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Wild bees preferentially visit Rudbeckia flower heads with
exaggerated ultraviolet absorbing floral guides

Lisa Horth*, Laura Campbell and Rebecca Bray

ABSTRACT

Here, we report on the results of an experimental study that

assessed the visitation frequency of wild bees to conspecific flowers

with different sized floral guides. UV absorbent floral guides are

ubiquitous in Angiosperms, yet surprisingly little is known about

conspecific variation in these guides and very few studies have

evaluated pollinator response to UV guide manipulation. This is true

despite our rich understanding about learning and color preferences

in bees. Historical dogma indicates that flower color serves as an

important long-range visual signal allowing pollinators to detect the

flowers, while floral guides function as close-range signals that

direct pollinators to a reward. We initiated the work presented here

by first assessing the population level variation in UV absorbent

floral guides for conspecific flowers. We assessed two species,

Rudbeckia hirta and R. fulgida. We then used several petal cut-and-

paste experiments to test whether UV floral guides can also function

to attract visitors. We manipulated floral guide size and evaluated

visitation frequency. In all experiments, pollinator visitation rates

were clearly associated with floral guide size. Diminished floral

guides recruited relatively few insect visitors. Exaggerated floral

guides recruited more visitors than smaller or average sized guides.

Thus, UV floral guides play an important role in pollinator

recruitment and in determining the relative attractiveness of

conspecific flower heads. Consideration of floral guides is

therefore important when evaluating the overall conspicuousness

of flower heads relative to background coloration. This work raises

the issue of whether floral guides serve as honest indicators of

reward, since guide size varies in nature for conspecific flowers at

the same developmental stage and since preferences for larger

guides were found. To our knowledge, these are the first cut-and-

paste experiments conducted to examine whether UV absorbent

floral guides affect visitation rates and pollinator preference.
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INTRODUCTION
A comprehensive, high quality literature exists regarding the

sensory and cognitive abilities of bees. This research includes

extensive data on essential tasks associated with foraging, like

visual choice, learning and memory (e.g. von Frisch, 1914; Daumer,
1956; Daumer, 1958; Backhaus, 1991; Giurfa et al., 1996; Dyer
et al., 2008; Dyer et al., 2011; Spaethe et al., 2001). Bees and

humans both have trichromatic vision, but bee vision is short wave
shifted compared to humans. Retinal photoreceptors of bees are
short (SWS), medium (MWS), and long wavelength sensitive
(LWS) and are also classified as ultraviolet (UV), blue, and green

sensitive. Data from 43 species of hymenoptera demonstrate
maximal receptor sensitivity (l max) at ,340 nm, 430 nm, and
535 nm, respectively (Peitsch et al., 1992; Menzel and Blakers,

1976; Menzel and Backhaus, 1991 and references therein).

The color space perceived by bees has been determined using
mathematical modeling and multidimensional scaling analysis
that employed empirical color-choice test results (Backhaus et al.,

1987; Backhaus, 1991; Chittka et al., 1992). The color differences
potentially detectible by bees were calculated for different
chromatic dimensions (e.g. uv/blue-green and blue/uv-green

axes) (Backhaus, 1991). Neurons with the same photoreceptor
antagonism have been identified in the medulla and lobula of the
bee brain (Kien and Menzel, 1977a; Kien and Menzel, 1977b).
The spectral sensitivities predicted for hypothetical color

opponent coding (COC) cells compared well to empirical
measures for antagonistically coding neurons (Backhaus, 1991).

For bees to be able to detect flowers in the distance, contrast
between floral spectral reflectance and background reflectance is

necessary (e.g. Kevan, 1978; Chittka and Menzel, 1992). Green
(LWS) receptor contrast is particularly important for distance-
based detection, which is believed to occur prior to chromatic

contrast (Giurfa et al., 1996). Green contrast is important for
motion processing (Srinivasan and Lehrer, 1984) and detection of
object edges (Lehrer et al., 1990). In honeybees, green contrast is

detected by LWS receptors when the visual angle is small (5–15 )̊,
whereas chromatic traits are detected by SWS and MWS receptors
at greater visual angles (.15 )̊ (Giurfa et al., 1997; Giurfa and
Vorobyev, 1998; Spaethe et al., 2001; Dyer et al., 2011).

From an evolutionary perspective, a trade off was found
between foraging accuracy and decision time for bumble bees
(Bombus L. terrestris). When foraging in a virtual flower meadow
where ‘flowers’ had similar colors but different rewards, bees were

more accurate when they took longer to make foraging choices
(Chittka et al., 2003). Fast and slow bees did learn to slow down
and improve accuracy with aversion stimuli (Chittka et al., 2003).

However, fast bees had higher nectar collection rates (Burns,
2005), so costs are associated with slow, accurate decision-making.

