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Abstract 

Clustering of cells based on gene expression is one of the major steps in single-cell RNA-

sequencing (scRNA-seq) data analysis. One key challenge in cluster analysis is the unknown 

number of clusters and, for this issue, there is still no comprehensive answer. In order to 

enhance the process of defining meaningful cluster resolution, we compare Bayesian Latent 

Dirichlet Allocation (LDA) method to its non-parametric counterpart, Hierarchical Dirichlet 

Process (HDP) in the context of clustering scRNA-seq data. A potential main advantage of 

HDP is that it does not require the number of clusters as an input parameter from the user. 

While LDA has been used in single-cell data analysis, it has not been compared in detail with 

HDP. Here, we compare the cell clustering performance of LDA and HDP using four 

scRNA-seq datasets (immune cells, kidney, pancreas and decidua/placenta), with a specific 

focus on cluster numbers. Using both intrinsic (DB-index) and extrinsic (ARI) cluster quality 

measures, we show that the performance of LDA and HDP is dataset dependent. We describe 

a case where HDP produced a more appropriate clustering compared to the best performer 

from a series of LDA clusterings with different numbers of clusters. However, we also 

observed cases where the best performing LDA cluster numbers appropriately capture the 

main biological features while HDP tended to inflate the number of clusters. Overall, our 

study highlights the importance of carefully assessing the number of clusters when analyzing 

scRNA-seq data. 
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1. Introduction 

 

Recent advances in single-cell sequencing have enabled increased resolution of biological 

and medical studies of cellular functions. Single-cell RNA-sequencing (scRNA-seq) is 

widely used to study cellular heterogeneity in cancer, developmental biology, immunology 

and neurology (Tang et al., 2019). Clustering of cells based on their gene expression profiles 

is one of the major steps in scRNA-seq data analysis. For instance, the computational analysis 

of scRNA-seq data for cell-type identification has mainly relied on unsupervised clustering 

methods (Qi et al., 2019), such as distance-based cluster optimization, density-based 

clustering, or graph-based clustering methods (Petegrosso et al., 2019). 

 

Single-cell clustering methods are mainly based on optimization of the pairwise distance 

between cells (Petegrosso et al., 2019; Qi et al., 2019), which is a challenging task due to the 

high dimensionality of the data (Remesh and Pattabiraman, 2017). The choice of the distance 

metric also affects the clustering result (Singh et al., 2013). Bayesian clustering, which uses 

sampling-based inference methods for clustering, can be utilized to address these challenges. 

Unlike traditional distance optimization-based techniques, the Bayesian approach uses soft 

cluster assignments, in which the data points are assigned to each cluster according to their 

probability of uncertainty, allowing a mixed cluster membership. Moreover, sampling-based 

Bayesian clustering methods avoid distance calculation, allowing a tractable way of dealing 

with high dimensional data. One such Bayesian admixture model is latent Dirichlet allocation 

(LDA) (Blei et al., 2003), which recently has been successfully adopted for clustering of both 

scRNA-seq (Dey et al., 2017; duVerle et al., 2016; Sun et al., 2018; Wang et al., 2021) and 

scATAC-seq (Bravo González-Blas et al., 2019) data. 

 

One key challenge in cluster analysis is the choice of cluster resolution. This is inherently 

linked to one of the great advances of single-cell sequencing, which is the discovery of 

previously unknown cellular states or even new cell types. There are several clustering 

methods available for scRNA-seq data analysis with different parameters regulating the 

cluster resolution. For instance, Seurat 4 (Hao et al., 2021) implements the shared-nearest 

neighbor (SNN) graph-based clustering on PCA space with modularity optimization and a 

user-selected parameter regulating the cluster resolution (Butler et al., 2018). Similarly, 

Monocle 3 (Cao et al., 2019) implements graph-based community detection algorithms with a 
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user-defined input resolution parameter. However, an inappropriate choice of these 

parameters may impede the discovery of novel cell states or types.  

 

To address these challenges, in this study, we investigate the utility of hierarchical Dirichlet 

process (HDP) (Teh et al., 2006) for clustering scRNA-seq data as a non-parametric 

counterpart of LDA. The HDP method has been applied, for example, to correct technical 

variations for scRNA-seq data (Prabhakaran et al., 2016), to segment gene regulatory 

networks (Wang and Wang, 2013) and to cluster bulk gene expression data (Wang and Wang, 

2013). Here we apply HDP to cluster scRNA-seq data and compare its performance to LDA. 

We analyze in detail three publicly available scRNA-seq datasets, including artificially mixed 

human immune cells, and two tissue-specific subsets of kidney and pancreas cells from 

Tabula Muris (Schaum et al., 2018), with high quality cell type annotations. Additionally, we 

also test the scalability of the methods with a large dataset from human decidua/placenta 

(Vento-Tormo et al., 2018). We specifically focus on the clustering resolution necessary to 

capture the cellular heterogeneity using both intrinsic and extrinsic cluster quality measures.  

