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PATELLINS are regulators of auxin-mediated PIN1 relocation and
plant development in Arabidopsis thaliana
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ABSTRACT
Coordinated cell polarization in developing tissues is a recurrent
theme inmulticellular organisms. In plants, a directional distribution of
the plant hormone auxin is at the core of many developmental
programs. A feedback regulation of auxin on the polarized localization
of PIN auxin transporters in individual cells has been proposed as a
self-organizing mechanism for coordinated tissue polarization, but
the molecular mechanisms linking auxin signalling to PIN-dependent
auxin transport remain unknown. We used a microarray-based
approach to find regulators of the auxin-induced PIN relocation in
Arabidopsis thaliana root, and identified a subset of a family of
phosphatidylinositol transfer proteins (PITPs), the PATELLINs
(PATLs). Here, we show that PATLs are expressed in partially
overlapping cell types in different tissues going through mitosis or
initiating differentiation programs. PATLs are plasma membrane-
associated proteins accumulated in Arabidopsis embryos, primary
roots, lateral root primordia and developing stomata. Higher order patl
mutants display reduced PIN1 repolarization in response to auxin,
shorter root apical meristem, and drastic defects in embryo and
seedling development. This suggests that PATLs play a redundant
and crucial role in polarity and patterning in Arabidopsis.
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INTRODUCTION
Multicellular organisms rely on a number of signalling molecules
that participate in intracellular, cell-to-cell and long-distance
communication, allowing integration of a variety of cellular
responses and processes into the tissue context. As sessile
organisms, plants have evolved a specific life strategy involving
not only physiological but also developmental adaptations to cope
with environmental changes. This necessitates mechanisms and
signalling molecules that mediate (re)patterning and (re)polarization
at the cellular and tissue level to flexibly adjust development. Auxin
is a key plant hormone involved in most aspects of plant life,
including directional growth responses and formation of new axes

of polar growth (Tanaka et al., 2006). Auxin is characteristically
distributed in concentration gradients as a consequence of local
biosynthesis, intracellular catabolism, and polar cell-to-cell
transport (polar auxin transport, PAT) (Benková et al., 2003;
Chandler, 2009; Kleine-Vehn et al., 2008; Ruiz Rosquete et al.,
2012; Sauer et al., 2013). The direction of PAT is determined by the
polarly localized auxin exporters of the PINFORMED (PIN) family
(Adamowski and Friml, 2015; Petrášek et al., 2006; Wisńiewska
et al., 2006). PIN-mediated auxin transport is feedback regulated by
auxin at multiple levels, including transcription, intracellular
trafficking, localization and degradation, all of them involving
potentially different subsets of auxin receptors and downstream
components (Robert et al., 2010; Sauer et al., 2006). Auxin-
mediated regulation of PIN localization relies on the nuclear auxin
signalling pathway (Sauer et al., 2006) mediated by the auxin
receptor TRANSPORT INHIBITOR RESPONSE 1 (TIR1) (Lavy
and Estelle, 2016). This suggests that auxin-mediated PIN
relocalization involves so far unknown regulator(s), which are in
turn transcriptionally controlled via the TIR1 pathway and can be
repressed by genes coding for AUX/IAA proteins, such as AXR3
(Sauer et al., 2006). In order to find these regulators, a microarray-
based approach was designed, employing inducible expression of a
stabilized AXR3 (also known as IAA17) ‘super-repressor’ HS:
axr3-1 (Knox et al., 2003), which fails to exhibit auxin-induced
PIN relocalization when the repressor transcription is induced.
Candidate genes should respond to auxin in the wild type, but not
in the HS:axr3-1 background. Among the candidates, we found
few genes coding for phosphatidylinositol transfer proteins (PITPs),
the PATELLINs (PATLs), named after the Latin word patella
or meaning ‘small plate’, making reference to the subcellular
localization of PATL1 at the cell plate during cytokinesis of the
founding member of the family in Arabidopsis (Peterman et al.,
2004). These proteins represent possible candidates for factors
that mechanistically link PIN localization with auxin-dependent
transcriptional control.

