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Standing horse posture: a longer stance is more stable
Karen Gellman1,* and Andy Ruina2

ABSTRACT
Horses stand for most of each day. Although they can use various leg
configurations (postures), they usually stand with vertical legs. Why?
We addressed this question with a 2D quasi-static model having three
rigid parts: a trunk, massless fore-limbs andmassless rear limbs, with
hinges at the shoulders, hips, and hooves. The postural parameter we
varied was ℓg, the distance between the hooves. For a given ℓg,
statics finds an equilibrium configuration which, with no muscle
stabilization (i.e. usingminimal effort) is unstable.We assume a horse
uses that configuration. To measure the neuromuscular effort needed
to stabilize this equilibrium, we added springs at the shoulder and hip;
the larger the springs needed to stabilize the model (kmin), the more
neuromuscular effort needed to stabilize the posture. A canted-in
posture (small ℓg), observed habitually in some domestic horses,
needs about twice the spring stiffness (representing twice the effort)
as is needed with vertical or slightly splayed-out (large ℓg) legs. This
relationship of posture and stability might explain the prevalence of
vertical or slightly splayed-out legs in wild and healthy domestic
horses and leaves as a puzzle why some horses stand canted-in.

KEY WORDS: Horse, Posture, Balance, Equilibrium, Stability,
Mechanism

INTRODUCTION
The assumption that horses tend to minimize metabolic cost
predicts some aspects of horse locomotion, like gait transition
speeds (Heglund et al., 1982; Gatesy and Biewener, 1991; Kram and
Taylor, 1990; Hoyt et al., 2006). Perhaps minimization of energy, or
of some other measure of effort, could explain other horse activities.
While the metabolic costs associated with locomotion are obvious,
it also takes some effort to stand still, and horses typically stand for
22–23 hours a day – eating, socializing and sleeping. This paper
uses a simple model to explore the plausible idea that horses choose
ways of standing that are relatively easy for them.

Studies of horse posture
There are few studies of standing horse posture. Textbooks
(e.g. Baxter et al., 2020), incorrectly, we believe, describe some
postures as ‘conformations’, categorizing these postures as built-in
physical features of the horse’s body rather than as outputs of
neuromuscular control. Horse postural sway has been characterized
with stabilograms (trajectories of the net center of pressure)

(Clayton et al., 2003; Clayton et al., 2013). As with humans
(Kingma et al., 2011), the clinical utility of using stabilograms to
measure postural competence is questionable; smaller sway may or
may not be correlated with more robust standing. Lesimple, Fureix
et al. (Fureix et al., 2011; Lesimple et al., 2012), studying spinal
contours in standing horses, found that a horse with high head
height, relative to back height, tended to be in stress or pain. Finally,
physiotherapists found a correlation between equine thoracolumbar
spinal contours and back pain (Shakeshaft and Tabor, 2020;
Tabor et al., 2019).

We observe three categories of postural choice: vertical,
splayed-out or canted-in (see Fig. 1).

Vertical legs
Feral horses living in a natural unconfined environment, as well as
most appropriately managed domestic horses, most often stand with
visually vertical limbs. There are various reasons that long-legged
animals might choose to stand with vertical, as opposed to canted-in
or splayed-out, legs:

1. The compression force in the legs is slightly reduced by
having vertical, as opposed to sloped, legs (see end of Section
Finding horse equilibrium postures);

2. In locomotion, the range of leg motion is roughly centered at
vertical. Protraction and retraction of the limbs are
approximately symmetric relative to vertical. So, neither
agonist nor antagonist muscles at the shoulder or hip are near
their maximum (possibly uncomfortable) lengths when the
legs are vertical.

3. The peak vertical ground reaction forces in running gaits
occur when the legs are near to vertical, so the bones, muscles,
tendons and ligaments are configured for carrying loads with
vertical legs. Or, perhaps, standing with vertical legs might
help align the internal structures for the high running-leg
loads;

4. Horses are prey animals; a horse with vertical legs is perhaps
most ready to escape in any direction.

Yet, horses do sometimes choose splayed-out or canted-in
postures.

Splayed-out posture
In long-legged vertebrates, splayed-out postures are often seen when
greater stability is useful. These situations can be functional, like a
weight-lifter’s wide stance or people bracing while standing on a
moving bus. Or, they could be compensation for neural impairments
(Steinberg et al., 2000; Thompson, 2012; Mayhew et al., 2013;
Bunn et al., 2013). We see horses adopting a spread posture when
carrying a heavy rider, when holding a heavy cart stationary
(‘parked’), when in the late stages of pregnancy, or in the first hours
of standing after birth. The horse-show term ‘park’ refers to thewide
front to back stance traditionally used by carriage horses to hold a
vehicle motionless (see Fig. 2). The intuitive idea, which we buttress
with our model here, is that a splayed-out posture is easier to
stabilize.Received 5 November 2021; Accepted 21 March 2022
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Canted-in posture
On the other hand, canted-in postures, in which horses stand
with their hooves relatively close together, are seen in horses with
Equine Motor Neuron Disease (Divers et al., 1997; Valentine et al.,
1994) and in some horses with chronic performance deficits (J.M.
Shoemaker, DVM – personal communication). In contrast to the
stability gain from splayed-out postures, the possible reasons some
horses choose a canted-in posture are less obvious: Perhaps,
1. The horse has distorted proprioceptive signals, resulting in a

distorted postural output that is canted-in;

2. The horse has an impairment of postural control or motor
output such that it is unable to stand with vertical or splayed-
out legs;

3. The canted-in posture allows the horse to ‘lean’ on ligaments
or bones in ways that (while possibly painful or injurious)
might relieve the burden on fatigued or impaired muscles;

4. One model of human stance, which takes account of neural
delays, finds that the range of stabilizing control gains is
smaller for a splayed-out posture (Scrivens et al., 2006).
Applying that model to a standing horse, we would
presumably find that a horse, like a human, would also find
a wider range of stabilizing gains with a canted-in posture
(see Section Model Choices B for further discussion).

Shifting weight
It might seem plausible that a canted-in posture, with front and rear
hooves relatively near to each other, would allow the horse to more
easily alter its load distribution between front and rear limbs, with
only minor variations in posture. However, preliminary data using a
force plate under each hoof indicates that for all postures, including
canted-in postures, horses hold about 60% of body weight on
forelimbs and 40% on rear limbs with little variation over time
(Gellman, Shoemaker and Reese, unpublished data).

Postural choice effect on stability
Our primary question is this: how does a horse’s choice of leg splay
(vertical versus splayed-out versus canted-in) affect the difficulty
of maintaining posture? For a given leg splay, we assume the
horse finds a minimum-effort configuration. Then, we quantify the
(in)stability of that configuration.

Related stability-of-mechanism models
Our approach is similar to that used by others for stability of grasp,
and for lateral (side-to-side) stability of standing people and cats.
The common idea is that these systems, idealized as a mechanisms
(rigid bars connected with hinges), still have ways to move, even
while respecting the mechanism constraints. But the mechanism
must be stable against those possible ways to move. For example, a
grasp, i.e. fingers pinching an object, must be stable for the finger
configuration to be maintained. The muscles and tendons achieve
this stability either by the intrinsic stiffness of muscles used for the
task, or by stiffening the joints, either literally, using the stiffness of

Fig. 1. Horse postures. Top: Normal, neutral horse posture, legs are
approximately vertical; Center: Canted-in, the fore hooves and rear hooves
are closer together. Bottom: Splayed-out; the fore and rear hooves are
relatively spread. In our model, large hoof-to-hoof spacing ℓg is splayed-out
and small ℓg is canted-in.

Fig. 2. ‘Parked’ horses have a splayed-out posture. Crop from ‘Horse and
Carriage’ by Dora Maar from Cleveland Museum of Art (circa 1931–1936).
©2021 Artists Rights Society (ARS), New York / ADAGP, Paris. All
reproductions of this work are excluded from the CC: BY License.
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additionally contracted muscles, or possibly with fast feedback (e.g.
Sharma and Venkadesan, 2022; Rancourt and Hogan, 2001). The
extra stiffness needed for stabilization is kmin. In Bunderson et al.
(2008) this idea is applied to a 3D model of a cat leg. The sagittal-
plane study of human standing in De Groote et al. (2017)
demonstrates that standing stability is achieved, in part, by
intrinsic (initial short-time mechanical response, or ‘short-range’)
muscle stiffness. Other studies consider stabilization of a four-bar
linkage model of standing, and some explicitly include the time
delays (due to transmission from sensors to the spine or brain, neural
processing, transmission back to the muscle and muscle activation
rise time; Scrivens et al., 2006; Bingham et al., 2011; Goodworth
et al., 2014).

How to quantify instability
There is no best way to quantify the ‘difficulty of maintaining a
configuration’. The appropriate measure of difficulty depends on
the nature of the employed control system. In particular, the torques
used to stabilize an equilibrium posture may come from tonic
contractions or co-contractions (see SectionModel choices B), from
proportional feedback with delays (e.g. Goodworth et al., 2014), or
from intermittent feedback based on an internal model (Loram et al.,
2005b; Morasso et al., 2015) and each of these is challenged by
different aspects of the mechanism.We seek the simplest reasonable
measure.

