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SUMMARY STATEMENT 

A genome-wide CRISPR screen reveals a role for TMEM30A-regulated membrane asymmetry 

in governing cancer cell sensitivity to ceramide-induced cell death. 

 
ABSTRACT 

The bioactive sphingolipid ceramide impacts diverse cellular processes (e.g., apoptosis and cell 

proliferation) through its effects on membrane dynamics and intracellular signalling pathways. 

The dysregulation of ceramide metabolism has been implicated in cancer evasion of apoptosis 

and targeting ceramide metabolism has potential therapeutic benefits as a strategy to kill cancer 

cells and slow tumor growth. However, the mechanisms of cancer cell resistance to ceramide-

mediated cell death are vastly intertwined and incompletely understood. To shed light on this 

mystery, we performed a genome wide CRISPR-Cas9 screen to systematically identify 

regulators of cancer resistance to the soluble short chain ceramide, C6 ceramide (C6-Cer). Our 

results reveal a complex landscape of genetic modifiers of C6-Cer toxicity, including genes 

associated with ceramide and sphingolipid metabolism, vesicular trafficking, and membrane 
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biology. Furthermore, we find that loss of the phospholipid flippase subunit TMEM30A impairs 

the plasma membrane trafficking of its binding partner, the P4-type ATPase ATP11B, and 

depletion of TMEM30A or ATP11B disrupts plasma membrane asymmetry and promotes 

resistance to C6-Cer toxicity. Together, our findings provide a resource of genetic modifiers of 

C6-Cer toxicity and reveal an unexpected role of plasma membrane asymmetry in C6-Cer 

induced cell death. 

 

INTRODUCTION 

Ceramides are a class of bioactive sphingolipids that consist of a sphingoid base amide bound 

to a fatty acid (For reviews on ceramide see (Chaurasia and Summers, 2021; Morad and Cabot, 

2013; Summers et al., 2019)). The length and degree of saturation within the sphingoid base or 

the fatty acid determines the biological activities of the individual ceramides. Multiple pathways 

generate ceramide, including the breakdown of complex sphingolipids such as sphingomyelins 

by sphingomyelinases, the reacylation of sphingosine in the ceramide salvage pathway, and the 

de novo synthesis pathway involving the condensation of serine and palmitoyl-CoA.  

Ceramide has been implicated in diverse cellular roles, including the regulation of 

apoptosis, autophagy, cell proliferation, immune response, and ER stress (Chaurasia and 

Summers, 2021; Morad and Cabot, 2013; Summers et al., 2019). These varied functions are 

mediated by ceramide’s ability to regulate membrane dynamics (e.g., membrane fluidity through 

ceramide-enriched membrane platforms) (Grassmé et al., 2007) and intracellular signal 

transduction (e.g., its interactions with a host of effector proteins) (Stancevic and Kolesnick, 

2010; Summers et al., 2019). For example, in the extrinsic apoptotic pathway, initiation by 

activation of death receptors belonging to the tumor necrosis factor (TNF) receptor superfamily 

triggers an increase in plasma membrane ceramide levels through the actions of 

sphingomyelinases (Pettus et al., 2002). The increased ceramide forms ceramide-enriched 

membrane platforms in the plasma membrane that prime death receptor clustering, facilitating 

the formation of death-inducing signalling complexes (Grassmé et al., 2003; Stancevic and 

Kolesnick, 2010). Ceramide’s position in the apoptotic pathway makes it a desirable topic for 

cancer research as dysregulation of ceramide metabolism has been implicated in cancer 

resistance to apoptosis. For instance, reduced ceramide is associated with resistance to CD95 

and TRAIL-induced apoptosis in a variety of cancer cell types (Voelkel-Johnson et al., 2005; 

White-Gilbertson et al., 2009). Moreover, therapeutics targeting ceramide anabolic enzymes 
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sensitize cancer cells to apoptosis inducers. Similarly, raising the levels of ceramide through 

exogenous treatment with soluble short chain ceramide such as C6 ceramide (C6-Cer) can 

induce apoptosis in cancer cells and in vivo experiments delivering C6-Cer through 

nanoliposomes have been efficacious in pre-clinical mouse models of cancer (Flowers et al., 

2012; Ji et al., 2010; Liu et al., 2010; Stover et al., 2005; Tagaram et al., 2011; Tran et al., 

2008). These findings suggest that targeting ceramide metabolism could be an effective 

strategy for cancer treatment. 

The incomplete understanding of the mechanisms that mediate cancer resistance or 

sensitivity to ceramide-related cell death remains an obstacle for further development of 

targeted therapeutics. Here, we employ genome wide CRISPR-Cas9 screens to provide a 

resource of genetic modifiers that influence C6-Cer toxicity. Our findings reveal that a 

phospholipid flippase composed of TMEM30A and the P4-type ATPase ATP11B is required for 

C6-Cer toxicity, implicating membrane asymmetry as a key factor in C6-Cer-induced cell death. 

 

RESULTS 

Genome-wide CRISPR-Cas9 screen identifies regulators of C6-Cer toxicity 

K562 chronic myelogenous leukemia cells have been previously shown to be sensitive to C6-

Cer induced cell death, providing a useful model to study mechanisms of ceramide toxicity 

(Morad et al., 2015; Nica et al., 2008). Consistent with previous findings, K562 cells were 

sensitive to C6-Cer induced cell death with an EC50 of 27.90 µM (Figure 1A). To systematically 

identify genetic modifiers of exogenous ceramide toxicity, we performed a genome wide 

CRISPR-Cas9 knockout (KO) screen (Figure 1B). K562 cells expressing Cas9 were infected 

with an sgRNA library containing 212,821 sgRNAs targeting 20,500 protein-coding genes (~10 

sgRNAs/gene) along with several thousand control sgRNAs. The cells were then treated with a 

vehicle or a 50% lethal concentration of C6-Cer. Four rounds of C6-Cer treatments were 

performed (with time for recovery), allowing sgRNAs that confer protection to be enriched and 

sgRNAs that confer sensitization to be depleted relative to the vehicle treated controls. The 

frequencies of the sgRNAs in the untreated and C6-Cer treated cell populations were then 

determined by deep sequencing, and the enriched and depleted genes identified using Cas9 

high-throughput maximum likelihood estimator (casTLE) (Morgens et al., 2016; Morgens et al., 

2017). The screening procedure was performed in duplicate and the data from both sets of 
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screens were combined into a volcano plot depicting the collective casTLE confidence scores 

versus the casTLE phenotype effect score (Figure 1C). Employing a 1% false discovery rate 

(FDR), we identified 97 genes that significantly influence C6-Cer toxicity, including genes that 

when depleted result in resistance (64 genes) and sensitization (33 genes) to C6-Cer toxicity 

(Figure 1C and Supplementary Table S1).  

