of 0.144 across the five folds in cross 

validation and a final error of 0.139 after penalization (Table 3) compared to the average MAE 

of 0.35 observed in the Stacked model (Table 4). In this approach, the complexity of the 

Stacked meta-learner may lead to a decrease in overall performance. As such, the Supervised 

Approach is best modeled using the penalized ORM. This model selected age at seizure onset 

as its primary feature contributing to predicted outcome, as expected from the original 

classification guidelines (Table 2).  
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Both the Unsupervised and Supervised Approaches were tested for biological relevance 

following the success of modeling. In the case of the Unsupervised Stacked model, the 

predicted probabilities of an individual being in Cluster U3 and U1, as well as a combined 

probability score across all three clusters, were shown to have a significant linear relationship 

with electrophysiological score calculated for highly recurrent SCN8A variants (Fig. 3). Similarly, 

the Supervised p-ORM showed significant relationships between all categories and variant-

specific electrophysiological score (Fig. 3). The variant electrophysiological score has 

previously been shown to correlate with clinical severity (Chung et al., 2023, Johannesen et al., 

2022). While this is a simplified surrogate parameter, the congruence between these 

electrophysiological scores and predicted outcome lends additional support to the validity of 

these classifications.  

 

Additional relevance testing was conducted on the Supervised p-ORM using an externally 

curated dataset (Johannesen et al., 2022) to test the performance of the model. In this case, the 

error of the predictive model increased from 0.139 to 0.209. This decrease in performance is 

expected, as the dataset used for external validation collected data in a different format than the 

data used in this study. For example, developmental quotient was not available for individuals in 

the external dataset and was collected as categorical values of intellectual and developmental 

disorder, rather than a continuous variable. Individuals were given generalized values in 

instances of data collection discrepancies, which can lead to underfitting in a ML model.  

 

Discordance in Clusters 

The results of the Unsupervised Approach to identifying and assigning clusters provide a novel 

method for classifying individuals. In the case of the Supervised Approach, clusters correspond 

to Mild DEE, Moderate DEE, and Severe DEE as described (Hammer et al., 2023). As 

expected, DQ follows a trend of decreasing from Cluster S1 to S3. Seizure-free individuals are 

present in all three clusters. Strikingly, the Unsupervised Approach is not concordant with these 

results. In Cluster U1, DQ is lower in both Cluster U2 and Cluster U3.  This contrasts with age at 

onset is higher than Cluster U2 but lower in Cluster U3. Moreover, all individuals experience 

seizure freedom in Cluster U1. Cluster U2 is characterized by no to moderate developmental 

delay with an earlier average age at onset than Cluster U1. Cluster U3 shows severe 

developmental delay and exceedingly early age at onset with no individuals experiencing 

seizure freedom. Those who attained prolonged seizure freedom likely benefitted from effective 
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treatment with ASMs. It should be noted that SeLFIE (self-limited(familial) infantile epilepsy) is 

an additional phenotype that was not observed in the Registry.  

 

The marked non-concordance between the two approaches challenges the conventional 

understanding of the SCN8A GOF population as an ordered spectrum from mild to severe DEE. 

Taken as a whole, Cluster U1 experiences the latest average age at seizure onset, while also 

having few relative instances of more aggressive seizure etiologies such as myoclonic seizures. 

Also, this group consistently achieves seizure freedom. These characteristics tend to align with 

the expectation for a mild DEE, but the severe developmental delay indicated by a low average 

DQ conflicts with this understanding under the presently used classification of SCN8A epilepsy. 

However, Cluster U2 is characterized by a moderate average age at onset with a low seizure 

freedom rate. These seizure characteristics are consistent with a moderate DEE, but fewer than 

a quarter (10/43 individuals) report developmental delay within this group, once again being at 

odds with the current moderate DEE classification. Cluster U3 is the only group largely 

concordant with its expected counterpart S3 in the Supervised Approach in both DQ and age at 

onset.  Notably, this group reports zero incidents of seizure freedom compared to the 11 

incidents of seizure freedom reported in Cluster S3 (Table 1).  

