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ABSTRACT

One challenge for invading pathogens represents the exposure to
highly microbicidal hypohalous acids (HOX), such as hypochlorous
acid (HOCI) and hypothiocyanous acid (HOSCN). Generated at high
concentrations by innate immune cells during phagocytosis, HOX
kills the engulfed microbes through extensive macromolecular
damage. However, microorganisms have evolved strategies to
detoxify the oxidants and/or alleviate HOX-mediated damage,
which improves their survival during HOX exposure. Many of these
defense systems are bacteria-specific and therefore considered
potential drug targets. Our minireview highlights recent (July 2021 to
November 2022) advances in the field of microbial HOX defense
systems and how these systems are regulated. We report recent
progress on redox-sensing transcriptional regulators, two-component
systems, and o/anti-c factors and review how oxidative modifications
in these regulatory proteins affect the expression of their target genes.
Moreover, we discuss novel studies that describe how HOCI affects
the activity of redox-regulated enzymes and highlight mechanisms
that bacteria employ to reduce HOSCN.

KEY WORDS: Bacterial defense systems, Hypohalous acids,
Oxidative stress, Redox regulation, Stress response, Transcriptional
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Introduction

The cellular imbalance between the production and accumulation of
reactive oxygen and chlorine species (ROS/RCS) and antioxidant
defenses is a phenomenon called oxidative stress. In fact, ROS/RCS
accumulate during inflammation and appear to be involved in
controlling bacterial colonization of epithelia, where they are
generated by dual oxidases (El Hassani et al., 2005; Bae et al.,
2010). Moreover, innate immune cells, such as neutrophils and
macrophages, produce high levels of ROS/RCS to kill invading
pathogens in a process called phagocytosis (Winterbourn et al.,
2016; Winterbourn and Kettle, 2013; Klebanoff et al., 2013).
During respiratory burst, NADPH oxidases are assembled on the
phagosomal membrane to catalyze the reduction of molecular
oxygen to superoxide, which is subsequently dismutated to
hydrogen peroxide (H,O,) and released into the phagosomal
space (Hampton et al., 1998). The release of myeloperoxidase
into the phagosome catalyzes the conversion of the accumulating
H,0, and available (pseudo-) halides (i.e. C17, Br~, and SCN™)
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into hypohalous acids (HOX), such as hypochlorous acid
(HOCI), hypobromous acid (HOBr), and hypothiocyanous acid
(HOSCN), respectively (Winterbourn et al., 2016; Hurst, 2012;
Davies, 2011).

HOX are extremely reactive and bactericidal already at low
micromolar levels (Nagl et al., 2000; Love et al., 2016). A common
target of all neutrophilic oxidants is the amino acid cysteine
(Winterbourn and Kettle, 2013; Winterbourn et al., 2016). HOX
oxidize cysteines to either reversible (i.e. sulfenic acids; disulfide
bonds) or irreversible thiol modifications (i.e. sulfinic and sulfonic
acid) (Dahl et al., 2015). Reversible thiol modifications often come
along with severe structural and functional consequences, while
irreversible thiol modifications can lead to protein aggregation and
degradation (Dahl et al., 2015; Cremers and Jakob, 2013). A study
in Pseudomonas aeruginosa revealed overlapping outcomes for
treatments with HOCl and HOBr as both oxidants target non-
growing cells more efficiently than growing cells and elicit similar
bacterial responses (Groitl et al., 2017). Exposure to HOCI causes
pleiotropic phenotypes in bacterial cells given that this oxidant
can oxidize and damage virtually any cellular molecule, including
select amino acids, lipids, metal centers, and nucleic acids (Gray
et al.,, 2013a). These oxidative modifications can cause protein
aggregation, DNA strand cleavage, mis-metalation, ATP depletion,
and a substantial reduction in the free thiols pool, ultimately leading
to microbial death. In contrast, treatment with HOSCN has been
found to affect primarily actively growing cells and evoking
different defense mechanisms (Groitl et al., 2017), likely due to its
highly thiol-specific nature (Skaff et al., 2009).