 Analysis of Gene Ontology (GO) pathway enrichments for the identified genetic 

modifiers revealed expected connections to ceramide and sphingolipid metabolism (Figure 

1D,E and Supplementary Figure 1A,B). C6-Cer resistance factors (i.e., cells were sensitized 

to C6-Cer toxicity when these genes were depleted) that are canonically involved in ceramide 

metabolism included ceramide synthase, CERS2; the very-long chain fatty acid synthesis 

enzymes, ELOVL1 and TECR; sphingomyelin phosphodiesterase, SMPD2; and 

glucoceramidases, GBA and GBA2 (Figure 1E). C6-Cer sensitising factors (i.e., cells were 

resistant to C6-Cer death when these genes were depleted) included ceramide 

glucosyltransferase, UGCG; the sphingosine kinases, SPHK1 and SPHK2; and sphingomyelin 

synthase, SGMS1 (Figure 1E). Why the paradoxical depletion of genes associated with 

ceramide anabolism would result in resistance to C6-Cer toxicity is not immediately clear. It may 

be that these cell lines have adapted to higher levels of ceramides with increased protective 

mechanisms to suppress ceramide toxicity. In addition to genes directly involved in ceramide 

and sphingolipid metabolism, the TNF receptor TNFRSF1A (also known as TNFR1) and 

NSMAF were identified as sensitizing factors (Figure 1E). The identification of ceramide and 

sphingolipid metabolic genes, as well as extrinsic apoptosis factors that act through ceramide, is 

consistent with the high performance of our CRISPR-Cas9 screening platform.  

 The GO analysis also revealed significant enrichments in genes involved in vesicular 

trafficking and membrane biology (Figure 1D and Supplementary Figure 1A,B). Consistent 

with this relationship, mapping genetic modifiers of C6-Cer toxicity onto a cell diagram identified 

a high number of genes within the secretory pathway. These included genes related to 

endoplasmic reticulum (ER) and Golgi trafficking as well as endocytic genes related to 

endosome and lysosome functions (Figure 2). The connection with vesicular trafficking is in part 

because several of the enzymes involved in ceramide and sphingolipid metabolism localize to 

the plasma membrane and thus, secretory pathways (Figure 2). However, many other genes 

involved in secretory protein trafficking were present, including Rab GTPases: Rab2A, Rab6A, 

Rab11a; the RAB GTPase activity proteins (RAB GAPs): TBC1D5 and ARF1; the cargo 

receptor, TMED2; the tSNARE protein, G0SR1; the EARP and GARP complex-interacting 
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protein 1, TSSC1; the subunits of the clathrin-associated adaptor protein complex 1: AP1S1, 

AP1M1, AP1G1; and the clathrin-associated adaptor protein complex 2, AP2A1 (Figure 2). 

Many genes in the cell map were also present in nuclear transcriptional pathways (Figure 2), 

potentially reflecting the influence of multiple gene expression programs on ceramide and 

sphingolipid metabolism.  

 

Validation of select genetic modifiers of C6-Cer toxicity 

We validated our screen results for 10 candidate regulatory genes using competitive growth 

assays. Our selection criteria of the genes to validate were based upon their cellular functions 

(e.g., known involvement in cellular trafficking and membrane homeostasis) and the strength of 

the casTLE confidence and effect scores (within the 1% false-discovery rate). In this assay 

(Figure 3A), Cas9 expressing cell lines were infected with sgRNAs targeting candidate 

regulators of interest. Cells expressing the sgRNA plasmid co-express mCherry. These cells 

were combined in an equal ratio with a control line that does not express mCherry. This mixed 

cell population was treated with C6-Cer and then analyzed using flow cytometry to calculate the 

ratio of mCherry positive cells to mCherry negative cells. Cell lines expressing sgRNAs that 

confer resistance to C6-Cer death are proportionally higher in number than the control cells, 

while cell lines expressing sgRNAs that sensitize them to C6-Cer are less abundant than the 

control cells. Expression of sgRNAs targeting ceramide metabolic factors showed the 

anticipated effects based on our screen results, with depletion of CERS2 and GBA sensitizing 

cells to C6-Cer and depletion of UGCG promoting resistance to C6-Cer (Figure 3B). In addition, 

sgRNAs targeting CHD8 and TMEM30A both resulted in strong resistance to C6-Cer toxicity 

and sgRNAs targeting ARL5 sensitized cells to C6-Cer (Figure 3B). We did not observe a 

statistically significant effect of sgRNAs targeting MRPL11, VKORC1L1, CNOT1, or C18ORF8 

(Figure 3B). This difference may be due to insufficient depletion of the target or due to the 

difference in treatment paradigms – in the screen, four consecutive C6-Cer treatments were 

performed versus the single treatment during the competitive growth assay.  

Among the panel of genes analyzed, sgRNAs targeting ARL5A and TMEM30A yielded 

the strongest sensitization and resistance to C6-Cer, respectively (Figure 3B). KO of UDP-

glucose ceramide glucosyltransferase (UGCG) also yielded strong resistance to C6-Cer. As 

UGCG is a gene that is known to be connected with ceramide metabolism, we chose to follow 

up on the more novel regulators – ARL5A and TMEM30A. Consistent with the high confidence 
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identification of these candidate regulators, 8 of the 10 ARL5a-targeting sgRNAs were depleted 

and 10 of the 10 TMEM30A-targeting sgRNAs were enriched following C6-Cer treatment in our 

screen (Figure 3C,D,F,G). ARL5a is a small GTPase that may function in the recruitment of the 

GARP complex to the trans-Golgi network to regulate retrograde trafficking. TMEM30A is a 

subunit of phospholipid flippase complexes. It binds and facilitates the trafficking of several 

different P4-type ATPases to the plasma membrane, where they constitute functional lipid 

flippase complexes that regulate membrane asymmetry (Best et al., 2019; Hankins et al., 2015). 

