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ABSTRACT
We present a method of divergence time estimation
(exTREEmaTIME) that aims to effectively account for uncertainty in
divergence time estimates. The method requires a minimal set of
assumptions, and, based on these assumptions, estimates the oldest
possible divergence times and youngest possible divergence times
that are consistent with the assumptions. We use a series of
simulations and empirical analyses to illustrate that exTREEmaTIME
is effective at representing uncertainty. We then describe how
exTREEmaTIME can act as a basis to determine the implications of
the more stringent assumptions that are incorporated into other
methods of divergence time estimation that produce more precise
estimates. This is critically important given that many of the
assumptions that are incorporated into these methods are highly
complex, difficult to justify biologically, and as such can lead to
estimates that are highly inaccurate.

This article has an associated First Person interview with the first
author of the paper.
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INTRODUCTION
Divergence time estimation plays a central role in evolutionary
research. Empiricists use and estimate divergence times to
investigate the timing of evolutionary diversification within
different clades (Jarvis et al., 2014; Smith and Brown, 2018; Betts
et al., 2018; Ramírez-Barahona et al., 2020). Meanwhile,
theoreticians and methodologists seek new insights into the ways
in which molecular sequence data and the fossil record can be
combined to provide reliable divergence time estimates (Magallón
et al., 2013; dos Reis et al., 2014; Heath et al., 2014; Höhna et al.,
2016; Brown and Smith, 2018)
An important characteristic of divergence time estimation is that

the primary source of data (molecular sequences) does not actually
provide any information about time (Britton, 2005). This is because
only the total number of substitutions separating any pair of
molecular sequences can be estimated directly, which is itself a
product of the substitution rate and time since the sequences
diverged (Britton, 2005). As a result, divergence time estimates are

entirely sensitive to assumptions about substitution rates and node
ages within a phylogeny (Carruthers and Scotland, 2021a).

Initial approaches to divergence time estimation were simplistic.
They involved the use of strict clock models that assumed the same
substitution rate on every branch in a phylogeny, and a limited
number of node calibrations where the ages of certain nodes were
assumed to be known (Langley and Fitch, 1974; Britten, 1984;
Gillespie, 1989, 1991; Bromham, 2006). These assumptions were
generally unrealistic, meaning that divergence time estimates were
often very inaccurate.

More recently developed methods attempt to account for more
complex patterns of molecular evolution and the idiosyncratic
nature of the fossil record (the primary source of evidence for
making assumptions about node ages in a phylogeny). A range of
different relaxed clock methods that incorporate among-branch-
substitution-rate-variation are now widely used. These methods
vary in whether substitution rates are inherited between ancestral
and descendant branches (Sanderson, 1997, 2002; Thorne et al.,
1998; Kishino et al., 2001; Tamura et al., 2018), whether
substitution rates vary gradually (Drummond et al., 2006) or in
discreet jumps in different parts of the phylogeny (Drummond and
Suchard, 2011), and whether substitution rates are correlated with
other traits (Lartillot and Poujol, 2011; Ho, 2014; Berv and Field,
2018). For temporal calibrations, different probability distributions
are now widely used that aim to describe uncertainty in the
relationship between a fossil age and the age of a calibrated node
(Ho and Philips, 2009). Tip calibration, where a phylogeny is
calibrated based on an explicit phylogenetic hypothesis of the
relationship between fossils and extant taxa, has also recently been
advocated (Heath et al., 2014). Aside from combining fossils
with molecular phylogenies, modern Bayesian methods make
further assumptions about time by assuming that branching events
are underpinned by constant speciation and extinction rates
(Drummond et al., 2006; Höhna et al., 2016).

Analyses based on these more recent methods are highly complex,
and result in a wide range of interlinked assumptions being
incorporated into a single analysis. Interactions among these
assumptions can have complex effects on parameter estimates
(Brown and Smith, 2018; Carruthers and Scotland, 2021a). Further,
the interlinked assumptions are themselves hard to justify
biologically. Even explicit model comparison methods have a
limited utility in this context, given the computational burden of their
implementation and the fact that the parameters that are estimated in
divergence time estimation (substitution rates and branch time
durations) are confounded (Carruthers and Scotland, 2021b).