However, bacteria have likewise evolved mechanisms to counter
the detrimental effects of HOX (recently reviewed in Gray et al.,
2013a; Dahl et al., 2015; Sultana et al., 2020; Varatnitskaya et al.,
2021; Ulfig and Leichert, 2021; Aussel and Ezraty, 2021). Notably,
microorganisms mount responses to changes in their environment,
such as the exposure to HOX, on both transcriptional and post-
translational level. Our review therefore highlights the most recent
advances in the area of bacterial defense systems against the
neutrophilic oxidants.

A year at the forefront of bacterial defense systems against
neutrophilic oxidants

Discoveries

Redox-regulated transcription factors

Microbial responses to ROS/RCS often involve redox-sensitive
transcriptional regulators, which use conserved cysteine and/or
methionine residues to modulate their activity (Gray et al., 2013a).
This, in turn, upregulates the transcription of their target genes,
many of which have been shown to protect the organism from ROS/
RCS. Three HOCl-responsive transcriptional regulators have been
identified in E. coli prior to 2021, all of them in the K12-strain
MG1655: (1) HypT (Gebendorfer et al., 2012); (2) the TetR-family
transcriptional repressor NemR (Gray et al., 2013b), and (3) the
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AraC-family transcriptional activator RcIR (Konigstorfer et al.,
2021; Parker et al., 2013).

Sultana et al. reported that uropathogenic E. coli (UPEC) are
substantially more resistant to HOCI and killing by neutrophils
due to the presence of an additional HOCI-defense system that
intestinal E. coli lack (Sultana et al., 2022). The TetR-family
transcriptional repressor RcrR is reversibly inactivated through
HOC]I-mediated cysteine oxidation leading to the de-repression of
transcription of the rcrARB operon (Fig. 1A). HOCI causes the
formation of intermolecular disulfide bonds in RcrR, which results
in conformational changes and contributes to RcrR’s dissociation
from the promoter. UPEC’s increased HOCI resistance appears to be
exclusively mediated by RerB, a putative inner membrane protein of
unknown function, as rcrB-deficient UPEC strains were similarly
susceptible to HOCI as the HOCl-sensitive intestinal E. coli strains
tested (Sultana et al., 2022).

HOCI-sensing transcription factors also play an important role for
the activation of HOCI defense systems in Gram-positive pathogens
(Beavers and Skaar, 2016). A recently studied example is the
Streptococcus pneumoniae 1-Cys-type regulator NmIR, which
forms intermolecular disulfide bonds upon oxidation of its redox-
sensitive cysteine residue but remains bound to the promoter DNA
regardless of its oxidation state (Fritsch et al., 2023). Oxidized
NmIR presumably distorts the promoter DNA, resulting in
improved RNA polymerase binding and increased adhC transcript
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levels (Fig. 1B). Not surprisingly, growth of the nmIR and adhC
deletion strains were significantly impaired during exposure to
sublethal HOCI concentrations or in macrophages. However, how
AdhC, a class III alcohol dehydrogenase, confers resistance to
HOCl is still unclear.

Within the last year, an additional HOCl-defense system has
been identified in the haloarchaeal species Haloferax volcanii:
The TrmB-family regulator OxsR interacts with distinct intergenic
regions of the H. volcanii genome to control transcription of
numerous downstream genes, including antioxidant genes and
Fe/S-cluster-containing proteins (Mondragon et al., 2022).
Transcriptional analyses of randomly selected downstream genes
revealed OxsR’s versatile regulatory nature as the protein can act as
an activator or repressor depending on the presence and location of a
GC-rich binding motif (Fig. 1C). The authors proposed that
formation of an intermolecular disulfide bond results in homodimer
formation upon oxidation with HOCI, and triggers OxsR binding to
the promoter.

