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systematic review and meta-analysis
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ABSTRACT
Body tissues are exposed to a complex mechanical environment,
which is perceived by cells and converted to biochemical signals such
as ATP release. We performed a meta-analysis of 278 systematically
identified studies that investigated mechanically stimulated ATP
release (MSAR) to quantify the amounts, kinetics andmechanisms of
ATP release under normal and pathological conditions. Mechanically
stimulated mammalian cells were shown to release 38.6 [95%
confidence interval (CI): 18.2–81.8] amol ATP/cell on average with a
characteristic time constant of 32 s (95% CI: 16–66). Analysis of
ATP release mechanisms revealed the existence of conserved
and tissue-specific release routes. We assessed ATP release in
pathophysiological states, and found that ATP release was elevated
in inflammation and injury, and attenuated in hereditary (such as
cystic fibrosis) and metabolic (such as type II diabetes) conditions.
Our study links cell-specific ATP release mechanisms to
pathophysiological changes in ATP release and allows ATP
release-targeting interventions to be mapped to site-specific effects.
This work demonstrates that quantitative synthesis of basic research
can generate non-trivial hypotheses and inform evidence-driven
translational studies.

KEY WORDS: ATP release, Mechanical stimulation, Meta-analysis,
Systematic review

INTRODUCTION
The discovery that mechanical stimuli elicit adenosine triphosphate
(ATP) release from mammalian cells was made over 25 years
ago (Milner et al., 1990), and represented a paradigm shift in
how we understand the interaction between the body and the
mechanical environment. The body is constantly exposed to a
complex combination of shear forces, strains, osmotic stresses and
pressures. These forces are perceived at the cellular level and
converted to biochemical signals, one of which involves the release
of ATP, a high-energy content purine molecule that represents the
primary source of cellular energy (Bergman, 1999). It is now clear
that extracellular ATP is as an autocrine and paracrine signaling
molecule that exerts its effects through purinergic receptors
(Burnstock, 2014).
In this study, we systematically reviewed the literature pertaining

to mechanically stimulated ATP release (MSAR) from mammalian

cells and conducted ameta-analysis on relevant studies. The primary
objectivewas to provide quantitative estimates of the amount of ATP
released and kinetics of this release in response to mechanical
stimulation. The secondary objective was to extend our analysis to
address problems that are otherwise difficult to investigate at the
single-study level, including comparing the effects of different
mechanical stimuli, as well as consolidating the available
intervention- and pathology-related data. In addition to our
research objectives, we sought to demonstrate the feasibility and
value of conducting meta-analyses at the basic research level to
complement existing lines of evidence used to inform translational
research.

RESULTS
Overview of relevant studies
We systematically identified 278 studies that directly measured ATP
release from mechanically stimulated mammalian cells, 228 of
which were included in quantitative synthesis (50 studies were
excluded due to inadequate reporting) (Fig. 1A). In these studies, 9
unique models of mechanical stimulation, including osmotic
pressure, fluid shear stress (FSS), strain and compression, were
used to stimulate ATP release from mammalian cells (Fig. 1B).
Cells derived from 12 different organ systems were studied, most
commonly originating from the urinary and musculoskeletal
systems (Fig. 1C). Most studies measured ATP using the
luciferin-luciferase bioluminescence assay (255/278), while others
used high-performance liquid chromatography (11/278),
hexokinase-based enzymatic assays (5/278), surface-bound
luciferase probes (3/278), microelectrodes (3/278) and cell-based
biosensors (1/278). We tracked the discovery of non-lytic ATP
release to Milner et al., who described the phenomenon in FSS-
stimulated endothelial cells in 1990 (Milner et al., 1990) (Fig. 1D).
The physiological relevance of MSAR was soon after realized and
widespread interest surged around the 2000s. It is now clear that
MSAR is physiologically involved in virtually every organ system
and plays a role in facilitating responses to mechanical perturbations
that demand immediate physiological feedback (Fig. 1E). To date,
the general physiological relevance has been established, and
current work in the field is focused on understanding the
mechanistic and potential therapeutic relevance of MSAR.

MSAR is a conserved phenomenon in mammalian cells
We quantified ATP release as the amount of ATP liberated into the
extracellular space after mechanical stimulation (Fig. 2A). Using a
random effects model, we estimated that mechanically stimulated
mammalian cells released 38.6 [95% confidence interval (CI)
18.2–81.8] amol ATP/cell over a basal extracellular amount of 8.1
(95% CI: 3.9–16.6) amol ATP/cell. The total intracellular ATP
content was estimated to be 5.0 (95% CI: 2.6–9.5) fmol ATP/cell in
nucleated cells and 0.14 (95% CI: 0.12–0.18) fmol ATP/cell in red
blood cells (RBCs) (Fig. 2B; Table S1). ATP release estimates wereReceived 31 July 2018; Accepted 10 October 2018
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considerably inconsistent between studies, ranging over 10 orders
of magnitude (Fig. S1, Table S1). We found that 80% of the
heterogeneity was explained by a correlation between basal ATP
(Abase) and ATP release (Amech) estimates that arose only between

studies but was absent within studies (Fig. 2C). Furthermore, we
found that heterogeneity in basal ATP was not explained by
differences in methodologies (Fig. 2D), suggesting that the primary
source of heterogeneity was inconsistent ATP calibrations between
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studies. Estimates of relative ATP release were more consistent
between studies, and were unaffected by the overall quality of the
study, although some publication bias was evident (Fig. S1). We
found that every cell type investigated responded to mechanical
stimulation by releasing ATP, resulting in a 4.3-fold (95% CI:
3.8–4.8) increase in extracellular ATP above baseline (Fig. 2E).
Remarkably, the amount of ATP released was generally robust
to variations in experimental methodology and biological
characteristics (Fig. S2, Table S2). In particular, different cell
types, cells from different species, embryonic origin and most organ
systems released similar amounts of ATP upon mechanical
stimulation. Among the factors that did influence ATP release, we
found that neutralization of ATP degradation or application of cyclic
mechanical stimuli were associated with relatively lower ATP
release (Fig. S2A), and polarized epithelia released significantly
higher amounts of ATP from the apical surface compared with the
basolateral membrane (Fig. S2B). We conclude that MSAR is a
conserved phenomenon in mammalian cells, and provide robust
quantitative estimates for the absolute and relative amounts of ATP
released upon mechanical stimulation.

The amount of ATP release is proportional to the magnitude
of mechanical stimulation
We next investigated the relationship between the type of mechanical
stimulation and ATP release. We found that similar amounts of ATP
were released in response to all studied mechanical stimuli (Fig. 3A;
Table S3). Only locally applied membrane deformations resulted in
lower ATP release compared with other forms of stimulation. We
used a combination ofmeta-regression andwithin-study regression to
investigate the relationship between the magnitude of mechanical
stimulation and the amount of ATP released (Fig. 3B–G; Table S3).
Within studies, ATP release was consistently proportional to the
magnitude of mechanical stimulation, whereas between studies this
relationship was less pronounced. Nevertheless, the directions of
association were consistently positive for all types of mechanical
stimulation (Fig. 3H). Thus, despite evident aggregation bias, we
conclude that the amount of ATP released is governed by the
magnitude of mechanical stimulation.

