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Revisiting the flight dynamics of take-off of a butterfly: experiments
and CFD simulations for a cabbage white butterfly
Kosuke Suzuki1,*, Masashi Nakamura2, Masaya Kouji2 and Masato Yoshino1

ABSTRACT
We conducted measurements of the taking-off motion of a butterfly
(Pieris rapae) and numerical simulations using a computational
model reflecting its motion. The computational butterfly model is
composed of a thorax, an abdomen, and four wings (left and right
wings with fore and hind parts), i.e. a six-link, rigid-body system. The
present model is more sophisticated than any models that have ever
been constructed in existing studies. In the butterfly model, the body
trajectory and thoracic pitching angle can be calculated from the
equations of motion, whereas the abdominal angle and wings’ joint
angles are prescribed by the measured data. We calculated the flow
field, aerodynamic force and torque generated by the butterfly model
using the immersed boundary–lattice Boltzmann method. As a result,
the butterfly generates the horizontal vortex ring and aerodynamic lift
force during the downstroke, while it generates the vertical vortex ring
and aerodynamic thrust force during the upstroke. The leg impulsion
is essential in the upward motion of the taking-off butterfly rather than
the aerodynamic lift force by the flapping wings. The inertial forces
of the abdomen and wings are comparable in magnitude with the
aerodynamic forces, but the net influence of the inertial forces on
the position of the butterfly is not significant due to the offsetting of the
body and wing inertia. The net aerodynamic and gravitational torques
raise the thorax of the butterfly, and the net inertial torques suppress
the rise of the thorax.
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INTRODUCTION
Butterflies have been attracting people for a long time not only
because of their beautiful wings but also because of their erratic
flight, which is often described as ‘fluttery’. From a biological
viewpoint, it has been suggested that their erratic flight was
developed as an evolutionary response to aerial predation, i.e. for
evading other insects or birds aiming at them (Dudley, 2002). From
a physical viewpoint, their erratic flight should be related to their
unique morphological and kinematic features, e.g. large variation in
the inclination of the stroke plane (Sunada et al., 1993); low flapping
frequency and broad wings (Shyy et al., 2013); low wing loading

(Zheng et al., 2013); heavy weight of the wings relative to the total
weight (Suzuki et al., 2019); abdominal oscillation (Chang et al.,
2020); and the clapping motion of wings (Johansson and
Henningsson, 2021). Thus, the erratic flight of butterflies is a
result of the dynamical interactions between the body, wings, and
ambient air.

To investigate the flight dynamics of butterflies, we must consider
the coupled problem of the dynamics of the wing–body system as
well as the aerodynamics. Many researchers have constructed and
developed dynamical models of butterflies. Sunada et al. (1993) are
the pioneers who constructed the dynamical model of a butterfly.
Their model is a four-link, rigid-body system consisting of a thorax,
an abdomen, and left and right wings, and it reflects the motions of
the body and the wings of a butterfly (Pieris melete) in take-off
flight. The aerodynamic force and torque acting on the model were
estimated by the vortex method. As a result, it was found that vertical
and horizontal aerodynamic forces are generated during the
downstroke and the upstroke, respectively, due to the variation of
the inclination of the stroke plane, which is the key mechanism of
butterfly flight. In addition, it was found that the aerodynamic torque
always raises the thorax, and the rise of the thorax is suppressed by
the inertial torque of the abdomen.

Senda et al. (2012) also constructed a four-link, rigid-body
system modeling a chestnut tiger butterfly (Parantica sita) in
forward flight, and the aerodynamic force and torquewere estimated
by the panel method. Subsequently, the computational accuracies of
the flow field and aerodynamic force and torque were improved by
using the immersed boundary method (Yokoyama et al., 2013). As a
result, it was found that the model can produce enough forces to
achieve the flapping flight, but its flight was longitudinally unstable
due to the increase in the pitching angle.

Bimbard et al. (2013) considered a butterfly model composed of
two massless wings and a body represented by a mass point
to investigate the take-off maneuver of a cabbage white butterfly
(Pieris rapae). The flow field and aerodynamic force were
calculated by using the Fourier pseudo-spectral method with the
volume penalization method. In addition, they modeled the leg
forces generated by the active extension of the legs. They found that
not only the aerodynamic forces generated by the wings but also the
leg forces are needed to faithfully reproduce the trajectory of the
butterfly’s body measured by the experiments.

Suzuki et al. (2015) constructed a butterfly-like flapping wing–
body model composed of two massless wings and a body
represented by thin square plates and a thin rod, respectively. This
model is the simplest model which can move translationally and
rotationally while flapping its wings downward and backward to
generate lift and thrust forces, respectively. The flow field and
aerodynamic force and torque were calculated by using the lattice
Boltzmann method with the immersed boundary method. As a
result, it was found that even this simple model can generate enough
lift force to support an actual butterfly’s weight. In addition, theReceived 2 November 2021; Accepted 19 January 2022
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pitching angle can be controlled by flexing at the joint between the
thorax and abdomen. Subsequently, their model was extended such
that the mass of the wings could be considered (Suzuki et al., 2019).
As a result, it was found that the aerodynamic forces decrease as the
wing-mass ratio (the ratio of the wing mass to the total mass)
increases, since for a large wing-mass ratio the body has large
vertical and horizontal oscillations in each stroke and consequently
the speeds of the wing tip and leading edge relatively decrease.
Fei and Yang (2015, 2016) constructed a butterfly model

composed of two massless wings and a body to investigate the
forward flight of leaf butterflies (Kallima inachus). In this model,
the relative motion of the abdomen is neglected, and the pitching
motion of the body is prescribed. The flow field and aerodynamic
force and torque were calculated by using the ANSYS FLUENT.
They showed that the variation of the flapping speed is substantial in
one flapping cycle and makes a large difference on the time-
averaged aerodynamic forces compared with the flight with a
constant speed, and that the flight mode is closely related to the
pitching angle of the body. Recently, Chang et al. (2020) have
extended their model to a four-link, rigid-body system modeling a
paper-kite butterfly (Idea leuconoe) in forward flight, so that the
wing mass and abdominal motion can be considered. In this model,
the phase of the abdominal oscillation is tunable, whereas the
pitching motion of the thorax is prescribed. As a result, it was found
that the abdominal oscillation enhances the lift and thrust forces due
to the translational motion of the joint between the thorax and the
abdomen relative to the center of mass. In addition, it was found that
the phase of the abdominal oscillation recorded from actual
butterfly’s flights maximizes the lift and thrust forces.
Tejaswi et al. (2021) constructed a four-link, rigid-body system

modeling a monarch butterfly (Danaus plexippus). The
aerodynamic force and torque were formulated as a function of
the wing kinematics and body motion by using a quasi-steady blade
element method. Thus, the flight dynamics of the monarch butterfly
are formulated directly on the configuration manifold, while the
pitching angle of the body is not included in the unknown
coordinates but given as the harmonic oscillation with unknown
parameters. By using this model, they reproduced the thorax
and abdomen motions as well as the resultant forces consistent with
the measured data. In addition, they showed that the abdomen
oscillation not only results in a reduction of the energy and power
consumption but also improves the stability of periodic orbits.
From the above review about dynamical models of butterflies, we

find the importance of the dynamical interactions between the
thorax, abdomen, wings, and ambient air in the flapping flight of
butterflies. Especially, the effects of the wing mass (Suzuki et al.,
2019) and abdominal oscillation (Chang et al., 2020) on the
aerodynamic force and torque are essential to be considered in the
investigation into the flight dynamics of butterflies. From this
viewpoint, the conventional dynamical models of butterflies for
take-off flight (Sunada et al., 1993; Bimbard et al., 2013) might be
insufficient. The model of Sunada et al. (1993) is composed of a
thorax, an abdomen, and left and right wings, but the equations of
motion do not include a term related to the time derivative of the
inertia moment of the wings, which should have a significant effect
on the flight maneuvers of butterflies (Lin et al., 2012). The model
of Bimbard et al. (2013) does not include either of the wing mass or
the abdominal oscillation. Thus, it is worthwhile to revisit to the
flight dynamics in the take-off of a butterfly by using a more
sophisticated model including the wing mass and abdominal
oscillation like the model of Senda et al. (2012); Yokoyama et al.
(2013).