Phosphatidylinositols (PtdIns) are signalling lipid molecules
commonly present in all eukaryotic membranes (Balla et al., 2009;
Di Paolo and De Camilli, 2006; Meijer and Munnik, 2003). They
have a dual cellular function as scaffold lipids to recruit cytosolic
proteins, and as precursors of other lipid or soluble second
messengers participating in a variety of signalling processes,
including stress responses to the environment and during
development. Their synthesis is temporally and spatially
controlled by metabolic enzymes, such as phosphatases, kinases
and phospholipases, allowing fine-tuned lipid levels and responses
(Mueller-Roeber and Pical, 2002). In plants, several of the enzymes
involved in phosphoinositide metabolism have been characterized
in the context of reproductive and vegetative development and
during the response to the biotic and abiotic environment. An
intriguing group of PtdIns-related proteins are the PITPs, which areReceived 24 March 2017; Accepted 5 July 2017
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represented by the yeast Sec14p protein (Bankaitis et al., 2010).
In animal models, PITPs are able to transfer PtdIns or
phosphatidylcholine between membranes in vitro (Aitken et al.,
1990), to stimulate Ca2+-triggered exocytosis (Hay and Martin,
1993), regulate budding and vesicle formation at the trans-Golgi
network (Simon et al., 1998), and assist phospholipase C-mediated
PtdIns(4,5)P2 hydrolysis (Cockcroft, 1997; Fensome et al., 1996).
Because of these activities, PITPs are placed in a central position at
the interphase between phosphoinositide metabolism and signalling
(Cockcroft, 2001). However, which one reflects their in vivo
function is a topic of current investigation.
In plants, several proteomics studies have identified PATLs as

putative factors associated with diverse signalling pathways, such as
response to brassinosteroid (Deng et al., 2007; Tang et al., 2008)
and cytokinin (Černý et al., 2011) hormones, and pathogen attack
(Benschop et al., 2007; Elmore et al., 2012; Kiba et al., 2012), the
latter supported by functional data on virus mobility and
involvement in infectious processes (Kiba et al., 2012; Peiró
et al., 2014). PATLs are also involved in cytokinesis (Peterman
et al., 2004). However, there is comparatively little direct functional
evidence about these genes, and a clear characterization of the PATL
subfamily of Sec14p-like proteins in plants is still lacking. Here, we
present functional evidence for a redundant role of Arabidopsis
thaliana PATLs in auxin effect on PIN1 polar localization, and
characterise the role of this protein family during plant development
based on tissue expression patterns, subcellular localization and
higher order mutant analyses.

RESULTS
The auxin feedback on PIN polarity can be visualized by PIN
polarity changes in A. thaliana root cells manifested by basal-to-
inner lateral repolarization of PIN1 in endodermis and pericycle
cells, and a basal-to-outer lateral repolarization of PIN2 in cortex
cells (Sauer et al., 2006). This effect depends on the SCFTIR1-AUX/
IAA-ARF signalling pathway, since ectopic heat shock-inducible
expression of a dominant-negative mutant of the auxin signalling
repressor AXR3 (HS:axr3-1) (Knox et al., 2003) leads to a loss of
PIN lateralization after auxin treatment (Sauer et al., 2006). To

identify downstream factors required for this auxin effect on PIN
polarity, we performed a microarray experiment to search for genes
that respond differentially to auxin between wild type and HS:axr3-1
in roots, and considered those genes as potential mediators of this
effect (Fig. S1A; T. Prat, W. Grunewald, G. Molnar, R. Tejos,
M. Schmid, M.S. and J.F., unpublished data). The overlap of auxin-
regulated genes and genes that are differentially regulated between
wild type and HS:axr3-1 yielded a list of 245 candidate genes that
were auxin-regulated in an AXR3-dependent manner, and thus are
potential regulators of PIN polarity (Fig. S1B; Table S1). This list was
manually examined for genes with a possible role in protein
trafficking.