To further validate these regulators of C6-Cer toxicity, we generated additional lines expressing 

unique sgRNAs targeting ARL5a and TMEM30A. Commercially available antibodies against 

ARL5a and TMEM30a proved unreliable, therefore, we verified our KO cell lines using qPCR 

and Tracking of Indels by Decomposition (TIDE) (Brinkman et al., 2014) (Supplementary 

Figure 2). Three independent ARL5a-targeting sgRNAs sensitized cells to C6-Cer (Figure 3E) 

and TMEM30A-targeting sgRNAs promoted resistance (Figure 3H) to C6-Cer in the competitive 

growth assay, respectively. Furthermore, we found that two TMEM30A knockout cell lines 

exhibited enhanced resistance to C6-Cer induced cell death in an independent flow cytometry 

assay employing SYTOX Green, a membrane impermeable cell death marker (Supplementary 

Figure 3). Together, these data establish ARL5a and TMEM30A as novel regulators of C6-Cer 

toxicity.  

 

TMEM30A disrupts membrane asymmetry, but does not influence C6-Cer flipping or 

uptake 

Phospholipid flippase complexes are composed of a catalytic α-subunit – which can be one of 

several P4-type ATPases – and the single accessory β-subunit TMEM30A (Best et al., 2019; 

Coleman and Molday, 2011; Shin and Takatsu, 2019; Timcenko et al., 2019). The association of 

TMEM30A with the P4-type ATPase enables the ER exit and trafficking of the complex to its 

final destination (e.g., plasma membrane) (Coleman and Molday, 2011; Shin and Takatsu, 

2019). At the plasma membrane, the complex mediates selective phospholipid flipping to 

maintain the asymmetry of the plasma membrane interior and exterior leaflets (Best et al., 2019; 

Hankins et al., 2015). For example, these flippase complexes mediate the flipping of anionic 

phospholipids (e.g., phosphatidylserine (PS)) from the outer to inner leaflet of the phospholipid 

bilayer (Hankins et al., 2015).  
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To examine the role of TMEM30A in membrane asymmetry in K562 cells, we 

ascertained the relative amount of PS in the outer leaflet via a flow cytometric assay using PS-

binding Annexin V conjugated to FITC. TMEM30AKO cell lines showed a drastic increase in 

Annexin V staining, with >90% of the cells being Annexin V positive and the population 

exhibiting an ~6-fold increase in Annexin V staining (Figure 4A, B). Dead cells were removed 

from this analysis by staining with SYTOX-Deep Red, ensuring that the Annexin V staining is 

not due to dead cells. To directly measure PS flippase activity, we incubated cells with 

fluorescently-tagged nitrobenzoxadiazole (NBD) PS and then used BSA to remove any NBD-PS 

remaining in the outer PM leaflet. The fluorescence–which represents PS that has flipped into 

the cytoplasmic leaflet–can then be measured by flow cytometry.  As expected, TMEM30AKO 

cells exhibited a significant impairment in PS flipping (Figure 4C).  

Ceramide is thought to spontaneously flip between bilayer membrane leaflets, an action 

independent of a protein-based transporter or flippase. We considered the possibility that the 

altered composition of the TMEM30AKO inner and outer plasma membrane leaflets could 

influence C6-Cer flipping and cellular uptake. Using NBD C6-Cer, we performed a similar cell-

based lipid flipping assay. In contrast to NBD-PS (Figure 4C), NBD C6-Cer flipping was 

unaffected in the TMEM30AKO cells (Figure 4D). We also examined longer incubation times to 

determine if NBD C6-Cer uptake into cells is affected. Although there was a small, statistically 

significant increase in NBD C6-Cer fluorescence in the TMEM30AKO cells at 5 min, there was 

no difference at 30 or 60 min (Figure 4E). To validate our ceramide uptake assay, we also 

measured NBD C6-Cer uptake using thin layer chromatography. In addition to the NBD C6-Cer, 

we observed a band corresponding to the NBD-labelled fatty acid, indicating metabolism of the 

NBD C6-Cer following cellular uptake (Figure 4F,G). Loss of TMEM30A had no effect on the 

levels of NBD C6-Cer or the NBD-conjugated fatty acid (Figure 4F,G). Together, our data 

indicate that although TMEM30AKO cells exhibit reduced PS flipping and altered membrane 

asymmetry, there is no defect in C6-Cer flipping or uptake.  

 

TMEM30A trafficking of ATP11B to the plasma membrane impacts C6-Cer toxicity 

The canonical role of TMEM30A is as a subunit of phospholipid flippase complexes that is 

required both for the trafficking of the flippase complex to the plasma membrane. Indeed, we 

observed alterations in TMEM30AKO cells PS flippase activity and plasma membrane 

composition (Figure 4). These results raise the possibility that the alteration in plasma 
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membrane asymmetry is responsible for the C6-Cer resistance of TMEM30AKO cells. No P4-

type ATPases were identified in the 1% FDR cut-off of our genetic screen, possibly reflecting 

compensation due to the overlapping functions of these proteins. To identify P4-type ATPases 

that exhibit impaired trafficking in the TMEM30AKO cells, we implemented a proteomics 

workflow to examine changes in the surface proteome (Figure 5A). 3442 proteins were 

identified, including many expected plasma membrane proteins (Supplementary Table S2). As 

anticipated, TMEM30A was reduced in the TMEM30AKO cell lines (Figure 5B). ATP11B and 

ATP11C, two P4-type ATPase that associate with TMEM30A, exhibited reduced plasma 

membrane abundance in multiple TMEM30AKO cell lines (Figure 5B). We focused on ATP11B 

because of its higher abundance, based upon the number of identified spectral counts 

(Supplementary Table S2). The reduction in ATP11B levels was not due to altered ATP11B 

gene expression in the TMEM30AKO cells (Figure 5C).  

