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ABSTRACT
Development of the Caenorhabditis elegans reproductive tract is
orchestrated by the anchor cell (AC). This occurs in part through a cell
invasion event that connects the uterine and vulval tissues. Several
key transcription factors regulate AC invasion, such as EGL-43,
HLH-2, and NHR-67. Specifically, these transcription factors function
together to maintain the post-mitotic state of the AC, a requirement for
AC invasion. Recently, a mechanistic connection has been made
between loss of EGL-43 and AC cell-cycle entry. The current model
states that EGL-43 represses LIN-12 (Notch) expression to prevent
AC proliferation, suggesting that Notch signaling has mitogenic
effects in the invasive AC. To reexamine the relationship between
EGL-43 and LIN-12, we first designed and implemented a
heterologous co-expression system called AIDHB that combines
the auxin-inducible degron (AID) system of plants with a live cell-cycle
sensor based on human DNA helicase B (DHB). After validating
AIDHB using AID-tagged GFP, we sought to test it by using AID-
tagged alleles of egl-43 and lin-12. Auxin-induced degradation of
either EGL-43 or LIN-12 resulted in the expected AC phenotypes.
Lastly, we seized the opportunity to pair AIDHB with RNAi to co-
deplete LIN-12 and EGL-43, respectively, which revealed that LIN-12
is not required for AC proliferation following loss of EGL-43.
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INTRODUCTION
Cell invasion through basement membrane (BM) is essential for
animal development, tissue inflammation, and cancer metastasis.
During Caenorhabditis elegans larval development, a specialized
uterine cell, the anchor cell (AC), breaches BM to contact the
underlying vulval epithelium. This developmental event initiates
the attachment of the uterus to the vulva, which later forms the
reproductive tract of the animal. Several laboratories, including
ours, have taken advantage of the animal’s simple anatomy,
transparent body, and genetic amenability to characterize molecular
and cellular features of C. elegans AC invasion. Collectively, this

has yielded important insights into the regulation of BM invasion
in vivo (Sherwood and Plastino, 2018).

One requirement for AC invasion is the maintenance of the
post-mitotic state (Matus et al., 2015), which is executed by a
network of conserved transcription factors that includes EGL-43
(EVI1), HLH-2 (E/Daughterless), and NHR-67 (TLX/Tailless)
(Deng et al., 2020; Medwig-Kinney et al., 2020). Together these
three transcription factors form a coherent (type I) feed-forward
loop with positive feedback (Medwig-Kinney et al., 2020). Loss of
either EGL-43, HLH-2, or NHR-67 results in AC proliferation with
defective BM invasion. Until recently, the mechanism connecting
the loss of these transcription factors with AC proliferation was
poorly understood. New research has suggested that EGL-43
maintains the post-mitotic state of the AC by repressing LIN-12
(Notch) expression (Deng et al., 2020), indicating that Notch
signaling promotes AC proliferation. This finding is the first to
ascribe a mitogenic role for LIN-12 in C. elegans, though its
paralog, GLP-1, has a well-established role in promoting germline
proliferation throughout post-embryonic development (Austin and
Kimble, 1987; Berry et al., 1997). Also, given that LIN-12
expression during the stochastic AC/VU decision is required for
ventral uterine precursor cell (VU) rather than AC fate commitment
(Greenwald et al., 1983; Seydoux and Greenwald, 1989), this raises
the possibility that mitotic ACs are adopting proliferative VU-like
features in the absence of the aforementioned transcription factors
(Medwig-Kinney et al., 2022b preprint).

To reassess the relationship between EGL-43 and LIN-12 during
AC invasion, we first generated a heterologous co-expression
system that allows conditional degradation of target proteins
and visualization of cell-cycle state (Fig. 1A). Targeted protein
degradation is triggered by the plant-derived auxin-inducible
degron (AID) system (Nishimura et al., 2009), and the cell cycle
is monitored using a biosensor based on human DNA helicase B
(DHB) (Hahn et al., 2009;Martinez andMatus, 2022; Spencer et al.,
2013). We tested the co-expression system, referred to as AIDHB,
by degrading GFP as well as endogenous EGL-43 and LIN-12. We
show that it is robust, as it strongly degrades GFP without causing
AC cell-cycle defects and produces highly penetrant AC phenotypes
associated with the loss of either EGL-43 or LIN-12. Finally,
we combined AIDHB and RNAi to simultaneously deplete LIN-12
and EGL-43, respectively, thereby inactivating the mitogenic Notch
signal in a robust manner. Though we confirm that EGL-43
represses the expression of LIN-12 during AC invasion, our results
imply that LIN-12 is not required for AC proliferation.