 

The notion that individuals with SCN8A GOF do not neatly fit a linear spectrum of increasingly 

severe DEE is not entirely unexpected. The distinction between mild and moderate DEE has 

been a consistent challenge for clinicians, leading to these two categories often being collapsed 

(Hammer et al., 2023). As such, we hypothesize that the three clusters identified using the 

Unsupervised Approach are a partially ordered subgroup set where Cluster U1 is primarily a 

developmental encephalopathy (DE), Cluster U2 is primarily an epileptic encephalopathy (EE), 

and Cluster U3 is a DEE. Given this hypothesis, it is predicted that individuals in the DE 

population typically would experience developmental delay prior to seizure onset, while those in 

EE would experience seizure onset prior to developmental delay. Those in DEE category would 

be expected to have clinical diagnoses of both seizure onset and developmental delay nearly 

simultaneously within the first few months of life. 

 

Our results are in line with previous studies demonstrating correlations between specific 

pathogenic variants and severity outcome (Chung et al., 2023). For example, the most 

debilitating variants- p.R850Q and p.R1872W- were classified as DEE 90.5% of the time 

(19/21), while variants that are associated with milder clinical outcomes such as p.G1475R and 
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p.N1877S were classified as either DE or EE 83.3% of the time (10/12). This provides a second 

line of support for a partially-ordered model in which DEE is the most severe subgroup, with 

similar degrees of severity for DE and EE. Thus, a strictly ordinal model is unlikely to be the 

most appropriate for classifying individuals with GOF variants. As more phenotypic data become 

available from individuals with highly recurrent variants, our model of subgroup classification 

may reveal a deeper understanding of the underlying mechanisms of the disease. In addition, 

the mechanistic properties of different GOF variants as inferred from in vitro electrophysiological 

studies may correlate with particular disease subgroups (Chung et al., 2023). 

 

Implications for Treatment 

This study provides a critical insight for clinicians to use in assessing a patient’s prognosis. The 

two approaches utilized here result in models that perform with high accuracy and identify 

features that are important to understanding possible patient outcomes. These features are 

present early in the disease progression including age at seizure onset, developmental quotient, 

developmental delay, initial seizure type, and if seizures have been controlled for at least six 

months. A strength of this model is that all features except prolonged seizure freedom can be 

assessed accurately in the first clinical visit following genetic testing. As such, it is believed that 

this model is particularly useful for improving prognosis. Not only do these models perform well 

based on features revealed early in life, but they have also been shown to have biological 

relevance as determined by regression on outcome probability versus electrophysiological 

score. 

 

Given the two different approaches to classifying individuals, one model from each approach is 

proposed in aiding clinical decisions. In the case of the Supervised Approach, the penalized 

ordinal regression model performs with high accuracy and considers age at onset, DQ, and 

three seizure types as the most highly predictive features (Table 2). The low error and data 

requirement for this model makes it particularly well suited to clinical settings, especially 

compared to the Supervised Stacked model, which has a high error (Table 4). One important 

consideration for this model is the unbalanced cluster assignments that may lack power to 

detect some phenotype-phenotype associations. This is overcome by using the data-driven 

Unsupervised Approach. Not only is the bias limited in the Unsupervised Approach, both models 

using these clusters perform with lower error than the Supervised p-ORM (Tables 3-4). A 

shortfall of the Unsupervised p-ORM is its heavy reliance on seizure freedom (Table 2). 

Because of this, the Unsupervised Stacked model should be used if relying on this approach.  
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Further support of the hypothesis that the SCN8A GOF population can be categorized as DE, 

EE, or DEE will favor the use of the Unsupervised Stacked model over the Supervised p-ORM. 

This would have implications for effective treatment and would help to inform clinicians and 

caretakers of realistic treatment goals. In the case of DE, effective treatment may result in 

attainment of prolonged seizure freedom without notable improvements in developmental 

progression. On the other hand, despite seizures being more difficult to control for individuals 

with EE some improvements in acquisition of developmental milestones may come with 

reduction in seizure burden. If an affected individual is classified as DEE, effective treatment 

may reduce seizure burden without achievement of seizure freedom or improvements in 

acquisition of developmental skills. As we acquire additional patient reports in support of this 

classification system, then the expectation is that this classification will become more standard 

among clinicians and thus become the supervised model for the next refinement in SCN8A 

classification. 