ATP release kinetics are stimulus dependent
To quantify the kinetics of ATP release, we fitted study-level time-
series data to a sigmoidal model using a Monte Carlo fitting
procedure and estimated the time to half-maximal (half-max) ATP
release thalf (Fig. 4A). Meta-analysis demonstrated that the
characteristic half-max ATP release time was 101 s (95% CI: 83–
117 s) (Fig. 4B). ATP release kinetic estimates were moderately
heterogeneous with no discernable publication bias, and they were
not influenced by study quality (Fig. S3). However, we found that
real-time online recordings of ATP release yielded significantly faster
release kinetics of 32 s (95% CI: 16–66 s) compared with offline
measurement methods, which yielded slower kinetics of 136 s (95%
CI: 117–159 s) (Fig. 4C,D; Table S4). We stratified the data by
recording method prior to further analysis. ATP release kinetics were
robust to differences in all other experimental factors but not to
biological factors (Fig. S4, Table S4). ATP release was relatively
slower in certain species (guinea pigs, porcine, rabbits) and cells from
different embryonic origins (ectoderm) and organ systems (sensory).
Importantly, the kinetics of ATP release depended on the type of
mechanical stimulus applied. FSS evoked significantly faster ATP
release compared with osmotic pressures (Fig. 4E,F; Table S4). Thus,
systematic large-scale data synthesis allowed us to identify a
previously unknown relationship between ATP release kinetics and

the type of mechanical stimulation, suggesting that it needs to be
further explored experimentally.

Mechanisms of MSAR
We next synthesized the data pertaining to the mechanisms of
MSAR. Pharmacological and genetic interventions were grouped
by common molecular targets (Table S5) and their relative
inhibitory effects were quantified for each cell type (Fig. 5;
Table S6). The five main direct routes of MSAR that have been
identified in mammalian cells are vesicles (Bodin and Burnstock,
2001; Sathe et al., 2011), pannexins (Locovei et al., 2006),
connexins (Graff et al., 2000), volume-regulated anion channels
(VRACs) (Pedersen et al., 1999; Qiu et al., 2014; Voss et al., 2014)
and maxi-anion channels (MACs) (Sabirov et al., 2001; Sabirov
et al., 2017). Vesicles were involved in 70% (14/20) of studied cell
types from all organ systems except for the integumentary (i.e.
keratinocytes, mammary epithelial cells) (Fig. 5A). Pannexins were
the second most common route of ATP release, involved in 58%
(15/26) of all studied cell types. Pannexin-mediated ATP release
occurred in hematopoietic cells, astrocytes and most epithelial cells
(including digestive, airway and ocular). Connexins, VRACs and
MACs were implicated in ATP release in 35% (7/20), 36% (4/11)
and 23% (3/13) of all cells studied, respectively. Connexin-
mediated ATP release was highly prevalent in ocular cell types
and in the kidney, but was absent in airway epithelia and smooth
muscle. VRACs exhibited no discernable tissue-specific pattern of
involvement, while MACs were almost exclusively implicated
in ATP release from integumentary cells. This data-driven
summary of MSAR mechanisms allowed us to establish tissue-
level generalizations and suggest the existence of common
(vesicular) and tissue-specific (pannexin, connexins, MAC) routes
of ATP release.

We conducted a co-occurrence analysis to screen for possibly
co-dependent pathways of ATP release (Fig. 5B). The main routes
of ATP release (i.e. vesicular, pannexin, connexin, VRAC and
MAC) co-occurred pairwise in 27–67% of studied cells, except for
vesicle- and MAC-mediated ATP release routes, which were
mutually exclusive (co-occurred in 0 of the 4 cell types studied;
0/4). We investigated whether the main routes of ATP release
contributed to the total amount of ATP released in an additive
manner by accounting for the relative contributions of each route
(Table 1). In certain cell types, the total amount of ATP released was
accounted for by the additive contribution of the main routes of ATP
release. However, in cardiomyocytes, ligament cells, pancreatic and
renal epithelia, and urothelial cells, the additive contributions
exceeded the amount of ATP released. Although there is a
possibility that pharmacological non-specificity contributed to this
effect, genetic methods were in agreement. For instance, small
interfering RNA (siRNA)-mediated knockdown of Cx43 (also
known as GJA1) and Panx1 in ligament cells inhibited ATP release
by 73.1% (95% CI: 68.7–77.4) (Luckprom et al., 2011) and 73.6%
(95% CI: 69.2–78.0) (Kanjanamekanant et al., 2014), respectively.
These findings suggest the existence of a cell type-specific
synergistic interaction between ATP release routes previously
thought to be functionally independent.

We investigated the association between the main ATP release
routes and other implicated regulatory and auxiliary pathways.
Vesicular ATP release consistently coincided with the involvement
of intracellular calcium ([Ca2+]i, 8/8 cell types studied), Rho kinases
(3/3) and microtubules (4/4). Rho kinases (3/3) and microtubules
(3/3) were also involved in pannexin-mediated ATP release.
No pathway consistently co-occurred with connexin-mediated
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ATP release. VRAC-mediated ATP release coincided with the
involvement of P2X7 receptors (5/5), but never with ATP synthase
(0/3), and MAC-mediated ATP release co-occurred with ATP
synthase-related ATP release (3/3), but never with [Ca2+]i-
dependent ATP release (0/3). Thus, we have identified conserved
cell-independent signaling patterns that warrant further
experimental investigation.
We next explored whether the mechanisms of ATP release depend

on the type of mechanical stimulation (Fig. 5C). We examined the
contribution of the main routes of ATP release in response to
mechanical stimuli with sufficiently large datasets (FSS, osmotic

pressure and strain). All 5 routes of ATP release were implicated in
osmotic pressure- and strain-induced ATP release with the similar
patterns of contribution. In contrast, VRAC and possibly pannexins
were not involved in FSS-induced ATP release. Thus, consistent with
our findings that FSS- and osmotic pressure-induced ATP release
exhibit distinct release kinetics, these data suggest that distinct
mechanisms may contribute to stretch- and shear-related responses.

MSAR in pathologies
Aberrant ATP release has been implicated in multiple
pathophysiological conditions (Fig. 6A). Inflammation- and
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injury-related conditions were associated with elevated levels of
MSAR, compared with unaffected controls (Fig. 6B; Table S7). On
the other hand, attenuated ATP release was observed in hereditary
conditions, such as cystic fibrosis and xerocytosis, and in type II
diabetes and primary pulmonary hypertension (Fig. 6C; Table S7).
In some pathologies, the magnitude or direction of changes in
MSAR were specific to the cell or stimulus. In cystic fibrosis, RBCs
and pancreatic epithelia released less ATP upon stimulation,
while airway epithelia and astrocytes were unaffected. Acute
hypoxia potentiated ATP release from endothelial cells, while

chronically hypoxic cells released less ATP (Fig. 6D; Table S7).
In polycystic kidney disease (PKD), renal epithelia released less
ATP upon FSS stimulation in both autosomal dominant and
recessive cases, whereas osmotic swelling-induced ATP release
was unaffected in autosomal recessive and potentiated in
autosomal dominant PKD (Fig. 6D; Table S7), again
suggesting distinct cell processing of shear- and stretch-related
stimuli. Thus, we demonstrate the presence of specific patterns of
MSAR alteration with respect to the type of pathology, affected
cells and applied stimulus, and suggest that inhibitory and
stimulatory interventions targeting MSAR can be of therapeutic
interest, but need to be applied with caution. Our study maps the
potential anatomical sites and situations in which targeting
MSAR could have (patho-)physiological consequences.