PATLs are auxin-regulated genes required for auxin-
mediated PIN1 lateralization
Among the selected genes using this microarray approach, the PATL
genes appeared to be interesting candidates as they code for
phosphoinositide-related proteins that may be involved in auxin-
regulated development and PIN protein trafficking and localization,
as previously shown for other phosphoinositide-related metabolic
enzymes (Ischebeck et al., 2013; Mei et al., 2012; Nováková et al.,
2014; Tejos et al., 2014; Ugalde et al., 2016). PATL2, PATL3,
PATL4 and PATL6 were found to be differentially represented in
response to the auxin microarray data set (Fig. 1A) but these
responses were not observed in the HS:axr3-1 background
(Fig. S1C). The auxin regulation of PATL genes was confirmed
using quantitative RT-PCR (Fig. 1A). PATL2 and PATL6 were
significantly induced in response to auxin, whereas PATL3 and
PATL4 were repressed (Fig. 1A). Both responses occurred after 30
and 60 min of auxin treatment (indole 3-acetic acid, IAA; 10 μM).
We then tested if PATLs were involved in auxin-mediated PIN1
lateralization in root endodermis cells. To do so, we isolated
insertional mutants for PATL2,PATL3,PATL4 andPATL6 (Fig. S2),
and as these single patl mutants did not show any developmental
defect (not shown) we generated higher order mutants. The
quadruple patl2 patl4 patl5 patl6 ( patl2456−/−) mutants displayed
clear defects in PIN1 lateralization response, e.g. we observed
only limited rearrangement of PIN1 polarity in root endodermis

Fig. 1. PATLs are auxin-regulated genes involved in auxin-mediated PIN1 repolarization in Arabidopsis roots. (A) Left: a subset of the PATLs were
identified as auxin-modulated genes in the microarray experiment. PATL2 and PATL4 were significantly reduced, and the PATL6 transcript was significantly
increased. Fold changes between the conditions are indicated foreach gene. *P<0.05.Right: these datawere confirmed using quantitativeRT-PCRonplants treated
with 10 μM IAA for the indicated time. Data are mean±s.e.m. (n=3). *P<0.05, compared to time zero (Student’s t-test assuming unequal variance). (B,C) Auxin-
induced PIN1 lateralization assay. Seven-day-old wild-type or patl2456−/−seedlings were treated with 10 μM NAA or 1 μl/ml DMSO (mock control), and PIN1
immunolocalization was performed. Arrowheads in B indicate PIN1 lateralization (red signal) in root endodermis cells. The basal to inner lateral ratio was measured
for PIN1 fluorescence in root endodermis cells using ImageJ, and the mean±s.d. for n=35 individual cells corresponding to 10 different roots was calculated for each
genotype (C). The experiment was repeated twice. *P<0.05, comparing wild type to patl2456−/− mutants (two-tailed Student’s t-test). Scale bars: 20 μm.
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following auxin treatment (1-naphthaleneacetic acid, NAA; 10 μM)
(Fig. 1B,C). However, PIN2 lateralization response in patl2456−/−

mutants was comparable to that in the wild type. Additionally, PIN1
and PIN2 localization in normal conditions did not show obvious
defects in patl2456−/− mutants. This provided further confirmation
that PATLs are good candidates for regulators of auxin effect on
PIN1 polarity identified from our microarray approach.