 

Caveats and Significance 

While both models are effective in accurately classifying individuals into their respective groups, 

these models are limited to the datasets available to them at training. As these models are 

further developed as more longitudinal data become available, it is expected that the models will 

continue to be refined and improve in accuracy. Currently, their utility is mainly as a tool to aid in 

clinical decisions. Despite these limitations, we believe that these models can be used in 

combination with the LOF Classifier (Hack et al., 2023) to provide rapid predictions of variant 

effect and expected patient subgroup. The results from the Unsupervised Approach also lay the 

foundation for a potential shift in the understanding of the phenotypic landscape of SCN8A 

Syndrome, with possible implications for disease mechanisms. The results from this work may 

help with developing more attuned machine learning models to better characterize the entire 

phenotypic spectrum, including both LOF and GOF variants with a variety of biophysical effects 

on the NaV1.6 channel. This will aid clinicians in making treatment decisions and provide more 

realistic expectations for caregivers of individuals with SCN8A-related disorders.  

 

The construction of this predictive model provides the opportunity for further development of 

machine learning tools to assist in clinical settings. However, the field of functional prediction is 

still emerging and while these models show promise in a research capacity, they should not be 

used to make decisions on clinical management. Before widespread use of these models 
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becomes a viable option in clinical settings, trials must be conducted to validate the results and 

test the robustness of these models. To emphasize, these models are not suitable replacements 

for clinical guidelines on managing SCN8A-related disorders, but rather tools to aid in research 

and may eventually be validated for clinical use. Clinicians who are interested in using these 

models should be aware of their limitations and use the results as only a part of their therapeutic 

strategies. Ultimately, these models are tools that may develop to higher magnitudes of utility 

but presently should be used with caution and awareness of the limitations and risks outside of 

a research setting.  

 

 

Methods 

Data Collection 

Data for this study were collected by the International SCN8A Patient Registry (Andrews et al., 

2023, Encinas et al., 2019). 253 responses during the period from January 2017 through 

December 2021 from consenting participants were considered for this study. Using this dataset, 

features were selected that are present and easily assessed in clinical settings at early stages 

of the disease: genetic variant, age at onset, seizure history, initial type(s) of seizure(s), current 

type(s) of seizure(s), developmental quotient (DQ), presence of developmental delay, and 

whether the patient had experienced a period of at least 6 months of seizure freedom. DQ was 

calculated by dividing developmental age by patient’s age at the time of their registry 

submission multiplied by 100. Developmental age was calculated using 25 skills from the 

Denver II Developmental Test that are queried in the Registry. This quotient uses the 90th 

percentile for the age that a given skill is acquired by a neurotypical child. Initial and current 

seizure types were expanded from a list variable to a single binary variable for each seizure 

type. 

 

Inclusion Criteria 

Individuals were included in this study only if they possessed SCN8A variants with known or 

inferred gain-of-function (GOF) properties and were classified as pathogenic or likely pathogenic 

according to genetic reports, the ClinVar database, or according to American College of Medical 

Genetics (ACMG) guidelines (Richards et al., 2015). Variants known to have GOF properties 

from previous electrophysiological studies performed in heterologous expression systems were 

also included. Additional variants were included by utilizing the LOF Classifier (Hack et al., 

2023) to categorize variants: those with a probability of loss of function (LOF) [prob(LOF)] <0.3 
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were considered GOF, while those with a prob(LOF) > 0.3 were considered intermediate or true 

LOF variants and excluded from the study. Alternative methods exist for classifying variants as 

GOF or LOF (Bosselmann et al., 2023, Brunklaus et al., 2022, Heyne et al., 2020). After 

reviewing these alternatives, it was determined that the LOF classifier from Hack et al., 2023 

was sufficient as justification for inclusion of variants in a clinically focused study. The 

alternative methods were determined to be better suited for evolutionary and comparative 

studies of sodium channels or in cases which a disease has limited available clinical data. 

Additionally, individuals with a pathogenic or likely pathogenic (but not benign or likely benign) 

variant at other loci associated with epilepsy were excluded from the study. The resulting 

dataset consisted of 180 individuals.  

 

Cluster Assignment and Data Visualization 

Unsupervised Approach. Toward the goal of limiting clinician bias and discovering new 

phenotype-phenotype links, unsupervised cluster analysis and assignment was completed. 

Individuals were assigned clusters by using a dissimilarity matrix calculation with a generalized 

Gower formula resulting in an optimal number of 3 clusters, named U1, U2, and U3. This was 

determined using partitioned around medoid (PAM) clustering and further testing of these 

clusters using hierarchical clustering to validate these assignments. A range of 1-5 was tested 

for the optimal number of clusters and further validation of cluster assignments was conducted 

using density-based spatial clustering of applications with noise (DBSCAN). Analysis of each 

cluster’s features suggested that Cluster U1 associated with milder phenotypic outcome while 

Cluster U3 associated with more severe outcomes, with Cluster U2 being intermediate. These 

clusters were used as the response feature in each predictive model as an Unsupervised 

Approach. 