In nature, competition for pollination is known to contribute to
natural selection on floral traits (Caruso, 2000) and visual cues

clearly affect conspecific floral attractiveness to pollinators. Field
studies have shown that yellow flowered wild radishes (Raphanus

raphanistrum L.) had higher pollination rates than white ones

(Stanton et al., 1989) and deep blue flowered montane larkspur
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(Delphinium nelsonii Greene, Delphinium nuttallianum Pritz. ex
Walp) had higher pollination rates than albinos (Waser and Price,

1981). Recent work with model flowers showed that bumble bees
(B. terrestris) have innate preference for high spectral purity
(Rohde et al., 2013). The value of colorful floral traits that we
see is less contentious than the value of traits invisible to us but

visible to bees.
The scientific community has ranged the gamut from intense

interest in UV traits (Bennett and Cuthill, 1994), to discounting

what was considered exaggerated attention and promoting the
idea that UV is not a special channel for communication (e.g.
Chittka et al., 1994). Middle ground was reached with

demonstrations that floral UV reflection can be important,
though sometimes no more important than blue, green or red
reflection (Kevan et al., 2001). Despite the fact that UV reflective

and absorptive floral patterns are widespread in nature and visible
to pollinators (von Frisch, 1967; Daumer, 1958; Eisner et al.,
1969; Silberglied, 1979; Höglund et al., 1973; Burkhardt, 1982;
McCrea and Levy, 1983; Peitsch et al., 1989; Menzel and

Backhaus, 1991; Chittka and Menzel, 1992; Peitsch et al., 1992;
Bennett et al., 1996; Dyer, 1996; Briscoe et al., 2003; Winter
et al., 2003; Skorupski and Chittka, 2010) few studies have

empirically manipulated UV floral guides to assess bee visitation
frequency or preference.

Early on Daumer elucidated the point that primary colors

combine to create ‘novel’ colors visible to bees but not humans
(Daumer, 1956; Daumer, 1958; see also Backhaus, 1991; Giurfa
et al., 1995). Later, when Waser and Price were studying foraging

economics, they painted albino montane larkspurs (Waser and
Price, 1985). They showed that adding UV absorbent blue paint to
albino sepals and guard petals that typically reflect UV enhanced
visitation and decreased foraging time. So did performing this

manipulation on albino nectariferous petals that typically absorb
UV, making this a blue-only manipulation (Waser and Price, 1985).

Burr et al. later discussed the function of UV reflection as

a long-range landing site cue (Burr et al., 1995). Then Eisner
illustrated how ‘human-yellow’ on the distal half of Rudbeckia

hirta petals was UV reflective (Eisner, 2002) and referred to this

as ‘bee purple’ (originally described by Daumer, 1956; Daumer,
1958). Around this time Johnson and Anderson conducted
field studies with the African potato (or star grass, Hypoxis

hemerocallidea Fisch. & C. A. Mey) and showed that, when floral

UV reflectance was obscured with sunscreen, fewer honey bees
(A. mellifera scutella) approached and landed on flowers
(Johnson and Andersson, 2002).

Burr et al. also discussed the use of very small UV absorptive
areas on flowers as guides for orientation to reward (Burr et al.,
1995). Such orientation cues have been called honey- or nectar-

guides and will hereafter be referred to as floral guides. UV
absorbance is quite common in these floral guides. In a tropical
field study, UV absorbent banner petals were repositioned

on legume (Caesalpinia eriostachys Benth. and Parkinsonia

aculeata L.) flowers to successfully demonstrate their orientation
function (Jones and Buchmann, 1974). Chemically, flavonol
glucosides are primarily responsible for the large, UV absorbing

floral guide in the floral heads of some asters, including
Rudbeckia hirta L. (Thompson et al., 1972; Schlangen et al.,
2009), one of the species used in the work we present here.

Our studies involved wild, cultivated and empirically
manipulated asters (R. hirta and R. fulgida). First, we report
novel findings regarding the distribution of floral guide sizes

in natural populations and cultivars. We hypothesize that UV

absorbent floral guides are important for attracting pollinators,
not just for orientation, and that larger guides will be more

attractive than smaller ones. To test these ideas we compare
pollinator visitation rates after enlarging and diminishing natural
UV-absorbent orientation cues. We focus on Halictidae (sweat
bees), the relatively poorly studied, yet numerically abundant,

cosmopolitan generalist pollinators frequently found in urban
ecosystems (Dikmen, 2007). This work was completed using a
‘cut-and-paste’ design akin to Andersson’s widowbird tail-length

studies (Andersson, 1982). This is a timely demonstration that the
size of UV absorbent floral guides clearly affects native bee
visitation rates and that these floral guides may not be used solely

for orientation toward a reward, as once believed, but also play a
role in pollinator recruitment.

RESULTS
I. Floral specimens and relevant techniques for measuring
UV floral guides
Color and ultraviolet absorbing Rudbeckia hirta photographs are

presented in Fig. 1A,B, along with the spectrophotometric graph
of floral reflectance (Fig. 1C) showing the different reflectance
patterns in the distal and proximal portions of R. hirta ligules.

Relevant measurements and the photographs of ‘cut-and-paste’
treatments for each experiment are presented in the associated
Results sections below.

II. Floral guide size-distributions for three data sets:
greenhouse, urban, and wild R. hirta
Greenhouse flowers
The average UV floral guides in greenhouse plants covered 62%
(standard error 1.3%) of the petal length for flowers from the first
plant and 57% (standard error 0.8%) of the petal length for

flowers from the second plant. These averages differed (T53.24,
d.f.516, and P50.005) despite the plants’ shared environmental
conditions. Floral guide size variation was greater between plants

than for flowers on a single plant.

Naturalized urban flowers
The average UV floral guide in the naturalized plants covered
51% (standard error 1.23%) of the total petal surface area.
However, there was a 27% range in this estimate, with a min–max
of 39–66%. A strong correlation existed between floral head size

and floral guide size (r50.928, n525, P,0.001). This simply
means that bigger flowers had more UV absorptive petal surface
area than littler flowers, which says nothing about the relative size

of floral guides. Perhaps more compelling is the result that arises
when we address the relative amount of the petal surface that is
comprised of floral guide. No correlation existed between the

flower head size and the proportion of UV absorptive petal surface
area (r50.051, n525, P50.810). In other words, larger flowers did
not have relatively larger floral guides than smaller flowers.