Extreme sensitivity to a series of assumptions that are difficult to
justify poses a potentially existential problem for divergence time
estimation, and this problem is accentuated further by the complexity
of current methods. The outcome of this is that divergence time
estimates are often inaccurate, and the specific nature of many of the
assumptions that are incorporated into analyses (for example,
assuming that among-branch-substitution-rate-variation conformsReceived 6 December 2021; Accepted 9 December 2021
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to a specific model) means that the degree of uncertainty underlying
divergence time estimates is often greatly underestimated
(Carruthers and Scotland, 2021b).
Here, we present a method of divergence time estimation that is

designed to accurately estimate uncertainty in divergence time
estimates. It is based on a minimal set of justifiable assumptions,
namely the minimum and maximum conceivable substitution
rate, and potentially minimum and/or maximum age constraints
for one or several nodes. The method does not use an explicit
model of among-branch-substitution-rate-variation, use probability
distributions for describing the relationship between fossil ages and
clade ages, or make any assumptions about the speciation rate and
extinction rate underpinning the phylogeny. Given that the potential
range of substitution rates and minimum and maximum age for any
particular node are very poorly known for many groups, the method
is likely to lead to very uncertain divergence time estimates. Further,
given that the purpose of the method is to incorporate uncertainty
accurately into divergence time estimates, it exclusively estimates
the minimum and maximum divergence time estimates that are
consistent with a set of assumptions, rather than a mean or most
probable age for a particular clade.
The power of this method lies in its ability to represent the full

extent of uncertainty in divergence time estimates in a single
analysis (Fig. 1). Once this has been quantified, methods
incorporating more specific assumptions can be implemented
(Fig. 1). By performing these subsequent analyses in the context
of knowledge of the uncertainty underlying divergence time
estimates, it is possible to make more robust statements about the
implications of assumptions underlying these methods, and
compare the probability of the biological conclusions that are
implied by the results from each method. Such a comparative
framework is useful for methodologists aiming to understand the
implications of different assumptions, and empiricists who aim to
understand the implications of assumptions for biological
conclusions about a specific group. Below, we perform a series of
simulations and empirical analyses to illustrate this rationale.

RESULTS
Simulation experiments
In the first simulation, the data was simulated along a branching
process in which the speciation rate was constant, and the

substitution rate for each branch corresponded to an uncorrelated
lognormal relaxed clock (UCLN). Divergence times were then
estimated in exTREEmaTIME, RevBayes (Höhna et al., 2016), and
treePL (Smith and O’Meara, 2012). In RevBayes, analyses were
performed with a UCLN (corresponding to the model under which
the data was simulated) or a random-local-clock (RLC). Violation of
the substitution rate model could then be tested, with estimates
compared to those obtained with exTREEmaTIME. Overall,
analyses performed in exTREEmaTIME produced the widest
ranges for feasible age estimates (Fig. 2A), and the range always
incorporated the correct value. For RevBayes and a UCLN relaxed
clock, estimates were more precise, and always incorporated the
correct value (Fig. 2A). By contrast, with an RLC the correct value
was often not incorporated in the 95% HPD (Fig. 2A). Analyses in
treePL varied about the mean somewhat, although they did not
depart significantly, and the divergence time estimate from treePL
was always incorporated in the 95% HPD that was estimated with
RevBayes and a UCLN (Fig. 2A).

A subsequent simulation differed in that the branching process
from which the data was simulated had an increase in the speciation
rate for a clade, thus violating the assumption of constant speciation
and extinction rates that underpins most methods of Bayesian
divergence time estimation. The simulated data was then analysed in
two settings. First, analyses were performed with no node
calibrations for internal nodes, and subsequently, analyses were
performed where the crown node for the clade with an increase in
the speciation rate had a minimum constraint that was 10% below
the correct value. The utility of a node calibration is therefore
assessed in a more complex example, where the distribution of clade
ages does not correspond to a simple branching process with
constant rates. In this simulation, analyses using exTREEmaTIME
always included the correct value within the range of feasible age
estimates (Fig. 2B). The implementation of the node calibration
increased the minimum age estimate for the specific node with the
node calibration, but had no impact on other nodes throughout the
rest of the tree (Fig. 2B). For analyses in RevBayes, and without
the node calibration, the 95% HPD did not incorporate the correct
value for a high proportion of nodes (Fig. 2B). This situation was
rectified partially when the node calibration was implemented,
although some biases were induced at other nodes (Fig. 2B). For
analyses in treePL, estimates deviated considerably from the correct
value. They did nonetheless overlap with the 95% HPDs from
RevBayes, and the implementation of the node calibration tended to
reduce the degree of error (Fig. 2B).