RESULTS
AIDHB: a heterologous co-expression system to degrade
target proteins and monitor the cell cycle
The auxin-inducible degron (AID) system enables rapid degradation
of C. elegans proteins (Ashley et al., 2021; Hills-Muckey et al.,Received 4 October 2022; Accepted 16 November 2022
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2021; Martinez et al., 2020; Negishi et al., 2022; Sepers et al., 2022;
Zhang et al., 2015). It requires a minimal AID tag on the protein of
interest (POI), expression of the Arabidopsis F-box protein TIR1,
and exogenous exposure to the plant hormone auxin. When auxin is
present, TIR1 interacts with CUL1 and SKP1 to form an E3 ligase
complex that ubiquitinates the AID-tagged POI for proteasomal
degradation (Fig. 1B). Here, we used the second iteration of the AID
system (Hills-Muckey et al., 2021; Negishi et al., 2022), which uses
a TIR1(F79G) mutant protein and modified auxin (5-Ph-IAA), to
limit leaky degradation (Martinez et al., 2020).
We co-expressed TIR1(F79G) with a small fragment of

human DNA helicase B (DHB) fused to two copies of mKate2
(DHB::2xmKate2) (Fig. 1A). Co-expression was achieved using a
single construct that contains the ubiquitous rpl-28 promoter and a
self-cleaving T2A peptide that separates both transgenes (Hills-
Muckey et al., 2021). DHB::2xmKate2 serves as a CDK activity
sensor for live-cell imaging (Adikes et al., 2020) (Fig. 1A,C). CDK
activity is visualized by diffusion of fluorescent DHB into the
cytoplasm from the nucleus, and it can be measured by quantifying
the cytoplasmic-to-nuclear ratio of DHB signal (Fig. 1C). Because
this ratio is used as a proxy for cell-cycle state, the combined AID
and DHB system, which we refer to as AIDHB, allows us to degrade
POIs and determine the effect on the cell cycle.

To test the AIDHB approach, animals with AID::GFP under the
control of the ubiquitous eft-3 promoter were given 5-Ph-IAA at the
L1 larval stage. These animals were subsequently imaged and
quantified at the mid-L3 (P6.p four-cell) larval stage when anchor
cell (AC) invasion normally occurs (Fig. 1D). Control animals
showed high GFP abundance in the AC, whereas animals
treated with auxin showed a significant loss of AC GFP (Fig. 1E).
Further, DHB localization in the AC appeared unchanged between
treatments and controls, i.e., in a CDK-low state (Fig. 1F). These
data indicate that AIDHB can robustly degrade a functionally inert
AID-tagged protein without affecting the cell cycle.

Auxin-induced degradation of EGL-43 prior to AC
specification phenocopies egl-43(RNAi)
The null phenotype of egl-43 includes embryonic lethality (Hwang
et al., 2007) and L1 larval arrest (Rimann and Hajnal, 2007).
RNAi directed against egl-43 during the L1 larval stage bypasses
these phenotypes, which has revealed a role for EGL-43 in AC
specification and invasion (Deng et al., 2020; Hwang et al., 2007;
Matus et al., 2010; Medwig-Kinney et al., 2020; Rimann and
Hajnal, 2007; Wang et al., 2014). Specifically, egl-43(RNAi) leads
to the formation of two ACs and/or post-specification defects such
as AC proliferation and failure to breach BM.