In the present study, we investigate the flight dynamics in the
take-off of a cabbage white butterfly (Pieris rapae) by using a
dynamical model composed of a thorax, an abdomen, and four
wings (left and right wings with fore and hind parts), i.e. a six-link,
rigid-body system. The joint angles between the thorax and
abdomen and between the thorax and wings are given from the
experimental measurement using high speed video cameras and a
motion capturing system. The air flow around the butterfly model is
calculated by using the immersed boundary–lattice Boltzmann
method (Suzuki and Inamuro, 2011). We consider the motion of the
butterfly model in the following four cases: (i) to prescribe both the
translational and rotational motions by the experimental data; (ii) to
calculate the translational motion of the model by assuming that all
the masses of the model are concentrated at a reference point; (iii) to
calculate the translational motion of the thorax from the equations of
motion, whereas the rotational motion is prescribed; (iv) to calculate
both the translational and rotational motions of the thorax from the
full equations of motion. In case ii, where the equations of motion
are the same as those in Bimbard et al. (2013) and we validate our
simulations by checking whether the same conclusion as the study
of Bimbard et al. (2013), can be reproduced. In case iii, we check
the effects of the abdominal oscillation and wing mass on the
translational motion of the body by comparing case ii and two
subcases without and with wing mass (iii-a and iii-b, respectively).
In case iv, we check the effects of the abdominal oscillation and
wing mass on the rotational motion of the body by comparing case
iii and two subcases without and with wing mass (iv-a and iv-b,
respectively).

RESULTS
Case i: vortex structure and aerodynamic force
At first, we show the results in case i to observe the vortex structure
and aerodynamic force generated by the butterfly in take-off. We
can see from Fig. 1A and its corresponding movie (Movie 1) that the
present model appropriately reproduces the motion of the actual
butterfly. In addition, fromMovie 1, we can see that the model wing
is slightly flexed on the line which distinguishes the forewing and
hindwing. However, the angle between the fore- and hindwings
juYf � uYh j is very small at most a few degrees, and our preliminary
calculations when the fore- and hindwings are treated as a single
whole wing (i.e. uYf ¼ uYh ) give almost the same vortex structure
and aerodynamic force as those in the present simulations.

Fig. 1B and its corresponding movie (Movie 2) show the vortex
structure around the butterfly. We can see that the butterfly
generates the vortex on the dorsal side of the wings during the
downstroke and releases it downward in the beginning of the next
upstroke. Also, the butterfly generates the vortex on the ventral side
of the wings during the upstroke and releases it backward in the
beginning of the next downstroke. Since the butterfly moves upward
and forward as shown in Fig. 1B, it releases the generated vortices in
the direction opposite to its traveling direction. As a result, the
butterfly generates the horizontal and vertical vortex rings behind it
during the downstroke and upstroke, respectively, as shown in
Fig. 1C. A similar vortex structure was observed in the experimental
visualization using a tomographic particle image velocimetry
conducted by Johansson and Henningsson (2021).

Fig. 1D shows the aerodynamic lift coefficient
CL ¼ Faero

y =ðrfu20SÞ, thrust coefficient CT ¼ Faero
x =ðrfu20SÞ, and

pitching moment coefficient CM ¼ T aero=ðrfu20SLÞ. We can see
from this figure that the butterfly generates lift force in the
downstroke and thrust force in the upstroke. These aerodynamic
forces are given by the unique wing motion that the butterfly flaps
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its wings downward in the downstroke and upward in the upstroke
by changing the pitching angle, i.e. the inclination of the stroke
plane (Sunada et al., 1993). Meanwhile, the pitching moment
coefficient shows a complicated curvewhich alternates negative and
positive peaks independently of downstroke and upstroke. This
contradicts the result of Sunada et al. (1993) that the aerodynamic
pitching moment is always positive and raises the thorax. This
contradiction might be attributed to individual differences such as
wing shape and wing kinematics. Thus, the aerodynamic pitching
moment does not always raise the thorax in the take-off of a
butterfly.

Case ii: leg impulsion
Secondly, we show the results in case ii to check whether the same
conclusion as the study of Bimbard et al. (2013) on the leg
impulsion can be reproduced by the present simulations. In order to
evaluate the effect of the leg impulsion, we consider the subcase
without jump by the legs as well. In this subcase (referred to as ii
without jump), we assume that the legs just support the weight of
the butterfly until t/T=0.3. Thus, in the early stage of the simulation
0≤t/T≤0.3, we calculate the position x by cancelling the
gravitational force, i.e. by adding the leg force +MGey to the right
hand side of Eqn (14).
Fig. 2 shows the lift coefficient CL, thrust coefficient CT, vertical

position y, and horizontal position x. We can see from the left panel
of Fig. 2A that the lift forces in cases i and ii are comparable to each

other, whereas the lift force in case ii without jump is significantly
larger than the other cases in the downstroke. From the left panel of
Fig. 2B, however, we can see that the vertical position in case ii
without jump is significantly lower than the other cases throughout
the one period. This means that the leg impulsion is crucial in the
upward motion of the butterfly during take-off, and is greater in
importance than lift from the flapping wings. Thus, the same
conclusion as the study of Bimbard et al. (2013) is reproduced by the
present simulations.

Also, we can see from the right panel of Fig. 2A that the thrust
forces in cases i and ii without jump are comparable to each other,
whereas the thrust force in case ii is smaller than the other cases in
the upstroke. This difference in the thrust force between cases with/
without jump is attributed to the fact that in case ii the wing speed in
the backward direction decreases due to the forward speed given by
the leg impulsion. From the right panel of Fig. 2B, however, we can
see that the horizontal position in case ii without jump is
significantly behind the other cases. Whereas in case ii without
jump the horizontal position is almost zero since the aerodynamic
thrust force is zero, in case ii the horizontal position increases not by
the aerodynamic thrust force but by the initial momentum due to the
leg impulsion. As shown in the above result, this butterfly takes off
in the forward direction, while the butterfly in the study of Bimbard
et al. (2013) takes off in the backward direction. This might be
attributed to the fact that the individual in the present study takes off
from the edge of the stand. In any case, we can conclude that the

Fig. 1. Results in case i. (A) Butterfly’s motion in the take-off from t/T=0.0 to t/T=1.0 in the experiment and the simulation; (B) isosurface of the magnitude of
the vorticity ðjr � uj ¼ 2u0=LÞ around the butterfly model from t/T=0 to t/T=1.1 viewed from the right side of the model; (C) vortex structure ðjr � uj ¼ 5u0=LÞ
behind the butterfly model at t/T=1.1; (D) time variations of the lift coefficient CL, the thrust coefficient CT, and the pitching moment coefficient CM.
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effect of the leg impulsion is significant even in the forward motion
of the taking-off butterfly.
To make quantitative comparisons, we define the root mean

square difference in a variable Ψ between two cases P and Q as
follows:

DðCÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

ðT
0

ðCP �CQÞ2dt

vuuut :

Table 1 includes the root mean square differences between cases i
and ii and between case ii without jump and case i. From this table,
we can confirm the above conclusions.