HOCI-responsive two-component systems

Other stress responses are governed by the action of two-component
systems (TCS): histidine kinases sense and transmit the incoming
signal to a response regulator, which executes the output response
upon phosphorylation by the histidine kinase (Breland et al., 2017).
H,0, was the first signal, which activates the E. coli TCS HprSR,
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Fig. 1. Exposure to HOCI causes substantial transcriptional changes in microorganisms, which are mediated by redox-sensing transcriptional

regulators, two-component systems, and ¢ factors. (A) The transcriptiona

| repressor RcrR forms reversible intermolecular disulfide bonds upon HOCI-

stress resulting in its dissociation from the operator and derepression of the rcrARB genes. Expression of RcrB protects uropathogenic E. coli from HOCI-
stress in vitro and contributes to increased resistance during phagocytosis. (B) Streptococcus pneumoniae NmIR is a transcriptional activator that remains

bound to promoter region under both non-stress and HOCI-stress conditions.

NmIR forms intermolecular disulfide bonds in the presence of HOCI, which may

distort the DNA, improve RNA polymerase binding, and thus increase transcription of adhC to presumably detoxify HOCI by an unknown mechanism.
(C) The archaeon H. volcanii employs the transcriptional regulator OxsR to protect itself from the deleterious effects of HOCI. OxsR can function as

transcriptional activator and repressor, which is dictated by the position of the

GC-rich binding site in the promoter region. (D) In Brucella sp., transcription of

the berXQP genes that encode a methionine-rich peptide, and a methionine sulfoxide reductase homolog is controlled by the o/anti-c factors BcrS/AbcS.
Under non-stress conditions, AbcS binds BcrS and reduces its interaction with RNA polymerase, resulting in low transcriptional outcomes. HOCI
proteolytically cleaves AbcS and increases BcrS availability for RNA polymerase resulting in elevated bcrXQP transcription. (E) The o/anti-o-sigma factors

FroR/Frol regulate transcription of the P. aeruginosa froABCD operon by an u
efficient upregulation of froABCD, which provide protection from HOCI.

nknown mechanism. During HOClI-stress, the presence of FroR is required for
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causing the upregulation of the msrPQ genes (Urano et al., 2015).
msrPQ encode a methionine sulfoxide reductase, which consists of
the molybdopterin-containing oxidoreductase MsrP and the heme-
containing membrane protein MsrQ (Gennaris et al., 2015). MsrP
repairs oxidized proteins in the periplasm by converting methionine
sulfoxides to methionine residues. A recent study by Hajj et al.
found that HOCI and the related compound N-chlorotaurine
represent a more efficient activation signal than other thiol-
reactive compounds, including H,O, diamine, paraquat, and
nitric oxide (El Hajj et al., 2022). Two methionine residues
present in the periplasmic loop of HprS were identified to be
responsible for the sensing activity, whereas a cysteine residue in the
transmembrane region is important for signal transduction (EI Hajj
et al., 2022).

HOCI-controlled ¢/anti-c factor interaction

To initiate RNA polymerase binding to the promoter and start
transcription, RNA polymerase requires a ¢ factor, which
occasionally is co-expressed with its cognate anti-c factor
(Saecker et al, 2011). Anti-c factors bind their cognate
(extracytoplasmic function) ECF o factors with high affinity and
specificity to prevent the formation of holo-RNA polymerase.
However, induced by extracellular signals, some ECF ¢ factors rely
on proteolytic cleavage of the anti-c factor, which increases the
cellular amount of o factor and results in increased transcription
(Helmann, 2002). Over the last year, two o/anti-c factor systems
have been identified that respond to HOClI-stress.