 

2. Results  

 

To study the performance of LDA and HDP clustering models in identifying the cellular 

heterogeneity from scRNA-seq data, we applied them to an artificial mixture of human 

immune cells (S1 Table), mouse kidney cells, and mouse pancreas cells (Schaum et al., 

2018). For each dataset, the cluster quality was measured first intrinsically using the Davies-

Bouldin index (DB-index) and secondly extrinsically using the Adjusted Rand Index (ARI) 

with the reference clusters from the original publications (see Materials and methods for 

details). In addition to DB-index, we also tested the intrinsic cluster quality with Calinski-

Harabasz (CH-index) (Calinski and Harabasz, 1974), which overall gave similar results as the 

DB-index (Fig. S1). Finally, the clustering results of the best two k values based on the 

intrinsic DB-index were visualized using the UMAP plots side by side with the reference cell 

type annotations from the original publications. In each dataset, we ran HDP clustering with 

20 repetitions and a series of LDA clusterings with an increasing number of clusters k from 2 

to 20 (20 repetitions each) using the default parameters. The run time for a single analysis on 

a 48 core Ubuntu 16.04 EC2 cloud instance was ~2-3 minutes for LDA in the immune cells 

(~1000 cells), pancreas cells (~2000 cells) and kidney cells (~3000 cells), whereas the run 

time for HDP increased from ~6 minutes with ~1000 cells to ~15 minutes with ~2000 cells 
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and ~28 minutes with ~3000 cells (Table S2). LDA and HDP run times for the 

decidua/placenta (64,000 cells) took 1.35 hours and 4 days respectively, and this data was not 

used for the full comparison between LDA and HDP. The memory usage was similar 

between LDA and HDP (Table S2).  

 

2.1 LDA and HDP clustering performance in human immune cells 

 

In the intrinsic evaluation of the human immune cell data, the two lowest (best) DB-index 

values with LDA were obtained with k = 3 (DB = 2.3) and k = 5 (DB = 2.4) clusters (Fig 1A), 

whereas for HDP those were k = 7 (DB = 2.3) and k = 9 (DB = 2.4) (Fig 1B).  

 

Fig 1. Comparison of LDA and HDP clustering performance using artificially mixed human 

immune cell scRNA-seq data. Intrinsic cluster quality measure defined by Davies-Bouldin 

index (DB-index) for (A) LDA and (B) HDP clustering. The x-axis shows the number of 

clusters k, and the y-axis indicates the DB-index values (lower indicates better clustering). 

Extrinsic cluster quality measure defined by Adjusted Rand Index (ARI) for (C) LDA and 

(D) HDP clustering. The x-axis shows the number of clusters k, and the y-axis indicates ARI 

(higher indicates better clustering). For (A-D) each run was repeated 20 times and the top, 

middle and bottom lines show the maximum, mean and minimum quality values, 

respectively. The UMAP plot of LDA clustering with (E) k = 3 and (G) k = 5. The UMAP 

plot of HDP clustering with (F) k = 7 and (H) k = 9. (I) The UMAP plot showing the 

reference clustering with the cell-type annotation from the original publications (S1 Table).  

 

In the extrinsic cluster evaluation, increasing the LDA cluster number to k = 5 resulted in an 

increasingly better quality in terms of ARI, but larger cluster numbers did not affect the 

quality markedly (Fig 1C). The mean ARI values for two best DB-index informed HDP 

clusterings (k = 7 and k = 9) had higher ARI values (~0.6) than those of LDA (<0.5 for k = 3 

and k = 5) (Fig 1D). Thus, the extrinsic quality measures were in line with the intrinsic DB-

index values, suggesting that – judged by the reference clusters – HDP performed slightly 

better than LDA in this dataset.  

 

We next visually inspected the best performing clusterings selected by DB-index with UMAP 

plots by comparing these to the reference cell type annotations (Fig 1E-I). HDP with k = 7 

resolved the main reference cell types (Fig 1F), whereas LDA with k = 5 did not (Fig 1G). 
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Specifically, LDA with k = 5 had one cluster containing B cells, dendritic cells and 

lymphoblasts together, whereas HDP with k = 7 or k = 9 was able to resolve these three cell 

types to their own clusters. Overall, for this dataset, when comparing with the reference 

clusters, the DB-index informed HDP was able to predict a biologically more adequate 

clustering than DB-index informed LDA.  

 

2.2 LDA and HDP clustering performance in mouse kidney cells  

 

In the intrinsic evaluation of the mouse kidney data (Schaum et al., 2018), LDA with cluster 

numbers k = 6 and k = 12 showed the minimum average DB-index values of 2.2 and 2.3, 

respectively (Fig 2A), indicating the highest intrinsic cluster quality. The HDP clustering 

result partitioned the dataset into k = 11 clusters with the lowest average DB-index value of 

2.6 followed by k = 17 with average DB-index value of 3.0 (Fig 2B). 