To examine the functional role of ATP11B, we depleted ATP11B using siRNAs (Figure 

5D). ATP11B depletion resulted in an increase in the percentage of Annexin V positive cells and 

fluorescence (Figure 5E,F), consistent with a role for ATP11B in the maintenance of membrane 

asymmetry in K562 cells. Similar to the loss of TMEM30A, the depletion of ATP11B also 

resulted in resistance to C6-Cer toxicity (Figure 5G). The effects of ATP11B on membrane 

asymmetry and C6-Cer resistance were not as large as in the TMEM30AKO cells, possibly due 

to the partial depletion of ATP11B or the contribution of additional P4-type ATPases such as 

ATP11C, which also exhibited reduced plasma membrane levels in the TMEM30AKO cells. 

Together, these results suggest that TMEM30A influences C6-Cer resistance, at least in part, by 

promoting ATP11B trafficking and plasma membrane asymmetry.   

 

DISCUSSION 

Ceramide plays established roles in apoptosis through its regulation of key signalling events 

(Morad and Cabot, 2013). The mechanisms by which cancer cells evade ceramide-induced cell 

death remain incompletely understood. We employed a genome wide CRISPR-Cas9 screen to 

provide a resource of high confidence genetic modifiers of C6-Cer induced cell death in K562 

cells and to reveal a role for plasma membrane symmetry in governing the sensitivity of cells to 

C6-Cer toxicity. 

Our genetic screen identified a host of genes from diverse functional categories, these 

included enrichments in ceramide and sphingolipid metabolism, membrane biology, vesicular 
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trafficking, and transcription. We provide initial validation of several candidate regulators, 

including CERS2, GBA, UGCG, CHD8, ARL5, and TMEM30A. Further studies will be required 

to understand the mechanisms that mediate their role in C6-Cer induced cell death. It is notable 

that we identified the TNF receptor TNFRSF1A (also known as TNFR1) and NSMAF in our 

screen using C6-Cer. In the extrinsic apoptotic pathway, TNF binding to TNF receptors leads to 

ceramide generation whilst NSMAF couples the TNF receptor to neutral sphingomyelinase to 

produce ceramide from sphingomyelin catabolism. The identification of TNFRSF1A suggests 

that our screen may detect factors that will influence endogenous ceramide apoptotic signalling 

in addition to the cell death triggered by the more artificial exogenous C6-Cer treatment.  

One of the most interesting discoveries was that the loss of TMEM30A results in 

resistance to C6-Cer toxicity. TMEM30A is a subunit in phospholipid flippase complexes 

(Hankins et al., 2015). It binds several P4-type ATPases and is integral to proper ATPase 

trafficking and function (Coleman and Molday, 2011). Our proteomic analyses of the surface 

proteome in TMEM30AKO cells revealed a loss of ATP11B, reaffirming the requirement of 

TMEM30A for trafficking of P4-type ATPases. RNAi-mediated depletion of ATP11B 

phenocopied the loss of TMEM30A, resulting in the localization of PS to the outer leaflet of the 

plasma membrane and in resistance to C6-Cer toxicity. This result supports the model that loss 

of plasma membrane asymmetry is responsible for the C6-Cer resistance phenotype in the 

TMEM30AKO cells. The effects on PS exposure and C6-Cer resistance were more modest in 

the ATP11B depleted cells than in the TMEM30AKO cells and it remains possible that other P4-

type ATPases also contribute to the observed phenotypes. Ceramide is known to spontaneously 

flip within the bilayer independent of a protein-based transporter. We did not observe any defect 

in NBD-C6-Cer flipping or uptake, suggesting that the resistance phenotype is not simply due to 

a reduction in C6-Cer access to the interior of the cell. However, it should be noted that NBD-

C6-Cer has distinct molecular properties relative to C6-Cer. The addition of the NBD group 

increases the size of the molecule and, due to the polar nature of NBD, may cause the acyl 

chain to loop back towards the membrane-water interface. Further studies using lipidomics 

approaches will be necessary to definitively determine whether uptake and/or flipping of 

ceramide are affected in the TMEM30AKO cells.  

The plasma membrane is a complex combination of phospholipids, sterols, glycolipids, 

and proteins (Harayama and Riezman, 2018). In addition, the composition of the inner 

(cytoplasmic) and outer (exoplasmic) leaflets of the plasma membrane differ (Doktorova et al., 

2020). Employing energy generated from ATP hydrolysis, lipid flippases transfer lipids from the 
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outer leaflet to the inner leaflet (Hankins et al., 2015). Flippases act together with floppases–

which transfer lipids from the inner to outer leaflets–and scramblases–which mediate 

bidirectional lipid transport–to dynamically control transbilayer lipid compositions (Hankins et al., 

2015). Elegant lipidomics studies indicate that the outer leaflet of the plasma membrane is 

primarily composed of phosphatidylcholine and sphingolipids, which tend to pack tightly and 

contribute to a more highly ordered and rigid membrane (Doktorova et al., 2020). The inner 

leaflet of the plasma membrane is enriched in charged lipids, including PS, 

phosphatidylethanolamine,  phosphatidylinositol, and overall contains more highly unsaturated 

fatty acids (Doktorova et al., 2020). The canonical enrichment of charged lipids within the inner 

leaflet contributes to the electrostatic potential across the bilayer (Hankins et al., 2015; 

Harayama and Riezman, 2018). This influences the insertion and folding of integral membrane 

proteins as well as the association of peripheral proteins through polybasic stretches (Harayama 

and Riezman, 2018). As anticipated, we found that PS aberrantly localizes to the outer leaflet of 

the plasma membrane in the TMEM30AKO cells. The transbilayer distribution of other lipids, 

such as sphingolipids, in the TMEM30AKO is not known but broader alterations in the 

composition of plasma membrane inner and outer leaflets may contribute to our observed 

phenotypes.  