Wild flowers
The average UV floral-guide in the wild plants covered 44%
(standard error 1.69) of the total petal surface area. This was 7%

smaller than the urban population average guide size. However,
there was a 39% range in this estimate, with a min–max of 26–64%.
This range was 11% more than the urban population range. Like the

urban population, no correlation existed between the floral head
size and the proportion of UV absorptive petal surface area
(r50.191, n521, P50.431). Meaning once again, larger flowers did

not have relatively larger floral guides than smaller flowers.
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III. Insect visitation response to floral guide manipulations
a. Sunscreen masked floral guides on R. hirta

Sunscreen obscured the floral guide typically found on R. hirta

petals, and diminished UV reflection too (Fig. 2). The fine mist
sunscreen dried quickly and left treated flowers dry. Fewer

insects visited the sunscreen treatment than the other treatments.
A total of 127 insects were observed visiting flowers in this
experiment (five visited the ‘sunscreen’ treatment, 57 visited the

‘water misted’ treatment and 65 visited the ‘air sprayed’
treatment; Table 1). The Chi-square test was highly significant

refuting the null hypothesis of an equal distribution of visitors
among treatments (x2

(0.05,2)550.1, P,0.001, two tail test). Post-
hoc pairwise comparison tests indicated a difference between the

number of visitors to the ‘sunscreen’ treatment when compared to
the ‘water misted’ (Dx2527.85.3.8, P,0.05), and the ‘air
sprayed’ treatment (Dx2520.80.3.8, P,0.05). The community

of visitors was diverse and included the following 10 families:
Scoliidae (n545), Apidae (28), Halictidae (18), Syrphidae (13),
Megachilidae (13), Hesperiidae (2), Sphecidae (3), Culicidae (1),
Muscidae (2), Vespidae (1) and an unidentified fly (1). Since

Scoliidae are generally considered minor pollinators, removing
this family, as well as the single visitors that were not likely
major pollinators (e.g. Culicidae), and repeating the test did not

affect the outcome. Visitors to the ‘sunscreen’ treatment included
four families: Syrphidae (1), Megachilidae (1), Muscidae (2) and
Vespidae (1).

b. Augmented floral guides on R. fulgida

A total of 60 insects were observed visiting flowers in this

experiment (23 visited the ‘enhanced’ (double ring) floral guide
treatment, nine visited the ‘diminished’ (no guide) treatment, and
28 visited the ‘wild-type cut-and-paste control’; Table 2; Fig. 3).
The Chi-square test was highly significant refuting the null

hypothesis of an equal distribution of visitors among treatments
(x2

(0.05,2)59.7, P50.008, two tail test). This result was not

Fig. 1. Spectrophotometric reflectance. (A) Native Rudbeckia hirta as seen with color photography. (B) Native R. hirta as seen with ultraviolet (UV)
photography. (C) Spectrophotometric reflectance plot of the proximal (…) and distal (—) portions of the R. hirta ligules, or petals. Relative reflection (%) is plotted
as a function of wavelength (nm).

Fig. 2. Results of a sunscreen experiment on the grounds of an urban
campus. The R. hirta floral head treatment UV photographs are displayed
atop each data bar. Note the masking of the lack of bold UV absorbent floral
guide in the sunscreen treatment. The asterisk represents a significant
difference in the number of visitors to the ‘sunscreen’ treatment relative to the
other treatments.

Table 1. Results from Experiment IIIa

Treatment Observed Expected

Sunscreen 5 42.3
Water 57 42.3
Air 65 42.3

Sunscreen was used to eliminate the UV absorbent floral guide on
Rudbeckia hirta. Misted water and sprayed air served as controls.
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attributable to a positional effect of the treatments (i.e. flower
location in array, x2

(0.05,2)50.7, P50.705). Post-hoc pairwise
comparison tests indicated a difference between the number of

visitors to the ‘enhanced’ treatment when compared to the
‘diminished’ treatment (Dx255.6.3.8, P,0.05). Post-hoc results
might appear counterintuitive, because the test is based on a

squared deviation from the expectation. The squared deviation
was smallest for the ‘enhanced’ treatment since it deviated least
from the expected value, making the Dx2 largest when comparing
this treatment to the ‘diminished’ treatment because it had the

greatest deviation from the expected value. The frequency of
visitors to the ‘enhanced’ treatment increased over time but
decreased for the control (after Day 1). Frequency of visitors for

Days 1 to 6 to the ‘enhanced’ treatment were: 0.250, 0.140, 0.160,
0.375, 0.500, 0.625, and to the ‘control’: 0.633, 0.714, 0.600,
0.375, 0.375, 0.250).

The community of visitors to this home garden experiment
was less diverse than to the urban campus experiment. Here,

Halictidae (sweat bees) comprised 75% (45/60) of the visitors and
the number of their visits was similarly distributed across
treatments each day. Substantially fewer individuals visited this
garden from seven additional families: Papilionidae (3), Scoliidae

(3), Apidae (2), Syrphidae (2), Megachilidae (2), Sphecidae (2),
and Hesperiidae (1).

c. Slightly enlarged and diminished floral guides on R. fulgida

A total of 100 insects were observed visiting flowers in this
experiment (31 visited the ‘enhanced’ (UV absorbent guide was

,60% of petal surface area) floral guide treatment, 13 visited the
‘diminished’ (,25%) floral guide, 26 visited the ‘wild-type cut-
and-paste control’, and 30 visited the ‘natural’ flower; Table 2;

Fig. 4). All insects were either major or minor pollinators and
therefore included in the analysis. The Chi-square test was
significant refuting the null hypothesis of an equal distribution
of visitors among treatments (x2

(0.05,3)58.2, d.f.53, P50.041).