 

Fig 2. Comparison of LDA and HDP clustering performance using mouse kidney cells 

(Schaum et al., 2018). Intrinsic cluster quality measure defined by Davies-Bouldin index 

(DB-index) for (A) LDA and (B) HDP clustering. The x-axis shows the number of clusters k, 

and the y-axis indicates the DB-index values (lower indicates better clustering). Extrinsic 

cluster quality measure defined by Adjusted Rand Index (ARI) for (C) LDA and (D) HDP 

clustering. The x-axis shows the number of clusters k, and the y-axis indicates ARI (higher 

indicates better clustering). For (A-D) each run was repeated 20 times and the top, middle 

and bottom lines show the maximum, mean and minimum quality values, respectively. The 

UMAP plot of LDA clustering with (E) k = 6 and (G) k = 12. The UMAP plot of HDP 

clustering with (F) k = 11 and (H) k = 17. (I) The UMAP plot showing the reference 

clustering with the cell-type annotation from the original publication (Schaum et al., 2018).  

 

In the extrinsic comparison, LDA clustering with k = 6 showed an average ARI value of 0.60, 

which was close to the highest average ARI value of 0.61 obtained with k = 5 (Fig 2C). The 

HDP clustering (k = 11) had an average ARI value of 0.67 (Fig 2D), suggesting that, in this 

dataset, the DB-index informed HDP with a higher cluster number (k = 11) may be useful in 

order to achieve a more detailed cell state or subtype specific resolution than the DB-index 

informed LDA with k = 6.  
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Visual inspection with the reference cell type annotations indicated that LDA clustering with 

k = 6 (best by DB-index) resolved the kidney limb epithelial cells, duct epithelial cells and 

partitioned the kidney tubule epithelial cells into two sub-clusters (Fig 2E, 2I). However, it 

did not separate a cluster of immune cells (macrophages) from kidney cells, whereas LDA 

with k = 12 did (Fig 2G, 2I). The HDP clustering with k = 11 gave similar results as LDA 

with k = 12 (Fig 2F), whereas HDP with k = 17 added several apparently sporadic clusters 

(Fig 2H). Considering the DB-index for the selection of an approximate cluster number, the 

HDP k value (k = 11) had the lowest DB-index value (Fig 2B) and highest ARI value (Fig 

2D), suggesting the utility of HDP in this dataset. Additionally, these results suggest that the 

HDP-based k value may be useful to guide the selection of the k value for LDA, when two 

LDA k values have similar DB-index. 

 

2.3 LDA and HDP clustering performance in mouse pancreatic cells  

 

We repeated the comparison of LDA and HDP using mouse pancreatic cells (Schaum et al., 

2018). In the intrinsic evaluation, the LDA clustering with k = 3 showed the lowest mean DB-

index value of 2.3, and with increasing k, k = 7 displayed a local minimum (DB-index = 2.5) 

(Fig. 3A). Based on DB-index, HDP had worse performance compared to LDA, with k = 14 

showing the lowest average DB-index value of 3.4 (Fig. 3B), and k = 17 showing the second 

lowest average DB-index value of 3.6. 

 

Fig 3. Comparison of LDA and HDP clustering performance using mouse pancreatic cells 

(Schaum et al., 2018). Intrinsic cluster quality measure defined by Davies-Bouldin index 

(DB-index) for (A) LDA and (B) HDP clustering. The x-axis shows the number of clusters k, 

and the y-axis indicates the DB-index values (lower indicates better clustering). Extrinsic 

cluster quality measure defined by Adjusted Rand Index (ARI) for (C) LDA and (D) HDP 

clustering. The x-axis shows the number of clusters k, and the y-axis indicates ARI (higher 

indicates better clustering). For (A-D) each run was repeated 20 times and the top, middle 

and bottom lines show the maximum, mean and minimum quality values, respectively. The 

UMAP plot of LDA clustering with (E) k = 3 and (G) k = 7. The UMAP plot of HDP 

clustering with (F) k = 14 and (H) k = 17. (I) The UMAP plot showing the reference 

clustering with the cell-type annotation from the original publication (Schaum et al., 2018). 

 

B
io

lo
gy

 O
pe

n 
• 

A
cc

ep
te

d 
m

an
us

cr
ip

t



In the extrinsic cluster quality evaluation, increasing the LDA cluster number from k = 3 to k 

= 7 increased ARI, but larger numbers of clusters did not affect the quality markedly, 

producing average ARI values in the range 0.67-0.72 (Fig 3C). Similarly, the HDP clustering 

with k = 14 gave an ARI value of 0.67 (Fig 3D). The visual inspection with reference 

annotations suggested that LDA with k = 7, but not with k = 3, was able to resolve most of 

the cell subtypes present in the reference (Fig 3E, 3G, 3I), whereas HDP with k = 14 and k = 

17 resulted in additional cell subsets (Fig 3F, 3H). 

 

2.4 Comparison of existing LDA clustering tools for scRNA-seq data 

 

While the main aim of our study was to compare LDA and HDP for clustering scRNA-seq 

data, we also compared the Gensim implementation of LDA with two existing LDA 

implementations for scRNA-seq data, Celda (Wang et al., 2021) and DIMM-SC (Sun et al., 

2018). Since the computational times with DIMM-SC extended to several weeks with the full 

datasets, we used the top 2000 most highly variable genes for this comparison (Fig. S2 and 

S3). Especially with Gensim LDA and Celda, the best k values defined by the lowest DB-

index values were generally in line with the highest average ARI values (Fig. S2 and S3). On 

the other hand, while Gensim resulted in better (lower) mean DB-index values compared to 

the other two methods, Celda displayed higher extrinsic ARI values in the two datasets. This 

was also reflected in the UMAP visualization, where Celda resulted in coherent clustering of 

the cells (Fig. S2 and S3). Overall, the Gensim LDA and DIMM-SC showed a wider range of 

variability in the cluster quality values than Celda for the repeated clustering runs (Fig. S2 

and S3).  