While our results implicate plasma membrane asymmetry in cellular sensitivity to C6-Cer 

toxicity, the exact mechanism is not clear and will require additional studies. Alterations in 

membrane asymmetry may influence sphingolipid and ceramide metabolic pathways, which 

would result in changes in intracellular ceramide levels that would affect the formation rate of 

ceramide-enriched platforms and death-induced signaling complexes. In addition, the altered 

plasma membrane asymmetry likely influences integral membrane protein topologies and 

charge-based recruitment of peripheral proteins to the plasma membrane. Plasma membrane 

asymmetry may also influence the ability of ceramide to form channels that permeabilize 

membranes, though this activity of ceramide is controversial.  

Together, our study provides a global overview of the genetic landscape that governs 

C6-Cer toxicity. Moreover, our findings implicate plasma membrane asymmetry as a key factor 

in the cellular sensitivity to C6-Cer, setting the stage for future studies examining the connection 

between specific plasma membrane lipids and ceramide metabolism, plasma membrane 

physical properties, and cell death pathways.  
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MATERIALS & METHODS 

Cell lines and culture conditions 

HEK293T was obtained from UC Berkeley’s cell culture facility.  K562 and K562-Cas9-BFP cells 

were a generous donation from R. Kopito (Stanford University).  HEK293T was maintained in 

DMEM containing 4.5 g/l glucose and L-glutamine (Corning, 10-017).  K562 cells and their 

derivatives were maintained in RPMI-1640 with L-glutamine (Corning, 10-040-CM).  All media 

was supplemented with 10% fetal bovine serum (Gemini Bio Products) and penicillin (10,000 I.U 

mL-1).  Cell lines were maintained at 37°C with 5% CO2. Cell line identifies were not 

authenticated. Regular screening for mycoplasma contamination. 

 

EC50 Death Assay 

Cell death was assayed via the Essen IncuCyte Live-Cell imaging system (Sartorius). Ten 

thousand K562 cells per well were seeded in black 96-well plates (Corning, 3904).  Media 

containing a final concentration of 15nM SYTOX-Green Dead Cell Stain (Invitrogen, S34860) 

and C6-Ceramide (d18:1/6:0) (Enzo, BML-SL110) at various concentrations was added to 

produce a final cell density of 500,000 cells/mL.  Plates were carefully transferred to the 

IncuCyte system (kept at 37°C with 5% CO2) and imaged for 24hours (24hr).  Three images per 

well were captured in the green and brightfield channels every hour for the treatment period.  

The Sartorius image analysis software outputs the number of green objects (SYTOX-Green 

positive, i.e., dead cells) as well as the total number of objects (brightfield segmentation).  For 

each C6-Cer concentration, the ratio of dead objects over total objects was plotted over the 24hr 

imaging cycle.  From this, Prism (Graphpad) was used to calculate the area under the curve 

(AUC), plotted as function of C6-Cer dosage and mathematically determine the EC50. 

 

CRISPR-Cas9 synthetic lethal screen 

The screen was performed as previously described1.  In brief, the Bassik Human CRISPR 

Knockout Library (Addgene, 101926-101934) is separated into 9 sublibraries comprising a total 

of 225,171 elements and targeting approximately 20,500 genes (10 sgRNAs per target).  To 

generate the lentiviral library pool, each sublibrary pool was co-transfected with third-generation 

lentiviral packaging plasmids (pVSV-G/MD2.G [Addgene, 12259], pRSV-Rev [Addgene, 12253] 

and pMDLg [Addgene, 12251]) into low-passage HEK293T cells.  Lentiviral-containing media 

was collected at 48hr and at 72hr post-transfection.  These media pools were then combined 

and filtered via 0.45-micron cartridge.  The resultant lentiviral media was used to infect 
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approximately 2.0 × 108 K562-Cas9 cells for 72hr.  After this infection period, the cells were 

spun down at 500 × g for 5min and viral-laden media was removed.  These cells then 

underwent 5µg/mL Puromycin Dihydrochloride (Gibco, A1113803) selection until the population 

was over 97% mCherry positive.  Cells then recovered in puromycin-free media until a total of 

2.5 × 108 (~1,000-fold total library elements).  This pool was then split and treated with either 

ethanol (EtOH) or 30µM C6-Cer for 24hr.  The treatment period was followed by a 48hr recovery 

and subsequently, the treatment cycle was repeated thrice more.  Each subsequent cycle 

required a slight uptick in C6-Cer concentration as the pools experienced rapid resistance to 

death and thus the drug concentration was raised to achieve ~50% death.  The dosage for cycle 

2 and upwards is as follows: 32.5µM, 35µM and finally, 40µM.  Throughout the screen, K562 

cells are maintained at 500,000 cells/mL. 

After the last bout of treatment, cells were twice-washed with PBS, pelleted into numbers 

approximating 250-fold of total library elements and stored at -80°C.  Genomic DNA was 

extracted using the QIAmp DNA Blood Maxi Kit (Qiagen) according to the manufacturer’s 

directions.  This genomic DNA underwent two rounds of PCR to first amplify sgRNA sequences 

and then index them using Illumina TruSeq LT adaptor sequences. 

PCR amplicons from each sample were pooled into a 1:1 ratio (EtOH:C6-Cer) based on 

concentrations determined by Qubit Fluorometric Quantification (Invitrogen).  Deep sequencing 

was done on an Illumina NextSeq instrument at the Oklahoma Medical Research Foundation.  

Sequence reads were trimmed, then aligned using Bowtie with zero mismatches tolerated.  

Enrichment, confidence scores and p-values were calculated using the casTLE Python code as 

previously described2. 