The A. thaliana PITP family
PATLs belong to a family of proteins having a domain homologue
to yeast Sec14p (Peterman et al., 2004; Vincent et al., 2005). Sec14
is one of the 24 complementation groups of Saccharomyces
cerevisiae secretory (Sec) mutants isolated by Novick and
co-workers in the early 1980s (Novick and Schekman, 1979;
Novick et al., 1980, 1981), and Sec14p was later demonstrated as an
essential protein that functions in the formation and exit of vesicles
from the trans-Golgi network (Bankaitis et al., 1990). In order to
identify all Arabidopsis PITPs, we used the yeast Sec14p protein
sequence to search The Arabidopsis Information Resource (TAIR)
database for proteins with significant homology, and found a total of
32 Sec14p-like proteins (Table S2) that group into two distinct
phylogenetic clades (Fig. 2A). Some of them (14/32) consist solely
of a Sec14p-like domain, similar to the yeast Sec14p protein
organization, while others have incorporated an additional domain
(Fig. 2B) (Mousley et al., 2007). The A. thaliana Sec Fourteen
Homologs (AtSFHs) group in a single cluster (Fig. 2A) and have a
relatively high homology to the yeast Sec14p (37–43% homology,
Table S2). In addition to the Sec14p-like domain, 12 of 14 of the
AtSFHs contain a 100 amino acid-long nodulin domain at their
C-terminal end. This domain was initially characterized in the
nodule-specific protein Nlj16 and defines a plasma membrane
(PM)-targeting module (Kapranov et al., 2001). The second cluster
is formed by a heterogeneous group of proteins with a variable
homology to Sec14p (21–32% homology) (Table S2). We have
called them A. thaliana PITPs (AtPITPs). This cluster contains,
among others, the PATL gene subfamily, a subclade of six proteins
containing a Golgi dynamics (GOLD) domain in tandem with the
Sec14p-like domain (Fig. 2B). The GOLD domain is widely
present among mammalian proteins associated to membranes by
hydrophobic interactions that participate in vesicle formation at the
ER/Golgi interphase. It is also found in proteins that modulate
membrane homeostasis (Anantharaman and Aravind, 2002).
Similarly, as occurs for many other protein families in plants,
PITPs in Arabidopsis have greatly expanded in number and
diversified in their function. The few published studies on plant
PITPs implicated their function in response to abiotic (Kearns et al.,
1998; Monks et al., 2001) and biotic (Kiba et al., 2012; Peiró et al.,
2014) stresses during nodule formation (Kapranov et al., 2001), cell
division (Peterman et al., 2004) and subcellular trafficking (Böhme
et al., 2004; Vincent et al., 2005), which suggests a broad spectrum
of functions regulated by PITPs in plants.

PATL expression and protein localization patterns
Expression and protein localization patterns for the Arabidopsis
PATLs have been addressed by just a few studies (Peterman et al.,
2004; Suzuki et al., 2016). PATL1 and PATL2 have been shown to
bind phosphoinositides, and both proteins have been observed
to form cell plates in the root apical meristem (RAM) using
specific antibodies (Peterman et al., 2004), or through constitutive
expression of GFP-fusion proteins (Suzuki et al., 2016).
Additionally, both PATL1 and PATL2 were localized in tobacco
BY-2 cells and observed to be closely associated with the periphery

of the cell plates, confirming the close relationship between PATL
proteins and membrane trafficking during the formation of cell
plates, a known phosphoinositide-dependent membrane trafficking
process (Isono et al., 2010; Suzuki et al., 2016; van Leeuwen et al.,
2007; Vermeer et al., 2006). On the other hand, PATL3 and PATL6
have been ectopically expressed as GFP fusions in leaf pavement
cells and they localize to the PM, forming discrete clusters (Peiró
et al., 2014). However, there are no available data about the cell- or
tissue-specific regulation of PATL expression.

To obtain additional insight into PATL expression pattern and
function, we generated Arabidopsis translational reporter lines for the
PATL genes identified in the microarray experiment (see Fig. 1; Fig.
S1). To do so, we used native promoters (2000 bp of their gene
regulatory region) to drive the expression of the GFP coding gene
fused to the 5′-end of the full-length coding sequences of PATL2,
PATL3, PATL4 and PATL6, and generated Arabidopsis transgenic
plants. We then used those lines to observe embryogenesis, and to
assess 7- to 12-day-old seedlings for GFP-PATLs, to gain insight into
their expression patterns and protein localization in embryos, RAM