 

2.5 Comparison of LDA, HDP and the Seurat SNN clustering 

 

The Bayesian Dirichlet process mixture models such as LDA and HDP are different from the 

clustering methods used in most of the existing state-of-art single-cell clustering tools, such 

as the widely used Seurat tool [20]. Seurat 4 clustering uses the graph-based shared nearest-

neighbor (SNN) algorithm, where the resolution parameter (r) controls the resulting number 

of clusters.  We compared LDA and HDP with Seurat 4 [20] using the top 2000 most highly 

variable genes (Fig. S4 - S7). For the immune cell dataset, the Seurat clustering resulted in 

the best intrinsic quality (lower DB-index) when the resolution r was below 0.1, resulting in k 

= 5 or k = 6 (Fig. S4). It also had the highest extrinsic cluster quality defined by ARI value of 
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0.62, while the highest average ARI values for LDA and HDP clustering were 0.54 (with k = 

8) and 0.61 (with k = 7), respectively. For the kidney, pancreas and early pregnancy datasets 

(Fig. S5 - S7), Seurat, LDA and HDP clustering results had relatively similar average DB-

index values for the different cluster numbers and resolution parameters, but Seurat resulted 

in slightly better ARI values compared to HDP and LDA.  

 

3. Discussion and conclusion 

 

We have evaluated the clustering performance of Dirichlet process mixture models LDA and 

HDP on three scRNA-seq datasets using both intrinsic (Hassani and Seidl, 2017) and 

extrinsic (Amigó et al., 2009) cluster quality measures defined by DB-index (Davies and 

Bouldin, 1979) and ARI (Hubert and Arabie, 1985), respectively. For each dataset, we also 

selected two best cluster numbers (k) based on intrinsic DB-index for more detailed visual 

evaluation. The intrinsic cluster quality provides general information about how compact the 

data points are within the individual clusters and how well the different clusters are separated. 

Because intrinsic quality measures do not assess the biological relevance of the clusters, we 

also considered extrinsic cluster quality and using UMAPs visually compared the identified 

clusters to the clusters from the original publications. Overall, our study showed that the 

relative performance of LDA and HDP was dataset dependent and highlighted the importance 

of carefully assessing the number of clusters when analyzing scRNA-seq data. 

 

The variation in DB-index and ARI values between repeated runs of LDA and HDP indicated 

that the clustering results varied for different runs of the same dataset. Therefore, average 

values over multiple runs were used to produce robust results for the comparative analysis. 

Further, we generally observed less variation in HDP runs compared to LDA runs, suggesting 

that HDP could provide more robust DB-index and ARI values.  

 

Our comparison of LDA and HDP indicated that their performance was dataset dependent. In 

the immune cell dataset (Fig 1), the DB-index informed HDP resulted in a more adequate 

clustering than the DB-index informed LDA when evaluated by both ARI and visual 

inspection with the original reference annotations. This provided evidence that at least in 

some cases HDP is a useful addition to the previously more widely employed LDA. For the 

other two datasets (Fig 2 and 3), HDP did not offer a clear advantage over LDA. In the 

kidney data, the DB-index informed HDP performed well judged by ARI, but in the visual 
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inspection it did not provide conceivable advantage over the DB-index informed LDA (Fig 

2). In the pancreas data, HDP suggested higher numbers of clusters than LDA, while visual 

inspection suggested that these may inflate the clustering (Fig 3).  

 

For the purpose of our comparisons, the cluster annotations from the original studies were 

considered to provide adequate level of resolution and quality to be used as a reference in the 

extrinsic analysis and in the visual inspection of the best intrinsic DB-index defined cluster 

numbers. A more in-depth biological interrogation of the detailed clustering differences is 

outside of the scope of our comparison. The overall biological interpretation of the resulting 

cluster annotations typically demands integration with other methods, such as protein level 

studies and spatial analysis (Dey et al., 2017).  

 

Recently, several single-cell specific implementations of LDA clustering have become 

available (Dey et al., 2017; duVerle et al., 2016; Sun et al., 2018; Wang et al., 2021), while 

the implementations of HDP clustering for scRNA-seq are limited. We extended our main 

HDP to LDA comparison to also include two scRNA-seq specific LDA implementations, 

Celda (Wang et al., 2021) and DIMM-SC (Sun et al., 2018). We observed that, based on 

intrinsic DB-index analysis, Gensim LDA performed better than Celda and DIMM-SC, 

whereas extrinsic ARI analysis supported the coherence of the Celda results. Celda also 

showed less variability between repeated runs than Gensim LDA and DIMM-SC. 