Fig. 1. Conditional protein degradation and tracking of cell-cycle state in C. elegans. (A) A bicistronic construct encoding TIR1(F79G) and
DHB::2xmKate2 via a self-cleaving T2A peptide. (B) The second version of the AID system requires a minimal AID tag on the protein of interest (POI),
expression of the F-box mutant protein TIR1(F79G), and exogenous exposure to 5-Ph-IAA. When 5-Ph-IAA is present, TIR1(F79G) forms a functional E3
ligase complex with endogenous CUL1 and SKP1, triggering the proteasomal degradation of the AID-tagged POI. (C) The CDK activity sensor is a fragment
of human DNA helicase B (DHB) fused to one or more fluorescent proteins. An increase in the cytoplasmic-to-nuclear ratio of fluorescent DHB is indicative of
cell-cycle progression. In contrast, post-mitotic cells retain their nuclear DHB signal. (D) Micrographs of mid-L3 larvae at the time of AC invasion expressing
AID::GFP and TIR1(F79G)::T2A::DHB::2xmKate2 in the absence (top) and presence (bottom) of 5-Ph-IAA. Treatments were initiated at the L1 larval stage.
Scale bar: 5 μm. (E) Normalized AID::GFP intensity following 5-Ph-IAA treatment. Data presented as the mean with SD (N=28 animals per treatment).
P<0.0001 as calculated by the Welch’s t-test. (F) Cytoplasmic-to-nuclear ratios of DHB::2xmKate2 following 5-Ph-IAA treatment. Data presented as the
median with interquartile range (N=28 animals per treatment). ns: not significant, as calculated by the Mann–Whitney test.
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The conditionality of AIDHB should also allow us to avoid
the developmental defects associated with egl-43 null mutants.
To explore this, we examined AC phenotypes using AIDHB
with a new internally AID-tagged allele of egl-43 that targets the
long and short isoforms of endogenous EGL-43 (Fig. 2A), as these
isoforms are thought to function redundantly (Medwig-Kinney et al.,
2020). We also introduced endogenous alleles of lag-2 (LAG-2::
P2A::H2B::mTurquoise2) (Medwig-Kinney et al., 2022a) and lam-2
(LAM-2::mNeonGreen) (Jayadev et al., 2019) to label the AC and
BM, respectively. Animals expressing all markers were treated with
5-Ph-IAA as L1 larvae and showed the proliferative AC phenotype
(>2 ACs) in 24/32 animals (Fig. 2B-D). Of those animals, there was
nearly an 88% defect in AC invasion. In 5/32 animals, two ACs
formed without BM invasion. The two-AC phenotype was either due
to a defect in specification, loss of the post-mitotic state, or both.
Nonetheless, these data demonstrate that auxin-induced degradation
of EGL-43 prior toAC specification resembles theAC phenotypeswe
and others have observed with egl-43(RNAi) (Deng et al., 2020;
Medwig-Kinney et al., 2020).

LIN-12 expression is not required for AC proliferation
AC specification is determined by a stochastic Notch signaling event
between two equipotent cells, i.e., the AC/VU decision (Greenwald
et al., 1983). The cell that strongly expresses the transmembrane
receptor LIN-12 becomes a ventral uterine precursor cell (VU), which
begins dividing in the L3 larval stage (Kimble and Hirsh, 1979), and
the cell that strongly expresses its ligand, LAG-2, becomes the post-
mitotic AC. In the absence of LIN-12, as in a lin-12 null mutant, both
cells become ACs. To further test AIDHB, we combined it with an
endogenous allele of lin-12 tagged at the C-terminus with
mNeonGreen::AID (Pani et al., 2022). We also included LAG-2::
P2A::H2B::mTurquoise2 as an ACmarker. As expected (Deng et al.,

2020), control animals showed no LIN-12 in the post-specified
AC (Fig. 3A). Like the lin-12 null mutant, auxin-induced degradation
of LIN-12 in the L1 larval stage, prior to AC specification, resulted in
the two-AC phenotype in 28/29 animals at the time of AC invasion
(Fig. 3A). Additionally, visualization of DHB in auxin-treated
animals showed two post-mitotic ACs with low CDK activity,
providing further evidence that loss of LIN-12 results in the
generation of two ACs.