The minimum stabilizing spring kmin
We quantify the instability challenge of a posture by the minimum
stiffness (kmin) of shoulder and hip springs that, if added, could
minimally stabilize an equilibrium posture. Use of kmin as a proxy
for neuromuscular control effort may be regarded as measuring the
difficulty of maintaining, or nearly maintaining, balance with tonic
contractions alone. Or, more generally, and vaguely, if active neural
feedback control is involved, kmin might be interpreted as
representative of the integrated effort of tonic and feedback
control mechanisms.

RESULTS
Outline of the calculations
Using a three-link model, we consider two statics features:
1. Geometry of muscle-torque-free equilibrium. For a given

foot spacing ℓg, basic statics finds those postures for which
the linkage carries the whole load without any joint torques,
assuming a perfect model and no disturbances (see Section
Finding horse equilibrium postures). In these joint-torque-
free postures the ‘horse’ (our model horse) and all of its parts
obey the laws of static equilibrium (forces and moments
‘balance’ on all of the parts). For symmetric models, as in
Bingham et al. (2011) and Goodworth et al. (2014), this
equilibrium posture is symmetrical so is found without
calculation. Because a horse (and our model) is not front-
back symmetric, finding equilibrium postures requires a
statics calculation.

2. Stability of equilibrium. As for a pendulum (described in
detail below), an equilibrium posture, as found above, can be
stable or unstable. An unstable equilibrium posture will, if
disturbed slightly, tend to deviate progressively. In contrast, a
stable equilibrium posture is one that, if slightly disturbed,
will spontaneously tend to recover. Here, wewant to quantify
the degree of instability of an unstable posture. Our proxy for
the neuromuscular effort needed for stabilization is the
amount of joint torque needed to bring the horse back to

equilibrium after a given small disturbance, assumed to be
proportional to the amount of disturbance. We quantify
instability by the stiffness of the springs kmin at the shoulder
and hip needed to achieve stability. Note, this differs from the
quantification of instability used in Scrivens et al. (2006) and
Bingham et al. (2011) (see Section Model choices B).

Overall, there are three nested problems: (1) A horse chooses a leg
spacing; (2) given that spacing, it chooses leg and back angles;
(3) given that spacing and the leg angles, it uses some stabilization
strategy. For any (1) leg spacing, there is some (2) posture and
(3) control strategy that minimizes effort. We assume that our model
horse’s choice of leg spacing would be informed by the consequent
effort of stabilizing the associated equilibrium posture.

Our calculation can best be understood by considering it in the
context of a simpler system, a pendulum. An inverted pendulum is
in equilibrium if it is exactly upright. This is an unstable equilibrium
that can be stabilized with a sufficiently stiff torsional spring kmin.
The pendulum analogy is presented in detail at the beginning of
Materials and Methods.

The torque-less equilibrium postures
These postures, with no muscle torques at the shoulder and hip
joints, have a simple geometric interpretation (Fig. 5). Consider a
vertical line through the center of mass; a line defined by the front
hooves and shoulder; and a line defined by the rear hooves and hip.
Because the legs are ‘two-force objects’ and the body is a ‘three-
force object’ these three lines are either parallel (Fig. 5a), or they
intersect above or below the horse at C (Fig. 5b and c, respectively).
These postures, if exact, do not need joint torques to be maintained.
Thus, we expect the postures that horses adopt would be close to
these. For example, if the legs are parallel, then they should be
vertical (not slanted) with respect to the ground. A horse with
parallel slanted legs is not in a torque-free equilibrium posture; hip
and shoulder torques would be required to hold that position.

Quantification of instability
As noted, for a standing horse, torque-less equilibrium postures that
are close to plausible real-life horse postures are all unstable. That is,
absent corrective torques, the equilibrium postures are postures in
which small deviations from equilibrium would tend to grow rather
than be naturally restored. For all of the equilibrium postures of
interest, the center of mass height is at a (local) maximum. This
unstable feature of equilibrium occurs whether point C, the leg-lines
intersection point, is above or below the horse. In the model here, we
add springs at the hip and shoulder and find kmin, the smallest spring
that stabilizes the muscle-free equilibrium postures. Our basic
modeling postulate is this:

A posture with a bigger kmin is more unstable.

The central result of the calculations is shown in Fig. 3:

A horse, when legs are canted-in (legs closer together) needs much
larger corrective springs kmin, by more than a factor of 2, than when
legs are vertical or slightly splayed-out.

As the corrective springs are a proxy for neuro-muscular effort, it
follows that it takes less neuro-muscular effort for horses to stand
with a normal neutral posture than with a canted-in posture.

A final statics result is that, within the commonly observed
range of horse postures, the compressive forces in the legs,
while minimized by vertical legs, are only slightly (we think
negligibly) increased with canted-in or splayed-out legs (see Section
Modeling choices A).
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DISCUSSION
In normal, sound horses the most common posture is standing
with the metacarpal and metatarsal bones (the lower leg bones)
visually vertical. In this posture the legs are slightly splayed-out with
reference to the shoulder/hip to hoof angle, as seen in Fig. 3.
We term this normal neutral posture (NNP), normal in that it is

most common in healthy and feral horses and neutral in that it
equally allows leg movement in any direction. Our model predicts
less passive instability in splayed-out postures, thus requiring less
tonic contraction, and correspondingly less effort, to stabilize. This
possibly explains why horses needing extra stability often display
splayed-out postures, and why we rarely observe persistent canted-
in postures in normal healthy horses.
Like horses, humans adopt a wider stance when lifting heavy

weights or standing on unstable surfaces. Why do humans
and quadrupeds not always use a more spread stance? Stability
could be only one of several situation-dependent goals. In Fig. 3, the
change in kmin between NNP (slightly splayed) and more obviously
splayed-out posture is relatively small. Perhaps the various benefits of
nearly vertical legs, mentioned in the introduction, outweigh the
relatively small stability-benefit gains of a still-wider splayed-out
stance.

Why are canted-in postures ever seen in horses (or people)?
By our calculations, canted-in postures are far less stable than
vertical or splayed-out postures. Assuming our calculations are
relevant, and that maintaining stability with minimal effort is a high

priority for the horse, how can we explain that some horses
habitually use a canted-in posture? Narrow-stance postures seem to
be associated with impairment of either sensory input, neural
processing, or motor output concerning postural control. For
example, in

1. Parkinson’s disease (PD) patients (humans) have a
characteristic collapsed standing posture that includes
having a narrow stance. PD is a degenerative disorder of the
human central nervous system (Kim et al., 2009) in which
patients have lost dopaminergic neurons in the midbrain, a
critical region for postural control, resulting in a dysfunction
of central postural processing.

2. Equine Motor Neuron Disease (EMND) is a condition for
which canted-in limb posture is pathognomonic
(characteristic) in horses. In this degenerative neuropathy,
similar to ALS in humans, there is cell death and consequent
denervation atrophy in postural muscles (Valentine et al.,
1994). EMND patients habitually display extreme canted-in
postures, fatigue quickly, and spend much time lying down
(Divers et al., 1997). This is primarily a defect in the postural
motor output. Perhaps EMND patients are also ‘leaning’ on
passive ligaments, as described in the Introduction’s list of
canted-in hypotheses. This could be investigated by
measuring EMG activity during this stance. However, since
the recognition of EMND’s nutritional etiology (selenium/
vitamin E deficiency), few clinical cases have presented in
recent years.

Fig. 3. Stiffness versus Leg Splay.
For a given horse geometry (leg
lengths, back length, location of
CoM) and for a given splay ℓg
(distance between fore and rear
hooves) the ‘horse’ (modeled as a
linkage) has an equilibrium
configuration satisfying the statics
two-force-object rules for the legs
and the statics three-force-object
rules for the horse (see Fig. 6 and
Fig. 5). The size kmin of the
minimum stabilizing springs at hip
and shoulder is plotted as a function
of leg splay ℓg. The central results
of this paper are the differences
between kmin for the normal neutral
posture (NNP) and for the splayed-
out and canted-in postures. To be
stable, the canted-in posture needs
a stiffness (kmin ≈ 5400 Nm/rad) that
is more than twice that needed for
NNP (kmin≈ 2100 Nm/rad). The
splayed-out posture is even more
intrinsically stable than normal
neutral posture (NNP) in that it
needs only about 60% of the kmin

required by NNP.
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3. Abnormal Compensatory Posture (ACP), a narrow stance
seen in some domesticated horses, appears to be caused by
structural distortions in some critical mechanoreceptor-rich
anatomic regions (the hooves, the stomatognathic system, and
the upper cervical area) due to practices associated with
domestication. In these horses, the inaccurate proprioceptive
signals (sensory input) are altering neural processing and
motor output. Horses habitually standing with canted-in
posture often develop a predictable set of musculoskeletal
problems, including: navicular syndrome, negative palmar/
plantar angles, digital cushion degeneration, hock and stifle
osteoarthritis, sacroiliac fixation or hypermobility, back pain,
‘kissing spines’, neck pain, and more (J.M. Shoemaker DVM
– personal communication). The postures of these horses
revert to a visually vertical stance (NNP) when these structural
and functional distortions are corrected (Gellman,
Shoemaker, and Reese, unpublished data). Fig. 1 shows the
same horse, on the same day, before (canted-in) and after
(normal) a manual therapy intervention in the upper cervical
region.