Post-hoc pairwise comparison tests indicated a difference in the
number of visitors to the ‘diminished’ treatment and all other
treatments (Dx254.76.3.84, P,0.05; Dx255.74.3.84, P,0.05;

Dx254.32.3.84, P,0.05). The community of visitors was diverse
and included the following nine families: Apidae (33), Halictidae
(33), Hesperiidae (9), Lycaenidae (6), Nymphalidae (6), Syrphidae

(6), Pieridae (2), Hesperiidae (2), and Scoliidae (1).

d. Oversized floral guides on R. hirta

In June, a total of 31 insects were observed visiting flowers in this
experiment (20 visited the ‘enhanced’ (90%) floral guide, five

Table 2. Results of Experiments IIIb,c

IIIb IIIc

Treatment Observed Expected Observed Expected

Enhanced guide 20 23 25 31
Diminished guide 20 9 25 13
Wild-type cut-and-paste

control
20 28 25 26

Unmanipulated ‘natural’
flower

N/A N/A 25 30

Petal ‘cut-and-paste’ was used to alter the UV absorbent floral guide size on
R. fulgida.

Fig. 3. Results of an urban home garden experiment. The R. fulgida floral
head treatment UV photographs are displayed atop each data bar. Here, the
‘enhanced’ floral guide creates two concentric rings of UV absorbance, and
the ‘diminished (no guide)’ treatment lacks the classic UV absorbing floral
guide. The asterisks represent a significant difference in the number of
visitors to the ‘enhanced’ treatment relative to the ‘diminished’ treatment.

Fig. 4. Results of an urban preserve experiment. The R. fulgida floral
head treatment UV photographs are displayed atop each data bar. Here the
‘enhanced’ floral guide treatment is slightly enlarged, with ,60% of the petal
surface area UV absorbent and the ‘diminished’ floral guide treatment has
,25% of the petal surface area UV absorbent. The asterisk represents a
significant difference in the number of visitors to the ‘diminished (25% UV)’
treatment relative to the other treatments.
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visited the ‘wild-type cut-and-paste control’, and six visited the
‘natural’ flower; Table 3; Fig. 5). The Chi-square test was highly
significant refuting the null hypothesis of an equal distribution
of visitors among treatments (x2513.6, P50.0011). Post-hoc

pairwise comparison tests indicated a difference in the number of
visitors to the ‘enhanced’ treatment compared to the ‘wild-type
cut-and-paste control’ and ‘natural’ flower (Dx256.30.3.84,

P,0.05 and 7.24.3.84, P,0.05). The total visitation times were
472 seconds to the ‘enhanced’ treatment, 50 seconds to the ‘wild-
type cut-and-paste control’ and 62 seconds to the ‘natural’

flower. Mean visitation times were 23.5 (s.d.527.0), 10.0
(s.d.59.59) and 10.3 (s.d.59.11) seconds, respectively.
ANOVA analysis indicated that mean visitation times were not

significantly different (Sums of Squares (SS) between
groups58.8088, SS within groups570.54, Total578.6, d.f.52,
27 and 29, respectively; Mean Square (MS) between
groups54.04, within group 2.61, F51.548 and P50.231). The

community of visitors decreased in diversity and included two
families: Halictidae (30), and Apidae (1).

In September, a total of 32 insects were observed visiting

flowers in this experiment (18 visited the ‘enhanced’ floral guide,

nine visited the ‘wild-type cut-and-paste control’ and five visited
the ‘natural’ flower; Table 3; Fig. 6). The Chi-square test was
again highly significant refuting the null hypothesis of an equal
distribution of visitors among treatments (x258.3, P50.016).

Post-hoc pairwise comparisons again indicated a difference in
the number of visitors to the ‘enhanced’ treatment compared to
the ‘wild-type cut-and-paste control’ (Dx254.78.3.84, P,0.05),

but not to the ‘natural’ flower (Dx252.03,3.84, P.0.05). The
total visitation times were 192 seconds to the ‘enhanced’
treatment, 75 seconds to the ‘wild-type cut-and-paste control’

and 71 seconds to the ‘natural’ flower. Mean visitation times
were 10.6 (s.d.513.6), 8.22 (s.d.57.34), and 14.6 (s.d.520.0)
seconds, respectively. ANOVA analysis indicated that mean

visitation times were not significantly different (SS between
groups50.081, SS within groups54.93, Total55.01, d.f.52, 29
and 31, respectively. MS between groups50.040, within group
0.170, F50.237 and P50.791). The community of visitors

included three families: Halictidae (17), Apidae (12) and
Syrphidae (3).

In October, a total of 21 visitors were observed visiting flowers

in this experiment (13 visited the ‘enhanced’ floral guide, three

Table 3. Results of Experiment IIId

June 2011 Sept. 2011 Oct. 2011

Treatment Observed Expected Observed Expected Observed Expected

Enhanced guide 20 10.3 18 10.6 13 7
Wild-type cut-and-paste control 5 10.3 9 10.6 3 7
Unmanipulated ‘natural’ flower 6 10.3 5 10.6 5 7

Petal ‘cut-and-paste’ was used to enlarge the UV absorbent floral guide size on R. hirta.