Recently, it was concluded that EGL-43 maintains the post-
mitotic state of the AC by repressing LIN-12 (Deng et al., 2020).
While it was demonstrated that ectopic LIN-12 expression occurred
in proliferating ACs after egl-43 or nhr-67RNAi, only double RNAi
directed against egl-43 and lin-12 suppressed the AC proliferation
phenotype. Because the efficiency of double RNAi can be low
(Min et al., 2010), we decided to pair AIDHB with RNAi. We
exposed L1 larvae expressing AIDHB, LIN-12::mNeonGreen::
AID, and LAG-2::P2A::H2B::mTurquoise2 to egl-43(RNAi) with
and without 5-Ph-IAA. At the time of AC invasion, 30/30 auxin-
treated animals and 26/29 control animals displayed the proliferative
AC phenotype (Fig. 3B-D). In addition, the total number of ACs
nearly doubled in auxin-treated animals compared to controls
(n=196 versus 118). The higher total is expected for animals with
two post-specified ACs that then entered the cell cycle and
proliferated. Lastly, we confirmed the presence of LIN-12::
mNeonGreen::AID in proliferating ACs of auxin controls after
egl-43(RNAi) (Fig. S1), which localized to the cell membrane in
117/118 cases (see Discussion). Taken together, we conclude that
LIN-12 is not required for AC proliferation.

DISCUSSION
In this study, we built a tool called AIDHB to pair conditional
protein degradation with visualization of cell-cycle state. We

Fig. 2. Robust degradation of EGL-43 produces the expected AC phenotypes. (A) A schematic of the endogenously tagged AID allele of egl-43. This allele
is hereafter referred to as EGL-43::AID::EGL-43, because TagRFP-T is undetectable above background levels of fluorescence. (B) Micrographs of L3 larvae at
the time of AC invasion expressing LAG-2::P2A::H2B::mTurquoise2 and LAM-2::mNeonGreen (left) as well as TIR1(F79G)::T2A::DHB::2xmKate2 and EGL-43::
AID::EGL-43 (right) in the absence (top) and presence (bottom) of 5-Ph-IAA. Treatments were initiated at the L1 larval stage prior to AC specification, leading to
defects in AC specification and AC invasion. Scale bar: 5 μm. (C) Number of ACs per animal following 5-Ph-IAA treatment. Data presented as the mean with SD
(N≥30 animals per treatment). P<0.0001 as calculated by the Welch’s t-test. (D) Cytoplasmic-to-nuclear ratios of DHB::2xmKate2 following 5-Ph-IAA treatment.
Data presented as the median with interquartile range (N≥30 animals per treatment). P<0.0001 as calculated by the Mann–Whitney test.

3

RESEARCH ARTICLE Biology Open (2022) 11, bio059668. doi:10.1242/bio.059668

B
io
lo
g
y
O
p
en

https://journals.biologists.com/bio/article-lookup/DOI/10.1242/bio.059668


show that AIDHB can robustly degrade a non-functional AID::GFP
protein without affecting the cell cycle of our cell of interest, the
invasive AC. As a proof of concept, we targeted an AID-tagged

allele of egl-43 or lin-12 for degradation beginning in the L1 larval
stage before AC specification. These experiments produced the
expected AC phenotypes observed with either LIN-12 or EGL-43
depletion. Whereas loss of LIN-12 results in the formation of two
ACs due to a defect in AC specification (Greenwald et al., 1983),
loss of EGL-43 leads to defects in AC specification and/or AC
invasion (Deng et al., 2020; Hwang et al., 2007; Matus et al., 2010;
Medwig-Kinney et al., 2020; Rimann and Hajnal, 2007; Wang
et al., 2014). Finally, we sought to reevaluate the relationship
between EGL-43 and LIN-12 during AC invasion by combining
AIDHB and RNAi. Recent work has shown that EGL-43 represses
LIN-12 to maintain the post-mitotic state of the AC (Deng et al.,
2020). Although we were able to confirm that egl-43(RNAi) results
in ectopic LIN-12 expression in proliferating ACs, we did not
observe localization in the nucleus, suggesting that ectopic LIN-12
may not be representative of active Notch signaling (Medwig-
Kinney et al., 2022a; Pani et al., 2022). When we combined AIDHB
and RNAi to deplete LIN-12 and EGL-43, respectively, we found
that EGL-43-deficient ACs were able to proliferate in the absence of
LIN-12. This is in contrast to animals treated with double RNAi
directed against egl-43 and lin-12 (Deng et al., 2020), but the
efficiency of RNAi can suffer when more than one gene is targeted
(Min et al., 2010). Thus, we interpret the double RNAi experiment
as a failure to generate robust EGL-43 depletion. Together, our
results reveal that LIN-12 is not required for AC proliferation.