Case iii: abdominal oscillation and wing mass
Thirdly, we show the results in case iii to check the effects of
the abdominal oscillation and wing mass on the translational
motion of the body. Case iii has two subcases iii-a and iii-b,
which correspond to the cases without and with wing mass,
respectively (see also Table 3). Fig. 3 shows the results of CL, CT,
and x=(x, y) in cases i, ii, iii-a, and iii-b. Also, this figure includes the
comparison between the aerodynamic and inertial forces in cases iii-
a and iii-b. The definition of the inertial forces is shown in the
Appendix. We can see from the left panel of Fig. 3A that all cases
are comparable to each other in terms of CL. From the left panel of
Fig. 3B, however, we can see that the vertical position in case iii-a is
slightly higher, by about L/2=10mm at the end of upstroke, than that
in case ii, and the vertical position in case iii-b is comparable to that
in case ii. The quantitative differences between these cases can be

Fig. 2. Results in case ii. Time variations of (A) the lift coefficient CL and the thrust coefficient CT and (B) the position of the reference point in the y-direction
and the x-direction in cases i, ii, and ii without jump.

Table 1. Root mean square differences for various cases

Case Versus Δ(CL) Δ(CT) Δ(y/L) Δ(x/L) Δ(CM) Δ(θpit)

ii i 0.0630 0.1176 0.1478 0.0429 N/A N/A
ii w/o jump i 0.2289 0.0972 0.6555 0.5228 N/A N/A
iii-a ii 0.0560 0.0735 0.1915 0.0861 N/A N/A
iii-b ii 0.0393 0.0765 0.0159 0.1105 N/A N/A
iii-a iii-b 0.0753 0.1441 0.1846 0.0250 N/A N/A
iv-a ii 0.0457 0.0727 0.1934 0.0748 N/A N/A
iv-b ii 0.0973 0.0620 0.0401 0.1180 N/A N/A
iv-a iv-b 0.0781 0.1207 0.2223 0.0443 0.0426 6.82°

iv-a i 0.0409 0.0851 0.0488 0.0372 0.0437 2.12°

iv-b i 0.0664 0.1716 0.1785 0.0812 0.0324 6.95°
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seen in Table 1. The difference between cases ii and iii-a is derived
from the existence of the inertial force of the body especially due to
the abdominal oscillation, and the difference between cases iii-a and
iii-b is derived from the existence of the inertial force of the wings.
Thus, the upward motion of the butterfly is enhanced by the body
inertia and deteriorated by the wing inertia, which is consistent with
the conclusions by Chang et al. (2020) and Suzuki et al. (2019).
Actually, from the left panel of Fig. 3C, the vertical inertial forces of
the abdomen and wings are respectively positive and negative for
0.3<t/T<0.8. In addition, the effect of the body inertia on the upward

motion is almost cancelled by the effect of the wing inertia, and
consequently the vertical displacements in cases ii and iii-b almost
coincide with each other. This is consistent with the results by
Chang et al. (2020) that the inertial force of the wings has nearly the
same magnitude but the opposite trend compared with that of the
abdomen.

On the other hand, we can see from the right panel of Fig. 3A that
the peak value of CT is larger in order of i, iii-a, ii, and iii-b. This
difference in CT might be attributed to the difference in the vertical
speed of the body. In the right panel of Fig. 3B, however, the

Fig. 3. Results in case iii. Time variations of (A) the lift coefficient CL and the thrust coefficient CT and (B) the position of the reference point in the
y-direction and the x-direction in cases i, ii, iii-a, and iii-b. (C) Comparison of the vertical- and horizontal-force coefficients Cy and Cx for the aerodynamic
force Faero with those for the inertial force of the wings F in

w , abdomen F in
abd, and thorax F in

th in cases iii-a and iii-b.
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difference in the horizontal displacements between these cases is not
significant. In particular, the horizontal displacements in cases iii-a
and iii-b almost coincide with each other (see also Table 1). This is
because the inertial force of the wings compensates the decrease in
the aerodynamic force as shown in the right panel of Fig. 3C.
As discussed above, the inertial forces of the abdomen and wings

can have a significant effect on the translational motion of the
butterfly. (The inertial force of the thorax is small enough to be
ignored compared with the other inertial forces). Interestingly,
however, the resultant trajectory in case ii without the inertial forces
is comparable with that in case iii-b with the inertial forces. This is
because the influence of the body inertia on both the upward and
forward motions is almost cancelled by the influence of the wing
inertia as shown in Fig. 3C. This result suggests that the translational
motion of a butterfly within short duration after the take-off can be
modelled without the inertial forces as in case ii.

Case iv: pitching rotation
Finally, we show the results in case iv to check the effects of the
abdominal oscillation and wing mass on the rotational motion of the

body. Case iv has two subcases, iv-a and iv-b, which correspond to
the cases without and with wing mass, respectively (see also
Table 3). Fig. 4 shows the results of the aerodynamic pitching
moment coefficient CM and pitching angle θpit as well as CL, CT,
and x=(x, y) in cases i, ii, iv-a, and iv-b. This figure also includes the
comparison between the aerodynamic, inertial, and gravitational
forces and torques in cases iv-a and iv-b. From the left and
middle panels of Fig. 4A–C and Table 1, we can see that the results
in cases iv-a and iv-b have the same tendency as those in cases
iii-a and iii-b. That is, the inertial forces of the abdomen and wings
are comparable in magnitude with the aerodynamic forces, but
the net influence of the inertial forces on the position of the
butterfly is not significant due to the offsetting of the body and wing
inertia.

Meanwhile, we can see from the right panel of Fig. 4A that the
peak values of CM in cases i and iv-b are comparable to each other
and significantly larger than in cases iv-a. In the right panel of
Fig. 4B, however, the peak values of θpit in cases i and iv-a are
comparable to each other and significantly larger (by more than 10°)
than in cases iv-b. The quantitative differences between these cases

Fig. 4. Results in case iv. Time variations of (A) the lift coefficient CL, thrust coefficient CT, and moment coefficient CM, and (B) the position of the reference
point in the y- and x-directions and the pitching angle θpit in cases i, ii, iv-a, and iv-b. (C) Comparison of the vertical-force, horizontal-force, and pitching-
torque coefficients Cy, Cx, and Cpit for the aerodynamic contribution with those for the inertial and gravitational contributions of the wings and body in cases
iv-a and iv-b.
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can be seen in Table 1. This is because the inertial torque T in
w by the

wings has large negative peaks around the boundary between the
downstroke and upstroke as shown in the right panel of Fig. 4C.
Whereas the inertial forcesFin

abd andF
in
w of the body and wings are

almost balanced (left and middle panels of Fig. 4C), the inertial
torques T in

body and T
in
w of the body and wings are not balanced (right

panel of Fig. 4C). The net influence of the inertial torques is
negative and suppresses the increase in the pitching angle θpit during
the upstroke (right panel of Fig. 4B). In addition, from the right
panel of Fig. 4C, we can see that the gravitational torque TG

body of the
body is always positive and almost constant, whereas the
gravitational torque TG

w of the wings is small enough to be
ignored compared with the other torques. Thus, the net aerodynamic
and gravitational torques raise the thorax of the butterfly, and the net
inertial torques suppress the rise of the thorax. This scenario is
consistent with the result by Sunada et al. (1993).
Finally, we discuss the deviation between cases i and iv-b. In case

iv-b, both the position x and pitching angle θpit are calculated from
the equations of motion of the butterfly model. Thus, case iv-b is the
most realistic case in our simulations. The calculated curves of y, x,
and θpit in case iv-b have similar shapes to the measured curves in
case i. However, there is some non-negligible deviations between
cases i and iv-b, especially in the peak value of θpit. The deviation in
θpit suggests that in case iv-b the aerodynamic and gravitational
torques are underestimated or the inertial torques are overestimated
due to some modelling errors. A probable candidate of such errors is
the assumption that the wing area is constant throughout the take-
off. In general, butterflies have partially-overlapping fore- and
hindwings and can extend their wings by the lead–lag motion. Thus,
the wing area can vary effectively. The variation of the wing area
should have a significant influence on the aerodynamic force and
torque. In particular, the aerodynamic torque should proportionally
increase with increasing distance between the reference point and
wing tip, indicating that the aerodynamic torque is quite sensitive to
thewing extension. Therefore, the wing extension might be required
to improve the accuracy of the rotational motion of the butterfly
model. Alternative possibility of the errors in the rotational motion
is the assumption that the wings are of constant density (see the
Appendix). When we cut a wing into wing-root and wing-tip parts
and measured each mass per each area, the wing-root part was
heavier than the wing-tip part (by about 40%). Thus, the wing-mass
density was biased toward the wing root. This is likely to reduce the
moment of inertia of the wings compared with that with uniform
mass density. Therefore, we should measure the wing-mass density
more accurately and then incorporate it into the butterfly model to
improve the accuracy of the rotational motion of the model. These
factors will be modeled in future work.