Fig. 2. Sec14-like proteins in A. thaliana. (A) Phylogenetic tree of Sec14p-
like proteins from Arabidopsis. S. cerevisiae Sec14p (scSec14p) was used as
the outgroup. The Arabidopsis proteins group in two clades, one highly
homologous to scSec14p-containing proteins (AtSFH1–14), which seem to be
evolutionarily older and less diverse, although two of them do not contain an
extra nodulin-like domain (AtSFH11 and AtSFH14). The second clade
contains amore diverse group of PITPs in terms of homology to scSec14p (see
Table S2). Within this group appears a small cluster of six proteins that contain
an additional GOLD domain, the PATLs. (B) Schematic of the protein
configuration found among Arabidopsis PITPs. A Sec14p-like domain (yellow
box) can be found in tandem with a GOLD domain (blue box) or a nodulin-like
domain (red box), or it can be the only distinguishable protein domain, as is the
case for scSec14p.
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and lateral root primordia (LRP), as they represent tissues in which
PIN-dependent local auxin accumulation has been proposed to play
an important role (Adamowski and Friml, 2015). We observed that in
the analysed tissues, PATLs are expressed in distinct, sometimes
partly overlapping patterns. Their expression is linked mainly to the
leaf pavement cells, vascular tissue and dividing cells of the RAM,
and at all stages of LRP development, and are observed during
embryogenesis (Figs 3 and 4). For instance, as previously shown,
PATL1 is expressed in the whole RAM associated with the cell plates
(Fig. 3A) (Peterman et al., 2004), and in stele cells in the distal zone of
the RAM, where cells cease dividing and start to differentiate
(Fig. 3B, asterisk). PATL2p:GFP-PATL2 was observed in pericycle
and provascular cells in the distal zone of RAM (Fig. 3C,D) as well as
in differentiated vascular tissues in roots (Fig. 3C,E), partially
resembling the PATL1 expression pattern (Fig. 3A). Additionally,
PATL2p:GFP-PATL2 was observed in pericycle cells in the root
elongation zone (Fig. 3C,D) and from stage V onwards during LRP
formation (Fig. 3F; LRP developmental stages as described by
Malamy and Benfey, 1997), in the vascular phloem tissues and in the
cells flanking the developing LRP (Fig. 3E,F). The potential
involvement of PATL2 in vascular development was also
suggested by PATL2p:GFP-PATL2 expression during early
specification of provascular tissues during embryogenesis (Fig. 4A).
PATL3, PATL4 and PATL6 expression and localization are closely

associated with tissues with high mitotic activity, including the RAM,
LRP, embryo and stomata precursor cells. PATL3p:GFP-PATL3
expression is more prominent in external cell layers (i.e. the epidermis
and cortex in root tips) (Fig. 3G) compared to the more ubiquitous
expression of PATL4p:GFP-PATL4 in RAM (Fig. 3J), and the stele
cell expression of PATL6p:GFP-PATL6 (Fig. 3O). Additionally,
PATL3p:GFP-PATL3 and PATL4p:GFP-PATL4 are expressed in the
basal meristem of the root tip (Fig. 3G,H,J,K), and the LRP (Fig. 3I,
N), and they accumulate at the anticlinal PM of the newly divided cells
(Fig. 3H,L,P, arrowheads). This partially overlapping and
complementary PATL expression found in root tissues was also
observed in embryogenesis, and pavement cell and stomata
development in cotyledon epidermis (Fig. 4). For instance, in
embryos, PATL2p:GFP-PATL2 is expressed in provascular cells
(Fig. 4A), whereas PATL4p:GFP-PATL4 expression appears to be
ubiquitous during early embryogenesis stages, localizing mostly to the
cytosol (Fig. 4B, left panel), but becomes concentrated at the PM in
later stages (Fig. 4B, right panel). Furthermore, PATL6p:GFP-PATL6
is only expressed in the inner provascular cell layers in embryos
(Fig. 4C). Notably, in cotyledon epidermis, PATL2p:GFP-PATL2,
PATL4:GFP-PATL4 and PATL6p:GFP-PATL6 are also expressed in
different cell types with a limited overlap (Fig. 4D–F). These distinct
expression patterns point to a developmentally regulated expression, in
particular in highly dividing tissues, as previously shown for PATL1
(Peterman et al., 2004), but also indicate their potential involvement in
differentiation processes of vascular tissues, lateral roots and stomata.
Moreover, these observations point to common roles for PATLs linked
to their PM association. Indeed, when overexpressed, PATL1–5
localized to the PM with some level of apical/basal enrichment,
possibly due to their strong localization to the cell plate during
cytokinesis (Fig. S3). Taken together, these observations suggest that
all members of the PATL family associate with the PM, showing
tissue- and cell type-specific expression patterns.