DISCUSSION
Overview
We have conducted a systematic large-scale data synthesis to
quantitatively characterize the amounts, kinetics and mechanisms
of MSAR under normal and pathological conditions. From 228
systematically selected studies, we extracted 123 estimates of
absolute and 212 estimates of relative amount of ATP released, 74
kinetic time-series, 592 pharmacological and 89 genetic intervention
outcomes, and 51 pathophysiological comparisons. Using a meta-
analytic approach, we have established that mechanically stimulated
mammalian cells release 38.6 (95% CI: 18.2–81.8) amol ATP/cell,
with a characteristic time constant of 32 s (95%CI: 16–66)measured
using real-time recording methods. We have found that MSAR is
a universally conserved phenomenon in mammalian cells, and
that cells from different species, embryonic origin and most organ
systems release similar amounts of ATP when mechanically
stimulated. Our data-driven summary of MSAR mechanisms
allowed us to infer tissue-level generalizations that suggest the
existence of common and tissue-specific routes of ATP release, and
to identify conserved cell type-independent signaling patterns. We
have found that inflammation and injury were associated with
increased MSAR, whereas hereditary and metabolic conditions
resulted in attenuated ATP release. Importantly, several lines of
evidence including (1) differences in release kinetics, (2) implicated
mechanisms and (3) pathophysiological effects in PKD, suggest that
cells can discriminate between stretch- and shear-related forces.
Thus, consolidating and quantifying over 25 years of basic research
data generated in 64 unique cell types derived from 12 organ systems
and stimulated by 9 distinct force applications allowed us to
generate novel testable hypotheses, and provide evidence-driven
recommendations for translational studies.

Study limitations
The studies included in this meta-analysis were highly
heterogeneous; however, this was expected due to the higher
methodological variability in exploratory basic science studies
(Bradbury and Plückthun, 2015; Fontoura-Andrade et al., 2017;
Soehnlein and Silvestre-Roig, 2017). Importantly, accounting for
interstudy differences in ATP calibration and recording methods
allowed us to dramatically reduce heterogeneity. We found minimal
evidence of publication bias. We also demonstrated that the quality
of the studies did not significantly affect study-level outcomes,
despite quality scores varying substantially across studies. It is
known that subgroup analyses come at the expense of lower
statistical power; however, the large number of available datasets
permitted statistically powered analysis for numerous secondary
outcomes (Jackson and Turner, 2017). Analysis of MSAR
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mechanisms was limited by overlapping and off-target effects of
many inhibitors, as well as lack of within-study inhibitor validation
and over-reliance on assumed pharmacological targets. We
minimized false-positive outcomes by applying random effects
meta-analytic models and considering Bonferroni adjustments
for multiple comparison analyses (Glass, 1986). There remains a
distinct possibility of false-negative outcomes due to limited sample
sizes in some subgroups, aggregation bias and heterogeneity
(Higgins and Thompson, 2002).

Quantitative characterization
We estimated that mechanically stimulated mammalian cells release
38.6 (95% CI: 18.2–81.8) amol ATP/cell, resulting in a 4.3-fold
(95% CI: 3.8–4.8) increase in ATP above basal levels of 8.1 (95%
CI: 3.9–16.6) amol ATP/cell. Intracellular ATP content was
estimated to be 3 orders of magnitude higher than basal ATP
levels in nucleated cells, 5.0 (95%CI: 2.6–9.5) fmol ATP/cell, and 2
orders of magnitude higher in RBCs, 0.14 (95% CI: 0.12, 0.18)

fmol ATP/RBC. Study-level estimates of the absolute amount of
ATP released ranged over 10 orders of magnitude, with 5 studies
reporting more ATP release than can be contained within a cell,
suggesting that more caution must be taken when performing ATP
calibrations and measurements, and that basal, released and total ATP
content should be reported to obtain relative measures.
The characteristic time to half-max ATP release was strongly
influenced by the recording method, yielding almost 4 times faster
estimates by real-time recordings compared with estimates acquired
by bulk sampling and offline measurement. This difference can
potentially be explained by the diffusion time required to equilibrate
the concentration within the volume of the culture medium. In this
regard, the volume intowhichATP is released is an important (but not
routinely controlled for) determinant of the effective ATP
concentration available for autocrine and paracrine signaling,
including ATP-regulated ATP release (Bodin and Burnstock, 1996;
Dillon et al., 2013). We found that less ATP is released in response to
cyclic stimulation; however, no studies reported the kinetics of ATP
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release in response to repeated or cyclical stimulations, even though
physiological stimuli are often cyclical (Burr et al., 1996; Eyckmans
et al., 2011; Fritton et al., 2000). Of interest, studies in which cell
injury was assessed and detected or intentionally induced reported a
tendency for higher ATP release. However, the amount of injury-
related ATP release never reached amounts expected following cell
destruction and was not statistically different from osmotic pressure-
or FSS-induced ATP release. Thus, quantitative synthesis of basic
science studies employing diverse approaches with complex
endpoints is feasible and has allowed us to identify methodological
variations of consequence.

Dependence on mechanical stimulus
We compared ATP release induced by 9 different types of
mechanical stimulation, including stretch-related stimuli, such as

substrate strain, osmotic pressure and tissue distention, and FSS and
local membrane deformation. Although all types of mechanical
stimulation resulted in the release of comparable amounts of ATP,
we found significant differences in the kinetics of ATP release,
which were much faster in response to FSS- compared with stretch-
related stimuli. In addition, we found that VRAC and possibly
pannexins were involved in mediating swell- and strain-induced, but
not shear-induced, responses. Finally, MSAR from PKD-afflicted
renal epithelia was differentially sensitive to FSS and hypotonic
swelling. These results strongly suggest that mammalian cells can
discriminate between different types of mechanical stimuli.
Theoretical models have previously demonstrated that shear
stresses induce more cell membrane deformation than stretch-
related stimuli (Lynch and Fischbach, 2014; McGarry et al., 2005).
Direct comparison of mechanisms involved in hypotonic pressure-

Table 1. Total contribution of the main routes of ATP release

Cell type Studied mechanisms Joint contributions (%±95% CI) Proposed interaction

Astrocytes Px, Cx, VRAC, MAC 118 (67.8, 168.2) Additive
Cardiomyocytes Px, VRAC, MAC 176.6 (140.4, 212.8) Synergy
Chondrocytes Vesicle, Px, Cx, MAC 99.2 (32.9, 165.5) Additive
Ciliary epithelia Vesicle, Px, Cx, VRAC, MAC 122.1 (39.8, 204.4) Additive
Keratinocytes Vesicle, Px, Cx, VRAC, MAC 92.7 (−18.7, 204.1) Additive
Ligament cells Px, Cx 146.6 (139.9, 153.3) Synergy
Mammary epithelia Vesicle, Px, Cx, VRAC, MAC 53.9 (−64.3, 172.1) Additive
Pancreatic epithelia Vesicle, Px 164.3 (144.8, 183.8) Synergy
Renal epithelia Vesicle, Px, Cx 220.2 (132.4, 308) Synergy
Trabecular meshwork Vesicle, Px, Cx, VRAC, MAC 110.9 (35.3, 186.5) Additive
Urothelial cells Vesicle, Px, Cx, VRAC 248.1 (137.6, 358.6) Synergy

The relative contributions (determined from genetic and pharmacological interventions, see Table S6) of each ATP release route were added together.
Contributions that added to 100% (contained by 95%CI) were interpreted as additive, and those exceeding 100% were interpreted as synergistic. Shown are cell
types in which at least 4 of the 5 main routes of ATP release were studied, except for cell types that exhibited synergy-like interactions, in which case no restriction
was placed on the minimum number of routes studied. Cx, connexins; MAC, maxi-anion channel; Px, pannexins; VRAC, volume-regulated anion channel.
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and strain-induced ATP release has demonstrated that these stretch-
related stimuli recruit common ATP release pathways (Li et al.,
2011); however, no study has directly compared shear- and stretch-
related ATP release. Thus, we recommend a direct comparison
between shear- and stretch-induced cell deformation, and ATP
release to be investigated in future work.