What promotes AC proliferation following loss of EGL-43,
HLH-2, or NHR-67 remains an open question. Strikingly, in
the presence of EGL-43, AC-specific expression of the Notch
intracellular domain (NICD) can force the AC to proliferate (Deng
et al., 2020). The NICD is the functionally active component of
LIN-12 that is released into the nucleus after a series of proteolytic
cleavages (Falo–Sanjuan and Bray, 2020). It should be noted,
however, that NICD-driven AC proliferation may require a deletion
of the NICD C-terminal PEST domain (Nusser–Stein et al., 2012).
NICD constructs lacking this domain are potentially resistant to
endogenous mechanisms of degradation. Thus, our findings,
coupled with these observations, suggests that AC proliferation
in this context is a neomorphic phenotype. This is consistent
with other reports where ectopic NICD expression can induce
proliferation (Kwon et al., 2014, 2016; Valdez et al., 2012). Based
on ChIP-seq data, there are putative EGL-43 binding sites in the
lin-12 locus (Deng et al., 2020). The emergence of CRISPR/Cas9 as
a gene-editing tool inC. elegans (Vicencio and Cerón, 2021) should
facilitate the modification of these binding sites, helping to further
elucidate the relationship between EGL-43 and LIN-12 during AC
invasion.

In summary, we (i) created a heterologous co-expression system
called AIDHB, which we later paired with RNAi, (ii) generated a
new AID-tagged allele of egl-43, and (iii) postulate that in the
absence of EGL-43, LIN-12 expression is not necessary for AC
proliferation. It is our hope that investigators will use AIDHB to
interrogate the function of diverse proteins that may be required for
cell-cycle-driven cellular behaviors.

MATERIALS AND METHODS
Strains
Strains were maintained under standard culture conditions (Brenner, 1974).
The following alleles were used in this study: LG I: bmd284[rpl-28p::
TIR1(F79G)::T2A::DHB::2xmKate2]; LG II: wy1514[egl-43::TagRFP-T::
AID::egl-43]; LG III: ljf33[lin-12::mNeonGreen::AID] (Pani et al.,
2022); LG IV: ieSi58[eft-3p::AID::GFP] (Zhang et al., 2015); LG V:
bmd202[lag-2::P2A::H2B::mTurquoise2] (Medwig-Kinney et al., 2022a),

Fig. 3. In the absence of EGL-43, LIN-12 is not required for AC
proliferation. (A) Micrographs of L3 larvae at the time of AC invasion
expressing LAG-2::P2A::H2B::mTurquoise2 and LIN-12::mNeonGreen::AID
(left) as well as TIR1(F79G)::T2A::DHB::2xmKate2 (right) in the absence
(top) and presence (bottom) of 5-Ph-IAA. Treatments were initiated at the L1
larval stage prior to AC specification, resulting in the two-AC phenotype.
Scale bar: 5 μm. (B) Micrographs of L3 larvae at the time of AC invasion
expressing LAG-2::P2A::H2B::mTurquoise2 and LIN-12::mNeonGreen::AID
(left) plus TIR1(F79G)::T2A::DHB::2xmKate2 (right) after egl-43(RNAi) in the
absence (top) and presence (bottom) of 5-Ph-IAA. Treatments were initiated
at the L1 larval stage. Scale bar: 5 μm. (C) Number of ACs per animal
following egl-43(RNAi) and 5-Ph-IAA treatment. Data presented as the mean
with SD (N≥29 animals per treatment). P<0.0001 as calculated by the
Welch’s t-test. (D) Cytoplasmic-to-nuclear ratios of DHB::2xmKate2 following
egl-43(RNAi) and 5-Ph-IAA treatment. Data presented as the median with
interquartile range (N≥29 animals per treatment). P=0.0378 as calculated by
the Mann–Whitney test.
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bmd299[lag-2::P2A::H2B::mTurquoise2]; LGX: qy20[lam-2::mNeonGreen]
(Jayadev et al., 2019) (Table S1).