PATLs are redundantly required for auxin-mediated root
development
To address the role of PATLs during plant development, we isolated
knockout mutants for PATL2, PATL4, PATL5 and PATL6 and a

single knockdown mutant for PATL3 (Fig. S2) from the Salk
collection (Alonso et al., 2003). No developmental abnormalities
were detected in roots in single, double and triple mutant
combinations (not shown), indicating a pronounced functional
redundancy among the PATL gene family. Nonetheless, in the
multiple patl2456−/− mutant, the RAM size was reduced by 25%
(Fig. 5A,B). Auxin regulates several processes in the root, including
cell division and elongation, meristem size in a concentration-
dependent manner, and root gravitropism (Lavy and Estelle, 2016;
Ruzicka et al., 2009). Therefore, we evaluated auxin response in
patl2456−/− mutants germinating seeds in media containing 2,4-
dichlorophenoxyacetic acid (2,4D), a synthetic auxin analogue. In
wild-type plants, 2,4D reduces RAM size at 10 and 100 nM
concentrations, whereas patl2456−/− mutants were resistant to this
inhibitory effect at 10 nM (Fig. 5C). Both 2,4D concentrations, 10
and 100 nM, did not perturb normal primary root gravitropism in
wild-type seedlings, but patl2456−/−mutants germinated in 100 nM
2,4D were highly agravitropic (Fig. 5D). These data indicate that
PATLs are involved in auxin-regulated processes including root
meristem size and gravitropic growth.

PATLs are redundantly required for embryo and seedling
patterning
We further characterized patl2456−/− mutants by evaluating other
developmental phenotypes, as suggested by the expression patterns
described in Figs 3 and 4. As PATL2, PATL4 and PATL6 are
expressed during embryo development, we analysed the patl2456−/−

mutants for defects in early embryogenesis, during which auxin
and auxin transport play a major role (Jeong et al., 2011; Petrášek
and Friml, 2009; Robert et al., 2015). Arabidopsis embryogenesis
follows a highly stereotypic division pattern. After zygote
formation, an initial asymmetric division generates a small apical
cell and a larger basal cell. The basal cell further divides anticlinally
into a cell file, the suspensor, and the apical cell develops to form
an embryo body. Later during embryogenesis, the uppermost
suspensor cell, the hypophysis, is included in the embryo body as an
auxin-dependent founder of the root meristem (Robert et al., 2013;
Smit and Weijers, 2015) (Fig. 6A–F). When we analysed the
patl2456−/− mutants, ∼10% of the embryos (n=205) showed
aberrant cell divisions of the hypophysis (compare Fig. 6G,H with
Fig. 6B,C). Next, we introduced the patl3mutant into the quadruple
patl2456−/− mutant. Notably, 4.8% of the embryos (n=167)
obtained from patl2+/− patl3456−/− mutant plants displayed
aberrant morphology at basal or apical poles (Fig. 6I–K). A
segregation distortion for the patl2 mutant allele in the progeny
of patl2+/−patl3456−/− plants was observed when compared to
the segregation of a normal Mendelian gene (Table S3). So, we
hypothesized that the quintuple mutant was partially lethal as we
found developmental phenotypes such as very tiny seedlings
(Fig. 7A), as well as rootless and mono- or triple-cotyledon
seedlings (Fig. 7B–E) segregating at a frequency of 4.6% (n=151)
(much below the expected 25% frequency), when we analysed the
progeny of a single patl2+/− patl3456−/− plant (Table S3).

To independently interfere with the function of a PATL subfamily,
we generated artificial microRNAs (amiRNAs) targeting PATL1
and PATL3, and introduced the constructs into a quadruple
patl2456−/− mutant plant. We then crossed T2 transformants and
analysed the first generation of that cross. In the first generation,
∼25% (n=75) of patl2456−/− amiPATL1/3 seedlings showed
phenotypes similar to that described for patl2+/−patl3456−/−