Exhausted at ‘the end of the trail’
A famous sculpture of a horse and rider, ‘The End of the Trail’, by
J. E. Fraser, shows a Native American man slumped over a
presumably exhausted horse with an extremely canted-in
posture (Fraser, 1918). However, we do not have any other
evidence, even anecdotal, that a canted-in posture is adopted by
exhausted horses. For example, this is not seen at the end of
modern horse races. Historically, horses raced for far longer
distances, or pulled carts for long hours in transportation or military
operations. Possibly, modern recreational use of horses does not
result in the kind of extreme exhaustion depicted in that sculpture.
Possibly the artist used a horse model affected by one of the
mechanisms listed above. Or the depiction may just be artistic
license.

Intuitive explanation of stability results
The basic result, that a splayed-out posture is more stable (by our
measure), can be predicted qualitatively without need for detailed
calculations. For the torque at a joint to have effect on the whole-
mechanism motion, the whole-mechanism motion must involve
changes in that joint angle. Imagine a horse that is so canted-in that
the front and rear hooves nearly touch. Then, if that horse rocks
forward (or backward), still keeping its feet on the ground, there is
significant falling even though there is almost no change in the
shoulder or hip angles (the horse falls almost like a triangle rocking
on its lower vertex). Thus, for that extremely canted-in posture,
springs at the shoulder or hip joints would have almost no effect
(have almost no righting torque, cause almost no change in potential
energy, do almost no work), requiring bigger stabilizing springs.
When the legs are more spread, the joint angle changes are bigger
for a given rocking. Bigger joint-angle changes have a dual effect:
bigger angle changes with a given amount of falling cause bigger
rotation-induced spring torques; and, due to the reciprocal nature of
mechanical advantage, also, have a bigger mechanical advantage
(i.e. bigger effect on the mechanism for a given spring torque).
Meanwhile, the curvature of the gravitational potential energy near
equilibrium, as a function of leg splay, is slight (the circular arc of
CoMmotion when the legs are parallel is similar to the near-circular
arc when the legs fully canted-in). So, due to the enhanced utility of
the springs in splayed-out posture, the splayed-out posture is ‘more’
stable by our measures.

Comparison with calculations in Bingham et al.
As noted, Bingham et al. (2011) use a mechanical model, similar to
ours, but come to the opposite conclusion. They predict that a
narrow-stance (canted-in, small ℓg) posture is ‘more stable’whereas
we find it is less stable. Besides a difference in mechanical
parameters, there are two differences between our model and theirs:
(1) they include delays, we do not; and (2) they quantify difficulty of
control by the smallness of the range of gains which is stabilizing,
independent of gain size. In contrast we quantify difficulty by the
size of the needed gains, independent of the range of stabilizing
gains. Their stability criterion is not applicable to our model because
we ignore time delays, making our range of stabilizing gains semi-
infinite for all postures.

Bingham et al. argue that narrow stance might benefit human
PD patients because, in their model, the range of feedback gains that
stabilize a narrow stance is greater than the range of gains that can
stabilize a wider stance. Thus, they claim, finding a successful
stabilizing gain may be easier for a narrow rather than for a wider
stance [see Section Model choices B for further comparisons with
Bingham et al. (2011)]. While their narrow-stance model seems to
describe neuro-compromised PD patients, it does not align with
most observable human behavior and experience, which is that we
tend to adopt a wider stance when greater stability is needed.

Implications for neuromuscular control: avoidance of the
need for fast feedback
Depending upon the demands of the situation, instabilities of
equilibrium postures can be more or less of a problem for the system
(animal). For instance, stabilization with feedback may be
impossible in a finger pinch because of neuro-muscular delays,
sensor noise (Sharma and Venkadesan, 2022), and short
characteristic instability times. For longer characteristic instability
times, where feedback control is plausible, such feedback will
necessitate fluctuating muscle forces, which adds extra metabolic
cost (as seems to be the case with human standing; Loram and
Lakie, 2002; Goodworth et al., 2014). Thus, animals may often
seek, by some mixture of task choice, postural choice and tonic
contractions, a non-feedback mechanism, namely some kind of
tonic contraction, to obtain near-stabilization. Then, they only use
feedback control for final stabilization and for controlling motion of
the slowed system.

One could speculate that overall system design might also be
driven to avoid instabilities that are fast, and thus difficult or
expensive to control. This might have driven bicycle designs
towards passive stability (https://ecommons.cornell.edu/handle/
1813/22497) or driven the human skeleton to a configuration
where passive walking is almost stable (e.g. McGeer 1990; Garcia
et al., 2000).

More fundamental modeling
As noted in the Introduction, a horse contends with three
optimization problems: (1) how far to spread the hooves, ℓg; (2)
the joint angles to use as a target for control (the hip angle); and (3)
the strategy of stabilization (tonic versus feedback). This paper has
directly addressed the first two, and merely assumes that the third is
largely based on tonic stabilization.

As suggested by Kuo (personal communication), in principle,
we could (and should) construct a model for standing that
includes metabolic costs for force and rate of change of force,
sensor or actuator noise, and neural delays. Optimization of
energy use in such a model might (we hypothesize) demonstrate
the plausibility of there being metabolic benefits for strategies
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that use a mixture of tonic and feedback mechanisms of the
general type that we have assumed in our modeling here and has
been noted by others (e.g. Loram et al., 2005a; Sharma and
Venkadesan, 2022).

Implications for horses
Neither zoologists nor veterinarians have an accepted standard for
‘normal’ standing horse posture. We propose that visually vertical
limbs (NNP) should be considered normal posture. Because
standing is such a prevalent activity for horses, perhaps evaluation
of habitual posture should be considered as part of clinical exams,
and in developing management programs. The slightly-splayed-out
NNP posture may represent a trade-off between the stability benefits
of more extreme splay and, e.g. the quick-escape benefits of mostly
vertical legs. On the other hand, sports injury, poor athletic
performance, and chronic or recurring lameness are common
sequelae in domestic horses who habitually display abnormal
compensatory posture with canted-in limbs rather than normal
neutral posture. Future studies will aim to characterize the anatomic
distortions associated with ACP and track restoration of NNP
through correcting these structures.

MATERIALS AND METHODS
Modeling choices, in brief

The following are some modeling considerations. These are discussed
further in Section Modeling choices A.

2D versus 3D. For simplicity, and because it corresponds to the horse
observations that motivated the study, we use a 2D sagittal plane (side
view) model of a horse.
Three-link mechanism.We model the horse as having three rigid links:
the rear-leg pair, the front-leg pair, the horse body and head. This is
sometimes called ‘a 4-bar linkage’, counting the ground as the fourth
link. We neglect the weights of the legs, joint friction, all soft-tissue
deformation, deformation of the spine and relative rotation at all joints
except the hips and shoulders.
Base of support.We do not consider the toppling of a horse, the tipping
over due to the center of mass going outside the quadrilateral defined by
the four hooves. Instead, we are considering the stability of the
mechanism’s shape.
Leg compression force. We do not consider the effect of posture on leg
compression force. We think this effect is smaller than the stability
effects.

Pendulum analogy

A pendulum is a rigid stick with length ℓ that is connected to a fixed support
by an ideal hinge at H (Fig. 4). In this example, mass is uniformly distributed
on the stick. The average position of the pendulum’s mass is at the center of
mass (CoM or G). The hinge H and center of mass G are distances d and ℓ/2
from the lower end A, respectively. The hinge H does not resist rotation of
the stick. However, there could be torque at the hinge due to some proxy for
muscles (e.g. a motor or a torsional spring). In this analogy, ‘posture’
combines the distance d of the CoM G from the end (analogous to ℓg on the
horse) and, secondarily the angle θ (analogous to the leg angles the horse
chooses for a given ℓg).

Non-equilibrium ‘posture’ for a pendulum
The tipped configurations in Fig. 4 are all not in equilibrium; they have θ≠ 0
and θ≠ π. In these non-equilibrium configurations, the moments do not
balance, and the stick tends to swing or fall down. If the stick is put in such a
non-upright (non-equilibrium) configuration and the hinge is not at the
center of mass (d≠ ℓ/2) then: if the center of mass G is below the hinge
(ℓ/2 < d, Fig. 4b) the pendulumwill swing down towards vertical; and if G is
above the hinge (ℓ/2 > d, Fig. 4c), it will fall away from upright towards the
hanging down configuration.

Equilibrium ‘posture’ for a pendulum
The equilibrium configurations are those for which the stick is vertical (θ = 0
or θ = π), shown dotted in Fig. 4b and c. [Aside: A special set of equilibrium
configurations are when the hinge H is at the center of gravity G (d = ℓ/2)
and the stick is in equilibrium at all angles (there is no analogue for this set of
‘neutral’ stability configurations in the horse model).] Assuming no
disturbances, it takes no torque to hold the equilibrium configurations (θ = 0
or θ = π). The pendulum equilibrium θ does not depend on the choice of d.
For the horse model, however, which does not have front-back symmetry,
the leg angles associated with equilibrium do depend on the hoof spacing ℓg.