Generation of the transgenic bmd284 allele
To clone pWZ259 (rpl-28p::TIR1(F79G)::T2A::DHB::2xmKate2), pWZ192
(NotI-ccdB-SphI-DHB::2xmKate2) was double digested with NotI and SphI
to excise ccdB and a PCR product representing rpl-28p::TIR1(F79G)::T2A
was amplified from plasmid pCMH2123 using primers DQM1136 and
DQM1137. pWZ259 was constructed by Gibson assembly (NEB) using the
backbone from pWZ192 and the PCR product from pCMH2123. After
sequence confirmation, pWZ259 was used as a repair template for insertion
into the genome at a safe harbor site on chromosome I corresponding to the
MosSCI insertion site ttTi4348 (Frøkjær-Jensen et al., 2012). pAP082 was
used as the sgRNA plasmid for chromosome I insertion via CRISPR/Cas9
(Pani and Goldstein, 2018). Young adults were transformed using standard
microinjection techniques and integrants were identified through the SEC
method (Dickinson et al., 2015) (Tables S2, S3).

Generation of the endogenous wy1514 allele
A repair template containing TagRFP-T::AID with homology at the 5′ and 3′
ends to the egl-43 locus was PCR amplified and purified using a PCR
purification kit (Qiagen). 3 μl of 10 μM tracRNA (IDT) was incubated with
0.5 μl of 100 μMof a crRNA (IDT) targeting exon 6 of the egl-43 locus at 95°C
for 5 min, followed by 25°C for 5 min. Following incubation, the mixture was
incubated with 0.5 μl of Cas9 protein (IDT) at 37°C for 10 min. Repair
template and a co-injection marker (pRF4) were added to the mixture to a final
concentration of 200 ng/μl and 50 ng/μl, respectively. Young adult wormswere
transformed using standard microinjection techniques and progeny were
genotyped for successful insertions (Paix et al., 2015) (Tables S2, S4).

Auxin treatment
Synchronized L1 larvae were plated on NGM plates containing 0.1 mM
5-Ph-IAA (MCE) and fed either OP50 or egl-43(RNAi). The egl-43(RNAi)
feeding construct was published previously (Medwig-Kinney et al., 2020),
and it silences the expression of both the long and short isoform of EGL-43.
0.1% ethanol was used as an auxin control. All animals were analyzed at the
mid-L3 (P6.p four-cell) larval stage when AC invasion occurs.

Image acquisition
Images were collected using a custom-built spinning disk confocal
microscope (Nobska Imaging), which was configured for automation with
Metamorph software (Molecular Devices). This confocal consists of a
Hamamatsu ORCA EM-CCD camera mounted on an upright Zeiss Axio
Imager.A2 with a Borealis-modified Yokogawa CSU-10 spinning disk
scanning unit and a Zeiss Plan-Apochromat 100x/1.4 oil DIC objective.
Animals were anesthetized for imaging by picking them into a drop of M9
on a 5% agarose pad containing 7 mM sodium azide and secured with a
coverslip.

Image processing and analysis
Acquired images were processed using ImageJ/Fiji (Schneider et al., 2012).
AID::GFP fluorescence was quantified as previously described (Martinez
and Matus, 2020). DHB::2xmKate2 ratios were quantified as previously
described (Adikes et al., 2020). AC number was determined by counting AC
nuclei (LAG-2::P2A::H2B::mTurquoise2). AC invasion was defined as the
complete loss of BM (LAM-2::mNeonGreen) under the AC. Plots were
generated using Prism software. Figures, and the cartoons within, were
created using a combination of Adobe Photoshop and Illustrator.

Statistical analysis
To determine the number of animals (N) needed per condition, a power
analysis was performed (Cohen, 1992). In each figure legend, where
appropriate, the measures of central tendency, error bars, numeric P-values,
and statistical tests used are specified.
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