DISCUSSION
We revisited to flight dynamics in the take-off of a butterfly through
experimental measurements and CFD simulations for a cabbage
white butterfly (Pieris rapae). We measured the motions of
characteristic points on the wings and body of the butterfly in
take-off and obtained the time series data of the trajectory of the
body, pitching angle of the thorax, relative angle of the abdomen to
the thorax (abdominal angle), and joint angles of the wings. We
constructed a dynamical model composed of a thorax, an abdomen,
and four wings (left and right wings with fore and hind parts), i.e. a
six-link, rigid-body system. The present butterfly model is more
sophisticated than the models which have ever constructed in
existing studies. In this model, the body trajectory and thoracic
pitching angle can be calculated from the equations of motion,

whereas the abdominal angle and wings’ joint angles are prescribed
by the measured data. We calculated the flow field and aerodynamic
force and torque generated by the butterfly model using the
immersed boundary–lattice Boltzmann method. In the present
simulations, we considered the motion of the butterfly model in four
cases shown in Table 3.

In case i, we prescribe the body trajectory and thoracic pitching
angle in addition to other joint angles. The butterfly generates the
horizontal and vertical vortex rings behind it during the downstroke
and upstroke, respectively. This vortex structure is consistent with
the other experimental visualizations (Johansson and Henningsson,
2021). Also, the butterfly generates lift force in the downstroke and
thrust force in the upstroke. The vortex structure and aerodynamic
forces are resulted from the fact that the butterfly flaps its wings
downward in the downstroke and upward in the upstroke by
changing the pitching angle, which is consistent with the conclusion
of Sunada et al. (1993).

In case ii, we calculate the body trajectory by assuming that
all the masses of the model are concentrated at the center of mass.
The butterfly can fly upward against the gravity even without leg
impulsion, but its vertical position is significantly lower than the
experimental data as well as the calculated result with leg impulsion.
Thus, the leg impulsion is essential in the upward motion of the
taking-off butterfly rather than the aerodynamic lift force by the
flapping wings, which is consistent with the conclusion of Bimbard
et al. (2013).

In case iii, we calculate the body trajectory from the equations
of motion, whereas the thoracic pitching angle is prescribed. The
butterfly can fly with almost the same trajectory as in case ii. The
inertial forces of the abdomen and wings are comparable in
magnitude with the aerodynamic forces, but the net influence of the
inertial forces on the position of the butterfly is not significant due to
the offsetting of the body and wing inertia. This is consistent with
the conclusion of Chang et al. (2020).

In case iv, we calculate both the body trajectory and thoracic
pitching angle from the full equations of motion. The butterfly can
fly with almost the same trajectory as in case i, but the peak value of
the pitching angle is significantly lower than in case i. The inertial
torques of the abdomen and wings are comparable in magnitude
with the aerodynamic torque, and they do not cancel out unlike the
inertial forces. The net aerodynamic and gravitational torques raise
the thorax of the butterfly, and the net inertial torques suppress the
rise of the thorax. This is consistent with the result of Sunada et al.
(1993). The deviation in the thoracic pitching angle between cases i
and iv might be attributed to the assumptions that the wing area is
constant throughout the take-off and that the wings are of constant
density.

MATERIALS AND METHODS
Experimental measurements of a butterfly’s motion
In the present study, we use cabbage white butterflies (Pieris rapae)
captured around the Saigawa River in Nagano, Japan. The reasons why this
species was selected are that it is easy to find and capture them for a long
period in Japan (from March to October) and that it is easy to mark on their
white wings. We selected one individual whose weight is comparable to the
individuals used by Bimbard et al. (2013). The room air temperature and
humidity were 24.9°C and 46.0%, respectively. The physical properties of
the butterfly and experiment environment are shown in Table 2. The detailed
definitions of these properties are given below.

The experimental apparatus is composed of a box (570×435×375mm3,
made of corrugated cardboard), a cardboard stand from which the butterfly
takes off, a 60W light fixed on the roof of the box, and two high speed video
cameras (HAS-U2, DITECTCo. Ltd., Japan) supported by tripods as shown
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in Fig. 5A. One side of the box is replaced by an acrylic transparent board to
take videos through it. The inside walls (except the acrylic board) of the box
are covered by white paper to make it clear to observe the butterfly. We use a
motion capturing software (DIPP-MotionV/3D, DITECT Co. Ltd., Japan)
with a rectangular calibrator. The calibrator has eight control points which
are set at the vertex of a 100 mm cube (Fig. 5B). We can calibrate the
cameras by taking a video of the eight control points and by inputting the
positions of the control points to the motion capturing software. By this
calibration procedure, the internal/external parameters of the cameras are
determined. In addition, the motion capturing software has functions to trace
the monitor points on moving objects from a video, to output two-
dimensional positional data of the monitor points, and to convert two sets of

the two-dimensional positional data obtained by two synchronized cameras
into three-dimensional positional data.

We define six monitor points on the butterfly (Fig. 5C), where the points
E and F are marked by a red felt pen. We measure the total mass of the
butterfly before recording, and we measure the masses of parts (thorax,
abdomen, and wings) after recording. We softly put the butterfly on the
stand in the box and wait for its spontaneous take-off. We take movies of the
take-off flight by the two synchronized cameras (1000 fps, 640×480 pixel
resolution) from a different direction. From the movies, we trace the monitor
points by using the motion-capturing software (Fig. 5D;Movie 3). Although
the motion-capturing software can trace the monitor points automatically, it
occasionally fails when the monitor points on the body are hidden by the
wings. In this case, we manually trace these monitor points from the
sequential video frames. Finally, we can obtain the three-dimensional
positional data of the monitor points by the motion capturing software.
Since the obtained data are discretized in time, we convert them into the
continuous data by a 17th-order polynomial using the least squares
approximation.

From the three-dimensional positional data of the six monitor points, we
calculate the yawing angle θyaw, pitching angle θpit, and abdominal angle
θabd. In addition, we calculate the flapping angle θflap to define the
downstroke and upstroke.

Let the position vectors of the six monitor points A–F (Fig. 5C) at
time t be A(t), B(t), C(t), D(t), E(t), F(t), respectively. These vectors are
described as the components for the x-, y-, and z-axes which are fixed to
the space, and we define the y-axis as the upward vertical direction. Also,
let the position vector of the center of the thorax be xc(t)=[A(t)+B(t)]/2.
The relative position vectors of the monitor points from the center of the
thorax are given by Xc(t)=X(t)−xc(t), where X is a representative symbol of
A–F.