Stability of pendulum equilibrium
The vertical equilibrium postures, with the center of mass G below (d > ℓ/2)
or above (d < ℓ/2) the hinge H, are intuitively quite different from each
other. Actually, if the center of mass is above the hinge, in an ‘inverted
pendulum’ configuration, many people have trouble accepting that this
is an equilibrium position at all; in an experiment, if the center of mass is
above the hinge, the stick would obviously fall. Nonetheless, if it was a
perfect stick, placed perfectly vertically, and perfectly following the laws
of classical mechanics, it would not fall. So, the position where the
center of mass is directly above the hinge is, at least in the language of
mechanics, ‘in equilibrium’; to keep that stick upright you do not need to
apply a torque to the left, nor to the right. On the other hand, practically

Fig. 4. Pendulum: Stability, and stability of equilibrium. (a) The pendulum has its lower end at A, hinge at H, Center of Mass at G, and is tipped an angle
θ from vertical; (b) CoM below the hinge is stable, equilibrium is at a potential energy minimum; (c) d < ℓ/2, CoM above the hinge is unstable, equilibrium is at
a potential energy maximum; (d) a spring is added to the unstable configuration; (e) the unstable configuration is made stable by the addition of a spring,
changing a potential energy maximum (bowl down, unstable) into a potential energy minimum (bowl up, stable).
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speaking, something has to be done to keep the stick from falling. That is,
the upright configuration is an equilibrium posture, but it is an unstable
equilibrium. It requires the addition of some stabilization torques to be
maintained. Summarizing,
• Equilibrium postures can be held with no extra torque at the hinge, for

the pendulum these are the vertical configurations;
• Non-equilibrium postures, tipped sticks, would require additional

constant joint torques to hold those postures in equilibrium;
• Stable equilibrium postures are ones where, if disturbed from

equilibrium a tiny amount, the system will tend to return towards that
equilibrium with no muscular torques (dotted stick in Fig. 4b);

• Unstable equilibrium postures are ones where, if disturbed from
equilibrium a tiny amount, the systemwill tend to exponentially deviate
from the equilibrium (dotted stick in Fig. 4c). Unstable equilibrium
postures need additional stabilizing torques to be maintained.

Quantification of pendulum instability

The horse postures we are interested in are all, without additional muscle use
for stabilization, unstable. So, we only need to consider the unstable,
inverted pendulum (Fig. 4c). Having the hinge below the center of mass
(d < ℓ/2) is like the horse being above the ground; having d > ℓ/2 would be
analogous to a horse hanging by its hooves upside down from the ceiling (to
be complete, depending on leg lengths and back length, there may also be
non-physical cockeyed equilibrium postures that our model could exhibit,
but which a real horse could not achieve).

Intuitive discussion of instability measures
Imagine balancing an upright upside-down broom on the open palm of your
hand. You accomplish this by moving your hand around appropriately. Now
imagine trying to similarly balance a pencil. In that context one would say
that a pencil is more unstable than a broom; it is much harder for a person to
balance a pencil. On the other hand, imagine a vertically upright 5 m (quite
tall) ladder resting on the ground, but leaning against nothing. You are
holding it upright. Then imagine a person climbing to the top, and you are
still trying to balance the ladder. Clearly the ladder is harder to balancewhen
there is a person on top and is, as measured by difficulty of balancing, more
unstable.

For the pencil versus broomstick, the pencil is more unstable because it
falls more quickly. For the ladder versus ladder with person up top, the
heavy-top ladder is more unstable because for a given angle of tip it takes
more force to keep it from falling.

More technically, for the pencil versus broomstick, initial falling occurs
with exponential growth θ∼ eλt. The pencil has a bigger eigenvalue λ than

does the broomstick. For the ladder versus the heavy-topped ladder, we look
at the minimum possible spring kmin at the hinge H that would stabilize the
ladder. The needed spring kmin is bigger for the heavy-topped ladder. Thus
eigenvalue λ and minimum corrective springs kmin are two different
measures of instability. A third measure proposed by Bingham et al. (2011)
is discussed in Section Model choices B.

Comparison of instability measures
The two measures (above) are quite different in their predictions of what
systems are more or less stable. Imagine an inverted pendulum consisting of
a massless rigid stick with length ℓ hinged at the bottom and a point mass m
at the top. Consider three other sticks, one with twice the mass m, one with
twice the length ℓ, and one on a planet with twice the gravity g:

1. Double m. This doubles the needed stabilizing spring kmin but has no
effect on the eigenvalue λ. Thus, this would be a more unstable
pendulum by the kmin measure and equally unstable by the λmeasure.

2. Double ℓ. This slows the falling but increases the spring needed for
stabilization. That is, the two measures of instability have opposite
trends for pendulum length changes.

3. Double g. By both measures, kmin and λ, doubling g is more unstable.
So, the measures agree about the relative stability.

That is, saying which physical system is more or less unstable than
another depends on how instability is quantified. We assume here that the
kmin measure is most relevant because perhaps, as per, e.g. Loram and
Lakie’s result for fore-aft balance of standing people (Loram and Lakie,
2002), the horse may use tonic means to almost stabilize. Using this strategy,
the horse avoids being challenged by the characteristic time of instability
being shorter than neural delays.

Potential energy: minimum versus maximum determines stability
First, consider a pendulum with gravity but no spring. The stick is in
equilibrium if it is vertical. The vertical equilibrium is only stable if the
center of mass G hangs below the hinge H (d > ℓ/2 in Fig. 4b). The vertical
equilibrium is unstable if the center of mass is above the hinge (d < ℓ/2,
Fig. 4c). For this system, the potential energy (PE) is weight times the height
of the center of mass (relative to an arbitrary datum, say the pendulum
hinge). Relative to nearby configurations (nearby values of θ), the vertical
stick is at a locally minimum PE height (i.e. stable) if the center of mass G is
below the hinge H. And it is at a locally maximum PE height (i.e. unstable)
if G is above H.

Potential energy quantification of pendulum instability
The kmin approach to quantifying instability can also be understood using
potential energy. We imagine that we have applied a corrective spring at H

Fig. 5. Equilibrium postures that do not need any muscle torques. (a) Vertical legs; (b) Splayed-out; and (c) Canted-in. In our 2D model, a whole horse
has three forces acting on it: (1) gravity at the CoM; (2) the ground reaction force on the fore feet; and (3) the ground reaction force on the rear feet. Static
equilibrium of the whole horse, a ‘three-force object’, demands that these ground forces are either (a) parallel and vertical; or (b) they intersect directly above
the CoM at C; or (c) they intersect directly below the CoM at C (see text for reasoning). The joint springs that would be needed to stabilize these unstable
equilibria are the core of this paper and are considered in the Section Calculations of stability and Fig. 3.
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that tries to center the pendulum at θ = 0. The total PE, (Ep), is a sum of
gravity (destabilizing) and spring (stabilizing) terms,

Ep ¼ ktorsionu
2=2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

spring PE

þmgð‘=2� dÞ cos ðuÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
gravitational PE

� mgð‘=2� dÞ þ ktorsion � mgð‘=2� dÞ
2

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Must be .0

u 2: ð1Þ

Note that ℓ/2− d is the distance along the stick that the center of mass G is
above the hinge H. We used the small-angle approximation that cos
θ≈ 1− θ 2/2. For stability, we want Ep to be an upwards shaped bowl
(concave up) function of θ with the equilibrium θ = 0 being at a potential
energyminimum. Thus we need the coefficient of θ 2 to be positive (Fig. 4e).
Such stability occurs if the torsional spring has a big-enough constant,

ktorsion . mgð‘=2� dÞ: ð2Þ

That is, the otherwise-unstable vertical pendulum is stabilized by the
addition of a ktorsion satisfying the inequality above. With that big-enough
spring, as θ is deviated from 0, the increase in spring energy will win over
the decrease in gravitational potential energy. The more that the center of
mass is above the hinge (the bigger the distance ℓ/2− d), the bigger the
stabilizing spring kmin needed to make this otherwise unstable equilibrium
posture stable.

Application of the pendulum analogy to the horse model
With the horse model, we similarly find an equilibrium posture, the stability
of that equilibrium, and the minimum spring needed for stabilization. We
assume that the horse chooses leg angles so as to be in equilibrium with no
muscle torque, which is analogous to only considering stability of a vertical
pendulum. The calculations for the horse model are more complicated, and
in the horse model, the amount of spring needed depends on the posture
(the spacing between the feet ℓg) rather than the relative positions of G and H
(the value of ℓ/2− d) for the pendulum.

Finding horse equilibrium postures

Given a hoof spacing ℓg we assume the horse chooses a posture which
minimizes muscle effort. A posture that is in equilibrium when there are no
joint torques would be a minimal muscular effort posture. Such a posture is
analogous to the vertically upright pendulum configuration. For each leg
spread ℓg we find this posture using elementary statics.