 

The runtime and memory usage of both LDA and HDP for datasets with smaller numbers of 

cells (~1000, ~2000, ~3000 cells) was practical for repeated analysis runs. However, for the 

large dataset (~65,000 cells), the increased running time affected the practicality of their use. 

Additionally, the inference method used in a given LDA or HDP implementation also affects 

its run time. The Gensim implementations of  LDA and HDP use the variational inference 

method (Blei and Jordan, 2006), which is easier to scale to high-dimensional data than 

sampling-based inference methods such as MCMC (Blei et al., 2017). The LDA tools Celda 

and DIMM-SC implement the expectation maximation algorithm for model parameter 

estimation and, in the context of this study, they appeared computationally adequate, 

especially, when focusing on the top 2000 most highly variable genes. Currently, BISCUIT 

(Prabhakaran et al., 2016), the single-cell specific implementation for HDP clustering, uses 

Gibb’s sampling as the inference method. Gibbs sampling typically runs extensive iterations 

before it converges to the target posterior distribution, making it computationally expensive. 
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Accordingly, a single run of BISCUIT using only the top 2000 most highly variable genes 

took more than three days, making the current implementation impractical for extensive 

comparisons. Therefore, further developments HDP specific to high dimensional scRNA-seq 

data could enhance the current computational challenge.  

 

We also compared the performance of LDA and HDP with the graph-based SNN clustering 

implemented in the widely used Seurat 4 tool as a comparator method to inspect how the 

LDA and HDP clustering performed when evaluated with the existing state-of-art clustering 

method. HDP and LDA model-based clustering in general showed comparable results both in 

intrinsic and extrinsic evaluation measures when compared to Seurat based clustering. 

However, both LDA and HDP clustering resulted in markedly higher variation in the 

clustering results for the repeated runs compared to Seurat (Fig. S4-S7).   

 

Ideally, cluster analysis results from scRNA-seq data give meaningful approximations of 

biological cell types or states. In this regard, the nonparametric HDP clustering method, 

unlike the LDA, automatically generates the number of clusters without a predefined number 

of clusters (Limsettho et al., 2014; Teh et al., 2006). Thus, HDP avoids the additional 

analysis of different k values to select the optimal number of clusters. In addition to the direct 

use of HDP clusters, HDP could also be used for exploratory cluster analysis to visualize and 

explore the unknown cellular states from scRNA-seq data and to help guide the choice a 

suitable number of clusters as a starting point for more refined analysis. We observed that 

LDA performed more robustly in the data that had closely related cell types or states, and in 

these cases HDP may inflate the cluster number. On the other hand, the tendency of HDP to 

result in larger numbers of clusters than LDA may also open up the possibility of finding 

novel cell types or states, which is of high importance for both basic research as well as in the 

inference of disease specific conditions. 

 

The study was limited to compare the LDA and HDP model-based clustering methods in only 

small to medium-sized single-cell RNA-seq data due to the very long execution time (several 

days) that it takes to run HDP models for large datasets. Additionally, the LDA and HDP 

models have multiple prior concentration parameters used as an input that can affect the 

clustering result. However, coherent parameter tuning for multiple parameters at the same 

time would have required extensive computational resources and was beyond the scope of 
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this manuscript. Therefore, we limited our comparisons by fixing those concentration 

parameters to the default values. 

 

In conclusion, our results support the previous reports that Dirichlet process based clustering 

models such as LDA and HDP are useful additions for single-cell data analysis in general 

(Bravo González-Blas et al., 2019; Kim et al., 2019; Sun et al., 2018) and that the non-

parametric HDP model is a useful addition to the previously used LDA in particular. 

 

4. Material and methods 

Sequencing data  

 

We analyzed four publicly available scRNA-seq datasets, including artificially mixed human 

immune cells, tissue specific subsets of kidney and pancreas cells from Tabula Muris  

(Schaum et al., 2018) and human decidua/placenta (early pregnancy) data (Vento-Tormo et 

al., 2018)  with high quality cell type annotations. For the first dataset, we created an artificial 

mixture of human immune cells from seven publicly available scRNA-seq datasets from 

Gene Expression Omnibus (GEO): GSE75748, GSE81861, GSE44618, GSE96562, 

GSE85527, GSE96564 and GSE89232 (Table S1). The pre-processed datasets provided by 

the authors were downloaded from GEO together with their cell-type information, which was 

used as a reference in our clustering analysis. For the combined analysis, we converted raw 

counts and FPKM (Fragments Per Kilobase Million) to TPM normalized expression values 

(Transcripts Per Million), similarly as previously described (Pachter et al., 2011). The final 

artificial mixture contained expression profiles of 1153 human immune cells across 13880 

genes, including CD4+ memory cells, CD8+ memory cells, B cells, dendritic cells, 

fibroblasts, and lymphoblasts.  

 

The mouse kidney and pancreas datasets were from the publicly available Tabula Muris 

study (Schaum et al., 2018). The unique molecular identifier (UMI) count matrix provided by 

the authors was downloaded from GEO with accession GSE109774. We selected the kidney 

(SMART-seq based) and pancreas (droplet-based) cells, including a total of 2782 and 1961 

cells, respectively, with 23433 genes for both datasets. The pre-processed UMI count data for 

human early pregnancy data (droplet-based) (Vento-Tormo et al., 2018) with 64,734 cells and 

31,764 genes was downloaded from ArrayExpress with the accession number of E-MTAB-
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6701. We used the within cell UMI count library size normalization with scaling a factor of 

10
6 

(Satija et al., 2015).  