Intervention studies
We quantified the effects of pharmacological and genetic
intervention for 681 combinations of cell type, mechanical
stimulation and interventions. From the five main routes of ATP
release [vesicular (Bodin and Burnstock, 2001; Sathe et al., 2011),
pannexin (Locovei et al., 2006), connexin (Graff et al., 2000), VRAC
(Pedersen et al., 1999; Qiu et al., 2014; Voss et al., 2014) and MAC
(Sabirov et al., 2001; Sabirov et al., 2017)], at least 2, and often 3,
were consistently implicated in the same cell type, with the exception
of keratinocytes, in which all 5 pathways were studied, but onlyMAC
was found to mediate ATP release. The involvement of multiple
independent release mechanisms may confer a redundancy that
ensures that cellular ATP release is robust. Alternatively, it is possible
that different routes work collaboratively within the same pathway.
Of interest, we demonstrated a lack of additivity in the relative
contributions of main release routes in certain cell types. We found
that different ATP release routes shared common intracellular
signaling pathways. In particular, Rho kinases and microtubules
always co-occurred with vesicular and pannexin pathways, and [Ca2
+]i co-occurred with all 5 routes of ATP release in 33–100% of cases.
Thus, it can be hypothesized that different routes of release are
functionally independent but are regulated by common intracellular
signaling. At this time, this hypothesis is difficult to test
experimentally, partly because pharmacological agents used to
study mechanisms of MSAR suffer from extensively overlapping
antagonistic profiles (Azorin et al., 2011; Li et al., 2010; Liu et al.,
2008; Sauer et al., 2000; Wang et al., 2005). Targeted genetic studies
(e.g. siRNA, CRISPR, animal models) are needed to further our
understanding of MSAR. To date, genetic interventions have been
used to study the involvement of vesicle-related vesicular nucleotide
transporter (VNUT; also known as SLC17A9) (Sathe et al., 2011;
Sawada et al., 2008), pannexin 1 (Panx1) (Bao et al., 2004; Beckel
et al., 2014; Kanjanamekanant et al., 2014; Lu et al., 2012;
Seminario-Vidal et al., 2011; Woehrle et al., 2010), pannexin 2
(Panx2) (Oishi et al., 2012), connexin 40 (Cx40; also known as
GJA5) (Toma et al., 2008), connexin 43 (Cx43) (Chi et al., 2014;
Genetos et al., 2007; Lu et al., 2012; Luckprom et al., 2011) and
connexin 45 (Cx45; also known as GJC1) (Lu et al., 2012). Recently,
SWELL1 (also known as LRRC8A) was identified as the pore
component of the VRAC complex (Qiu et al., 2014; Syeda et al.,
2016; Voss et al., 2014), and the prostaglandin transporter PGT
(encoded by Slco2a1) was recognized as the MAC (Sabirov et al.,
2017). Of interest, Sana-Ur-Rehman et al. (2017) andWorkman et al.
(2017) have recently reported the calcium homoeostatic modulator 1
(CALHM1) as a novel mediator of MSAR in nasal epithelia and the
urothelium; however, it remains unclear whether CALHM1 is a direct
or indirect conduit of ATP release. A comprehensive review of recent
evidence supporting the role of CALHM1 in ATP release can be
found elsewhere (Taruno, 2018). Nonetheless, now that the
molecular identity of each main route of ATP release has been
identified, genetic studies to resolve ATP release mechanisms are
feasible. Thus, systematic analysis of prior data allowed us to pinpoint
specific mechanistic features that warrant further experimental
investigation, such as differential involvement of VRAC in FSS-
and osmotic pressure-inducedATP release, and to suggest that certain

ATP release mechanisms are cell type and stimulation
type dependent.

Therapeutic potential
Our systematic assessment of MSAR involvement in different
pathologies included data from 10 cell types/tissues from 11
pathological conditions. We have found that inflammation and
injury coincided with higher ATP release from epithelial cells,
which might contribute to pain commonly present in these
conditions (Butrick et al., 2010; Docherty et al., 2011; Taweel
and Seyam, 2015; Weinreb et al., 2014). In contrast, in hereditary
and metabolic conditions, lower ATP release from RBCs was
consistently reported. Thus, both MSAR inhibitory and stimulatory
interventions can be of therapeutic interest. The downstream actions
of MSAR are mediated by 15 members of the purinergic (P2)
receptor family (Burnstock, 2014), which have been identified as
valuable therapeutic targets for treatment of pain, inflammation,
spinal cord injury and bladder dysfunction (North and Jarvis, 2013).
There are several advantages of targeting MSAR over the P2
receptor network. First, the impact of disproportionally targeting
single P2 receptors has poorly understood implications for signaling
by the entire P2 receptor network. Instead, manipulating MSAR
allows proportional reduction or increase in the stimulation of all P2
receptors. Second, many of the drugs used to inhibit MSAR,
including mefloquine (Lee et al., 2017), carbenoxolone (Doll et al.,
1965), probenecid (Li et al., 2016), flufenamic acid (Flemming and
Jones, 2015), glybenclamide (Sola et al., 2015) and clodronate
(Ghinoi and Brandi, 2002) [recently demonstrated to potently
inhibit VNUT (Kato et al., 2017)] are already used in clinic.
Although these drugs are relatively non-specific, strategies to
therapeutically re-purpose them for diseases with aberrant MSAR
may be considered. As for any potential therapy, unintended drug
effects need to be taken into account. In this regard, our systematic
approach allowed the identification of cell- and stimulus-specific
effects of various pathologies. Thus, comprehensive assessment of
cell type-specific mechanisms of ATP release, considered together
with known pathophysiological changes, can be used to map site-
specific effects of therapeutic MSAR interventions, and predict any
unintended (patho)physiological consequences.

MATERIALS AND METHODS
Software
Endnote X7 (Thomson Reuters) was used to manage references, the
MetaLab meta-analysis toolbox in MATLAB (MathWorks) (N.M.
and S.V.K., unpublished) was used for data extraction and analysis,
Excel 2016 (Microsoft) was used for data storage and CorelDRAW
X8 (Corel) was used for figure preparation.

Search strategy and inclusion criteria
Amedical librarian (M.M.) prepared the systematic search strategy.
The search strategy was constructed around the key terms ‘ATP’
and ‘mechanical stimulation’. Search terms were validated by
ensuring the search retrieved a selection of articles, representative
of relevant works. Medline, Embase, Biosis and SCOPUS
databases were searched on 12 January 2017, using search terms
listed in Table S8, and articles were exported to Endnote. Reviews,
books, letters, editorials and conference proceedings were
excluded, language was restricted to English and there was no
restriction on date of publication. Studies in which mammalian
cells were mechanically stimulated and ATP release was assayed
were included. No restrictions were imposed on experimental
setup. Abstracts were screened independently by two reviewers
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(N.M. and A.M.). Full-text screens were conducted to confirm
eligibility. Differences between two reviewers were resolved
through discussion and consensus. The complete list of
systematically identified studies is in Table S9.