Features of the relevant free body diagrams
A free-body diagram is a sketch of the isolated system (free body) and of all
of the external (from outside the system) forces and moments (torques) on it.
We consider three free-body diagrams:

(1) The whole horse including body, head, tail and legs (Fig. 5);
(2) The fore-legs, and
(3) The hind-legs.
For our 2D analysis, each leg pair is treated as a single object (e.g. we

consider the fore legs as a single leg, Fig. 6a–c).
Forces and moments that are internal to the subsystem do not show

on the free-body diagrams. For example, in the free-body diagram of the
whole horse (Fig. 5), there are no muscle forces shown, because they act
internally to that system (or, if you like, they act in action-reaction pairs
that cancel).

A standing horse is a three-force object
First, consider the horse as a single stationary object with no concern for the
presence, or absence, of muscular effort. We use unit vector î to indicate the
direction to the right, towards the horse’s rear, and unit vector ĵ to indicate
vertical upwards. There are three forces acting on the whole horse
considered as a single object:

(1) The force of gravity,

Gravity force ¼ �mg ĵ

acting at the Center of Mass G of the horse;
(2) The total force of the ground on the front hooves (Fig. 6), F

!
F, which

can be decomposed in the verticalNF and frictional (horizontal) part
HF, with

Force on forelimbs ¼ F
!

F ¼ HF î þ NF ĵ; and

(3) The total force of the ground on the rear hooves, F
!

R, which can be
decomposed in the vertical NR and fictional (horizontal) part HR

Force on rear limbs ¼F
!

R ¼ HR î þ NR ĵ:

Neglecting the small motions during standing, and neglecting small
forces (e.g. wind), we can apply the laws of statics, using only the two
ground forces F

!
R; F
!

F and gravity F
!

G ¼ �mg ĵ, three forces in total. Hence
the horse is a so-called ‘three-force object’. The governing statics equations

Fig. 6. Leg as a ‘two-force object’ and horse model. Neglecting the
weight of the legs, the legs are two-force objects. (a) General case. This
free body diagram includes the leg weight and also torques from muscles at
the hip. The laws of mechanics have not yet been applied. (b) Two forces,
leaving off both the leg weight and also torques from muscles at the
shoulder or hip. Force balance has been used but not yet moment balance,
so the leg is not in equilibrium. (c) The leg as a two-force body. Leaving off
the hip torque and the leg weight, force and moment balance necessitate
that the two forces be equal and opposite and along the hoof-to-joint line. (d)
The horse model is made of three links: the body, forelegs and rear (hind)
legs; each leg pair is one link in the model. These three parts are connected
with two hinges at the shoulder and hip.
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are:

Force Balance:
X

F
!ext

i ¼ 0
Q

; and

Moment Balance:
X

M
Q ext

i=C ¼ 0
Q

;

ð3Þ

where the sums are over all of the external forces F
!ext

i and moments M
Qext

i=C
relative to C.

Features of three-force object equilibrium
As per any introductory statics book (e.g. Ruina and Pratap, 2019), we
can use force and moment balance (Eqn. 3) to discover various features of
the equilibrium forces.

1. Three-force object. Consider a point C at the intersection (if such
exists) of the lines of action of the forces at the front hoof and at the
rear hoof. The only forcewith moment about C is gravity. For there to
be no net moment about C, the gravity moment must also be zero. So,
moment balance about C implies that the two ground reaction forces,
at the forelimbs and rear-limbs, are either (Fig. 5)
i. vertical, or
ii. have lines of action that intersect at a point directly C above G,

or
iii. have lines of action that intersect at C directly below G.

2. The ground carries the weight. The vertical component of force
equilibrium implies that the vertical ground reaction forces add up to
the weight: NF + NR =mg

3. Lever rule.Moment balance about the point on the ground under the
center of mass implies that NFdF =NRdR

4. Vertical forces are determinate: moment balance about the rear
feet and about the front feet, together imply that the vertical ground
reaction components are: NF = (dR/ℓ)mg and NR = (dF/ℓ)mg.

5. Horizontal forces cancel but are indeterminate. Force balance in
the horizontal (̂i) direction implies that the horizontal ground reaction
forces are equal and opposite,HF = − HR. These forces are otherwise
indeterminate (i.e. the magnitude of these canceling forces cannot be
found from the laws of statics applied to a free-body diagram of the
whole horse).

Any 2D statics model of a horse, and any measurement of a real stationary
horse, must have forces obeying all of the above relations. These apply
whether the leg weight is included, or not, and whether or not there are
muscle contractions applying torque to the legs. These, above, are the
strongest (i.e. most model-independent) results from statics as applied to
whole horse in the sagittal plane.

Approximating the legs as two-force objects
Before simplifying, we show a free-body diagram of the front leg pair or rear
leg pair. Fig. 6a. This shows:
• including the ground reaction force F

!
F acting on the hoof at the

ground. This ground reaction force F
!

F includes both a normal
(vertical) component and a sideways frictional component;

• the gravity force on the leg mg pointing down;
• the joint force, from the body to the leg, at the shoulder F

!
S; and

• MS, the moment of the muscles, tendons and ligaments at the shoulder.
These act on the leg from the horse body.

We might assume that the horse chooses standing postures that minimize
muscle tensions and thus minimize joint torques, so we assume zero net
torque at the joints. Thus, the free body diagram of a leg (pair) has only two
forces on it: one from the ground and one from the shoulder (or hip). So, we
replace the free-body diagram in Fig. 6a with that in Fig. 6b. These forces
can only be in equilibrium if the forces are equal and opposite and have a
common line of action (‘two-force members’ or ‘two-force bodies’ in, e.g.
Ruina and Pratap, 2019), as shown in Fig. 6c. Assuming no hip and shoulder
motor torques, the forces on a horses leg, at the hip and ground, are well
approximated as being equal and opposite and along the leg (along the line
connecting the hip and hoof).

So, the ground reaction force at the front hoof points towards the shoulder
and the ground reaction force at the rear hoof points towards the hip.

Equilibrium of standing: two-force legs and three-force horse
Because, assuming nomuscle torques, the legs are two-force objects (Fig. 6)
we can draw the free body diagrams shown in Fig. 5. That is, in addition to
the hoof forces intersecting at a point above or below the center of mass, they
are also along the lines from the hooves to the shoulder and hip.

For a pendulum we could recognize equilibrium by the center of mass
being above or below the hinge. Whereas, for a horse the equilibrium
posture, not using hip or shoulder muscles, has the lines along the legs
intersecting directly above or below the horse center of mass. Or the lines
along the legs are vertical.

The point of intersection C is partially analogous to the location of the
hinge for a pendulum; for equilibrium the center of mass and point C (or the
hinge) have to be vertically aligned. (In the special case of vertical hoof
reaction forces one can think of the hinge as being at infinity, over or under
the center of mass.)

Point C is also the instantaneous center of rotation of the horse body.
Note, unlike the case for the hinge of a pendulum, which is fixed in space,
we have found no significance, either for equilibrium nor for stability, in
whether point C is above or below either G or the ground (note: the
intersection of the two leg lines is not a fixed point of the moving
mechanism and cannot be used for potential energy calculations).

Calculation of stability

The stability calculations for the horse model are the same in spirit as the
simpler calculations for an inverted pendulum (see Section Pendulum
analogy).

One degree of freedom (DoF) mechanism
As described previously, our model of a standing horse is a ‘four-bar’
mechanism made up of three hinged objects (‘linked links’, Fig. 5). Given
the position of the hooves and the lengths of the body parts, this linkage has
one degree of freedom. That is, one number, say the angle θF of the fore-legs,
determines all of the other positions and angles.

Dynamic stability
For any mechanical system near equilibrium, the governing equations are:

M€qþ C _qþ Kq ¼ 0: ð4Þ

In this equation q is a list of numbers describing the deviation from
equilibriumwith _q and €q being the first and second time derivatives of q. The
matrices M, C and K are constants (mass, damping and stiffness) that come
from linearizing the equations of motion near the equilibrium. Assume that
the mass matrix M, the damping matrix C and the stiffness matrix K are
symmetric, the system is stable if the dissipation is always positive (i.e. C is
positive definite) and if the associated potential energy is always positive (K
is positive definite). That is, assuming positive dissipation, the system is
dynamically stable if the equilibrium is at the bottom of a potential energy
bowl.

In our case, with only one degree of freedom, q is just a single scalar
number (say, the deviation of the hip joint angle from equilibrium), andM,C
and K are also scalars. Assuming C is positive (damping is dissipative),
stability is determined by whether K > 0 (stable) or K < 0 (unstable). That is,
dynamic stability can be determined by calculations of potential energy in
the neighborhood of the equilibrium (a statics calculation of sorts) while
never doing a dynamics calculation. So, here we determine dynamic
stability by looking at the net potential energy due to gravity (which
contributes to making K negative) and due to the corrective springs (which
contribute to making K positive).