The Brucella melitensis bcrS/abcesS system controls the expression
of the berXQP operon, which encodes a methionine-rich peptide
and a homolog of E. coli methionine sulfoxide reductase MsrPQ (Li
et al,, 2021). AbcS presumably binds BcerS under non-stress
conditions and reduces its interaction with RNA polymerase
(Fig. 1D). Under HOCI-stress, however, AbcS is proteolytically
cleaved and the o factor BerS is released and accumulates, which
results in increased berXQP transcription. Moreover, BerS was also
shown to induce the expression of a type IV secretion system;
however, this appeared to be independent of the anti-c factor AbcS
(Li et al., 2021). Interestingly, the AbcrS strain showed wild-type-
like survival in an in vivo mouse model, suggesting that BcrXQP
expression has no significant protective role during infection,
which, however, contrasts with other studies (Juillan-Binard et al.,
2017; Jalal and Lee, 2020; Beavers et al., 2021; Tossounian et al.,
2020).

In P. aeruginosa, expression of the froABCD operon improves
their survival in the highly oxidizing environment of the neutrophil
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phagosome (Foik et al., 2022 preprint). All four members of the
operon are uncharacterized proteins; however, FroA and FroB are
predicted to be cytoplasmic while FroC and FroD are putative inner
membrane proteins. Transcription of froABCD appears to be
controlled by the o/anti-c factor system FroR/Frol by an unknown
mechanism (Foik et al., 2022 preprint). The pronounced growth
defect of a AfroR mutant during HOCl-stress, its reduced ability to
express antioxidant proteins, and previous induction studies under
flow conditions suggest that HOCl-induced firoABCD expression
requires the presence of FroR and absence of Frol (Fig. 1E) (Foik
et al., 2022 preprint; Sanfilippo et al., 2019).

HOCI-mediated changes in protein activity

Proteins constitute for >50% of the cellular macromolecules and are
known to rapidly react with HOCI] (Hawkins and Davies, 2019).
Numerous studies in different HOCI-treated bacterial species
revealed the strong upregulation of the heat shock regulon,
indicating an accumulation of misfolded proteins and supporting
the idea that proteins are the major targets of HOCI (Groitl et al.,
2017; Gray et al., 2013b; Sultana et al., 2022; Thakur et al., 2019;
Tung et al., 2020; Hillion et al., 2017). Similarly, H,O, can cause
substantial protein aggregation as the result of methionine and
cysteine oxidation (Imlay, 2008). One recently identified target of
HOCV H,0; is the ubiquitous DNA recombination/repair protein
RecA, a crucial member of the RecBCD-dependent DNA damage
repair system (Henry et al., 2021). Both HOCI and H,O, inactivate
RecA through the oxidation of at least two conserved methionine
residues into methionine sulfoxides, although oxidation by HOCI
was more pronounced likely due to its higher potency. Oxidized
RecA was unable to form nucleoprotein filaments, showed little to
no DNA-dependent ATPase activity, and no longer promoted DNA
strand exchanges (Fig. 2A). However, incubation of oxidized RecA
with the methionine sulfoxide reductase MsrAB restored, at least
partially, its function (Henry et al., 2021).

In two independent studies, Perkins et al. reported the
mechanisms for novel adaptive survival strategies stimulated by
HOCI (Perkins et al., 2019; 2021). The most recent study focused on
the HOCl-mediated increase in activity of the E. coli diguanylate
cyclase DgcZ, an enzyme that generates the biofilm second
messenger cyclic-dimeric-GMP (c-di-GMP). DgcZ contains an
N-terminal chemoreceptor zinc-binding site (CZB) that is also
present in the C-terminus of Helicobacter pylori TlpB, where it was
shown to coordinate chemoattraction to HOCI (Perkins et al., 2019;
2021). Notably, E. coli utilizes the same structural topology of the
CZB domain to regulate diguanylate cyclase activity for the