 

LDA and HDP implementations 

 

We used the python implementations for LDA and HDP originally designed for topic 

modelling from the “Gensim” package. The benefit of using Gensim was that it has both 

LDA and HDP implemented in a single tool to ensure direct comparability. Additionally, the 

variational inference-based implementation of Gensim for LDA (Hoffman et al., 2010) and 

HDP (Wang et al., 2011) enabled scaling to high-dimensional datasets (Rehurek and Sojka, 

2010). For the analysis, we used the normalized count data rounded to their nearest integer 

values in a “bag-of-words” representation (Zhang et al., 2010) and default parameters 

(alpha=1 and eta=.01 for LDA; alpha=1, gamma=1 and eta=.01 for HDP). With LDA, the 

number of clusters k was varied from 2 to 20, whereas HDP does not have a predefined 

number of clusters. The soft/mixed cluster assignments were transformed to hard cluster 

assignments by assigning each cell to the cluster with the highest cluster membership 

probability. In order to have biologically interpretable clustering results, clusters with less 

than 15 cells were grouped as a separate single cluster. For the visualizations of the clustering 

results, we used the Uniform Manifold Approximation and Projection (UMAP) (McInnes et 

al., 2018).  

 

In addition to the main LDA and HDP model comparison, we also compared the Gensim 

LDA implementation with two existing LDA implementations for scRNA-seq data, Celda 

(Wang et al., 2021) and DIMM-SC (Sun et al., 2018). Since the computational times with 

DIMM-SC extended to several weeks with the full datasets, for this additional analysis, we 

used only the top 2000 most highly variable genes. Again, default parameters were used, and 

the number of clusters k was varied from 2 to 20. Similarly, we attempted to compare the 

Gensim HDP implementation with the existing HDP implementation for single-cell RNA-seq 

data, BISCUIT (Prabhakaran et al., 2016). However, with BISCUIT, since the computational 

time for only a single cluster analysis run for e.g. pancreatic data with the top 2000 variable 

genes took more than three days, we excluded it from further analysis.  
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Finally, we compared the Gensim implementation of LDA and HDP with Seurat 4 SNN 

clustering (Hao et al., 2021). We used the 2000 most highly variable genes and the default 

parameters. For LDA clustering, we considered the number of clusters k ranging from 2 to 20 

with 20 replicated runs for each k. The HDP clustering was also replicated 20 times with 

default resolution parameters. In the same way, we replicated the Seurat 4 SNN clustering 20 

times with random seeding for multiple different resolution parameters ranging from 0.008 to 

0.6.    

 

Measures of cluster quality  

 

The cluster quality was assessed using both intrinsic and extrinsic cluster quality measures. 

The intrinsic cluster quality measures involve compactness and separation as a criterion for 

cluster evaluation (Hassani and Seidl, 2017), whereas the extrinsic cluster quality measures 

evaluate the overall clustering in comparison with a reference clustering (Amigó et al., 2009).  

 

Davies-Bouldin index (DB-index) (Davies and Bouldin, 1979) was used as an intrinsic cluster 

quality metric, which uses the intra-cluster variance and inter-cluster separation to evaluate 

cluster quality. For a clustering result which partition data points into k clusters, the DB-index 

is given by: 

 

 

 

where Di is the average distance between all the data points in a given cluster i to their cluster 

center ci and d(ci,cj) is the distance between the i
th

 and j
th

 cluster centers. The smaller the DB-

index, the better the compactness and separation of the clusters. 

 

Calinski-Harabasz (CH-index) (Calinski and Harabasz, 1974) was also considered as another 

intrinsic cluster quality metric defined by the ratio of the overall between-cluster variance to 

overall within-cluster variance. The larger the CH-index, the higher the cluster quality.   
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Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) was used as an extrinsic cluster quality 

measure, which extends the Rand index (RI) (Rand, 1971) of the similarity between two 

clusters to adjust for chance. Here, ARI was used as a measure of cluster accuracy by 

comparing the observed clustering with the reference clustering. Given a clustering result X = 

{X1,X2,…,Xk} and the reference clustering Y = {Y1,Y2,…Yl}, the ARI is given by:  

 

 

 

where ai is the number of data points in cluster Xi, bj is the number of data points in cluster Yj, 

nij is the number of overlapping data points in clusters Xi and Yj, and n is the total number of 

data points. The higher the ARI value, the higher the agreement between the clustering 

results, with value of 1 being the maximum.      
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Figures 