 

Supervised Approach. To ensure clinical relevance, assessment of patient health severity was 

determined by a clinical specialist. These group assignments were determined by age at onset, 

DQ, and a combination of initial seizure type and number of seizure types at initial presentation. 

The severity groups of Mild (Cluster S1), Moderate (Cluster S2), and Severe (Cluster S3) 

corresponded generally to the Mild, Moderate, and Severe DEE categories described in 

(Hammer et al., 2023), respectively. There were no instances of the classification described as 

self-limited familial infantile epilepsy (SeLFIE) (Hammer et al., 2023). These severity groups 

were used as the response feature in each predictive model as a Supervised Approach. 
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Predictive Modeling 

A series of predictive models were constructed using clusters assigned by both the 

Unsupervised and Supervised Approaches. In both approaches, penalized ordinal logistic 

regression (p-ORM) and a stacked meta-learner utilizing a random forest classifier, an ordinal 

logistic regression classifier, and a linear regression model as described in (Desprez et al., 

2022)(Stacked) were used to model the dataset. Each model used Clusters as the response 

feature. In the case of the p-ORM and Stacked models, predictor features were age at onset, 

DQ, seizure freedom, initial seizure type(s), and developmental delay. The Stacked model 

accounts for imbalance between groups by constructing 5 random forest models using 

conventional sampling methods for contribution to predictive performance. These methods 

include no sampling, oversampling, undersampling, over/undersampling, and synthetic minority 

oversampling technique (SMOTE) sampling. The random forest probability and classification 

outputs of the selected sampling methods are then used as inputs in a linear and ordinal 

regression model, respectively, for a final classification. 

 

For the p-ORM, k-fold cross validation was used with five folds to estimate an average error 

across the entire model. The optimal penalization parameter, λ, was calculated for both 

approaches. Similarly, the Stacked model utilized k-fold cross validation by splitting the training 

set into three folds. Each model was trained and tested on the holdout data and mean absolute 

error (MAE), root-mean-square deviation (RMSE), and percentages of correct classification 

(PCC) were used to evaluate the performance of each model. To ensure that the Stacked 

model’s performance was not a result of favorable training holdouts, each Stacked model was 

run with three different seeds and the average MAE and RMSE from each run was calculated 

for a final performance value.  

 

External Validation 

To determine biological and clinical relevance, the Stacked model using the Unsupervised 

Approach and the p-ORM using the Supervised Approach were validated. Both models were 

validated for biological relevance by taking a subset (n=51) of the population possessing 

variants that have associated electrophysiological scores based on 6 distinctive features: half 

activation voltages of activation and inactivation curves, slopes of the activation and inactivation 

curves, maximum conductance, and persistent current reported in (Johannesen et al., 2022). 

Recent work has shown these electrophysiological scores to be correlated with clinical severity 

(Chung et al., 2023). A dataset was constructed with these individuals that included the 
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predicted probability of cluster assignment for any sampled that patient for the Stacked model in 

the case of the Unsupervised Approach and the p-ORM in the case of the Supervised 

Approach. Linear regression was performed on each of these features using the 

electrophysiological score associated with each variant as the response feature. For the 

explanatory feature, an expected severity score for each patient was calculated by multiplying 

the probabilities of the patient being Cluster U1/S1, Cluster U2/S2, and Cluster U3/S3 by one, 

two, and three, respectively. 

 

Clinical validation was deemed necessary for the Supervised Approach as the cluster 

assignments for this approach follow clinical conventions, while the Unsupervised Approach 

follows an alternative decision-making process. A new dataset (n=91) was constructed using 

individuals reported in Johannesen et al. (Johannesen et al., 2022) with features that 

correspond to the prediction features of the p-ORM. Individuals from this dataset were Cluster 

S1 if their phenotype was reported as benign familial infantile epilepsy (BFIE) or infantile 

epilepsy (IE), Cluster S2 if reported as DEE with Mild-Moderate ID, and Cluster S3 if reported as 

DEE with Severe ID. To convert the categorical variable of ID into a continuous variable as DQ, 

severe ID was set to have a DQ of 40, moderate ID a DQ of 67.5, mild ID a DQ of 90, and 

normal a DQ of 100. Additionally, seizure freedom was inferred if the patient was classified as 

BFIE or IE. Using the p-ORM trained in the Supervised Approach, these 91 individuals were 

predicted as Cluster S1, Cluster S2, or Cluster S3 and a confusion matrix was constructed to 

assess performance with error as the primary assessment feature.  