mutants, including cotyledon defects (Fig. 7F,G), rootless seedlings
(Fig. 7H), and seedlings with ectopic structures (Fig. 7I). Altogether,
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Fig. 3. PATL expression patterns and subcellular localization in Arabidopsis roots. (A–Q) Expression patterns were obtained with a confocal microscope
using immunohistochemical assays for PATL1 in wild-type roots (A,B) or using GFP-PATL translational reporter lines (C–Q). (A,B) PATL1 expression in RAM (A)
and in inner vascular tissue in the differentiation zone in root tips (B, asterisk) in wild-type seedlings. PATL1 was detected using an anti-PATL1 antibody (red).
Nuclei were stained using 1 μg/ml DAPI (blue). (C−F) PATL2p:GFP-PATL2 expression pattern (green) in primary roots can be observed in the distal zone
of the RAM in pericycle cells (D, arrow), in vascular tissue in mature roots (C,E, asterisk), and in the LRP (F). In the right panels in C, z-stack reconstructions tilted
90° in the x-axis are shown from the areas labelled 1–3 in the left panel in C. (G−I) PATL3p:GFP-PATL3 expression pattern in primary root (G,H) and LRP (H).
The arrowhead in H indicates GFP-PATL3 at the newly formed cell plate of an epidermal cell. (J−N) PATL4p:GFP-PATL4 was observed in all layers of primary
roots (J) with the exception of the quiescent centre (K). GFP-PATL4 is localized at the apical PM of two contiguous cells (L, arrowheads), and is enriched at later
stages of cell division (mitosis stages indicated in the upper right corner of the panels in M). GFP-PATL4 expression was observed during all stages of LRP
development (N). (O−Q)PATL6p:GFP-PATL6 expression pattern in primary roots (P) and LRP (Q). The arrowhead in P indicates polar enrichment of GFP-PATL6
in endodermal cells. The LRP developmental stages are indicated in the upper right corner of each image in F, I and N. DAPI was used to stain nuclei (blue in A,M)
and propidium iodide was used to counterstain cell walls in root cells (red in C,G,J,O). Scale bars: 20 μm. a, anaphase; cor, cortex; en, endodermal cell; ep,
epidermal cell; eT, early telophase; m, metaphase; per, pericycle cell; QC, quiescent centre; T, telophase.
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these observations suggest a crucial and redundant function for
PATLs in embryo patterning and organogenesis.

DISCUSSION
This work is the first attempt to describe the function of the family
of the Arabidopsis GOLD-containing Sec14p-like proteins, the
PATLs. We identified multiple members of this family as potentially
auxin-regulated genes from the microarray approach designed to
obtain regulators of PIN polarity and auxin feedback on PIN polarity,
acting downstream of TIR1-AUX/IAA-ARF auxin signalling.
The results presented here indicate that PATL overlapping

expression patterns are developmentally regulated. PATLs are
expressed in tissues with high cell division activity, such as RAM
and LRP, or those entering a differentiation program, such as vascular
tissue formation and stomata development. PATL expression patterns
closely resemble PIN expression patterns. For instance, PATL6 and
PIN1 are both expressed in stele cells in root tips (Fig. 3O,P)
(Omelyanchuk et al., 2016); PATL4 and PIN1, and PATL2 and PIN6,
are co-expressed in LRP (Fig. 3N,Q) (Benková et al., 2003).
Additionally, PINs and PATLs also share expression in other tissues
such as root epidermis and cortex, and in embryos. Therefore, in
addition to the described localization and putative function of PATL1
and PATL2 during late cell plate formation (Peterman et al., 2004),
they may be involved in regulating other lipid-based signalling
pathways at the PM implicated in regulating PIN1 proteins, or other
proteins and processes linked to cell function and differentiation.
Our genetic analysis revealed that PATLs have crucial and

redundant functions in plant development. Knocking out four of the
six PATL genes ( patl2456−/−) produces mild defects during
embryonic root patterning at low frequency. When only one PATL
gene remained expressed in the quintuple mutant background,
stronger phenotypes in apical-basal patterning were observed, and
many embryos did not produce viable seeds. The surviving seeds
produced seedlings with strong patterning defects often lacking
roots and showing their regular formation of cotyledons. Even
stronger phenotypes along the same lines were observed when the
function of all six members was downregulated. These strong
patterning phenotypes were strongly reminiscent of mutants in

auxin transport (such as pin1 or pin1,3,4,7) (Benková et al., 2003;
Friml et al., 2003), signalling (such as monopteros or bodenlos)
(Weijers et al., 2006) or PIN polar localization (gnom, pinoid)
(Kleine-Vehn et al., 2009). These strong, apparently auxin-related
patterning phenotypes, together with defective auxin effect on PIN
polarity and auxin-related growth phenotypes in the patl2456−/−

roots, support the notion that PATLs are components of the auxin
feedback on PIN polarity.