Data extraction
Study characteristics and data were extracted by a single non-
blinded reviewer (N.M.) and independently verified by another
reviewer (A.M.) to minimize user-related error. For all studies, study
design and biological characteristics were recorded (Table S10). For
experiments using a perfusion-based sampling method, perfusion
intervals and volumes were extracted to estimate cumulative ATP
release. For experiments reporting outcomes in units other than
moles ATP per cell, relevant conversion parameters were extracted.
For intervention/pathology studies, we collected information on
pharmacological agents, genetic targets or pathological states.
MetaLab data extraction modulewas used to facilitate graphical data
extraction (N.M. and S.V.K., unpublished). For each dataset, we
extracted baseline ATP levels and mechanically stimulated ATP
along with measures of variance. In some studies, multiple datasets
were extracted if reported. For temporal recordings of ATP release,
entire time series were extracted and used to estimate the time to
half-max ATP release for analysis of ATP release kinetics. From
these time series, the maximal amount of ATP release was also used
for analysis of amount of ATP released. For intervention or
pathology studies, basal ATP and amount of ATP released in the
absence and presence of the intervention/pathology was extracted
for subsequent calculation of the intervention inhibitory effect (%)
or relative effect (%) of pathology. Sample sizes and type of
variance measures (standard error, standard deviation) used were
recorded. When variance measure was unclear, error was extracted
as standard error, lending to more conservative estimates. When
sample size was unclear but there was indication of multiple trials,
we set the sample size to 3. When a range of sample sizes was
reported, the smallest value was extracted.

Standardization of measures
ATP was commonly reported as an amount or concentration of ATP
released per cell(s). Accordingly, conversion factors were estimated
for each study to express ATP amount in terms of moles per cell.
In cases in which certain conversion parameters were not reported,
assumptions were made according to the table reported in
Table S11. Cell-related parameters were estimated using the
BioNumbers database (Milo et al., 2010), and were compared
with our in-laboratory experience and deemed appropriate. Volume
assumptions for culture dishes were made per manufacturer-
recommended volumes. For each type of mechanical stimulation,
if enough information was provided, magnitude of stimulus was
converted to a common unit. Experiments that applied osmotic
pressure commonly reported changes in osmolarity as a percentage
of basal osmolarity (isotonic). Because basal osmolarity varied
across studies, we expressed the magnitude of osmotic stress in
terms of change in mOsm/KgH2O (δ mOsm/l).

Quality assessment
Quality of studies was assessed according to an 8-item quality
checklist: publication in peer-reviewed journal, control of
temperature, control of sample degradation, cell viability checked,
mechanical stimulus regime reported, ATP calibration, negative
control and statement of potential conflicts of interest reported.
Outcomes were stratified by aggregate quality score to determine the
influence of study quality on reported results.

Study-level outcomes
Five outcomes were synthesized in this study: (1) absolute ATP
released (Amech), (2) relative ATP released above baseline (Rmech), (3)
time to half-max ATP release (thalf), (4) effect of pharmacological/
genetic intervention on ATP release (% inhibition) and (5) effect of
pathology on ATP release (relative effect, %).

Study-level absolute ATP release
The amount of ATP released was calculated as the difference in
extracellular ATP before and after mechanical stimulation:

Amech ¼ AEC � Abase, ð1Þ
where Amech was mechanically induced ATP release, AEC was total
extracellular ATP following mechanical stimulation and Abase was
basal extracellular ATP.

Study-level relative ATP release
The relative amount of ATP released above baseline Rmech was
computed as:

Rmech ¼ Amech þ Abase

Abase
� 100%: ð2Þ

Estimation of cumulative ATP release
Extracted ATP release time series were reported as cumulative ATP
release or rates of ATP release. Release rates data were converted to
cumulative ATP release over the reported period following
mechanical stimulation:

AðtÞ ¼
ðb
0

aðtÞdt �
Xb
1

ðaðtÞÞ, ð3Þ

where a was the cellular release rate (units ATP per unit time per
cell), A(t) was the cumulative extracellular ATP, b was the reported
time period and t was the time.

Study-level ATP release kinetics
Study-level ATP release time series recordings with at least 4 time
points were fit to a sigmoidal function (Eqn 4) using a Monte Carlo
error propagation method, and the characteristic time to half-max
release thalf with standard error was estimated. Recordings that
extended beyond the time of maximal ATP release were truncated to
restrict the fitting of the sigmoid curve to the relevant period over
which ATP was released.

AðtÞ ¼ Amax � tn

tnhalf þ tn
, ð4Þ

where Amax was maximal ATP release, A(t) was cumulative ATP
release with respect to time, n was coefficient related to the slope
of activation, t was time and thalf was time to half-max release.
The Monte Carlo fitting method allowed us to propagate study-
level variances (uncertainty in the model inputs) to the
uncertainty in the model parameter estimates (Cox et al.,
2003). This approach assumes that study-level estimates are
normally distributed, enabling pseudo random observations to be
sampled from a distribution defined by the study-level means and
standard deviations. The pseudo random observations were then
averaged to obtain a Monte Carlo estimate for each time point
and the sigmoidal model was fit to the Monte Carlo estimates
using the least-squared method. This procedure of pseudo-
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random sampling and model fitting was iterated 1000 times, and
the distribution of 1000 thalf estimates was used to compute a
mean and variance that was then used as the study-level estimate
of thalf. Model goodness of fit was assessed quantitatively by R2

and visually verified.

Study-level percentage inhibition
For intervention studies, the effect of genetic and pharmacological
interventions was computed as percentage inhibition, compared
with unaffected control of ATP release:

inhibitionð%Þ ¼ Acontrol
mech � Atreated

mech

Acontrol
mech

� 100%: ð5Þ

Acontrol
mech and Atreated

mech were computed the same as Amech (i.e. basal ATP
release was accounted for). Negative values of percentage inhibition
outcomes indicate increased ATP release, and positive values
indicate decreased ATP release.

Study-level relative effects
For pathophysiological conditions, the relative effect size was
calculated as follows:

effectð%Þ ¼ Aaffected
mech � Acontrol

mech

Acontrol
mech

� 100%, ð6Þ

where Aaffected
mech was ATP released from the pathologically affected

cell/tissue type and Acontrol
mech was ATP released from healthy control

samples.

Quantitative synthesis
For each study i, study-level outcomes θi and standard errors se(θi)
were estimated. θi is a general study-level outcome used to represent
Amech, Rmech, thalf, inhibition (%) or effect (%).

Data transformation and normalization
Prior to synthesis, skewed distributions of study-level outcomes θi
were identified by histograms and were normalized by
transformation to the logarithmic scale:

Qi ¼ log10ðuiÞ � seðQiÞ2
2

 !
, ð7Þ

whereΘi is a log-transformed (base 10) study-level outcome that we
reported in the study as either Alog

mech, Rlog
mech or tloghalf . The

corresponding standard error se(Θi) was approximated as:

seðQiÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log10

seðuiÞ2
u2i

þ 1

 !vuut , ð8Þ

Log transformation was applied as shown for Amech, Rmech and thalf
datasets. Outcomes were synthesized on the logarithmic scale,
transformed back to the original raw scale and reported.