 

Data and Code Availability 

All coding was completed in RStudio v4.2.2 and de-identified datasets and markdowns for 

dataset construction, expansion, analysis, and model validation are archived on Zenodo (DOI: 

10.5281/zenodo.8336484)  (Bischl et al., 2016, Bischl et al., 2018, Bischl et al., 2020, Fox and 

Hong, 2010, Lunardon et al., 2014 , OpenML, 2020, Probst et al., 2017 , Venables and Ripley, 

2002 , Wright and Ziegler, 2017 ) 

 

Ethics 

This study was approved by the University of Arizona Institutional Review Board (#1603487278) 

and all caregivers of individuals with SCN8A consented to participate prior to providing their 

filling out the International SCN8A Patient Registry. 
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Figures and Tables 

 

 

 

Fig. 1. The SCN8A GOF population can be split into three groups, with strong imbalance.  

(A) Hierarchical cluster analysis showing the cutoff for optimal number of groups. Hierarchical 

clustering used the complete agglomeration method for the optimal dendrogram. Cluster U1 

(blue, n=24), Cluster U2 (yellow, n=43), and Cluster U3 (red, n=113) are marked in their 

respective colored boxes. (B) Kernel density plot. Peaks around 0.2 show 3 optimal clusters. (C) 

Distribution of patients in clusters assigned by hierarchical clustering in the Unsupervised 

Approach. (D) Distribution of patients in clusters assigned by clinical and researcher guidelines 

in the Supervised Approach. 
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Fig. 2. Dimension reduction of SCN8A GOF population shows limited separation between 

groups.  

 (A) Scree plot showing percentage of variance explained in each dimension using 

Unsupervised Clusters. (B) 2-dimensional PC plot showing distribution of Cluster U3 (red, 

n=113), Cluster U2 (yellow, n=43), and Cluster U1 (blue, n=24). The five features with highest 

contribution to variance are shown as vectors in black. (C) 2-dimensional PC plot showing 

distribution of Cluster S3 (red, n=119), Cluster S2 (yellow, n=44), and Cluster S1 (blue, n=17). 

The five features with highest contribution to variance are shown as vectors in black.   
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Fig. 3. Linear regression between group probability and variant electrophysiological 

score suggests biological relevance.   

Linear regression between group probability and electrophysiological score for (A-D) 

Unsupervised Stacked and (E-H) Supervised p-ORM. Electrophysiological score as a function 

of probability of classification as (A) U1, (B) U2, (C) U3, (D) combined probability score from 

Unsupervised Stacked model, (E) S1. (F) S2, (G) S3, and (H) combined probability score from 

the Supervised p-ORM model. Variants included for Unsupervised Stacked: p.R223S (n=2), 

p.T767I (n=1), p.L840P (n=1), p.R850Q (n=7), p.N984K (n=2), p.G1475R (n=7), p.R1617Q 

(n=8), p.N1768D (n=1), p.R1872L (n=2) , p.R1872Q (n=4) , p.R1872W (n=11), p.N1877S (n=5). 

Variants included for Supervised p-ORM: p.R223S (n=3), p.T767I (n=1), p.L840P (n=1), 

p.R850Q (n=9), p.N984K (n=2), p.G1475R (n=7), p.R1617Q (n=8), p.N1768D (n=1), p.R1872L 

(n=2) , p.R1872Q (n=5) , p.R1872W (n=12), p.N1877S (n=5). 
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Table 1. Descriptive statistics of study population. 

Feature Total 

Population 

Unsupervised Supervised 

U1 U2 U3 S1 S2 S3 

Total Patients 180 24 43 113 17 44 119 

Developmental 

Quotient 

36.84 (39.87) 36.45 

(33.10) 

65.6 

(47.26) 

26.63 

(32.60) 

102.07 

(38.18) 

64.04 

(33.59) 

18.08 

(23.72) 

Seizure History 100% 100% 100% 100% 100% 100% 100% 

Age at Onset 3.64 (2.86) 5.26 (2.71) 4.83 

(3.54) 

2.88 

(2.28) 

8.32 

(3.09) 

5.2 (2.60) 2.34 

(1.72) 

Seizure Freedom 16.1% 100% 11.6% 0% 35.3% 27.3% 9.2% 

Developmental Delay 80.6% 100% 23.3% 98.2% 58.8% 77.3% 84.9% 

Initial Seizure Type(s)               