Fig. 5. Results of an urban zoo grounds experiment. The R. hirta floral
head treatment UV photographs are displayed atop each data bar. Here the
‘enhanced’ floral guide treatment is very large, with ,90% of the petal
surface area UVabsorbent. The asterisk represents the significant difference
in the number of visitors to the ‘enhanced (90%)’ treatment relative to the
other treatments.

Fig. 6. Results of an urban zoo grounds experiment. The R. hirta floral
head treatment UV photographs are displayed atop each data bar. Here the
‘enhanced’ floral guide treatment is very large, with ,90% of the petal
surface area UV absorbent. The asterisk represents the significant difference
in the number of visitors to the ‘enhanced (90%)’ treatment relative to the
‘control’ flower.
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visited the ‘wild-type cut-and-paste control’ and five visited the

‘natural’ flower; Table 3; Fig. 7). The Chi-square test was again
highly significant refuting the null hypothesis of an equal
distribution of visitors among treatments (x258.0, P50.018).

Post-hoc pairwise comparison tests indicated a difference in the
number of visitors to the ‘enhanced’ treatment compared to the
‘natural’ flower (Dx254.57.3.84, P,0.05) but not to the ‘wild-
type cut-and-paste control’ (Dx252.86,3.84, P,0.05). The

community of visitors increased slightly in diversity compared
to the two prior experiments due to an influx of butterflies and
included five families: Halictidae (15), Nymphalidae (2), Pieridae

(2) Papilionidae (1), and Apidae (1). The one-day food color
mark recapture study yielded no repeat visitors on Day 2 but
captive insects retained their color.

DISCUSSION
Despite the ubiquity of UV absorbent floral guides in

Angiosperms, very little work has addressed the association
between pollinator visitation frequency and UV floral guide traits,
possibly because these traits were assumed to serve orientation
purposes only. We show clearly that wild bees are more

frequently attracted to Rudbeckia with oversized UV absorbing
floral guides than to conspecific flowers with guide sizes closer to
the average found on wild and cultivated flowers. Bees also

demonstrate less recruitment to flowers with very small guides.
We also found that sunscreen treated flowers with masked UV
traits were avoided by pollinators, which is consistent with

prior work of the same nature (Johnson and Andersson, 2002).
However, we did not control for potential alternative
chemosensory cues (e.g. sunscreen scent) so the sunscreen

experiment must be interpreted with caution.

Our work shows that floral guides functioned in distance-based
recruitment. Preference for relatively large floral guides held true

across our experiments despite the fact that in nature, bigger
flowers do not have relatively larger floral guides than smaller
flowers. Daumer (Daumer, 1956; Daumer, 1958) and others (e.g.
Burr et al., 1995) posited that UV reflectance attracts pollinators

from a distance and that floral guides are used for close-range
reward-orientation. While this is true, and could perhaps be
particularly pertinent to floral species without radial symmetry, or

with particular types of floral guides, we have also shown that in
Rudbeckia, when we decrease the proportion of the floral head
surface area that is UV reflective and increase the size of the UV

absorbent guides, we see higher recruitment.
Chittka et al. have shown that pure UV reflecting flowers are

very rare (Chittka et al., 1994). They comprised less than 4% of

over 500 species surveyed. It is logical, based upon what we
know about insect vision, that purely UV reflecting flowers
would not be attractive to bees. Chittka et al. found that if flowers
reflected UV they also tended to reflect red (Chittka et al., 1994),

which may aid in recruitment of some insect pollinators. The
reflectance curves for ,17% of their surveyed flowers, resemble
our data for the proximal half of the Rudbeckia petal surface (e.g.

human yellow and UV absorptive). Chittka et al. label this
reflectance pattern ‘green’ for bees (Chittka et al., 1994). The
reflectance curves for ,13% of their surveyed flowers resemble

our data for the distal half of the Rudbeckia petal surface (e.g.
human yellow and UV reflective). Chittka et al. label this pattern
‘UV-green’ for bees (Chittka et al., 1994). These reflectance

spectra are predictably distinguishable from environmental
background material including leaves, soil and rock, much of
which may appear more gray to bees (Daumer, 1958; Kevan,
1978; Menzel and Shmida, 1993).

The visitation preferences that we identified are generalizable
for at least three floral species (R. hirta, R. fulgida, and
unpublished data for Ranunculus bulbosus L. Ranunculaceae).

Bees are capable of learning fine color differences through trial
and error (Reser et al., 2012); however, the minimal variation in
‘human yellow’ seen between the distal and proximal portions of

the Rudbeckia petals are not predicted to have driven our results
for untrained bees where we did not link this difference to reward
or aversion resources. Bees generally take longer to discriminate
between similar colors than dissimilar ones and the neural

pathway invoked for learning fine differences demonstrates
plasticity, unlike the pathway for coarse color discrimination,
which functions more rapidly and is hard-wired (Dyer et al.,

2011). The wild bees recruited in our work may have had prior
experience in nature. So, we purposefully used multiple urban
settings with unique surrounding vegetation, including different

floral species at different experimental sites, so that prior learning
would not bias our results. However, additional research, perhaps
using ‘cut-and-paste’ style treatments with UV absorbent petals

from another species, placed atop Rudbeckia flowers, might
reinforce our results and eliminate the confounding issue
associated with yellow coloration.