The yawing angle is the angle of the vector Ac(t) projected onto the zx-
plane from the x-axis positive direction. Since the projected vector can be
expressed by (ax(t), 0, az(t))T (where the superscript T denotes the
transpose), the yawing angle θyaw(t) is given by

uyawðtÞ ¼ atan2ðazðtÞ; axðtÞÞ; ð1Þ

Table 2. Physical properties of the butterfly and experiment
environment

Variable Symbol Unit Value

Wing length L m 21.0×10−3

Wing area (one side) S m2 4.1×10−4

Thorax length Lth m 4.2×10−3

Thorax width Wth m 3.0×10−3

Abdomen length Labd m 11.0×10−3

Abdomen width Wabd m 3.0×10−3

Time-averaged wing-tip velocity u0 m/s 1.53
Flapping period T s 0.090
Total mass M kg 5.82×10−5

Wing mass mw kg 0.81×10−5

Thorax mass mth kg 2.04×10−5

Abdomen mass mabd kg 2.97×10−5

Density of air ρf kg/m3 1.18
Kinematic viscosity of air ν m2/s 1.56×10−5

Gravitational acceleration G m/s2 9.807
Reynolds number Re - 2060
Non-dimensional total mass Nm - 5.33
Wing mass ratio WR - 0.14
Froude number Fr - 3.37

Fig. 5. (A) Experimental
apparatus; (B) calibrator for
motion capturing; (C) monitor
points on a butterfly; (D)
trajectories of the monitor points.
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where the function atan2 is the 2-argument arctangent defined in the
Appendix. For the next step to derive the pitching angle, we rotate
the vectors Xc(t) by θyaw(t) around the y-axis and obtain
Xyaw(t)=S2(θyaw(t))Xc(t), where Si (i=1, 2, 3) is the rotational matrix
around the ith axis shown in the Appendix. By this rotation, the points A, B,
and C on the body are put on the xy-plane.

The pitching angle is the angle of the vector Ayaw(t) from the x-axis
positive direction. Since Ayaw(t) can be expressed by (bx(t), by(t), 0)T, the
pitching angle θpit is given by

upitðtÞ ¼ atan2ðbyðtÞ; bxðtÞÞ: ð2Þ
For the next step to derive the abdominal angle, we rotate the vectors

Xyaw(t) by θpit(t) around the z-axis and obtain Xpit(t)=S3(−θpit(t))Xyaw(t). By
this rotation, the points A and B on the thorax are put on the x-axis.

The abdominal angle is the angle of the vector Cpit(t)−Bpit(t) from the
x-axis negative direction. Since Cpit(t)−Bpit(t) can be expressed by (cx(t),
cy(t), 0)T, the abdominal angle θabd(t) is given by

uabdðtÞ ¼ atan2ðcyðtÞ;�cxðtÞÞ: ð3Þ
It is noted that the abdomen rotates in the dorsal direction for θabd>0 (see

Fig. 7C).
The flapping angle defined here is the angle between the zx-plane and the

right forewing. In other words, the flapping angle is given as the angle
between the y-axis negative direction and the normal vector (ventral side) of
the right forewing projected onto the yz-plane. Since the right forewing is
expressed by the plane spanned by Dpit(t) and Epit(t), its normal vector is
given by n(t)=Dpit(t)×Epit(t)=(nx(t), ny(t), nz(t))T. Thus, the flapping angle
θflap is given by

uflapðtÞ ¼ atan2ðnzðtÞ;�nyðtÞÞ: ð4Þ
In this definition, the wings are at the top and bottom dead points when θflap
reaches the maximum and minimum, respectively.

Fig. 6 shows the motion of the body of the butterfly during one period
after the take-off. We define the downstroke and upstroke as the periods
during which θflap varies from the maximum to the minimum and from the
minimum to the maximum, respectively. The time when θflap reaches the
first maximum is set to t=0 s. The flapping period (i.e. the period during
which θflap varies from the first maximum to the second maximum) is
T=0.090 s. The horizontal axis of Fig. 6 is normalized by the flapping period
T. It is noted that we initially rotate and translate the space-fixed coordinate
system so that θyaw(0)=0° and B(0)=0 mm.

We can see from Fig. 6 that the yawing angle θyaw and z-displacement
slightly deviate from zero at most about − 20° and − 5 mm, respectively.
Thus, the butterfly does not turn after taking off and flies almost in the
longitudinal plane (xy-plane). As for the relationship among the pitching
angle θpit, abdominal angle θabd, and flapping angle θflap, we can see from
Fig. 6A that θpit has the minimum and maximum around the middle of the
downstroke and the middle of the upstroke, respectively, whereas θabd has the
minimum around the start of the downstroke and the maximum around the
end of the downstroke. Thus, θpit and θabd oscillate almost the same frequency
as that in θflap, and the phase differences of θpit and θabd from θflap are about π/
2 and π, respectively. A similar relationship can be observed in the forward
flight of a paper-kite butterfly (Idea leuconoe) reported by Chang et al.
(2020). Due to the phase difference between θpit and θflap, the butterfly flaps
its wings downward in the downstroke and backward in the upstroke.

It should be noted that the measured motion of the butterfly in Fig. 6 is a
typical one among other measured motions (sample size is n=8) as shown in
Fig. S1.

Numerical modeling
Here, we construct a numerical model of the butterfly. The wing shape is
captured from the video frame at t=0 s (the time when the wings are at the
first top dead point). We measured the positions of 12 points on the outline
of the right wing (left panel of Fig. 7A), and numerically reconstructed the
outline by the line segments connecting these points (right panel of Fig. 7A).
It should be noted that the model wing can be flexed on the blue line in
Fig. 7A. Thus, the fore- and hindwings are approximately distinguished in

the present model. We define the wing length L as the length of the blue line.
We assume that the left wing has the same shape as the right wing. The
model wings are rigid and infinitely thin.

The present butterfly model is composed of the thorax, abdomen, right
fore- and hindwings, and left fore- and hindwings as shown in Fig. 7(B). The
model thorax and abdomen are expressed by the ellipsoids with major axis
length Lth and Labd and with minor axis length Wth and Wabd, respectively.
These lengths were measured from the video frame at the time when the
body of the butterfly can be clearly observed. To prevent the parts of the
model from colliding with other parts, we set a short distance 0.05L between
the thorax surface and wing root as well as between the end-point nodes of
the thorax and abdomen. By measuring the masses of the parts of the
butterfly, we found that the center of mass of the body is located at the
connection point (monitor point B) between the thorax and abdomen when
the body is straight. We regard this point as the reference point of the body of
the model (Fig. 7B,C).

To describe the motions of the body and the wings, we introduce the
following four coordinate systems. First, let the coordinate system fixed to
the space be Σs. The axes of Σs are denoted by x, y, and z, where the x- and y-
axes are the forward and vertically upward directions, respectively (Fig. 7B).

Fig. 6. Motion of the body of a butterfly during one period after the
take-off. (A) Time variations of the yawing angle θyaw, the pitching angle θpit,
the abdominal angle θabd, and the flapping angle θflap; (B) trajectories of the
monitor point B where x is the forward direction and y is the vertical
direction. In A, the flapping angle θflap is used to define the downstroke and
upstroke.
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Thus, the xy-plane is the longitudinal plane. Second, let the coordinate
system fixed to the thorax be Σth, and its origin be located at the reference
point. The axes of Σth are denoted by X, Y, and Z, where the X- and Z-axes
are the forward and downward directions relative to the thorax, respectively
(left panel in Fig. 7C). Third, let the coordinate system fixed to the
right forewing be Σrfw, and its origin be located at the wing root and fixed to
(X, Y, Z)=(0.5Lth, 0.5Wth+0.05L, 0) in Σth. The axes of Σrfw are denoted by
ξf, ηf, and ζf, where the ηf-axis is parallel to the line which distinguishes the
fore- and hindwings, and the ζf-axis is perpendicular to the forewing in the
dorsal direction (middle panel in Fig. 7C). Forth, let the coordinate system
fixed to the right hindwing be Σrhw, and its origin be the same as that of Σrfw.
The axes of Σrhw are denoted by ξh, ηh, and ζh, where the ηh-axis is the same
as the ηf-axis, and the ζh-axis is perpendicular to the hindwing in the dorsal
direction (right panel in Fig. 7C). We assume that the motion of the left wing
is symmetrical to the right wing about the ZX-plane. Thus, the definition of
the coordinate system fixed to the left wing is not required.