 

Generation of CRISPR-Cas9 genome-edited cell lines 

Knockout cell lines were generated the same way as the lentiviral portion of the CRISPR-Cas9 

screen.  Cas9 cutting functionality was validated via infecting K562-Cas9 with a self-cutting 

mCherry plasmid (a kind gift from M. Bassik, Stanford University) that expresses mCherry as 

well as a sgRNA sequence targeting said gene. 

sgRNA sequences selected from the CRISPR KO screen were used to create the individual 

transfection plasmids.  All guide sequences were inserted into pMCB320 between the BstXI and 

BlpI sites as previously described3.  
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Plasmid Sequence (5’ to 3’) 

sgARL5A GTACATACATCTCCTACAAT 

sgC18ORF8 GTTGACTTAGGCGCAGC 

sgCERS2 GCGTGATATAGAGATCTG 

sgCHD8 GCTACGGGAATATCAGT 

sgCNOT1 GTAAGAACGCAGAAGATC 

sgGBA GCGGCTGAAGGTACCAA 

sgMRPL11 GTGATCCGGGCGATCGTGC 

sgSAFE GAGCAGAGACCTCCTGAACC 

sgTMEM30A GACAAACCAATTGCTCCTTG 

sgUGCG GAAGAGGACGAACCCGAAGA 

sgVKORC1L1 GACTAGTTTACTTGAACG 

 

Single clones were isolated from the sgTMEM30A polyclonal line to create TMEM30AKO1 and 

TMEM30AKO2 via serial dilution.  Serial dilution was also employed to form clonal lines of 

sgARL5A to create ARL5AKO1 and ARL5AKO2. The sgRNA sequences to the additional knockout 

lines are as follows: 

 

Cell Line Sequence (5’ to 3’) 

ARL5AKO3 GGACAGTACAGACAGAGAG 

ARL5AKO4 GTTAGTATAGTAAGTGTTCC 

TMEM30AKO3 GTGCCAGCCGTAAGGAT 

TMEM30AKO4 GGCAACGTGTTTATGTATTA 

 

Competitive Growth Assay 

WT cells (self-cut mCherry, no mCherry emission) and KO cells (mCherry positive) were seeded 

in a 1:1 ratio with a final density of 500,000 cells/mL into a 96-well round-bottom plate.  Wells 
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were treated with either vehicle (EtOH, untreated) or C6-Ceramide for 24hr.  Cells were then 

spun down, media aspirated and then replenished with media containing 15nM SYTOX-Green.  

The plate was assayed via flow cytometry on a BD LSRFortessa in the UC Berkeley Flow 

Cytometry Facility; dead cells were gated out (positive SYTOX-Green) and live cells were 

analysed to discover the percentages of mCherry +/- cells.  Two-way ANOVA was calculated on 

Prism.   

 

Annexin V Assay 

Assay was adapted from manufacturer directions of the FITC Annexin V Apoptosis Detection Kit 

(BD Pharmingen, 556547). In brief, K562 cells were collected from cultures that were 98% live 

(determined by Trypan Blue staining). Samples were incubated with SYTOX-Deep Red 

Live/Dead Fluorescent Dye (Invitrogen, S11380) for 15min at 37°C, then washed twice with 

DPBS (Gibco, 14190-144) before proceeding with Annexin V-FITC incubation.  Samples were 

analysed by flow cytometry; dead cells (i.e., SYTOX-Deep Red positive) were gated out and the 

FITC spectra measured of the remaining population.   

 

Flippase Assay 

NBD C6-Ceramide (Cayman, 62527) and NBD PS (Avanti, 810194C) were prepared as 

previously described  (Kay et al., 2012).  In brief, compounds were dried under N2 and 

resuspended in methanol. Incorporation of lipids is modified from methods described (Goñi et 

al., 2014; Sandhoff et al., 2018). Compounds are pre-incubated in 4mg/mL BSA (Sigma, A8806) 

in H2O under constant rotation at 300rpm for 30min at 37°C. K562 cells were collected via 

centrifugation, washed and equilibrated at 15°C for 30min in Hank’s balanced salt solution 

(HBSS) containing 1g/L glucose (Gibco, 14025-092) at a concentration of 500,000 cells/mL.  

After cell equilibration, the incubated compounds were added to the cell suspension to the 

required lipid concentration.  This mixture was incubated at 15°C for 20min with constant 

rotational speed of 300rpm.  At the end of the timepoint, NBD conjugated compounds were 

mixed with equal volume of ice-cold 5mg/mL BSA in HBSS to extract the lipids incorporated into 

the exoplasmic PM leaflet. Cells were then analysed by flow cytometry to find the geometric 

mean of FITC emission.  Replicates were averaged and normalised to control values. 
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Uptake Assay 

Uptake assay is adapted from the flippase method.  Samples were plated in a 96-well round 

bottom plate to a final concentration of 500,000 cells/mL with lipid incorporation occurring in 

regular media.  Samples were incubated at 37°C at 5% CO2 for the designated timepoints.  At 

the end of each timepoint, cells were washed thrice with DPBS and assayed by flow cytometry.  

Replicates were averaged and normalised to control values. 

 

High Performance Thin-Layer Chromatography 

Cells were isolated and washed 2x with PBS. Cells were then pelleted at 500xg for 5 min, the 

supernatant was removed, and cell pellets were stored at -80oC. Before extraction, cell pellets 

were thawed on ice for 30 min and resuspended in 50 ul PBS. Lipids were extracted by adding 

1250 uL tert-butyl methyl ether (HPLC grade, Sigma-Aldrich, USA) and 375 uL methanol (HPLC 

grade, Fisher Scientific, USA), both containing 0.1% (w/v) 2,6-Di-tert-butyl-4-methylphenol (GC 

grade, Sigma-Aldrich, USA). The mixture was incubated on an orbital mixer for 1 h (room 

temperature, 32 rpm). To induce phase separation, 315 uL water containing 0.1% (w/v) 2,6-Di-

tert-butyl-4-methylphenol (GC grade, Sigma-Aldrich, USA) was added, and the mixture was 

incubated on an orbital mixer for 10 min (room temperature, 32 rpm). Samples were centrifuged 

(room temperature, 10 min, 17,000 x g). Upper organic phase was collected and subsequently 

dried in vacuo (Eppendorf concentrator 5301, 1 ppm). 

The lipid extract was dissolved in 50 uL chloroform/methanol (2:1, v/v) and 5 ul of each extract 

were loaded on silica coated, glass-bottomed plates (HPTLC silica gel 60, 10x10 cm, Merck). 