Empirical analyses
Crown age estimates for angiosperm families estimated in BEAST
and treePL by Ramírez-Barahona et al. (2020) were compared to
those estimated in exTREEmaTIME using the same dataset. Age
estimates with exTREEmaTIME were far less precise than those
estimated in BEAST when either the full set of fossil calibrations
were used (Fig. 3A), or when the subset of 45 fossils selected by
Ramírez-Barahona et al. (2020) that had undergone formal
phylogenetic analyses were used (Fig. 3B). However, the full
dataset of fossil calibrations led to an increase in the minimum age
estimate for many families, especially with exTREEmaTIME
(Fig. 3). Note that divergence time estimates from treePL always
differed markedly from those obtained with BEAST such that the
divergence time estimate from treePL often lay outside the 95%
HPD from BEAST. By contrast, age estimates from treePL lie
within the range of feasible ages estimated by exTREEmaTIME
(Fig. 3).

Fig. 1. An illustration of the rationale for exTREEmaTIME. The horizontal
dashed line is the correct value. Each group of four error bars represents
parameter estimates from a series of sequentially recent studies in which
knowledge of substitution rates and the fossil record has improved. Analyses
from exTREEmaTIME always incorporate the correct value. Meanwhile,
analyses with model-based methods underrepresent uncertainty in
divergence time estimates such that they do not always incorporate the
correct value. Further, more recent studies can directly contradict older
studies in cases where the error bar from the more recent study does not
overlap with that of the older study.
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DISCUSSION
exTREEmaTIME produces imprecise divergence time
estimates that account for uncertainty
Age estimates from exTREEmaTIME were far less precise than
those estimated in a Bayesian framework or with treePL (Figs 2 and
3). This was the case in the simulation experiments and empirical
analyses, and occurred even though the same molecular sequence
datasets were analysed and the same node calibrations were used.
This result occurs because exTREEmaTIME makes less stringent
assumptions, and divergence time estimates are highly sensitive to
assumptions, given that time is not estimated directly from the
molecular sequence data.
The importance of the assumptions implemented in treePL and

Bayesian methods is further highlighted by the fact that estimates
from these methods often do not overlap (i.e., point estimates from
treePL lie outside the 95% HPD from Bayesian analyses) (Figs 2
and 3), and by the fact that biologically realistic violations of
assumptions lead to erroneous divergence time estimates. For
example, in the simulations, the implementation of the wrong
molecular clock model, or a speciation rate shift in the simulated

evolutionary process (which violates the assumption of a branching
process with constant rates that is used in RevBayes), causes
erroneous divergence time estimates (Fig. 2). By contrast, given that
exTREEmaTIME is not model based, its estimates are highly
imprecise, but generally overlap with those of other methods, and
always incorporate the correct value in the simulation experiments
(Figs 2 and 3). exTREEmaTIME is therefore effective at accounting
for uncertainty.

A useful interpretation of divergence time estimates from
exTREEmaTIME
The imprecise divergence time estimates from exTREEmaTIME
can be challenging to interpret. Specifically, we suggest that
exTREEmaTIME should be interpreted as a baseline that expresses
the maximum level of uncertainty surrounding clade age estimates.
In this vein, we are not disputing the findings of Ramírez-Barahona
et al. (2020), or necessarily suggesting that exTREEmaTIME
should be used as a basis to dispute any other finding. Instead, we
are using exTREEmaTIME to highlight that more precise estimates
are a direct result of more precise methodological assumptions. It is