We assume that the body motion is restricted in the longitudinal plane, i.e.
the model does not have either the yawing or rolling angle. The coordinate
system Σth fixed to the thorax is described by the pitching rotation relative
to the coordinate system Σs fixed to the space. Let ex, ey, and ez be three unit
vectors along the x-, y-, and z-axes, respectively, and eX, eY, and eZ be
three unit vectors along the X-, Y-, and Z-axes, respectively. The vector
array [eX, eY, eZ] is given by the orthogonal transformations of [ex, ey, ez] as
follows:

eX ; eY ; eZ ¼� ½ex; ey; ez�S1ð90°ÞS2ðupitÞ:
� ð5Þ

Also, the abdomen rotates relative to Σth. An end-point node of the
abdomen is fixed to (X, Y, Z)=(−0.05L, 0, 0), and the abdomen rotates
around the Y-axis by the abdominal angle θabd in the clockwise direction
(left panel in Fig. 7C).

The coordinate system Σrfw fixed to the right forewing is described by
the rotations relative to Σth. Let ejf , ehf

, and ezf be three unit vectors along
the ξf-, ηf-, and ζf-axes, respectively. The vector array ½ejf ; ehf

; ezf � is given
by the successive orthogonal transformations of [eX, eY, eZ] using the 3–1–2
Euler angle as follows:

ejf ; ehf
; ezf ¼� ½eX ; eY ; eZ �S3ðuZf ÞS1ðuXf

ÞS2ðuYf Þ;
� ð6Þ

where the three angles uZf , uXf
, and uYf are determined by the positional

vectors Dpit(t) and Epit(t) (see also the previous subsection). At first, we
consider the vector Epit(t) projected onto the XY-plane, which is expressed
by (dx(t), dy(t), 0)T. The angle uZf ðtÞ is given by

uZf ðtÞ ¼ �atan2ðdxðtÞ; dyðtÞÞ: ð7Þ
Secondly, to derive the angle uXf

, we rotate Dpit(t) and Epit(t) around the
Z-axis by the angle uZf ðtÞ, and we obtain DZðtÞ ¼ S3ð�uZf ðtÞÞDpitðtÞ and
EZðtÞ ¼ S3ð�uZf ðtÞÞEpitðtÞ. The vector EZ(t) can be expressed by (0, ey(t),
ez(t))T, and the angle uXf ðtÞ is given by

uXf
ðtÞ ¼ atan2ðezðtÞ; eyðtÞÞ: ð8Þ

Finally, to derive the angle uYf , we rotate DZ(t) around the X-axis by the
angle uXf

ðtÞ, and we obtain DXðtÞ¼S1ð�uXf
ðtÞÞDZðtÞ. We consider the

Fig. 7. Numerical modeling of a butterfly. (A) Shape of the right fore- and hindwings; (B) butterfly model consisting of two fore- and hindwings, an
ellipsoidal thorax, and an ellipsoidal abdomen; (C) relationship between the axes fixed to the space x–y–z (Σs), fixed to the thorax X–Y–Z (Σth), fixed to the
right forewing ξf–ηf–ζf (Σrfw), and fixed to the right hindwing ξh–ηh–ζh (Σrhw); (D) thorax–abdomen system in the butterfly model (see the Appendix).
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vector DX(t) projected onto the ZX-plane, which is expressed by ( fx(t), 0,
fz(t))T. The angle uYf ðtÞ is given by

uYf ðtÞ ¼ �atan2ð fzðtÞ; fxðtÞÞ: ð9Þ
It should be noted that the angles uZf , uXf

, and uYf do not correspond to the
flapping, feathering, or lead-lag angle. We use these angles to properly
reproduce the wing motion of the butterfly.

Also, the coordinate system Σrhw fixed to the right hindwing is
described by the rotations relative to Σth using the 3–1–2 Euler angle.
The angles uZh , uXh

, and uYh for the hindwing are determined by the
positional vectors Epit(t) and Fpit(t) in the same way as the forewing. It
should be noted that the first and second angles are the same as those for the
forewing, i.e. uZh ðtÞ ¼ uZf ðtÞ and uXh

ðtÞ ¼ uXf
ðtÞ. The angle uYh is different

from uYf and derived from FXðtÞ ¼ S1ð�uXh
ðtÞÞS3ð�uZh ðtÞÞFpitðtÞ instead

of DX(t).
In summary, the motion of the present model is described by the

following variables: the position of the reference point x=(x, y, 0)T observed
in Σs; the pitching angle θpit; the abdominal angle θabd; the joint angles for
the forewing ðuZf ; uXf

; uYf Þ and for the hindwing ðuZh ; uXh
; uYh Þ. The

variables x and θpit can be obtained from the equations of motion, and the
other variables are prescribed. When we require the time derivatives of the
prescribed variables, we calculate them by using the first-order backward
difference approximation.

Equations of motion and numerical method
Motion of the fluid
The fluid motion around the butterfly model is governed by the
continuity equation and Navier–Stokes equations for an incompressible
fluid:

r � u ¼ 0; ð10Þ
@u

@t
þ ðu � rÞu ¼ � 1

rf
rpþ nr2u; ð11Þ

where u is the fluid velocity, p is the pressure, ρf is the fluid density, and ν is
the kinematic viscosity of the fluid. The no-slip condition must be satisfied
on the surface of the model, i.e. the fluid velocity must be equal to the
velocity of the wings and body.

We calculate the above equations by using the lattice Boltzmann
method and enforce the no-slip condition by using the immersed boundary
method. The wings and body of the model are represented by
an arrangement of boundary Lagrangian points. The position and
velocity of the boundary Lagrangian points on the wings and body are
updated by orthogonal transformation of the coordinate systems fixed
to the wings and body relative to that fixed to the space. For details
of the numerical method, see Suzuki and Inamuro (2011). The validation
of the numerical method has been extensively checked in Suzuki et al.
(2015).

In this study, we define the mean wing-tip speed as

u0 ¼ 1

T

ðT
0

juDðtÞj þ juEðtÞj
2

dt; ð12Þ

where uD(t) and uE(t) are the velocities of the monitor points D and E relative
to the body which are given by the first-order difference approximation of
Dpit(t) and Epit(t), respectively. The governing parameter of the above
equations is the Reynolds number Re given by

Re ¼ u0L

n
: ð13Þ

Motion of the butterfly model
As mentioned in the introduction, we consider the motion of the
butterfly model in the following four cases: (i) to prescribe both the
translational and rotational motions by the experimental data; (ii) to
calculate the translational motion of the model by assuming that all the
masses of the model are concentrated at the reference point; (iii) to

calculate the translational motion of the thorax from the equations of motion,
whereas the rotational motion is prescribed; (iv) to calculate both the
translational and rotational motions of the thorax from the full equations
of motion.

In case i, there is no need to calculate the equations of motion of the
model, and both the position of the reference point x=(x, y, 0)T and the
pitching angle θpit are prescribed.

In case ii, the position of the reference point is calculated from the Newton
equation as follows:

M€x ¼ Faero �MGey; ð14Þ
where the dot notation denotes the time derivative, Faero is the aerodynamic
force acting on the model, M is the total mass of the model, and G is the
gravitational acceleration. On the other hand, the pitching angle is
prescribed.