Calculation of stability using potential energy
The calculation is done for a fixed value of the hoof spacing ℓg (analogous to
a given ℓ/2− d on the pendulum). For that given ℓg, at each configuration of
the linkage there is a gravitational potential energy EP, which is the weight
times the height of the center of gravity,

EPðuFÞ ¼ mgyG: ð5Þ
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Note, to use this equation onemust find the height yG of the center of mass in
terms of θF (unlike the pendulum, for the horse mechanism this is a non-
trivial geometry/trigonometry problem with no simple formula). Any
equilibrium posture (linkage configuration) is one in which all of the laws of
statics hold for the whole horse and any of its parts. Assuming legs with
negligible mass and with negligible muscle and ligament torques, the
possible equilibrium configurations are shown in Fig. 5. A theorem from
statics is that an equilibrium configuration is also one for which the potential
energy is ‘stationary’, meaning,

dEPðuFÞ
duF

¼ 0: ð6Þ

This means that the equilibrium (zero muscle force) posture of a horse is at a
(local) potential energy maximum, or minimum (or, a ‘stationary’ point). In
all of our calculations for semi-realistic horse proportions, we find the
equilibrium postures to be at a local maximum of potential energy; the
energy function is an upside-down bowl. That is, we always find that when
we find a θF that satisfies Eqn. 6 that it also satisfies,

d2EPðuFÞ
du 2

F

, 0: ð7Þ

Such an equilibrium, at a potential energy maximum, is unstable. If
disturbed ever-so-slightly from this configuration the horse would, if there
were no ligaments, muscle forces or other joint torques, fall down or at least
fall to a cockeyed equilibrium shape. That is, in our three-link model, a
standing horse in equilibrium is, with no muscle effort, unstable.
Nonetheless, horses do stand for extended time without falling.

To do this, horses must apply corrective torques. We assume mostly tonic
mechanisms for this correction with the feature that deviations from
equilibrium posture lead to proportional corrective torques. Thus, tonic
muscle contractions are much like torsional springs, kF and kH, at the joints.
Corrective joint torques when the joint angles, θF and θH, deviate from
equilibrium, are:

MF ¼ kFDuF ð8Þ
and

MH ¼ kHDuH; ð9Þ

where ΔθF and ΔθH are the deviations of the joint angles relative to
equilibrium. The addition of these springs does not change the equilibrium
posture, but the springs do change the stability. Namely, the potential energy
is now:

EpðuFÞ ¼ mgyG þ kððDuFÞ2 þ ðDuHÞ2Þ=2; ð10Þ

where for simplicity of modeling we use the same spring constant at both
joints, i.e. k = kF = kH. For a given horse model with given hoof placement
we can solve for the equilibrium posture (configuration). And using Eqn. 10
we can also find the minimum value kmin of k in order to make the posture
stable. That is, we apply Eqn. 10 to the critical condition (inequality in
Eqn. 7 used at equality),

d 2EpðuFÞ
du 2

F

¼ 0: ð11Þ

and solve for k, calling that kmin.
For each hoof spacing, canted-in, vertical, or splayed-out, we can find the

associated equilibrium posture one of two ways: either using the two-force-
object and three-force-object reasoning above (see Section Finding horse
equilibrium postures), or by finding stationary points for the gravitational
potential energy. As noted earlier, the model allows some non-physical
postures, for example, hanging upside down from the ground surface.
Depending on leg and body lengths, there can also be very-crooked
equilibrium postures, with the hip much above or much below the shoulder.
And postures above and below ground with the legs crossed and the body
possibly upside down. We exclude all of these. There is just one above-

ground posture that has the legs not crossed, the body near level and that
satisfies the equilibrium equations. For this one unstable equilibrium above-
ground posture, we seek the minimum needed stiffness kmin at the hip and
shoulder for it to gain stability. Because of the complex geometry of the
linkage, and lack of symmetry, both the find-equilibrium and evaluate-
stability calculations are done numerically.

Numerical methods

We parameterize the first postural choice, leg splay, by the hoof-to-hoof
ground spacing, ℓg.

Find equilibrium geometry using numerical root finding
Given ℓgwe then consider a candidate value for the slope θF of the fore-legs.
Given θF, the law of sines and the law of cosines finds the full 4-bar linkage
geometry, including all link angles and all joint positions. We then used
numerical root finding to find that value of θF, which put the intersection of
the two leg lines directly above, or directly below, the horse center of mass.
That configuration is, as per the three-force-object reasoning, the equilibrium
standing configuration for the given leg splay. Alternatively, we could have
done numerical optimization (maximization) of the potential energy.

Numerical calculation of stability
Given the equilibrium configuration for given ℓg, we then found the
equilibrium configuration’s stability as follows. We varied θF in the
neighborhood of the equilibrium position. For each θF we found a consistent
linkage geometry and associated center-of-mass height and hence
(multiplying by mg) potential energy. We then did a polynomial fit of that
function and recorded the quadratic term. We similarly found the best fit for
the sums of squares of the shoulder and hip joints versus θF in the
neighborhood of equilibrium. Given those two fits, we could find that
torsional spring constant k so that if one such spring was put at the shoulder,
and another at the hip, that the net quadratic term in the potential energy
would be zero. This is the so-called ‘minimum required joint stiffness’ kmin,
displayed graphically in Fig. 3.

Determining model parameters

The horse (Fig. 5) is made of three rigid objects: (1) the fore-legs with length
ℓF; (2) the rear legs with length ℓR; and (3) a back with length ℓb connecting
the shoulder S to the hip H. The hoof ‘points’ F and R are at the centers of
pressure of the hoof ground reaction forces (i.e. the points where the
equivalent single ground-reaction force-couple systems have no net torque).
We do not attempt to find this point accurately and take it to be at the rough
‘middle’ of the footprint. The center of mass G is a distance dG back from S
along SH, and hG orthogonally above the line SH. The distance between the
legs, from F to R, is ℓg = dF+dR, where dF and dR are the distance from the
ground-projection of G to the front and rear hooves, respectively.

We created a ‘standard horse’ based on measurements from a few real
horses. We scaled pictures to a common size so that pictures could be
overlaid and compared. We scaled to a 16-hand horse, 64″ from ground to
withers (the high part of the back, just behind the neck).

Location of shoulder and hip joints
Location of the effective shoulder joint and hip joint was done by
superimposing photos of a single horse with more and less splayed legs
(Fig. 7). The effective shoulder is that point about which we can rotate one
picture relative to the other so that in one case the legs are perfectly aligned
and in the other the bodies are perfectly aligned. This point was found
bysequential guessing using a graphics program (Adobe Illustrator). The
hip was found similarly. All distances were measured from the scaled
pictures.

Parameter values

m = 500 kg. More or less typical for a 16-hand horse;
g = 10 m/s2. Close enough to the standard value of 9.8 m/s2;
ℓF = 1.05 m. Fore-leg length, ground to shoulder hinge;
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ℓR = 1.20 m. Rear leg length, ground to hip hinge;
ℓb = 1.16 m. Body length, from shoulder hinge to hip hinge;
dG = 0.50 m. Distance along the shoulder to hip line from the shoulder hinge to

the CoM.
hG = 0.0 m. We assume the CoM was on the shoulder to hip line, thus the height

of the CoM above that line is zero.

Modeling choices A: basic features

Here is an expanded discussion of the modeling choices given at the start of
the Materials and Methods section.

2D versus 3D model
We use a 2D analysis here. We look at the horse from the side, considering
the sagittal = side-view = lateral-view plane. We use a 2D, instead of 3D,
analysis because the 2D results are simpler to understand than 3D results. In
particular, the fewer the number of forces and force components to consider,
the more accessible are the results. Further, the 2D results are exact features
of the 3D mechanics. That is, if all 3D forces are projected into the sagittal
(side view) plane, and the forces on all horse parts are considered as the set
on the left and right pair added (e.g. the rear legs ground force is the sum of

all forces on both rear feet), then the 2D statics results are exact results for the
projections of the 3D forces and moments. The ‘four-bar’ linkage model
here for a horse’s sagittal plane is the same linkage used to model to the
frontal plane of standing cats (forelimbs only) and humans in (Scrivens
et al., 2006; Bingham et al., 2011) and (Goodworth et al., 2014). Like
Scrivens et al. (2006) and Bingham et al. (2011), our model has no other
moving parts [in contrast, Goodworth et al. (2014) adds an independently
moving upper body].

The horse as a quasi-static mechanism
As noted previously, we use the common approximation that an animal is a
linkage of rigid parts connected by hinges. During quiet stance, the lower
leg-joints of the weight-bearing legs are generally locked in an extended
(straight-legged) configuration; horses have special purpose anatomical
features (the stay apparatus) that keep the leg straight with minimal muscular
effort. Also, there is little deformation of the back. So, we assume that both
stabilizing the spine, and holding the legs straight, are either non-
problematic for a horse, or are otherwise solved problems. Of interest here
are only the rotations of the legs, relative to the back, at the shoulder and hip
joints. By ‘shoulder’ and ‘hip’ we mean the effective centers of rotation of
the legs relative to the body (as found above). Our simplification of

Fig. 7. Locating the CoM and the effective shoulder and hip. One horse was photographed twice, (a) once in normal posture and (b) once with legs
canted-in, and (c) shown superposed. By rotating the photos (d,e), locations are found for which relative rotation about those points best fits the observed
motion of the leg relative to the body (d,e) and the body relative to the leg (c). (g) With a different horse, we found the CoM using four force plates (Gellman,
Shoemaker, and Reese, unpublished data). All three horse images are re-scaled to about the same size so that the effective hinges and the CoM can be
shown on all. For calculations, the dimensions for the effective leg lengths, back length, and CoM location on the back, are measured from the photos,
assuming a 16 hand (1 hand = 4″) horse. Photos by J.M. Shoemaker.
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dynamics to statics is in contrast to the more complete dynamics postural
models of Scrivens et al. (2006), Bingham et al. (2011) and Goodworth et al.
(2014). Because the legs are much lighter than the body, we neglect the leg
weights. Thus, we consider the statics of a 2D horse consisting of a rigid
body (trunk, neck and head), with mass, which is supported by negligible-
mass, rigid fore-legs and rigid hind-legs.