Absence 8.9% 0% 2.3% 13.3% 0% 9.1% 10.1% 

Generalized Tonic-

Clonic 

56.7% 29.2% 65.1% 59.3% 58.8% 56.8% 56.3% 

Atonic 4.4% 0% 2.3% 6.2% 0% 4.5% 5.0% 

Focal 34.4% 16.7% 18.6% 44.2% 17.6% 40.9% 34.5% 

Convulsive 66.1% 45.8% 72.1% 68.1% 64.7% 68.2% 65.5% 

Myoclonic 13.3% 0% 4.7% 19.5% 0% 9.1% 16.8% 

Infantile Spasms 23.9% 20.8% 7.0% 31.0% 11.8% 18.2% 27.7% 

Tonic 28.3% 8.3% 14.0% 38.1% 11.8% 22.7% 32.8% 

 

Descriptive statistics of the complete study population (Column 1), each of the Unsupervised Clusters 

(Columns 2-4), and each of the Supervised Clusters (Columns 5-7). Developmental quotient and age at 

onset show mean (standard deviation) while all other features show the percentage of subgroup 

reporting each feature. 

 

 

 

 

 

B
io

lo
gy

 O
pe

n 
• 

A
cc

ep
te

d 
m

an
us

cr
ip

t



Table 2. Selected coefficients following penalization. 

Unsupervised (λ=18) Supervised (λ=14) 

Feature Coefficient Feature Coefficient 

Seizure Freedom 9.712 Age at Onset 0.745 

Convulsive Seizures 0.838 Seizure Freedom 0.707 

Developmental Quotient 0.010 Developmental Quotient 0.055 

Age at Onset 0.002 Tonic Seizures -0.005 

Infantile Spasms -0.386 Convulsive Seizures -0.065 

Myoclonic Seizures -1.080 Bilateral Tonic-Clonic Seizures -0.132 

Absence Seizures -1.159     

Focal Seizures -1.254     

Tonic Seizures -1.321     

Developmental Delay -3.262     

Best Lambda index is included in parentheses.  

 

 

  

B
io

lo
gy

 O
pe

n 
• 

A
cc

ep
te

d 
m

an
us

cr
ip

t



Table 3. Confusion matrix of predictions from penalized ordinal regression models. 

Unsupervised Supervised 

TRUE Predicted TRUE Predicted 

U1 U2 U3 S1 S2 S3 

U1 24 0 0 S1 12 4 1 

U2 5 27 11 S2 2 32 10 

U3 0 0 113 S3 0 8 111 

  Error= 0.089   Error= 0.139 

 

 

 

Table 4. Performance statistics of Stacked Models across three trials. 

Fitness Value Unsupervised Supervised 

Classification Probability Classification Probability 

Mean Absolute Error 0.06 (0.01) 0.04 (0.03) 0.37 (0.09) 0.35 (0.07) 

Root-Mean-Square Error 0.16 (0.01) 0.15 (0.07) 0.54 (0.07) 0.52 (0.08) 

Percentage of Correct 

Classification 

94.8 (0.81) 95.2 (2.70) 81.0 (4.58) 81.0 (1.00) 

Data is presented as mean (standard deviation). 
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Fig. S1. 3-dimensional principal component plot of Unsupervised Approach. 

Cluster U3 (green), U2 (blue), and U1 (yellow) are shown with contribution from the top 

5 features as vectors. 
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Fig. S2. 3-dimensional principal component plot of Supervised Approach. Cluster 

S3 (green), S2 (blue), and S1 (yellow) are shown with contribution from the top 5 

features as vectors. 

Table S1. Justification for variant inclusion in this study. Each patient's variant was 

verified as being pathogenic or likely pathogenic by cross-referencing patient genetic 

report, the ClinVar database, and SCN8A literature. When variant was unable to be 

verified using these methods, the ACMG guidelines [27] on classifying a variant as 

pathogenic or likely pathogenic were followed. Justification for variants being classified 

as GOF is included for each variant, using either known electrophysiological studies or 

the LOF Classifier [16]. In instances where a patient was unable to be verified using 

these methods, justification for being GOF is included based on clinical features and 

response to medications. 

Available for download at
https://journals.biologists.com/bio/article-lookup/doi/10.1242/bio.060286#supplementary-data

Biology Open (2024): doi:10.1242/bio.060286: Supplementary information
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