Pure standards of FA 6:0-NBD (Cayman Chemical, USA), Cer 18:1;O2/6:0-NBD (Cayman 

Chemical, USA) and Cer 18:1;O2/5:0-BODIPY (Cayman Chemical, USA) were loaded as 0.1 

nmol aliquots on the same plates. Lipids were separated using a solvent mixture of 

triethylamine/chloroform/ethanol/water (5:5:5:1, v/v) (all solvents HPLC grade, Sigma-Aldrich, 

USA) as mobile phase in a solvent vapour saturated twin trough chamber (CAMAG, 

Switzerland). Separated lipids were imaged directly on glass-backed TLC plates using a Gel 

Doc EZ System (BioRad, USA) in combination with the UV Tray filter (BioRad, USA). 

Densitometric quantification of lanes was performed using Image Lab Software Version 5.2.1 

(BioRad, USA) 
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     Surface Biotinylation Assay and Proteomics 

All buffers were filter sterilised prior to use.  Each sample required 24 million cells that were 

pelted and washed with PBS, twice.  10mM of freshly prepared EZ-Link™ Sulfo-NHS-SS-Biotin 

(Thermo, A39258) in PBS and added to the cell mixture at 80µL of 10mM NHS-SS-Biotin per 

mL of sample volume.  Samples were incubated by rocking at room temperature for 30min.  

After incubation, cells were pelleted at 300 g-force for 3 min, excess biotin discarded and then 

washed twice with ice-cold TBS.   

 Proteins were collected from cells via lysing with dissolved Pierce™ Protease Inhibitor 

Mini Tablets, EDTA-free (Thermo, A32955) in RIPA buffer (Thermo, 89901).  Samples were 

sonicated for 15sec at 15% amplitude, followed by vortexing for 10sec every 10min for 30min.  

This was followed by a 5min centrifugation at 15,000 g-force and supernatant.   

 Enrichment of biotinylated proteins proceeded via an overnight incubation at 4°C on 

NeutrAvidin resin (Thermo, 53150) at a ratio of 10µL of beads per 100µg protein.  After 

incubation, samples were centrifuged at 700 g-force for 2min at 4°C.  Pellets then underwent a 

series of wash steps: twice with lysis buffer, thrice with ultrapure H2O and finally, twice with 

50mM ammonium bicarbonate (ABC), pH 8.0.  A portion of clarified proteins were assessed for 

biotinylation efficiency via western-blotting with a streptavidin secondary antibody (Li-Cor, 

32230).  Biotinylated proteins were eluted from resin using 10mM dithiothreitol (Thermo, R0861) 

dissolved in 50mM ABC by end-over-end rotation at room temperature for 30min.  Sample was 

centrifuged at 700 g-force for 2 min and supernatant collected. 

 Sample preparation for mass spectrometry required the addition of 25 µL of freshly-

prepared 55mM iodoacetamide (dissolved in 50mM ABC) with a requisite 30min incubation at 

room temperature in the dark.  After the time interval, we added ice-cold acetone to mix 

overnight at -20°C.  Samples were then centrifuged at 15,000 g-force for 10min, then decanted 

for 30min at room temperature to precipitate proteins. 

Precipitated proteins were resuspended in 25mM ammonium bicarbonate, digested 

overnight using 1µg of trypsin (Promega, V5113) at 37°C. Samples were acidified with 10% v/v 

of trifluoroacetic acid, desalted using C18 stage tips, and dried. For MS analysis, peptides were 

resuspended in 1% formic acid and separated on an Easy nLC 1000 UHPLC equipped with a 

15 cm nanoLC column. Using a flow rate of 300 nL/min, the linear gradient was 5% to 35% over 

B for 90 min, 35% to 95% over B for 5 min, and 95% hold over B for 15 min (solvent A: 0.1% 
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formic acid (FA) in water, solvent B: 0.1% FA in ACN). The table indicates ley mass 

spectrometer parameters. 

 

Method parameter Value 

Polarity Positive 

Full MS  

Microscans 1 

Resolution 120,000 

Automatic gain control (AGC) target 1 x 106 ion counts 

Maximum injection time 50 ms 

Scan range 350-2000 m/z 

dd-MS2  

Microscans 1 

AGC target 1 x 104 ion counts 

Maximum injection time 50 ms 

Isolation window 2 m/z 

Normalized collision energy 27 

dd settings  

Ion trap scan rate 

Desired minimum points across the peak 

Rapid 

6 

Charge inclusion 1-7 

Exclude isotopes on 

Dynamic exclusion 

Mass tolerance 

15 s 

10 ppm 
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Peptide identities and relative abundances were determined using Proteome Discoverer 2.4. Ion 

chromatograms were extracted using Xcalibur Qual Browser for each peptide of interest with a 

mass tolerance of 0.5 Da.  We thank Dr. Steve Eyles (UMass Amherst, RRID: SCR_019063) for 

assistance with high-resolution MS acquired on an Orbitrap Fusion mass spectrometer (NIH 

grant: 1S10OD010645-01A1). 

 

siRNA Knockdown of ATP11B 

sgSAFE cells were transfected with either siATP11B (Horizon, L-023660-00-0005) or siNon-

targeting control (Horizon, D-001810-10-05) using Lipofectamine RNAiMax transfection reagent 

(Thermo, 13778) according to manufacturer directions. Incubation proceeded for 48 hr, 

whereupon samples were washed and divvied into 3 populations: two for subsequent 

competitive growth assays and Annexin V studies, with the last assessed for knockdown 

efficiency via RT-qPCR.  K562 self-cutting mCherry cells were also transfected with siNon-

targeting control to serve as the mCherry- population in our competitive growth assay.   