In case iii, we formulate the Lagrange equations for the thorax–abdomen–
wings system. It should be noted that since the Lagrangian for the wings is
difficult to be formulated, we formulate the Lagrangian for the thorax and
abdomen and compute the effect of the wing inertia as the external force.
Letting the Lagrangian for the thorax and abdomen be L, the Lagrange
equations for the model are given by

d

dt

@L
@ _x

� �
� @L

@x
¼ F � ex; ð15Þ

d

dt

@L
@ _y

� �
� @L

@y
¼ F � ey; ð16Þ

where F is the force acting on the model including the aerodynamic force,
gravitational force, and inertial force of the wings. Thus, F is given by

F ¼ Faero�mwGey � dPw

dt
; ð17Þ

where mw is the mass of the wings, and Pw is the linear momentum of the
wings, which is computed as shown in the Appendix. On the other hand, the
pitching angle is prescribed.

In case iv, we need the following equation for the pitching angle θpit in
addition to Eqns (15) and (16):

d

dt

@L
@ _upit

 !
� @L
@upit

¼ Tz; ð18Þ

where Tz is the torque (in the z-direction) acting on the model around the
reference point including the aerodynamic torque, gravitational torque, and
inertial torque of the wings. Thus, Tz is given by

Tz ¼ T aero þ TG
w þ mwðywc€x� xwc€yÞ � dLw

dt
; ð19Þ

where Taero is the aerodynamic torque acting on the model, TG
w is the

gravitational torque of the wings, (xwc, ywc, zwc)T is the position of the center
of mass of the wings relative to the reference point observed in Σs, and Lw is
the angular momentum of the wings around the reference point, which is
computed as shown in the Appendix.

As for the numerical method, we use the second-order Adams–Bashforth
method to solve Eqn (14) in case ii. In cases iii and iv, we reform Eqns (15),
(16), and (18) into the matrix form (see the Appendix and Fig. 7D), and
we solve it by using the second-order Adams–Bashforth method. The
aerodynamic forceFaero and torque Taero are calculated by the summation of
the volume force which is applied to enforce the no-slip condition on the
model surface in the immersed boundary method. In addition, since the
thorax and abdomen have volume, the internal mass effect (Suzuki and
Inamuro, 2011) must be considered for the aerodynamic force and torque
acting on the body. The internal mass effect for the body is calculated by
using the Lagrangian points approximation. On the other hand, the internal
mass effect for the wings is neglected, since the wings have no volume. It
should be noted that in our preliminary calculations, the aerodynamic force
and torque acting on the body are much smaller than those on the wings.
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The governing parameters of this system are the non-dimensional
mass (Nm), the wing-mass ratio (WR), and the Froude number (Fr)
defined as:

Nm ¼ M

rf L3
; ð20Þ

WR ¼ mw

M
; ð21Þ

Fr ¼ u0ffiffiffiffiffiffiffi
LG

p : ð22Þ

The cases in the present simulations are summarized in Table 3. The
subcases ‘a’ and ‘b’ denote the cases without and with wing mass,
respectively, to check the effects of the wing mass on the translational and
rotational motions of the body. It should be noted that in both subcases the
total mass of the model is unchanged.

Computational conditions and parameters
The computational domain is a cube with a side length equal toW=12L. The
boundary condition on the two sides perpendicular to the x-axis is the
periodic boundary condition, and on the other sides the no-slip condition is
used. The inner fine grid (Inamuro, 2012) used only around the model is a
cube with a side length equal to 3L. The reference point is initially placed at
the center of the domain, and the fluid in the domain is initially stationary
and at a uniform pressure. To reduce the computational cost, we calculate
one-half of the computational domain with the mirror boundary condition
on the longitudinal plane which passes through the center of the domain and
is perpendicular to the z-axis.

Since computations of three-dimensional moving boundary flows at the
measured value of the Reynolds number (Re=2060) are quite expensive, and
aerodynamic force and moment coefficients generated in butterfly’s flight
are relatively insensitive to the Reynolds number (Yokoyama et al., 2013),
we set Re=1000 by using about 2 times larger kinematic viscosity. It should
be noted that the other non-dimensional governing parameters are the same
as those obtained by the experiment shown in Table 2. The spatial and
temporal resolutions are set to L=120Δx and T=15840Δt, where Δx and Δt
are the lattice spacing and time step, respectively.

In the take-off of a butterfly from the ground, the leg impulsion due to the
active leg extension is important for the initiation of the upward motion of
the butterfly’s body (Bimbard et al., 2013). In the present study, we include
this impulsion by prescribing the motion of the model until t/T=0.3 at which
in the experiment the butterfly’s legs were observed to leave the stand. Thus,
in the early stage of the simulation 0≤t/T≤0.3, the results in cases ii–iv
coincide with the result in case i. After that, the motion of the model is
calculated as explained in the previous subsection.

APPENDIX
Functions used in calculating joint angles
In calculating the joint angles from the position vectors of the six
monitor points, we use the following functions. To avoid the
singularity and discontinuity of the arctangent, we use the two-

argument arctangent defined as

atan2ðb; aÞ ¼

arctanðb=aÞ; ða . 0Þ;
180°þ arctanðb=aÞ; ða , 0; b . 0Þ;
�180°þ arctanðb=aÞ; ða , 0; b , 0Þ;

180°; ða ¼ 0; b . 0Þ;
�180°; ða ¼ 0; b , 0Þ:

8>>>>>>>><
>>>>>>>>:

ð23Þ

In addition, we use the rotational matrices S1, S2, and S3 given as

S1ðfÞ ¼
1 0 0
0 cos f � sin f
0 sin f cos f

2
4

3
5; ð24Þ

S2ðfÞ ¼
cos f 0 sin f
0 1 0

� sin f 0 cos f

2
4

3
5; ð25Þ

S3ðfÞ ¼
cos f � sin f 0
sin f cos f 0
0 0 1

2
4

3
5: ð26Þ

Supplements to equations of motion of the butterfly model
Here, we formulate the equations of motion of the butterfly model in
detail. Undefined variables in this section can be found in Table 2.

Lagrangian for thorax and abdomen
The body of the present butterfly model is composed of an
ellipsoidal thorax and an ellipsoidal abdomen as shown in Fig. 7(D).
The semi-major and semi-minor axes of the thorax are respectively
denoted by ath=Lth/2 and bth=Wth/2, and those of the abdomen are
denoted by aabd=Labd/2 and babd=Wabd/2. The distance between
the end-point nodes of the thorax and abdomen is set to d=0.05L.
The reference point x=(x,y) is located at the thoracic end-point
node closer to the abdomen. The pitching angle θpit is defined as the
angle of the thoracic major axis with respect to the horizontal line,
and the abdominal angle θabd is defined as the relative angle between
the thoracic and abdominal major axes. Note that θpit is positive
when the thorax rotates in the counter-clockwise direction,
whereas θabd is positive when the abdomen rotates in the
clockwise direction.

The Lagrangian for the thorax and abdomen of the butterfly
model, which is used in the Lagrange Eqns (15), (16), and (18), is
given by

L ¼ 1

2
mth

�
ð _x� ath _upit sin upitÞ2 þ ð _yþ ath _upit cos upitÞ2

þ 1

5
_u
2
pitða2th þ b2thÞ

�
� mthGðyþ ath sin upitÞ

þ 1

2
mabd

�
ð _xþ d _upit sin upit þ aabd _ur sin urÞ2

þ ð _y� d _upit cos upit � aabd _ur cos urÞ2 þ 1

5
_u
2
r ða2abd þ b2abdÞ

�
� mabdGðy� d sin upit � aabd sin urÞ;

ð27Þ
where θr=θpit−θabd is the angle of the abdominal major axis with
respect to the horizontal line, and the dot notation denotes the time
derivative.