Fig. 2. Results from simulation experiments
summarising error in estimated node ages. (A) is when
the simulated evolutionary process has a constant
diversification rate. (B) is when the simulated evolutionary
process has an increase in the speciation rate.
*MPE, mean posterior estimate; HPD, highest posterior
density.
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the job of authors of studies such as Ramírez-Barahona et al. (2020)
to provide a biological justification for the assumptions that they
make.
A recent and valid trend in divergence time analyses is to

implement a range of methods in the hope that they arrive at some
level of consistent conclusion (Morris et al., 2018; Fernández-
Mazuecos et al., 2020). The rationale for this approach is that
although each method is undoubtedly limited, achieving
consistency with different methods must imply that some level of
coherent temporal signal is being extracted from the data.
Unfortunately, such comparisons are necessarily limited in scope,
with often only a limited number of methods being compared. As
such, the range of assumptions that are actually explored is often
relatively narrow. The coherent temporal signal which is believed to
have been obtained therefore reflects the limited nature of the
assumptions that are explored. Even in studies where age estimates
differ markedly between methods (Barba-Montoya et al., 2018;
Ramírez-Barahona et al., 2020), and researchers attempt to use this
as a basis to bracket uncertainty in the age estimate for a particular
node, the age bracket simply represents the assumptions of the
different methods that are explored.

In light of this, a comparison of different methods in the context of
an exTREEmaTIME analysis can illustrate the extent to which
outputs from these different methods reflect the maximum
conceivable level of uncertainty. Parts of the potential age range for
a clade that are estimated by exTREEmaTIME, but were not evident
in previous analyses, can therefore be interrogated, and researchers
can determine whether these parts of the age range are feasible. In
some cases, researchers will have justifiable reasons to exclude parts
of the age range expressed by exTREEmaTIME. Alternatively,
following analysis with what is considered a biologically justifiable
set of models, the exTREEmaTIME analysis may be refined such that
it produces more precise estimates that better reflect the true level of
uncertainty. Regardless, the purpose of exTREEmaTIME is to
represent the maximal level of uncertainty that can be associated with
divergence time estimates, and shifts the burden on those
implementing other methods that result in higher levels of precision
to provide biological justification for these methods.

Therefore, in presenting this method we are not seeking to
undermine the search for increasingly precise divergence time
estimates, because precise divergence time estimates can be
an extremely powerful tool for the study of evolution. Instead, the

Fig. 3. Comparison of angiosperm family crown age
estimates. In A the full dataset of fossil calibrations from
Ramıŕez-Barahona et al. (2020) is used, in B a subset of
fossil calibrations that are assigned to nodes based on
formal phylogenetic analyses is used.
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search for precision is not wholly incompatible with the very
different method being presented here that focuses on uncertainty.
In our view, when these two approaches are combined, they can help
researchers to better understand and embrace the uncertainty that
underpins divergence time analyses.

MATERIALS AND METHODS
Overview of exTREEmaTIME
The method requires three types of input: a phylogeny with molecular
branch lengths that reflect the number of substitutions; a maximum and
minimum conceivable substitution rate across the input phylogeny (rmax and
rmin); and minimum and maximum age constraints for nodes in the
phylogeny.

Based on these inputs, two time-calibrated phylogenies are estimated,
Treemax and Treemin. Respectively, these represent the maximum and
minimum divergence time estimates that are consistent with the inputs. The
method does not attempt to estimate a ‘most likely’ divergence time between
the ages represented in Treemin and Treemax. This is because it does not make
any assumptions about the nature of variation in r or the relationship
between fossil ages and clade ages (other than the simplistic assumptions
specified in the inputs), and its purpose is simply to generate feasible
divergence time ranges that are consistent with the inputs.

rmin and rmax can be specified in two different ways. In some cases, it may
be feasible to consult the relevant literature (e.g. Yang et al., 2017), although
substitution rate estimates from the literature are often themselves based
on important assumptions. Alternatively, exTREEmaTIME includes a
function (SetAutoRates) for specifying rmin and rmax based on the molecular
branch length variance of terminal branches in the input tree. Nonetheless,
specifying rmin and rmax is challenging (for example branch length variation
for terminal branches may not be representative of substitution rate variation
across the entire tree) and there is an element of subjectivity, just as there
is with specifying clock models for all other methods of divergence time
estimation. Unlike other methods however, specified input parameters are
not designed to encapsulate the underlying evolutionary process, but
are instead designed to provide a basis for representing a maximum feasible
age range for a clade. This places less of a burden on the assumptions
that are implemented in the analysis. In light of this characteristic of
exTREEmaTIME, we advise users to always favour wider intervals between
rmax and rmin unless there are explicit reasons not to do so. Nonetheless,
given the simplicity of the assumptions that are implemented, it is
straightforward to assess the implications of different specifications for
rmin and rmax.

exTREEmaTIME is freely available at: https://github.com/TomCarr/
exTREEmaTIME. There are also extensive instructions in this repository.