The linkage model and what it neglects
In a linkage model, each link represents a bone and the flesh on that bone.
Deformations of both bone and flesh are neglected.

The torques (moments) transmitted across a real horse’s joints can be
from various sources:

1. Joint friction, which is presumed negligible for our simple analysis;
2. complex joint contact wherein there is not a single (e.g. center-of-

sphere) effective hinge location, instead we assume simple pin joints;
3. Tension in muscles and tendons. These are of central concern for the

stability calculations here but are neglected in the equilibrium
calculations;

4. Tension in ligaments, which we consider as part of the mechanism
constraints (e.g. enforcing the approximate pin-like joint kinematics).
We assume that these have negligible torque about the nominal joint
axes; and

5. Other soft tissue stresses (e.g. skin tension), which we assume are
negligible.

Base of support versus mechanism instability
Note, we are not concerned with the horse falling over in the way that a rigid
toy topples; the simple idea that a broader stance is more stable because the
base of support (the polygon defined by the hoof positions) is bigger, is not
key as noted in Goodworth et al. (2014). Rather, in a muscle-free linkage
model, a standing horse is an unstable mechanism. This mechanism is prone
to undesirable changes of internal degrees of freedom of the linkage, with,
all the while, all feet firmly on the ground. This linkage instability, which is
our concern here, must be controlled even when there is no danger of the
center of mass falling outside the base of support.

The stance-angle effect on leg compression force is small
A first thought is that vertical legs would be preferred to canted-in or
splayed-out legs because the compression in the leg is minimized with
vertical legs. For the consideration of equilibrium forces, we lose little
accuracy by replacing our model with one in which the fore and rear legs
have equal length. The compression in the legs, Fc, is then proportional to
W /cos θ, where W is the weight born by the leg, if vertical and θ is the
deviation from vertical. For small angles, this is approximately quadratic in
leg angle, Fc≈W (1+θ2/2) (where θ is measured in radians) and is not a
dramatic effect. For example, for u ¼ 15° the compression is increased by
3.5% compared to having vertical legs (u ¼ 0°). Canted-in or splayed-out
limb angles seen in living horses are usually well under u ¼ 15° (Gellman,
Shoemaker and Reese, unpublished data). That is, while leg compression
force is minimized by having vertical legs, it is a broad minimum and thus
likely has small effect on postural choice, at least within the range of angles
(+15° that we consider here.

In short, the leg compression varies only quadratically with small
deviations from vertical whereas the needed stiffness for stabilization kmin

varies linearly. The linear (larger) effect likely dominates.

Modeling choices B: Tonic stiffness; corrective feedback
torques; and the effects of feedback delays

Our concern is the stabilization of a skeletal configuration that is in unstable
equilibrium. In our model, this is a standing horse. Others have modeled
humans standing in the sagittal (side view) or frontal plane (e.g. Loram et al.,
2005a,b; Scrivens et al., 2006; Bingham et al., 2011; Li et al., 2012;
Goodworth et al., 2014). A related ‘posture’ problem is human grasp using
fingertips (e.g. Sharma and Venkadesan, 2022), in which the relevant
skeletal configuration would be the finger geometry. Another ‘posture’
problem could be an arm pushing a door (Rancourt and Hogan, 2001);

posture would be the configuration of the upper-body, hand and arm. In the
grasping and pushing tasks, the equilibrium involves torques from muscles.
Even accounting for the intrinsic stiffness of the torque-generating muscles,
candidate equilibrium configurations of a finger pinch or arm push might be
unstable. In contrast with pinching or pushing, which necessarily use
muscles, equilibrium standing does not need muscles (until we consider
stability). Whether the load causing the potential instability is generated by
muscles (as in finger pinching or door pushing), or is external, say from
gravity (e.g. standing), the animal or human may need to supply additional
stabilizing torques to hold the desired equilibrium posture (that is, to avoid
buckling-like collapse).

Types of corrective torques
In all plausible postures, we found that without corrective torques, a horse’s
standing posture is unstable. There are some possible non-muscular ways a
horse could apply these torques (see Section Modeling choices A). This
paper focuses on the corrective torques from muscles (in series with
tendons).

The corrective torques are of two general kinds: (1) tonic stiffness;
and (2) feedback correction. The tonic stiffness can, in turn, come
from (a) co-contraction; (b) the intrinsic stiffness of the muscles used in the
task, and (c) the intrinsic stiffness of muscles used to hold a posture
slightly ‘leaned’ away from equilibrium. These are discussed in more detail
below.

1. Tonic stiffness is corrective torque from muscle’s intrinsic stiffness. This
is the slope of the muscle’s force-length relation in a quick (too fast for neural
feedback) imposed extension (neglecting, or subtracting out, viscous or
hysteretic effects). As pointed out in De Groote et al. (2017), this ‘short-
range’ (i.e. intrinsic, short time) intrinsic stiffness does not involve feedback
via neural control. As is well known and noted in, e.g. Sharma and
Venkadesan (2022), this intrinsic muscle stiffness is more-or-less
proportional to the muscle force present. So, intrinsic stiffness is only
significant if a muscle is activated. We term the stabilization from intrinsic
stiffness due to constant muscle activation as ‘tonic’. It is also ‘passive’ in
that it does not involve active neural control. It is also a primitive form of
‘feed-forward control’ in that it is a chosen activation pattern, albeit simple,
that achieves the desired coordination without feedback. There are three
mechanisms for tonic stiffness in a static posture:

a. Co-contraction, with flexors and extensors in opposition;
b. Tonic stiffness from the task. For human grasp, the propensity to

buckle (negative stiffness) fights the intrinsic muscle stiffness.
Because force (destabilizing) and intrinsic stiffness (stabilizing) are
nearly proportional, the stability, or lack thereof, of a given grasp
configuration is approximately unchanged by the tightness of the
grasp (Sharma and Venkadesan, 2022). In our horse standing model,
we assume that the horse chooses an equilibrium configuration that
requires no hip or shoulder torques, so this mechanism (stiffness
from muscles already needed for a task) is not relevant.

c. Contraction opposing an external load. For example, this is
thought to be an approximation of the state of a typical standing
person [e.g. Loram and Lakie (2002) and see Figure 1 in Loram et al.
(2005b)]; the person is leaned forward in the sagittal plane,
relative to muscle-free equilibrium, with their center of mass
slightly forward of the ankle. The external gravity load causes a
disruptive torque (about the ankle hinge) and the Achilles tendon
(with soleus and/or gastrocnemius muscles) provides a counter-
acting righting torque.

In a standing person or horse, as the deviation from muscle-free
equilibrium is increased, the bigger the muscle force needed to
balance the gravity force. Meanwhile, the negative stiffness from
gravity is essentially independent of the magnitude of deviation.
Therefore, the bigger the chosen distance from muscle-free
equilibrium, the bigger the intrinsic muscle stiffness, the bigger the
ratio of muscle stiffness to gravity negative stiffness, the more stable
is the system. The horse can thus choose a stiffness by choosing an
amount of deviation from equilibrium, something like the choice a
human can make stabilizing a ladder. Again, consider a tall, heavy,
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vertical ladder. You want to stabilize it without using feedback or co-
contraction. The ladder will need to lean sufficiently so that the force
to stop it from falling is high enough to engage stiff-enough muscles
to stabilize the position. This useful increase in muscle stiffness with
load (and distance from equilibrium) is in contrast with grasp. In
grasp, as per (1b) above, the increase in load does not help make an
unstable system stable.

{Note, for our horse calculations we calculate the needed stiffness
in a muscle-free equilibrium configuration. For the mechanism of
generating tonic stiffness without muscle co-contraction, this
stiffness depends on leaning a small amount away from the
muscle-free equilibrium [Figure 1 in Loram et al. (2005b)]. We
assume that the geometry change from that leaning is small-enough
as to have negligible effect on the needed value of kmin]}.

2. Feedback correction torques in response to sensed deviations from
equilibrium. These senses could be on proprioceptive (mechano-receptors
distributed in muscles, joints, ligaments and skin), visual (oculo-vestibular
responses), or inner ear (vestibular end organs – otoliths and semicircular
canals). These signals are processed in the spine or brain, and then lead to
muscle commands. This corrective strategy might be termed as ‘feedback’,
in that activation based on sensing is fed back to the muscles, and as ‘active’,
in that the neural output is actively changing.

Active neural feedback in an animal (or human) is not instantaneous due
to sensor delay, neural transit times to the spine or brain, neural processing
time, neural transit time back to the muscle, and muscle delays (so called
‘activation delays’, due to electrical, chemical and mechanical muscle
processes). These delays have a variety of delay times, depending on the
pathways. Added up along a single feedback pathway these are thought (for
humans) to be in the range of 0.1–0.3 s (Goodworth et al. 2014).