Since different types of illumination can affect bee vision

(Arnold and Chittka, 2012) conducting experiments across a
variety of lighting regimes may be important. However,
brightness has generally been found to be an unimportant

variable when chromatic differences provide for discrimination.
Detecting brightness mandates training (Backhaus, 1991) and
appears to matter most for small object identification (Spaethe

et al., 2001).

Fig. 7. Results of an urban zoo grounds experiment. The R. hirta floral
head treatment UV photographs are displayed atop each data bar. Here the
‘enhanced’ floral guide treatment is very large, with ,90% of the petal
surface area UVabsorbent. The asterisk represents the significant difference
in the number of visitors to the ‘enhanced (90%)’ treatment relative to the
‘natural’ flower.
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From a behavioral perspective, flower color plays an important
role in flower constancy. Flower constant pollinators visit only a

subset of the species or morphs extant, despite the presence of
alternative, untapped rewards that may be bypassed en route to
the preferred resource (Waser, 1986). Flower color also plays an
essential role when flower constant bees shift their preference to

novel focal phenotypes (Chittka et al., 1997; Chittka et al., 1999).
Whether UV floral guide size could contribute to flower
constancy remains to be investigated.

In this work, we identified a normal distribution for floral guide
size in wild and cultivated populations, though additional data
would now be useful to determine whether cultivating plants

disrupts the typical floral guide size found in wild plants. It is
interesting to note that the mean floral guide size was smaller in
the wild population than the cultivated one, and that this wild

population had a larger variance in guide size. This comparison
raises an important point: traits essential to pollinators can be
altered when we cultivate plants, whether we can literally see
these traits or not. To address whether, and how much, we alter

UV floral guides when we cultivate flowers, more wild and
cultivated populations should be surveyed for both UV guide size
and for population-level variation in this trait.

Our work also prompts some fundamental questions like ‘Does
co-evolution maintain UV vision in bees?’, ‘Does this result in
natural selection for the maintenance of UV traits in flowers?’.

Retention of UV opsins is ancient and widespread in insects
(Briscoe and Chittka, 2001; Kevan et al., 2001), suggesting
constraints on evolutionary changes in these genes. Since simple

mutations in opsins can shift visual capability, the long-term
persistence of UV vision suggests an adaptive value to this trait.

Global declines of commercial and wild bees raise serious
pollination-service and economic concerns (Watanabe, 1994;

Steffan-Dewenter et al., 2005; Biesmeijer et al., 2006; Brown and
Paxton, 2009; Frankie et al., 2009; Gross, 2011; Bommarco et al.,
2012; Cameron et al., 2011). This means that advancing our

knowledge about the relative attractiveness of conspecific flowers
to pollinators is relevant now more than ever. Urban landscapes and
sprawl are increasing globally, which decreases the available

natural habitat for native pollinations and often replaces it with
small, landscaped parcels (Olujimi, 2009). Wild bees are rarely
studied in this expanding modern habitat, making experimental
work evaluating the pollination behavior of native bees in urban

landscapes particularly timely. Recent work has shown that
conscientious landscape management can increase bee diversity
(Ahrné et al., 2001). Our work now shows that UV absorbent floral

guides can play an important role in pollinator recruitment as well.

MATERIALS AND METHODS
I. Floral specimens and relevant techniques for measuring UV
floral guides
Floral specimens
R. hirta and R. fulgida are Asters. They produce one, large floral head,

that is comprised of many central black florets, commonly called true

flowers. These tiny true flowers are surrounded by long ligulate florets

that function like large petals. They are yellow to humans. Generally, the

proximal half of these ‘petals’ is comprised of UV absorptive floral

guide. In UV photography, this presents as a bold, dark ring around the

center of the entire floral head, where the UV is absorbed. Early work

refers to this UV pattern as a ‘nectar guide’ (Daumer, 1958; Eisner et al.,

1969; Thompson et al., 1972). The distal portion of these petals is UV

reflective and ‘human yellow’. The UV reflectance peaks at ,360 nm as

can be seen on spectrophotometric reflectance graphs (Thompson et al.,

1972; Schlangen et al., 2009).

Photography and image analysis
UV photography was conducted using a Baader U-filter. This filter

transmits UV wavelengths from 325 to 369 nm, with maximal penetrance

in the UV-A range at 360 nm (Savazzi, 2011). The filter was used with

an AF Micro Nikkor 60 mm lens, several mounts, and a Nikon D70

DSLR digital camera. UV photographs were downloaded to Nikon

Capture NX2 software and then transferred to Image J 1.46 for

quantitative analyses. Image J is an open access processing and

analysis program written in Java that can be downloaded from National

Institutes of Health (http://rsbweb.nih.gov/ij). In Image J, a phenotypic

trait, like petal surface area can be traced and digitized. The

circumscribed area can be calculated and the resultant pixel measurement

for the trait can be converted to a meaningful scale (e.g. mm2) based upon

a reference scale used in the picture (here, a ruler). Multiple traits were

measured including petal length, petal surface area, floral-head area, UV

floral guide length, and proportion of petal surface area comprised of UV

floral guide. All statistical tests were performed in SPSS.