Figure 1. Comparison of LDA and HDP clustering performance using artificially mixed 
human immune cell scRNA-seq data. Intrinsic cluster quality measure defined by Davies-
Bouldin index (DB-index) for (A) LDA and (B) HDP clustering. The x-axis shows the number 
of clusters k, and the y-axis indicates the DB-index values (lower indicates better clustering). 
Extrinsic cluster quality measure defined by Adjusted Rand Index (ARI) for (C) LDA and (D) 
HDP clustering. The x-axis shows the number of clusters k, and the y-axis indicates ARI 
(higher indicates better clustering). For (A-D) each run was repeated 20 times and the top, 
middle and bottom lines show the maximum, mean and minimum quality values, 
respectively. The UMAP plot of LDA clustering with (E) k=3 and (G) k=5. The UMAP plot of 
HDP clustering with (F) k=7 and (H) k=9. (I) The UMAP plot showing the reference clustering 
with the cell-type annotation from the original publications (Table S1). B
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Figure 2. Comparison of LDA and HDP clustering performance using mouse 
kidney cells (Schaum et al., 2018). Intrinsic cluster quality measure defined by Davies-
Bouldin index (DB-index) for (A) LDA and (B) HDP clustering. The x-axis shows the 
number of clusters k, and the y-axis indicates the DB-index values (lower indicates better 
clustering). Extrinsic cluster quality measure defined by Adjusted Rand Index (ARI) for 
(C) LDA and (D) HDP clustering. The x-axis shows the number of clusters k, and the y-
axis indicates ARI (higher indicates better clustering). For (A-D) each run was repeated 
20 times and the top, middle and bottom lines show the maximum, mean and minimum 
quality values, respectively. The UMAP plot of LDA clustering with (E) k=6 and (G) k=12. 
The UMAP plot of HDP clustering with (F) k=11 and (H) k=17. (I) The UMAP plot 
showing the reference clustering with the cell-type annotation from the original 
publication (Schaum et al., 2018).
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Figure 3. Comparison of LDA and HDP clustering performance using mouse 
pancreatic cells (Schaum et al., 2018). Intrinsic cluster quality measure defined by 
Davies-Bouldin index (DB-index) for (A) LDA and (B) HDP clustering. The x-axis shows 
the number of clusters k, and the y-axis indicates the DB-index values (lower indicates 
better clustering). Extrinsic cluster quality measure defined by Adjusted Rand Index 
(ARI) for (C) LDA and (D) HDP clustering. The x-axis shows the number of clusters k, 
and the y-axis indicates ARI (higher indicates better clustering). For (A-D) each run was 
repeated 20 times and the top, middle and bottom lines show the maximum, mean and 
minimum quality values, respectively. The UMAP plot of LDA clustering with (E) k=3 
and (G) k=7. The UMAP plot of HDP clustering with (F) k=14 and (H) k=17. (I) The 
UMAP plot showing the reference clustering with the cell-type annotation from the 
original publication (Schaum et al., 2018).
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Fig. S1.Intrinsic cluster quality measures defined by DB-index and CH-index for LDA 
and HDP clustering results on the artificially mixed human immune cell data and the 
mouse kidney and pancreatic cell datasets. 
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Fig. S2.Comparison of single-cell specific LDA clustering tools in the mouse kidney 

dataset: (A) Gensim LDA, (B) DIMM-SC, and (C) Celda. The intrinsic cluster quality 

measure was defined by Davies-Bouldin index (DB-index) and the extrinsic cluster 

quality measure by Adjusted Rand Index (ARI). The x-axis shows the number of 

clusters (k = 2-20), and the y-axis indicates the DB-index values (lower indicates 

better clustering) and ARI values (higher indicates better clustering). For (A-C) each 

run was repeated 20 times and the top, middle and bottom lines show the maximum, 

mean and minimum quality values, respectively. The UMAP plot of Gensim LDA 

clustering with (D) k = 7 and (G) k = 13. The UMAP plot of DIMM-SC clustering with 

(E) k = 3 and (H) k = 6. The UMAP plot of Celda clustering with (F) k = 4 and (I) k = 

7. (J) The UMAP plot showing the reference clustering with the cell-type annotation 

from the original publications. The top 2000 most highly variable genes were used as 

input for the runs. 
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Fig. S3. Comparison of single-cell specific LDA clustering tools in the mouse 
pancreas dataset: (A) Gensim LDA, (B) DIMM-SC and (C) Celda. The intrinsic 
cluster quality measure was defined by Davies-Bouldin index (DB-index) and the 
extrinsic cluster quality measure by Adjusted Rand Index (ARI). The x-axis shows 
the number of clusters (k=2-20), and the y-axis indicates the DB-index values (lower 
indicates better clustering) and ARI values (higher indicates better clustering). For 
(A-C) each run was repeated 20 times and the top, middle and bottom lines show the 
maximum, mean and minimum quality values, respectively. The UMAP plot of 
Gensim LDA clustering with (D) k = 3 and (G) k = 7. The UMAP plot of DIMM-SC 
clustering with (E) k = 3 and (H) k = 12 (clusters with less than 15 cells are 
collapsed). The UMAP plot of Celda clustering with (F) k = 3 and (I) k = 9. (J) The 
UMAP plot showing the reference clustering with the cell-type annotation from the 
original publications. The top 2000 most highly variable genes were used as input for 
the runs. 
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Fig. S4. Comparison of LDA, HDP and Seurat clustering based on intrinsic (Davies-