Analysis of heterogeneity
To quantify the extent of inconsistency, or heterogeneity, present
between datasets, we calculated Q, I2 and H2 heterogeneity
statistics. Q is a measure of total variation and was calculated as
the sum of theweighted squared differences between the study-level
means θi and the fixed effect estimate ûFE:

Q ¼
XN
i¼1

ðseðuiÞ�2 � ðui � ûFEÞ2Þ, ð9Þ

where

ûFE ¼
P

i seðuiÞ�2uiP
i seðuiÞ�2 ;

Q is a χ2 distributed statistic with N−1 degrees of freedom and the
corresponding P-value PQ was used to evaluate the null hypothesis
that all datasets reported the same effect. For example, PQ>0.05
indicates that outcomes are consistent and describe the same effect,
whereas PQ<0.05 indicates that outcomes are inconsistent or
heterogeneous. H2 is another heterogeneity metric that is
independent of the number of datasets available, and describes the
relative excess of Q over the degrees of freedom (d.f.):

H2 ¼ Q

d:f :
ð10Þ

I2 is a transformation ofH2 that describes the percentage of variance
that is due to heterogeneity:

I2 ¼ H2 � 1

H2
� 100%: ð11Þ

H2 is preferred over I2 for highly heterogeneous data because it
has an unbound upper limit; however, I2 is more easily
interpretable. Values of Q=0, I2=0 or H2=1 indicate that data
are homogeneous.

Heterogeneity and publication bias were assessed using funnel
plots and cumulative-study exclusion plots. The homogeneity
threshold TH was calculated from cumulative exclusion analysis and
specifies the percentage of studies that need to be removed
(according to maximal Q-reduction criteria) before a homogenous
set of studies is attained, as determined by the P-value PQ

corresponding to the Q heterogeneity statistic (N.M. and S.V.K.,
unpublished).

Meta-analysis
Study-level outcomes were synthesized under the assumptions of a
random effects model to obtain an overall outcome û:

û ¼
P

iðui � wiÞP
iðwiÞ , ð12Þ

where the random effects study-level weights wi were estimated as

wi ¼ 1

seðuiÞ2 þ t2
ð13Þ

and the interstudy variance was approximated using the
DerSimonian–Laird estimator:

t2 ¼ Q� ðN � 1Þ
c

, ð14Þ

where

c ¼
X
i

seðuiÞ�2 �
P

i ðseðuiÞ�2Þ2P
i seðuiÞ�2 :

Q is the heterogeneity statistic (introduced above), c is a scaling
factor and N is the number of datasets being synthesized.
The standard error corresponding to the overall outcome was
estimated as:

seðûÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiP
i wi

p ð15Þ
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and the corresponding confidence intervals were constructed using
critical values z1−α/2 obtained from a z-distribution:

+CI ¼ +z1�a=2 � seðûÞ, ð16Þ
where α=0.05 corresponds to a 95% significance level.
Subgroup analyses were conducted to identify sources of

heterogeneity and explore the influence of different experimental
and biological factors on the outcome of interest. Study-level data
were stratified into characteristic groups defined by study-level
covariates and study-level outcomes within each subgroup were
synthesized as above. When multiple subgroups comparisons were
made, the Bonferroni correction was used to adjust the significance
threshold to control for false-positive findings:

a� ¼ a

m
, ð17Þ

where α* is the adjusted significance threshold to attain intended
error rates α for m subgroup comparisons.

Meta-regression
To assess the bivariate relationship between study-level predictors
and outcomes, a random-effects meta-regression model was
constructed in the following form:

ui ¼ b0 þ binterxi þ hi þ 1i, ð18Þ
where β0 is the intercept, βinter is the slope coefficient describing the
relationship between predictor xi and outcome θi, ɛi is the intrastudy
variability approximated by N ð0; seðuiÞ2Þ and ηi is the interstudy
variability approximated by N ð0; t2Þ. In addition to the meta-
regression analysis conducted to assess the between-study
relationship of study-level predictors and outcomes, we also
conducted an intrastudy regression analysis to assess the within-
study relationship between study-level predictors and outcomes
(N.M. and S.V.K., unpublished). Within-study regression
coefficients were computed and pooled using the meta-analytic
methods described above to estimate an overall effect βintra. The
magnitude and sign of βinter and βintra were then compared to
evaluate whether the observed relationships between and within
studies were in agreement.

Analysis of ATP release mechanisms
To evaluate the cell type-specific mechanisms of ATP release,
pharmacological and genetic intervention outcomes were grouped
by common molecular targets and their inhibitory effects were
estimated and synthesized as above. Owing to the non-specific
effects of certain inhibitors, differential pharmacological effects
were considered to differentiate between ATP release pathways that
shared common pharmacological profiles. Depending on the panel
of available inhibitor data for each cell type, more targeted
interventions allowed us to narrow down the pathways affected by
non-specific inhibitors. For example, carbenoxolone inhibits
connexin and pannexin activity, while flufenamic acid is a more
targeted connexin inhibitor. For cells in which carbenoxolone
inhibited ATP release, but flufenamic acid did not, we inferred
the involvement of pannexins. In some cases, non-specific
interventions were used to support or dismiss the involvement of
several pathways at a time. For instance, cells in which Gd3+ had no
effect on ATP release allowed us to putatively dismiss ATP release
pathways related to MACs, P2X7, Piezo1 and transient receptor
potential (TRP) channels. To reflect the varying degrees of evidence
(i.e. availability of data, specificity of interventions, separate
replication of findings), we distinguished between cell

type-specific mechanisms that were reported once, those that were
verified by different methods/groups, and those for which data were
available but inconclusive (often due to the non-specific nature of
interventions). These outcomes were summarized in a cell-by-
mechanism involvement matrix, indicating whether the pathway
was involved in ATP release and the degree of evidence supporting
the conclusion. Based on the mechanisms summarized in the
involvement matrix, a co-occurrence analysis was then conducted to
screen for possibly co-dependent pathways of ATP release. Results
were summarized in a co-occurrence matrix for cases in which at
least 3 cell types could be evaluated, and were expressed as the
percentage of cell types in which the pairs of mechanisms were
co-occurrent.

To determine whether the separate routes of ATP release were
additive, the effects of ATP release inhibitors were used to
approximate of relative contribution (RC) of that pathway to
ATP release:

RC � inhibitory effectð%Þ: ð19Þ
The joint contribution (JC) was then computed as:

JC ¼ RCvesicles þ RCpx þ RCcx þ RCVRAC þ RCMAC ð20Þ
and the standard error was

seðJCÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
seðRCvesiclesÞ2 þ seðRCpxÞ2 þ seðRCcxÞ2

þseðRCVRACÞ2 þ seðRCMACÞ2

s
ð21Þ

95% CI for joint contributions were constructed using Eqn 16.
Joint contributions that were insignificantly different from 100%
(contained by 95% CI) were interpreted as additive, and those
exceeding 100% were interpreted as synergistic. Cell types in which
at least 4 of the 5 main routes of ATP release were studied were
included in this analysis, except for cell types that exhibited
synergy-like interactions, in which case no restriction was placed on
the minimum number of routes studied, because including the
relative contributions of additional release routes would have only
added to the joint contribution.
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Figure S1. The distribution, bias, extent of heterogeneity and effect of study quality was 

evaluated for mechanically-stimulated ATP release (Amech, top row) and relative ATP 

release above baseline (Rmech, bottom row) (A) Study-level outcome distributions on raw scale 

(left) and logarithmic (base 10) scale (right). (B) Funnel plots for log-transformed study-level 

effect sizes. Black markers: study-level data. Blue lines: fixed effect (FE) estimate. Red lines: 

random effects (RE) estimate. Black lines: theoretical 95% CI for FE estimate in absence of bias. 