II. Floral-guide size-distributions for three data sets: greenhouse,
urban and wild R. hirta
Greenhouse flowers
In November 2010, native R. hirta seeds were obtained from the

Ornamental Plant Germplasm Center of The Ohio State University. In

March 2011, 236 seeds were planted under full-spectrum 12L: 12D

lighting in the Kaplan Orchid Conservatory of Old Dominion University

(ODU, Norfolk, VA, USA, 36.885441N, 276.307466W). After seven

weeks, plants were transferred the ODU greenhouse until flowering. In

May 2011, flowers were used in a pilot study assessing UV-absorptive

floral-guide length (mm) variation. Since plants were grown in the same

conditions, variation may represent the genetic component of phenotypic

diversity. Floral guides were measured for 18 flowers and two plants and

these measurements were compared with an independent samples t-test.

The t-test assumption regarding equal variance was met (Levene’s test

F50.00, P51.0).

Naturalized urban flowers
In July 2010, we assessed the average sized UV absorptive floral guide

by measuring the proportion of petal surface area that was comprised of

floral guide (mm2) relative to the entire petal surface area, for each

flower. We also evaluated the distribution of these guide sizes for this

naturalized R. hirta population. Measurements were made for 30 flowers

using Image J on photographs of all flowers. Flowers measured were

located in a large, conspecific population on the ODU urban campus.

To evaluate the shape of the distribution for UV floral guide sizes, we

used Shapiro-Wilks’ test. Consistent with many quantitative traits, the

Shapiro-Wilks’ test indicated that UV guide sizes were normally

distributed in these naturalized flowers (W50.984, d.f.527, P50.938).

Next, we used Pearson’s correlation coefficient to determine whether

there was a relationship between the floral head width (in mm), and the

total size of the floral guide (area in mm2), because this allows us to

address questions like ‘Is UV guide size correlated with overall flower

size?’. Since a significant result could merely represent a positive

correlation between the total floral head size and amount of petal surface

area that was floral guide, we next considered whether there was a

correlation between the total floral head size and the proportion of the

total petal surface area that was comprised of floral guide. This allows us

to address whether larger floral heads have relatively larger guides (or

greater percentage of petal surface area covered by UV guide) than

smaller floral heads.

Wild flowers
In July 2011, we assessed the floral guide size distribution in the wild

flower population for comparison to the naturalized flowers. Thirty

flowers growing on a precipitous rocky outcrop in montane Colorado

(39.44419N, 105.74084W) were evaluated in the same manner as the

naturalized urban flowers. Based upon the Shapiro-Wilks’ test, the shape

of the distribution of UV floral guide sizes for this population, like the

urban one, was also normally distributed (W50.958, d.f.521, P50.467).
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III. Insect visitation response to floral guide manipulations
In the following series of experiments, floral guide size was manipulated

in one of two species (R. hirta and R. fulgida) to determine whether insect

visitation rates differed when floral guides were removed, enhanced and

diminished. No flowers were reused in any trials.

a. Sunscreen masked floral guides on R. hirta
In July and August 2010, we conducted a sunscreen study with R. hirta

from the urban population. Three treatments were used, two new flowers

per treatment, for 15 trials. Thus, six floral heads located in the garden

were haphazardly identified for use for each trial after visual matching

for size and stage. Haphazard selection should randomize error variance.

For treatment one, two floral heads were ‘sunscreen’ misted (Ocean

Potion Suncare Instant Dry SPF 70 Mist) to mask the floral guide

entirely. Treatment two was ‘water misted’ as a control for moisture (the

true sunscreen control of sunscreen minus the active ingredient was

unavailable). Treatment three was ‘air-sprayed’ as control for potential

loss of pollen during water misting.

This study site was intentionally selected to assay the community of

insects naturally attracted to cultivars in a large, landscaped urban

garden. The garden was situated in front of a five-story building and

comprised of a large tract of R. hirta (12 m61.5 m), a smaller tract of

Echinacea purpurrea (59629) behind the R. hirta, and a few Hosta

cultivars on the garden edges.

All trials were completed on hot summer full-sun days a few days apart

from one another. At ,10:00 am, one hour trials were initiated and the

total number of insect visitations was recorded. To be counted, the insect

had to alight on a flower head then demonstrate some visual evidence of

foraging or pollen collection. First landings were the sole landings

counted for the few insects that were observed landing twice so as to

avoid repeated measures. Insects were identified for this and subsequent

experiments based upon our own expertise and guidebooks (e.g. Arnett

and Jacques, 1981; Evans, 2007; Michener et al., 1994; Michener, 2007).

Visitation data were analyzed with a Chi-square test and a post-hoc

pairwise comparison test that assessed homogeneity of proportions (Cox

and Key, 1993). The post-hoc test used the absolute value of the

difference between two cell contributions in paired tests. The difference

is distributed as Chi square with one degree of freedom so the D Chi

square between a pair of treatments was compared to 3.84 to assess

statistical significance at the P50.05 level.

b. Augmented floral guides on R. fulgida
In August 2010, the first of a series of ‘cut-and-paste’ experiments was

conducted in a diverse urban home garden (,6 m66 m) in Norfolk, VA.

This garden was more complex than the above one, comprised of scores

of cultivated R. fulgida plants surrounded by a variety of additional

flowering perennial species. Treatment R. fulgida (Goldsturm) cultivars

from a chain store were used in these experiments to evaluate insect

response to experimentally diminished and enhanced floral guides.

To create the ‘cut-and-paste’ treatments ,10 individual floral heads

were collected for each trial. All petals were removed from heads, then

cut sagittally at the point where the UV floral guide ended (about half

way down the petal). UV photographs were taken to determine whether

subsequent trimming was necessary to ensure that pieces were entirely

floral guide or completely devoid of floral guide. The appropriate petal

pieces were glued onto fresh floral heads contingent upon treatment.