Bouldin index, DB-index) and extrinsic (Adjusted Rand Index, ARI) cluster quality 

measures on immune cell data: (A) LDA, (B) HDP, and (C) Seurat SNN.  The x-axis 

shows the number of clusters (k=2-20) for LDA and HDP and the resolution 

parameter r (from 0.008 to 0.6) for Seurat SNN. For Seurat, the average cluster 

numbers for the given resolution parameters are shown in brackets. The y-axis 

shows the maximum, mean and minimum values for DB-index (lower indicates better 

clustering) and ARI values (higher indicates better clustering) across 20 repeated 

runs.  
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Fig. S5. Comparison of LDA, HDP and Seurat clustering based on intrinsic (Davies-

Bouldin index, DB-index) and extrinsic (Adjusted Rand Index, ARI) cluster quality 

measures on mouse kidney cell data: (A) LDA, (B) HDP, and (C) Seurat SNN.  The 

x-axis shows the number of clusters (k=2-20) for LDA and HDP and the resolution 

parameter r (from 0.008 to 0.6) for Seurat SNN. For Seurat, the average cluster 

numbers for the given resolution parameters are shown in brackets. The y-axis 

shows the maximum, mean and minimum values for DB-index (lower indicates better 

clustering) and ARI values (higher indicates better clustering) across 20 repeated 

runs.   
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Fig. S6. Comparison of LDA, HDP and Seurat clustering based on intrinsic (Davies-

Bouldin index, DB-index) and extrinsic (Adjusted Rand Index, ARI) cluster quality 

measures on mouse pancreas cell data: (A) LDA, (B) HDP, and (C) Seurat 

SNN.  The x-axis shows the number of clusters (k=2-20) for LDA and HDP and the 

resolution parameter r (from 0.008 to 0.6) for Seurat SNN. For Seurat, the average 

cluster numbers for the given resolution parameters are shown in brackets. The y-

axis shows the maximum, mean and minimum values for DB-index (lower indicates 

better clustering) and ARI values (higher indicates better clustering) across 20 

repeated runs.   

 
 

 

 

  

Biology Open (2022): doi:10.1242/bio.059001: Supplementary information

B
io

lo
gy

 O
pe

n 
• 

S
up

pl
em

en
ta

ry
 in

fo
rm

at
io

n



 

 
 

Fig. S7. Comparison of LDA, HDP and Seurat clustering based on intrinsic (Davies-

Bouldin index, DB-index) and extrinsic (Adjusted Rand Index, ARI) cluster quality 

measures on human early pregnancy data: (A) LDA, (B) HDP, and (C) Seurat 

SNN.  The x-axis shows the number of clusters (k=2-20) for LDA and HDP and the 

resolution parameter r (from 0.008 to 0.6) for Seurat SNN. For Seurat, the average 

cluster numbers for the given resolution parameters are shown in brackets. The y-

axis shows the maximum, mean and minimum values for DB-index (lower indicates 

better clustering) and ARI values (higher indicates better clustering) across 20 

repeated runs.   
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Table S1. Artificial mixture of human immune cells. 

 
Selected cells by 

Cell-type (n of cells) 

GEO accession (n of 

cells) 

Library 

preparation 

Sequencing 

platform 

Downloaded 

data format 

Fibroblast 

(159) 

GSE75748 (1810) 

 

 

Fluidigm C1 Illumina HiSeq 2500 TPM  

Lymphoblast  

(59) 

 

GSE81861 (1220) 

 

Fluidigm C1 Illumina HiSeq 2000 RPKM 

B-cell 

(174) 

 

GSE44618 (62) 

 

 

SMART-seq 1 Illumina HiSeq 2000 RPKM 

GSE81861(1220) 

 

Fluidigm C1 Illumina HiSeq 2000 RPKM 

CD4+ memory T cell 

(393) 

 

 

GSE96562 (149)  

 

SMART-Seq 1 Illumina HiScanSQ Raw count data 

GSE96568 (246) SMART-Seq 1 Illumina HiSeq 2500 Raw count data 

CD8+ memory T cell 

(263) 

 

GSE85527 (219)  Nextera XT 

DNA Library 

Preparation Kit 

(Illumina) 

Illumina HiSeq 2500 Raw count data 

GSE96564 (45) SMART-Seq 1 Illumina HiSeq 2500 Raw count data 

Conventional 

dendritic cell 

(105) 

 

GSE89232 (957) 

 

SMART-Seq 2 Illumina HiSeq 2500 TPM  
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Table S2. Running time and memory usage for Gensim LDA and HDP clustering. 

 

 Artificially mixed 

immune dataset 

Pancreas, Tabula 

muris  

 

Kidney, Tabula 

muris  

Decidua/placenta 

 # genes # cells # genes # cells # genes # cells # genes # cells 

13,000 1,153 23,000 1,961 23,000 2,782 23,000 64,734 

LDA 1.7 min/ 2.6 GB 2.8 min/ 4.2 GB 2.3 min/ 6.0 GB 1.35 hrs/208 GB 

HDP 5.7 min/ 2.7 GB  15.2 min/ 4.3 GB 28.1 min/ 6.1 GB 4 days/ 208 GB 
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