(C) Effect of cumulative study exclusion on RE estimates and heterogeneity of log-transformed 

effect sizes. Red band: 95% CI for studies remaining after exclusion of the most heterogenous. 

Grey band: Overall 95% CI. Black curve: p-value pQ for Q-test. Dashed black line: homogeneity 

threshold TH. (D) Influence of aggregate study quality score on ATP release estimates. Red band: 

95% CI for overall estimate, red markers: score-specific estimate ± 95% CI, grey bars: number of 

studies that received indicated aggregate quality score (also reflected in marker sizes).  
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Figure S2. Influence of experimental and biological factors on the amount of ATP released 

following mechanical stimulation. Shown are estimates of relative ATP release above 

baseline following mechanical stimulation for different subgroups based on (A) 

experimental characteristics, (B) biological characteristics and (C) cell-types. Round markers: 

Subgroup-level estimates, markers sizes are proportional to number of datasets N in each subgroup 

(shown in parentheses), Horizontal black lines: ± 95% CI, Horizontal red lines: ± Bonferroni-

adjusted 95% CI, Red bands: overall estimate ± 95% CI.  † and * indicate significant differences 

(p<0.05) compared to overall estimate or to other subgroup (in case of two subgroups) before and 

after Bonferroni adjustment, respectively. Detailed statistics are in Table S2.  

J. Cell Sci.: doi:10.1242/jcs.223354: Supplementary information
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Figure S3. The distribution, bias, extent of heterogeneity and effect of study quality was 

evaluated for kinetic estimates of ATP release (thalf) (A) Study-level effect size distributions 

on raw scale (left) and logarithmic (base 10) scale (right). (B) Funnel plots for log-transformed 

study-level estimates. Black markers: study-level data. Blue lines: fixed effect (FE) estimate. 

Red lines: random effects (RE) estimate. Black lines: theoretical 95% CI for FE estimate in 

absence of bias. (C) Effect of cumulative study exclusion on RE estimates and heterogeneity of 

log-transformed effect sizes. Red band: 95% CI for studies remaining after exclusion of most 

heterogenous. Grey band: Overall 95% CI. Black curve: p-value pQ for Q-test. Dashed black line: 

homogeneity threshold TH. (D) Influence of aggregate study quality score on ATP release kinetic 

estimates. Red band: 95% CI for overall estimate, red markers: score-specific estimate ± 95% CI, 

grey bars: number of studies that received indicated aggregate quality score (also reflected in 

marker sizes).   
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Figure S4. Influence of experimental and biological factors on kinetics of mechanically-

stimulated ATP release. (A-E) ATP release kinetic estimates were stratified by online 

(orange) and offline (green) recording methods and subgroup analysis was conducted to 

evaluated influence of experimental (A) and biological (B) characteristics as well as differences 

between cell-types (C). Round markers: Subgroup-level estimates, Horizontal black lines:  ± 95% 

CI, Horizontal red lines: ± Bonferroni-adjusted 95% CI, Bands/diamonds: overall estimate ± 95% 

CI. Markers are proportional to number of studies N in each subgroup (shown in parentheses). † 

and * indicate significant differences (at least 5% level) compared to overall estimate before and 

after Bonferroni adjustment, respectively. Detailed statistics are in Table S4.  

J. Cell Sci.: doi:10.1242/jcs.223354: Supplementary information
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Table S1. Absolute estimates of ATP released from mechanically-stimulated mammalian 

cells (Amech), intracellular ATP (Acell), and basal extracellular ATP (Abase). Shown are meta-

analytic outcomes and corresponding heterogeneity statistics I2, H2 and Q. CI: Confidence intervals, N: 

Number of datasets, PQ: p-value corresponding to Q heterogeneity statistic used to evaluate null 

hypothesis that all studies reported same effect, Nucleated: Nucleated mammalian cells, RBC: Red blood 

cells.  

Meta-Analysis Summary Statistics 
ATP released 

(± 95% CI), units N I2 (%) H2 Q PQ 

Amech 
38.5 (18.2, 81.8)  

amol cell-1 123 99.9 1695.4 206843.1 <0.001 

Acell 

Nucleated 5.0 (2.6, 9.5) 
fmol cell-1 4 89.2 9.2 27.7 <0.001 

RBC 0.14 (0.12, 0.18) 
fmol cell-1 4 0 0.5 1.6 0.66 

Abase 
8.1 (3.9, 16.6) 

amol cell-1 84 99.8 657.9 54601.8 <0.001 

Table S2. Subgroup analysis of the effects of experimental and biological factors on amount 

of ATP released following mechanical stimulation. Relative ATP release data were stratified by 

experimental or biological characteristics, or cell type, and amount of ATP released and 

heterogeneity was compared between subgroups. Rmech: relative ATP release compared to baseline, 

CI: confidence intervals, PQ: p-value corresponding to Q heterogeneity statistic used to evaluate 

null hypothesis that all studies reported same effect, N: number of datasets per group. 

Click here to Download Table S2
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Table S3. Relationship between magnitude of mechanical stimulus and amount of ATP 

release evaluated by subgroup and meta-regression analyses. For subgroup analysis, Relative 

ATP release data were stratified by type of mechanical stimulus and amount of ATP released and 

heterogeneity was compared between subgroups. Rmech: relative ATP release compared to baseline. 

PQ: p-value corresponding to Q heterogeneity statistic used to evaluate null hypothesis that all 

studies reported same effect. For meta-regression, strength of relationship (regression slope, β) 

was investigated between the magnitude of mechanical stimulus and the amount of relative ATP 

released on logarithmic scale. Magnitude of stimuli were % stretch for strain, cmH2O for 

compression, absolute change in mOsm/L for hypotonic and hypertonic pressures, dyne/cm2 for 

fluid shear stress (FSS) and µm-1 for RBC deformation. Regression slopes were compared between 

relationships observed within-studies (βintra) and between-studies (βinter). SE(β): standard error of 

β, Pβ: Z-test derived p-value for comparison of βinter and βintra. N: Number of datasets per group.  

Table S4. Subgroup analysis of the effects of experimental and biological factors on ATP 

release kinetics. ATP release kinetics data were stratified by experimental or biological 

characteristics, cell type, or mechanical stimulus, and kinetics of ATP release and heterogeneity 

were compared between subgroups. thalf: Time to half max release, CI: confidence intervals, PQ: p-

value corresponding to Q heterogeneity statistic used to evaluate null hypothesis that all studies 

reported same effect, N: number of datasets per group. 

Click here to Download Table S3

Click here to Download Table S4

J. Cell Sci.: doi:10.1242/jcs.223354: Supplementary information

Jo
ur

na
l o

f C
el

l S
ci

en
ce

 •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n

http://www.biologists.com/JCS_Movies/JCS223354/TableS3.xlsx
http://www.biologists.com/JCS_Movies/JCS223354/TableS4.xlsx


Table S5.  Pharmacological Interventions used to study mechanically-stimulated ATP release. 

Bolded interventions are pharmacological agents that do not overlap with other known 

mechanisms of MSAR. Uncommon or unverified pharmacological interventions have been omitted. 

Drug pharmacology was obtained from literature identified in the current study. 