Two ‘cut-and-paste’ treatments and one control were freshly constructed

for each trial. Treatment one had a ‘diminished’, or nearly no, floral guide

and was created by gluing the petal pieces devoid of floral guide atop the

proximal portion of an unmanipulated flower head. Treatment two had an

‘enhanced’ or double floral guide, where an additional concentric ring of

floral guide was added distally to the natural guide by pasting small floral

guide petal pieces on another unmanipulated flower head. For the ‘wild-

type cut-and-paste control’ flower, two sets of petal pieces, one with floral

guide, and one devoid of it, were glued atop the petals of a final

unmanipulated floral head, recreating the common wild-type pattern.

Each floral head (with stalk ,20 mm) was placed into a clear glass

bottle on the ground ,3 meters away from the conspecific flowerbed.

Six trials were conducted from about noon until 2:00 pm for six days and

each ended after 10 insect visitations. Treatment locations were rotated in

the bottle line-up in subsequent trials (treatment on the left in trial 1 was

positioned in the middle for trial 2, and on the right for trial 3, and so

forth) such that each trial was comprised of a novel treatment series.

Trials were conducted from August 21–27 in Norfolk, VA (36.886246N,

276.289351W). The time, treatment visited, weather, and visitor type

were recorded. Visitation data were analyzed with a Chi-square test and a

post-hoc pairwise comparison test, as above.

c. Slightly enlarged and diminished floral guides on R. fulgida
In a less cultivated, more natural setting at an urban sanctuary, a similar

‘cut-and-paste’ experiment was completed. R. fulgida were again altered

to create two treatments and one ‘wild-type cut-and-paste’ control.

Treatment one was ‘enhanced’, here to be slightly enlarged from the

natural floral guide to ,60% of the petal surface area. Treatment two was

‘diminished’, here to be ,25% of the petal surface. Treatment three was

the same ‘wild-type cut-and-paste control’ used previously. Additionally,

a ‘natural’ unmanipulated flower head was added as a true control for our

‘cut-and-paste’ procedure. Treatment bottles were positioned near the

Rudbeckia plot of the ‘meadow flower bed’ at Weyanoke Bird and

Wildflower Sanctuary in Norfolk, VA (36.87373N, 276.307068W). This

floral bed contained scores of Rudbeckia, along with a number of

additional annual and perennial meadow flowers, some naturalized. The

experiment was conducted from mid-September until mid-October in

2010 from ,noon until 2:00 pm. Data were recorded and statistics

performed as above.

d. Oversized floral guides on R. hirta
At this point we knew small floral guides were least desirable and we

wanted to focus on whether large, uninterrupted guides were preferred.

As well, to determine if our results held for more than one species, the

native R. hirta seed grown in the greenhouse were used for this study.

This work was conducted on a grassy knoll, further away (,25 m) from a

smaller, mixed species floral garden at an urban zoo. This site allowed us

to determine whether there were differences in the families recruited to

this more monoculture-like urban habitat. Treatment one was another

enhanced floral guide, here quite oversized, and comprising ,90% of the

petal surface. Treatment two was the ‘wild-type cut-and-paste control’

from above and treatment three was again a natural flower. Nine

consecutive trials ran in full sun from ,10:00 am to 2:00 pm per day in

June of 2011. In addition to the Chi-square test and post-hoc tests

described above here the cumulative (or total) and mean visitation times

were also recorded for all treatments. The variance in mean visitation

times was large though homogenous (Levene’s statistic50.056, d.f.152,

d.f.2527, P50.946) and these data were square root transformed prior to

ANOVA.

This ‘oversized’ treatment experiment was repeated in September of

2011 for seven days. Here, insects were captured with mesh nets and

removed after landing to ensure no repeat measures were included in the

data set. The variance in mean visitation times was large though

homogenous (Levene’s statistic50.009, d.f.152, d.f.2529, P50.992) and

these data were log10 transformed prior to ANOVA. Before we started

this experiment, we conducted a food-color mark and recapture pilot

study on Halictidae (n520) collected during a one-day trial. No marked

visitors were identified the subsequent day but food-color marks

remained on bees held for 24 hrs.

This ‘oversized’ treatment experiment was repeated again in October

of 2011, but here the design was a linear array. Thirty R. hirta flower

heads (three treatments 610 flowers per treatment) were positioned

,60 mm apart from one another in one long array, where treatment order

repeated sequentially, and visitation monitored for a longer, single day

time period. All of these experiments were conducted at the Virginia Zoo

(36.8794675N, 276.274154W) in Norfolk, VA.
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Giurfa, M., Núñez, J., Chittka, L. and Menzel, R. (1995). Colour preferences of
flower-naive honeybees. J. Comp. Physiol. A 177, 247-259.

Giurfa, M., Vorobyev, M., Kevan, P. and Menzel, R. (1996). Detection of coloured
stimuli by honeybees: minimum visual angles and receptor specific contrasts. J.
Comp. Physiol. A 178, 699-709.

Giurfa, M., Vorobyev, M., Brandt, R., Posner, B. and Menzel, R. (1997).
Discrimination of coloured stimuli by honeybees: alternative use of achromatic
and chromatic signals. J. Comp. Physiol. A 180, 235-243.

Gross, M. (2011). New fears over bee declines. Curr. Biol. 21, R137-R139.
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