Table 3. Cases in the present simulations

Case Subcase Position x Angle θpit

Wing-mass
ratio WR

i Prescribed Prescribed N/A
ii Eqn (14) Prescribed N/A
iii a Eqns (15) and (16) Prescribed 0

b Eqns (15) and (16) Prescribed 0.14
iv a Eqns (15) and (16) Eqn (18) 0

b Eqns (15) and (16) Eqn (18) 0.14
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Inertial force of wings
In cases iii-b and iv-b, we have to calculate the time derivatives of
the linear momentum Pw in Eqn (17). It should be noted that in the
present study we assume that the wings are of constant density for
simplicity.
Denoting the density of the wings by ρw=mw/S and the positional

vector of an arbitrary point on the wings by xw, we can rewrite the
time derivative of the linear momentum of the wings in integral
formulation as

dPw

dt
¼ d

dt

ð
wings

rw _xwdS; ð28Þ

where
Ð

wings

dS means the surface integral over the wings. Viewed

from the reference point x, the above equation is rearranged as
follows:

dPw

dt
¼ d

dt

ð
wings

rw½ _xþ ð _xw � _xÞ�dS

¼ d

dt

ð
wings

rw _xdS þ d

dt

ð
wings

rwð _xw � _xÞdS

¼
ð

wings

rwdS

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
mw

€xþ
ð

wings

rw€xwodS

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
�Fin

w

¼ mw€x� Fin
w ;

ð29Þ

where xwo=xw−x=(xwo, ywo, zwo)T is the positional vector of an
arbitrary point on the wings relative to the reference point observed
in the space-fixed coordinate system Σs. The inertial force F

in
w in the

right-hand side of Eqn (29) is computed using a difference
approximation and numerical integration.

Gravitational and inertial torques of wings
In cases iii-b and iv-b, we have to calculate the gravitational torque
TG
w , position xwc=(xwc, ywc, zwc)

T of the center of mass of the wings
relative to the reference point observed in Σs, and time derivatives of
the angular momentum Lw=(0, 0, Lw)T of the wings in Eqn (19).
We can write the gravitational torque of the wings in integral

formulation as

TG
w ¼ �G

ð
wings

rwxwodS: ð30Þ

We compute the right-hand side of Eqn (30) using a numerical
integration.
We can write the position of the center of mass of the wings in

integral formulation as

xwc ¼ 1

mw

ð
wings

rwxwodS: ð31Þ

In the same way as Eqn (30), we compute the right-hand side of
Eqn (31) using a numerical integration.

Also, we can write the time derivative of the angular momentum
of the wings around the reference point in integral formulation as

dLw

dt
¼ d

dt

ð
wings

rwxwo � _xwodS

¼
ð

wings

rw _xwo � _xwo|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0

dS þ
ð

wings

rwxwo � €xwodS

¼
ð

wings

rwxwo � €xwodS:

ð32Þ

Observed in the thorax-fixed coordinate system Σth, the vector xwo is
transformed into xthwo ¼ ðxthwo; ythwo; zthwoÞT as follows:

xwo ¼ S3ðupitÞS1ðp=2Þxthwo: ð33Þ

By substituting Eqn (33) into Eqn (32) and considering the
component of the pitching rotation, we can obtain

dLw
dt

¼
ð

wings

rw½ðxthwoÞ
2 þ ðzthwoÞ

2�dS
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Iw

€upit

þ
ð

wings

rw½zthwo€xthwo � xthwo€z
th
wo þ 2ðxthwo _xthwo þ zthwo _z

th
wotÞ _upit�dS

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�T inw

¼ Iw€upit � T in
w :

ð34Þ

In the right-hand side of Eqn (34), we compute the inertia moment
Iw and the inertial torque T in

w of the wings using a difference
approximation and numerical integration.

Matrix forms of equations in case iii
In case iii, the position of the reference point x=(x, y, 0)T

is governed by Eqns (15) and (16), whereas the pitching angle
θpit is prescribed. We can rearrange Eqns (15) and (16) in
matrix from as

MðIIIÞ
€x

€y

� �
¼ ðFaero þ Fin

w þ Fin
th þ Fin

abdÞ � ex
ðFaero þ Fin

w þ Fin
th þ Fin

abdÞ � ey �MG

" #
; ð35Þ

where the mass matrix MðIIIÞ in case iii is given by

MðIIIÞ ¼ M 0
0 M

� �
; ð36Þ

the inertial force Fin
w of the wings is computed by numerical

integration, the inertial force Fin
th of the thorax is given by

Fin
th ¼ mthath

_u
2
pit cos upit þ €upit sin upit

_u
2
pit sin upit � €upit cos upit

2
4

3
5; ð37Þ
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and the inertial force Fin
abd of the abdomen is given by

Fin
abd ¼� mabdaabd

_u
2
r cos ur þ €ur sin ur

_u
2
r sin ur � €ur cos ur

" #

� mabdd
_u
2
pit cos upit þ €upit sin upit

_u
2
pit sin upit � €upit cos upit

2
4

3
5:

ð38Þ

In the simulation of case iii, we obtain x and y by computing
Eqn (35) with the second-order Adams–Bashforth method.

Matrix forms of equations in case iv
In case iv, the position of the reference point x=(x, y, 0)T is governed
by Eqns (15) and (16), and the pitching angle θpit is governed
by Eqn (18). We can rearrange Eqns (15), (16), and (18) in matrix
from as

MðIVÞ

€x

€y
€upit

2
64

3
75 ¼

ðFaero þ Fin
w þ Fin

th þ Fin
abdÞ � ex

ðFaero þ Fin
w þ Fin

th þ Fin
abdÞ � ey �MG

T aero þ T in
w þ T in

body þ TG
w þ TG

body

2
64

3
75;
ð39Þ

where the mass matrix MðIVÞ in case iv is given by

MðIVÞ ¼
M 0 Xp

0 M Yp
Px Py Pp

2
4

3
5; ð40Þ

Xp ¼� mthath sin upit þ mabdðd sin upit þ aabd sin urÞ;
Yp ¼mthath cos upit � mabdðd cos upit þ aabd cos urÞ;
Px ¼� mthath sin upit þ mabdðd sin upit þ aabd sin urÞ � mwywc;

Py ¼mthath cos upit � mabdðd cos upit þ aabd cos urÞ þ mwxwc;

Pp ¼ 1

5
mthð6a2th þ b2thÞ

þ 1

5
mabdð6a2abd þ b2abd þ 5d2 þ 10aabdd cos uabdÞ þ Iw:

It should be noted that in the above equations the values of xwc,
ywc, and Iw are computed by a numerical integration. As the terms
with €upit should be involved in the left-hand side of Eqn (39), the
inertial forces Fin

th and Fin
abd are changed from those in case iii as

follows:

Fin
th ¼ mthath

_u
2
pit cos upit

_u
2
pit sin upit

2
4

3
5; ð41Þ

Fin
abd ¼�mabdaabd

_u
2
r cos ur � €uabd sin ur
_u
2
r sin ur þ €uabd cos ur

" #
� mabdd

_u
2
pit cos upit

_u
2
pit sin upit

2
4

3
5:

ð42Þ
As for the torques, the inertial torque T in

w of the wings is
computed by a difference approximation and numerical integration,

the inertial torque T in
body of the body is given by

T in
body ¼mabd½15 ð6a

2
abd þ b2abd þ 5aabdd cos uabdÞ€uabd

þ aabdd ð2 _upit � _uabdÞ _uabd sin uabd�;
ð43Þ

the gravitational torque TG
w of the wings is computed by a

numerical integration, and the gravitational torque TG
body of the

body is given by

TG
body ¼� mthG ath cos upit

þ mabdGðaabd cos ur þ d cos upitÞ:
ð44Þ

In the simulation of case iv, we obtain x, y, and θpit by computing
Eqn (39) with the second-order Adams–Bashforth method.
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