Simulation experiments
Simulations were undertaken to provide a simple context for evaluating the
performance of exTREEmaTIME relative to other methods, when either the
assumptions of the other methods were consistent with the simulated data, or
when there were basic violations of the assumptions. Specifically, we
compared the performance of exTREEmaTIME to RevBayes, a Bayesian
framework that implements commonly used models in divergence time
estimation, and treePL, a widely used penalised-likelihood method which
assumes that substitution rates are autocorrelated.

Generating simulated datasets
Simulations were based on two different 24-taxon branching processes
generated with a custom R script that required the package TreeSim (Stadler,
2019). For both branching processes the extinction rate was 0. In one
branching process the speciation rate was constant, while in the other there
was an approximately 10-fold increase for a clade. The branch lengths of
these branching processes were initially in units of time.

Branch lengths were transformed to molecular branch lengths (reflecting
the number of substitutions) by dividing them by the substitution rate.
The substitution rate for each branch was drawn from a lognormal distribution
(m=0.05 and v=0.00025). Molecular sequences of 50,000 bp were then
simulated along these transformed branch lengths according to a JC model.

Analysis of simulated data
Phylogenies with molecular branch lengths were first estimated from the
simulated sequence data. This step was performed in RevBayes, with the
analysis constrained to the correct topology.

For subsequent divergence time estimation in exTREEmaTIME,
SetAutoRates was used to define plausible values for rmax and rmin, with
the mean posterior molecular branch lengths estimated in RevBayes used as
the input. The root age was assumed to be known.

For divergence time estimation in RevBayes, two different molecular
clock models were used: an uncorrelated lognormal relaxed clock (UCLN),
and a random local clock (RLC). The prior distributions for these
relaxed clocks were derived from the posterior distributions of
molecular branch lengths estimated in RevBayes (described above). For
UCLN, m was calculated by dividing the mean root to tip distance in the
input tree (the tree estimated in RevBayes, described above) by the root age,
with the correct root age assumed to be known. v was calculated from the
variance of all terminal pairs of sister branches in the input tree. For RLC,
values by which the substitution rate is multiplied were drawn from a
uniform distribution, with the range of the distribution being defined by the
largest branch length difference between terminal pairs of sister branches in
the input tree. The probability of a change in the substitution rate on a given
branch was drawn from an exponential distribution with rate=10. The
substitution rate for the basal two branches of the tree was parameterised in
the same manner as with UCLN. In all cases a JC model of sequence
evolution was used, a Yulemodel was used as the branching process, and the
root age was assumed to be known.

For divergence time analyses in treePL, the mean posterior molecular
branch lengths estimated in RevBayes were used as input. Cross-validation
was used to define the optimal smoothing parameter, with the root age
assumed to be known.

For analyses in exTREEmaTIME, RevBayes, and treePL, and where
sequence data had been simulated on a tree with a shift in diversification
rates, a single minimum age constraint was used at the crown node of the
clade for which there was an increase in the net diversification rate. This
minimum age constraint was set to an age of 10% less than the true age of the
clade. For analyses in RevBayes, this age constraint was implemented using
a uniform distribution, where the minimum of the uniform distribution was
equal to the minimum age constraint, and the maximum of the uniform
distribution was equal to maximum age constraint at the root node (i.e. the
maximum possible age for any node in the phylogeny).

Empirical analyses
Empirical analyses were undertaken to evaluate the performance of
exTREEmaTIME relative to other methods in the context of a large and
complex biological dataset. Family crown age estimates from Ramírez-
Barahona et al. (2020) were compared to those estimated in
exTREEmaTIME. The comparison was based on the unconstrained
calibration strategy from Ramírez-Barahona et al. (2020) in which the
crown node of angiosperms had a maximum age constraint of 247Ma. To
estimate divergence times with this dataset in exTREEmaTIME, we used the
phylogeny estimated in RAxML by these authors as the input tree.
SetAutoRates was used to estimate rmin and rmax. Analyses were performed
with the full dataset of fossil calibrations used by Ramírez-Barahona et al.
(2020), or the reduced dataset comprising fossils that could be assigned to
clades based on formal phylogenetic analyses.
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