Fig. 2. Oxidation of redox-sensitive amino acids by HOCI
affect the catalytic activity of enzymes. (A) H,O,-mediated
oxidation of conserved methionine residues result in RecA’s
partial and/or full inactivation, which negatively affects
homologous recombination and induction of the SOS response.
RecA oxidation can be reversed by the methionine sulfoxide
reductase MsrAB. (B) HOCI-mediated cysteine oxidation of the E.
coli diguanylate cyclase DgcZ causes the disruption of the zinc-
thiolate complex, resulting in an increased enzymatic activity. As
a result, c-di-GMP production increases and promotes biofilm
formation.
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Fig. 3. HOSCN is detoxified by HOSCN reductases. Streptococcus
pneumoniae Har (orange) and E. coli RclA (purple) are flavin-containing
HOSCN reductases. The N-terminal thiol group in Har/ RclA reacts with
HOSCN to form a sulfenyl-thiocyanate intermediate, which is subsequently
attacked by the C-terminal thiol group, resulting in disulfide bond formation
and the release of SCN™. In both enzymes, the disulfide bonds can be
reduced by NADH and/or NADPH.

production of ¢c-di-GMP. In DgcZ, the CZB domain senses HOCI
through reversible thiol oxidation of a conserved cysteine into
cysteine sulfenic acid, resulting in conformational changes that
negatively affects CZB’s zinc-binding affinity. The release of zinc
provides the DgcZ protein with more structural flexibility and allows
the GGDEF domain to increase the production of c-di-GMP. The
increased c-di-GMP level, in turn, positively affects the synthesis of
poly-N-acetylglucosamine (poly-GlcNAc) (Perkins et al., 2021;
Poulin and Kuperman, 2021), an exopolysaccharide essential for
biofilm formation in various E. coli pathotypes (Boehm et al., 2009).

Detoxification of HOSCN by NAD(P)H-dependent reductases
Mammalian cells are well equipped to deal with the consequences
of HOSCN-stress due to the presence of thioredoxin reductase, a
selenocysteine-containing flavoprotein disulfide reductase that
directly reduces HOSCN through oxidation of NADPH (Chandler
et al,, 2013). In contrast, the bacterial thioredoxin reductase
homolog lacks the selenocysteine, has a narrower substrate range,
and was even inhibited by HOSCN (Chandler et al., 2013). This was
surprising given that certain bacterial species show increased
resistance to HOSCN (Shearer et al., 2022a).

However, independent studies by Shearer et al. and Meredith
et al. identified the flavoproteins Har and RclA (Fig. 3) as efficient
HOSCN reductases in S. pneumoniae and E. coli, respectively
(Shearer et al., 2022b; Meredith et al., 2022). The enzymatic action
of RclA follows a ping-pong kinetic mechanism, where the N-
terminal cysteine thiol in the active site reacts with HOSCN to a
sulfenyl-thiocyanate intermediate. The thiocyanate anion is released
upon formation of a disulfide bond formation with the C-terminal
thiol group. Subsequent reduction of RclA is mediated by the
oxidation of NAD(P)H. Intriguingly, despite the homology of Har
and RclA, both enzymes appear to elicit different phenotypes.
While rcl4-deficient E. coli cells showed a significant growth arrest
in presence of HOSCN and RclA overexpression renders them highly
resistant (Meredith et al., 2022), a har-deficient S. pneumoniae strain
only appears more sensitive in the absence of the glutathione import
and recycling system, which itself had been identified to protect the
pathogen from HOSCN (Shearer et al., 2022b.c).

Future prospects
Given the physiological significance of HOX exposure during
infection, research in this field is rapidly evolving even though we

are still far away from understanding the full picture of HOX
defenses in bacteria. The bacterial response and defense strategies
are expected to be critical for their ability to survive the immune cell
attack, as reported by several recent studies (Sultana et al., 2022;
Fritsch et al., 2023; Foik et al., 2022 preprint). Moreover,
independent studies confirmed that the presence of functional
oxidative stress defense systems positively affects pathogen
colonization in the host, emphasizing their importance for
pathogenesis (Peng et al., 2020; Dahl et al., 2017; Hryckowian
and Welch, 2013; Bessaiah et al., 2019). Therefore, targeting
processes that are essential for bacterial survival only in the context
of infections and directly contribute to bacterial virulence and
persistence represent intriguing alternative drug targets (Flores-
Mireles et al., 2015; Moradali et al., 2017).
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