Combining passive tonic and active feedback controls. For human
standing balance in the sagittal (side view) plane, Loram and Lakie (2002)
show that there is some stiffening from the intrinsic stiffness of active calf
muscles fighting gravity (tonic mechanism 1c above). On top of that there is
a dynamic feedback loop. Similarly, tonic stiffness from co-contraction (1a
above) can be supplemented with active feedback,

“[For stable upright balance, to counteract the negative stiffness from
gravity] the required torsional stiffness may be provided by negative
position feedback or by antagonist coactivation, or a combination of
both” (Hogan, 1984).

It is sensible that an animal or person would choose to stabilize using a
mixture of tonic (constantly contracted muscle) and feedback control (sense
and response), for three reasons:

1. There is a cost to varying muscle force. This cost is on top of the cost
of maintaining that force. Given that the sensors have limited
resolution, feedback control necessarily involves force variation. If
some of the stability is handled by tonic contraction (using intrinsic
muscle stiffness), then there is less instability for the feedback system
to contend with, and, for given sensor thresholds, smaller needed
corrective torques. Depending on details of muscle costs for tonic
forces versus the costs for the necessarily time-varying contractions
used in feedback, there could be a savings of chemical energy by
using a mixture of tonic (intrinsic stiffness) and feedback control (Art
Kuo, personal communication);

2. As noted previously, muscles are less stiff when the force is smaller.
Starting with no force, to generate a small force, slack needs to be
taken up. Whereas, when a muscle is already contracted, it takes less
change in excitation to cause a similar force change, and there is less
related muscle and tendon stretch. That is, modulating an existent
force may be easier than modulating a force near to zero force (Art
Kuo, personal communication); and

3. The system may be so unstable that, with the given neuro-muscular
delays and given sensor inaccuracy, that it is uncontrollable using
feedback alone, and tonic stabilization is needed.

This last case is apparently observed in Sharma and Venkadesan
(2022) for pinched grasp. For that task, with just enough muscle
tension to accomplish a given pinch force, the posture is unstable.

These instabilities are associated with a characteristic time τinst
[meaning that a variable-of-interest x diverges from a desired
configuration exponentially in time as x(t)∼ exp (t/τinst)]. In
principle, with perfect sensing, accurate actuation, and no external
disturbances, these instabilities can be stabilized with feedback that
uses vanishingly small muscle effort, even with time delay τdelay,

if ð1sense; 1act; fdistÞ ! 0 ) meffort ! 0:

In contrast, in practice there are imperfections (sensing and
modeling errors ɛsense, actuation errors ɛact, disturbances fdist), and
some muscle effort meffort is required for stabilization. Assume one
needs a given accuracy of control of x < xmax, where xmax corresponds
to failure, such as falling down. The requirement for accuracy (in
sensors and actuators) and need for disturbances on the system to be
small, grows exponentially with time delay — the longer the delay,
the greater accuracy is needed. That is, roughly,

ðC11sense þ C21act þ C3fdistÞe
tdelay
tinst � xmax:

Hence, the practical not-quite-rule that you cannot control an unstable
system if the delay time τdelay is longer than the characteristic
instability time τinst. It is possible to control with longer delays, but the
demands for system precision grow exponentially with the amount of
delay. Furthermore, the needed actuator (muscle) effort also grows.
For a given system, the delays and system imperfections are what

they are. And the demand for accuracy for a given task is what it is. If
the delay time τdelay is significantly larger than τinst then achieving
x < xmax might not be possible, as seems to be the case for finger
grasps (Sharma and Venkadesan, 2011).

Taking the three mechanisms above into account, we might consider the
general motor-control principle that passive mechanisms, (tonic muscle
stiffness, or postural choices, or even skeletal design), may be used to bring a
system to a point close to neutral stability, and that feedback is then used to
do the remaining control of the resulting almost-stable (meaning slow
instability times) system.

Tonic mechanism as rationale for kmin measure of instability
The key idea justifying our standing horse model here is that a horse might
well use tonic mechanisms to bring their intrinsically unstable posture up to,
or almost up to, neutral stability. If this is the case, our quantification of the
difficulty of stabilizing a posture using kmin seems reasonable; kmin

represents the tonic contraction, and thus effort, needed to just-stabilize a
posture.

Comparison with Bingham et al. (2011)
In the study of the effect of leg spread on the stability of human standing,
(ibid.) ignore the intrinsic stiffness of muscles, only considering active
feedback mechanisms. Central to their model and calculations is that this
feedback has neuromuscular delays.

Their analysis of the stability of humans in the frontal (side to side) plane
uses, like we do here, a four-bar linkage model. Their mass, length (and
inertia) parameters model those for a human, our parameters (with no
consideration of inertia) are for a standing horse. Their two key model
findings are:

1. They notice that their model is less stable with spread legs than with
vertical legs, and

2. They find that there is a range of feedback gains which stabilize the
system. This range is smaller for spread legs than for parallel, vertical
legs.

These results are, at least superficially, in contrast with our model results
that:

1. Our horse is more stable with legs splayed-out than with legs vertical
(parallel), and

2. The minimum stiffness needed for stabilization is less for a splayed-
out horse than for a vertical-legs horse.
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Without checking the models in detail, we believe this superficial
contradiction is not due to the difference in size and shape between horses
and humans; they would have got their same results (a wider stance is harder
to stabilize) if they had modeled horses and we would have got our same
results (that a wider stance is easier to stabilize) if we had modeled humans.

Besides the differences in physical parameters (lengths, weights), which
we do not think are key to our different results, our model differs from
(Bingham et al., 2011) in two key ways:

A. They use the eigenvalue λ as a measure of the degree of instability
whereas we use the minimum corrective spring kmin, and

B. They assume all control is with neural feedback that has a delay,
whereas, we do not directly consider delay.

One Bingham observation might be explained intuitively as follows: the
splayed-out posture is associated with a smaller inertia (less kinetic energy
per unit leg angular rate). Thus, although the gravitational negative stiffness
is smaller with splayed-out legs, the even-more reduced inertia makes for a
reduced characteristic time of falling (bigger eigen value). By their speed-of-
instability measure, a splayed-out posture is thus less stable. On the other
hand, when the legs are splayed-out, a given motion of the center of mass is
associated with large changes in the body-to-leg angles, so that our model’s
joint springs have a larger stabilization effect. Thus, by our kmin measure,
splayed-out is more stable.

Bingham et al.’s main result is that splayed-out is, by their measure,
harder to control. Consistent with us, they find that the minimum gains to
stabilize the splayed-out posture are smaller. But their model includes delay.
If one uses a gain much larger than the minimum-needed gain, then, in their
dynamics model, the characteristic sway becomes faster with shorter
characteristic times, eventually competing with neuromuscular delay times,
and the control system becomes unstable (there is an oscillatory instability at
a critical gain).

On the other hand, at narrower stance, a higher control gain is needed (in
both Bingham et al. and our model). And, again, at sufficiently higher gain,
their model becomes unstable. Their central observation is that

they find a smaller range of gains is stabilizing for wide stance than
for narrow stance.

Thus, they reason, a control system that is challenged in its abilities to set
gain levels, has an easier time setting the gain in narrow stance.

In summary, relative to a narrow stance, in a wider stance the needed
feedback control gains are smaller (whether with or without delay), the
characteristic time of instability is smaller, the needed stabilizing spring kmin

is smaller, and, if delays are included, the range of stabilizing gains is
smaller. While they did not calculate horse geometries and we did not
calculate human geometries, this collection of things seems to be true for
both horses in side view and people in front view. If tonic mechanisms are
used to make the person/animal stable, or nearly so, the Bingham et al.
model seems inappropriate. If tonic mechanisms are not used at all, our
model seems inappropriate.

Lack of ‘objectivity’ in Bingham et al. (ibid.)
Bingham et al.’s instability measure is not ‘objective’ in that the result
depends on the choice of measure. We do not know how a biological neural
system quantifies/measures gains. The concept of ‘narrower gain range’
depends on how gain is measured. For example, the neural system might use
the log of the engineering gain, or the reciprocal (the compliance). A range
of gains that is smaller using engineering gain may not be smaller using one
of these, or some other measure. That is, the concept of ‘smaller gain range’
is not objective; the phrase ‘smaller range of gains’ is not independent of the
means of measuring. If one range of gains totally encompasses another
range of gains, then one range being bigger than another is objective (is
independent of what measure of gain is used). But one stiffness range does
not encompass the other in their model. In summary, the phrase ‘smaller
stable range’ depends on how gain is parameterized (e.g. engineering gain
versus reciprocal of engineering gain, versus log of engineering gain, etc.),
so their smaller range may or may not be smaller with a biologically
appropriate measure of gain.

Parkinson’s disease versus other challenges
The Bingham et al. model is primarily intended to explain the narrow stance
of people with PD. In most (non-Parkinsonian) situations where balance is a
challenge (neural ataxia), it seems that more-spread stances are chosen by
both humans (wider) and horses (longer) (Alcott, 2017; Bunn et al., 2013),
not the narrower stance observed for standing human PD patients.
Bingham et al. (2011) do not claim that their model is predictive in these
other situations.
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