 

RT-qPCR 

Total RNA of cell samples was extracted using the Monarch Total RNA kit (NEB, T2010S) and 

then reverse transcribed with iScript cDNA Synthesis kit (Biorad, 1708890).  cDNA was 

measured using a CFX96 Touch Deep Well Real-Time PCR system (Biorad) with the probe-

based PrimeTime Gene Expression Master Mix (IDT, 1055770).  Fold changes in cDNA were 

determined using the ΔΔCt method8 normalised to PPIA cDNA.  Primer pairs were purchased 

from IDT’s predesigned PrimeTime Standard qPCR assay; sequences are as follows: 

 

Gene 
Prime

r 
Sequence (5’ to 3’) 

ATP11B Exon 14-

16 

Probe 
/56-

FAM/AACACAATA/ZEN/CCAATCCTTGCAGCAGC/31ABkFQ/ 

Prime

r 1 
ATCGCAGTTGGAGTACTATGC 

Prime

r 2 
CCGTTCCAGTTTTCCAAGAGT 

ATP11B Exon 29- Probe /56-
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30 FAM/ACCAACGAC/ZEN/AGGAGCATCTTGACTC/31AbkFQ/ 

Prime

r 1 
GTAGTCCAACCCACATCAGC 

Prime

r 2 
CCCTTTAACAAGTAGATGAGTCCA 

PPIA Exon 5-5 

Probe 

/56-

FAM/AATTCACGC/ZEN/AGAAGGAACCAGACAGT/31AbkFQ

/ 

Prime

r 1 
GTGGCGGATTTGATCATTTGG 

Prime

r 2 
CAAGACTGAGATGCACAAGTG 

 

 

Cell Counts, Statistical Analysis and Reproducibility 

Unless otherwise indicated, cell amount/concentrations were derived from live cell counts 

(determined by Trypan Blue staining).  Experimental populations were collected from growing 

pools that exhibited ≥ 97% live.  Additionally, unless otherwise indicated, experiments were 

done in triplicate (n=3) with statistical significance calculated in Prism using a two-tailed 

unpaired t-test (p-value ≤0.0332 [*], ≤0.0021 [**], ≤0.0002 [***], <0.0001 [****]).  

 

Data Availability 

All data that support the conclusions in this manuscript are available from the corresponding 

author upon reasonable request. 
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Fig. 1. Genome-wide CRISPR-Cas9 screen identifies genetic modifiers of exogenous 

ceramide toxicity.  

A) K562 cells were treated with the indicated concentrations of C6-Cer and percentage Sytox 

Green positive (Sytox+) cells was measured using an IncuCyte over 24 hr. The structure of C6-

Cer and the calculated EC50 are shown in the inset. Dotted lines indicate the 95% confidence 

intervals for the fitted curves. B) Schematic of the CRISPR-Cas9 screening strategy. C) Gene 

effect and gene score were calculated for individual genes analysed in the CRISPR-Cas9 

screen using the CasTLE. D) Network map of enriched GO terms. Node size indicates gene 

number associated with a GO term and color indicates p-value. E) Ceramide metabolic network 

indicating genes identified in the screen and whether knockout has a negative (blue) or positive 

(red) effect on cell survival in response to sequential rounds of C6-Cer treatments.  
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Fig. 2. Cell map of genetic modifiers of C6-Cer toxicity identified in CRISPR-Cas9 

screens. 

Cell diagram displaying XX of the most significant hits detected in genome-wide screens for 

regulators of C6-Cer toxicity. Node size indicates casTLE score (i.e., confidence) and color 

indicates casTLE effect (i.e., phenotype), with the positive effect in red and negative effect in 

cyan.  
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Fig. 3. Validation of select regulators of exogenous C6-Cer toxicity. 

A) Schematic of fluorescent competitive growth assay. B) Ratio of KO/WT cells grown in the 

competitive growth assay depicted in panel A. Cells are untreated or treated with 30 µM C6-Cer 

for 24 hr and allowed to recover prior to analysis. C,D) Cloud plot and histogram indicating the 
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disenriched sgRNAs targeting ARL5A following C6-Cer treatment in the CRISPR screen. E) 

Competitive growth assay for analysis of three independent ARL5A KO lines. F,G) Cloud plot 

and histogram indicating the enriched sgRNAs targeting TMEM30A following C6-Cer treatment 

in the CRISPR screen. H) Competitive growth assay for analysis of three independent 

TMEM30AKO lines. 
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Fig. 4. Loss of TMEM30A disrupts phosphatidylserine flipping but not ceramide flipping 

nor uptake. 

A) Flow cytometry histograms of annexin V fluorescence in control and TMEM30AKO1 cells. B) 

Quantification of annexin V fluorescence by flow cytometry (as in panel A). C) Quantification of 

NBD-PS flippase activity by flow cytometry. D) Quantification of NBD C6-Cer flippase activity by 

flow cytometry. E,F,G) Quantification of NBD C6-Cer uptake by flow cytometry (E) and thin layer 

chromatography (F,G). 
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Fig. 5. Impaired plasma membrane trafficking of ATP11B impacts PS flipping and 

exogenous C6-Cer toxicity.  

A) Schematic of surface proteomics approach. B) Quantification of the relative surface proteome 

levels for TMEM30A, ATP11B, and ATP11C in control and TMEM30AKO2 cells. C) Quantification 
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of ATP11B mRNA by RT-PCR in control and TMEM30AKO2 cells. D) Quantification of ATP11B 

mRNA by RT-PCR in cells transfected with siRNAs, siNonTarget and siATP11B. E) Flow 

cytometry histograms of annexin V fluorescence following transfection with siNonTarget and 

siATP11B. F) Quantification of annexin V fluorescence following transfection with siNonTarget 

and siATP11B (as in panel D). G) C6-Cer competitive growth assay of cells transfected with the 

indicated siRNA against an untransfected control cell line.  
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Fig. S1. Analysis of C6-Cer genetic modifiers.  

Significantly enriched and disenriched genes from the genome-wide C6-Cer CRISPR screen 
were analyzed using g:Profiler to identify functional relationships. 
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Table S1. CRISPR-Cas9 screen data. 

Table S2. Surface proteome analysis. 

Fig. S2. Loss of TMEM30A sensitizes cells to exogenous C6-Cer-induced cell death.  

K562 cells were treated with the indicated concentrations of C6-Cer for 24 hr and the 
percentage of dead cells (Sytox+) quantified using flow cytometry.  

Click here to download Table S1

Click here to download Table S2
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