Target Pharmacological interventions 

Release mechanisms 
Vesicular NEM, bafilomycin, monensin, brefeldin A 

Pannexins carbenoxolone, 18α/β-glycyrrhetinic acid, probenecid, 10panx1, 
NPPB, SITS, DTT, mefloquine 

Connexins 
carbenoxolone, 18 α/β -glycyrrhetinic acid, octanol, heptanol, 
flufenamic acid (little activity at Panx1), arachidonic acid, 
mefloquine, GAP26, GAP27 

VRAC tamoxifen, fluoxetine, glybenclamide, phloretin, NPPB, SITS, 
verapamil 

Maxi-anion Gd3+, NPPB, SITS, arachidonic acid 
Auxiliary mechanisms 
ANK probenecid 
ATP synthase angiostatin, piceatannol 
CFTR glybenclamide, CFTR-172, Rp-cAMPS, niflumic acid 
ENaC amiloride 
L-type VSCC nifedipine 

P2X7 brilliant blue G, Gd3+, KN62, A10606120, A438079, A74003 

Piezo1 ruthenium red, Gd3+, GsMTx4 
TRPV4 HC067047, ruthenium red, Gd3+ 
Regulatory mechanisms 
Intracellular Calcium BAPTA-AM, EGTA-AM, thapsigargin 

Extracellular Calcium Calcium-free (Calcium omitted in solution, optionally chelated) 

COX etodolac, indomethacin, NS398, ETYA 

PKC calphostin C, chelerythrine, myristoylated PKC ζ pseudosubstrate, 
GF 109203X, Gö6976, Gö6983 

P38 mitogen-activated 
protein SB203590 

Rho kinase Y27632, GSK269962, H1152 
MLC kinase ML-7 
Tyrosine kinase herbimycin A, tyrphostin 46 
PI3K wortmannin, LY294002 
f-actin cytochalasin B, cytochalasin D 
microtubules nocodazole 
cholesterol MβCD 
cilia chloral hydrate 
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Table S6.  Mechanisms of mechanically-stimulated ATP release. The effects of 

pharmacological and genetic interventions on MSAR for studied cell types were calculated as an 

inhibitory effect (%) ± 95% confidence intervals (CI) compared to vehicle control, according to 

random effects meta-analysis model. Positive effects (>0%) indicate that MSAR was inhibited and 

negative effects (<0%) indicate that MSAR was potentiated. Interventions for which 0% was not 

included in the 95% CI had a significant effect on MSAR. Involvement of studied mechanism in 

MSAR is indicated by green box (involved) or red box (not involved), and quality of evidence is 

indicated by dark green/red (finding replicated by separate study/method) or light green/red (not-

replicated). Orange boxes: Interventions with inconsistent effects, reasoning for each case is 

provided in table. PQ: p-value corresponding to Q heterogeneity statistic used to evaluate null 

hypothesis that all studies reported same effect, N: number of datasets. *indicates the interventions 

that were activators or agonists of MSAR, and therefore were not pooled with inhibitory 

interventions for calculation of overall inhibition.   

Click here to Download Table S6
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Table S7.  ATP release in pathologies.  Relative effect (%) of pathology on ATP release compared to 

unaffected controls. D↓↑: specifies direction of effect, CI: 95% confidence intervals, N: number of 

datasets per condition, I2 and H2: heterogeneity statistics, PQ: p-value corresponding to Q heterogeneity 

statistic used to evaluate null hypothesis that all studies reported same effect, ADPKD: autosomal 

dominant polycystic kidney disease, ARPKD: autosomal recessive polycystic kidney disease, CF: 

cystic fibrosis, Epi.: epithelia, Glaucoma: primary acute angle closure glaucoma, FSS: fluid shear 

stress, RBC: red blood cells. 

Covariates 
Meta-Analysis Summary Statistics 

D↓↑ Rel. Effect, %  
(±95% CI) N I2 (%) H2 PQ 

Pathology 
Cystic fibrosis ↓ -66.6 (-78.6, -54.5) 14 87.9 <0.001 
    RBC, pancreatic epi. ↓ -87.7 (-91.5, -83.8) 10 7.9 1.1 0.37 
    Airway epi., astrocyte - 18.1 (-8.5, 44.7) 4 29.1 1.4 0.24 
Colitis* ↑ 248.1 (172.4, 323.8) 9 19.4 1.2 0.27 
Diabetes, type II  ↓ -49.6 (-75.0, -24.1) 1 - - - 
Glaucoma ↑ 1107.8 (539.0, 1676.6) 2 62.5 2.7 0.1 
Hypoxia - 20.3 (-55.9, 96.5) 8 97.4 37.8 <0.001 
Acute hypoxia*  ↑ 60.9 (46.4, 75.4) 7 0 0.8 0.53 
Chronic hypoxia ↓ -91.8 (-103.4, -80.2) 1 - - - 
Ectopic ossification - 4.5 (-38.4, 47.5) 1 - - - 
Interstitial cystitis  ↑ 107.7 (53.3, 162.0) 7 0 0.99 
Polycystic kidney disease - 7.8 (-43.1, 58.8) 7 92.5 13.3 <0.001 
FSS – AD/ARPKD  ↓ -72.9 (-98.9, -46.9) 2 0 <0.001 1 
  Hypotonic – ADPKD ↑ 92.9 (15.0, 170.7) 3 75.5 0.13 
Hypotonic – ARPKD ↓ -25.2 (-147.8, 97.3) 2 88.2 <0.01 
Pulmonary hypertension * ↓ -56.6 (-73.0, -40.2) 3 0 0.8 0.43 
Spinal cord injury  ↑ 399.2 (-40.3, 838.6) 1 - - - 
Xerocytosis, hereditary  ↓ -61.9 (-71.9, -51.9) 1 - - - 
*Pooled datasets are from same study
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Table S8. Search Strategy 

Table S9. Systematically identified studies and their contributions to meta-analysis. 

Table S10. List of study-level characteristics extracted for each study and used in subgroup 

analyses 

Click here to Download Table S8

Click here to Download Table S9

Click here to Download Table S10
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Table S11: Experimental parameter assumptions for ATP unit conversion. Top table 

describes how unavailable (output) parameters were calculated based on available (input) 

parameters and assumed parameter values (assumption). Assumed cell-related parameters are 

shown in middle table, and culture dish-dependent parameters shown in the bottom table.   

Input parameter(s) Assumed 
parameter Calculation Output 

parameter 
Cytocrit/hematocrit (CC, %), 
total volume (TV) Cell volume (CV) N = (CC x TV) / CV Cell number (N) 

Protein mass (PM) Protein / cell (PC) N = PM / PC Cell number (N) 
DNA mass (DM) DNA / cell (DC) N = DM / DC Cell number (N) 
Confluence (C, %), surface 
area (SA) 

Confluent Cell 
Density (D) N = SA x C x D Cell number (N) 

Culture Plate Volume (V) V Volume (V) 

Assumed parameters Assumed values 
Protein / cell (PC) 320 (pg/cell) 

Mammalian cell volume (CV) 2.41 (pL) 

RBC volume (CV) 0.10 (pL) 
Platelet volume (CV) 0.10 (pL) 
Cellular density at confluence 
(D) 105 cells / cm2 

Culture Dish 
Surface area Assumed parameters 

(SA, cm2) Volume (V, mL) 
10 cm 55 10 
6 well (35mm) 9.6 2 
48 well  1 1 
96 well 0.3 0.2 
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