Previous experiments have indicated a role for phosphoinositide
in auxin signalling (Xue et al., 2007). In this report, we identified the
PATLs as potential molecular intermediates in an auxin-mediated
transcriptional control of key enzymes involved in the interphase
between lipid synthesis and lipid signalling. PATLs are associated
with the PM, where they may regulate the levels and localization of
phosphoinositides. In this way, PATLs would influence signalling
cascades by directly or indirectly controlling different PM proteins,
including PIN auxin transporters. The exact molecular base of these
regulations and how they are integrated with other components of
the auxin signalling and PIN polarity control remain topics for
future investigation.

MATERIALS AND METHODS
Plant material
All lines are in the Columbia background of A. thaliana. Insertional mutants
patl2 (SALK_086866), patl3 (SALK_093994), patl4 (SALK_139423), patl5
(SALK_124448) and patl6 (SALK_099090) were obtained fromArabidopsis
Biological Research Center (ABRC) and genotyped for homozygosity using
the primers listed in Table S4. Seeds were surface sterilized overnight by
chlorine gas, sown on solid Arabidopsis MS medium [0.5× Murashige and
Skoog basal salts, 1% (w/v) sucrose and 0.8% (w/v) agar, pH 5.9] and
stratified at 4°C for at least 2 days prior to transfer to a 16 h-light–8 h-dark
illumination regime in a growth room kept at 22°C. Seedlings were grown
vertically for 4–12 days prior to the analysis.

Cloning procedures
Coding sequences for PATLs as well as promoter sequences corresponding to
2000 bp upstream of the ATG codon were amplified using iPROOF DNA
polymerase (BioRad), cloned using pENTR Directional TOPO Cloning Kit
(Invitrogen) or Gateway BP Clonase (Invitrogen), and recombined into

Fig. 4. PATL expression during
embryogenesis and in cotyledon
epidermal cells. PATL expression during
embryo development (A–C) and in cotyledon
epidermal cells (D–F) was observed using
PATL2p:GFP-PATL2 (A,D), PATL4p:GFP-
PATL4 (B,E), and PATL6p:GFP-PATL6 (C,F)
reporter lines. GFP fluorescence is depicted
in green and chloroplast autofluorescence in
red. Scale bars: 20 μm.
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destination expression vectors as previously described (Karimi et al., 2007).
All forward primers for cloning coding sequences contained the
attB1 sequence 5′-GGGGACAAGTTTGTACAAAAAAGCAGGCTTC-3′
upstream of the gene-specific sequence, and all reverse primers contained the
attB2 sequence 5′-GGGGACCACTTTGTACAAGAAAGCTGGGTC-3′
upstream of the gene-specific sequence. Similarly, forward primers
for cloning promoter sequences contained the attB4 sequence 5′-
GGGGACAACTTTGTATAGAAAAGTTGGA-3′, and reverse primers the
attB1r adapter sequence 5′-GGGGACTGCTTTTTTGTACAAACTTGC-3′.
All sequence-specific primers used for cloning are listed in Table S4.

AmiRNAs were designed using Web MicroRNA Designer (Ossowski
et al., 2008; http://wmd3.weigelworld.org/cgi-bin/webapp.cgi). Briefly, we
used full PATL1 and PATL3 coding sequences, selected for each gene two
amiRNA sequences from the list of sequences suggested by the web designer

(PATL1a, 5′-TATAGTGTAGTTTGCTGGCGG-3′; PATL1b, 5′-TCGAAT-
TGTTTAACAGCCCGT-3′; PATL3a, 5′-TGTCTTATTATAAAGCTCCG-
T-3′; PATL3b, 5′-TACACATAAGATATCTCGCTT-3′), and generated two
amiRNAs following a PCR-based approach to generate point mutations in the

Fig. 5. patl2456−/− mutants have reduced RAM size and perturbed
response to auxin. (A−C) RAM was measured using images obtained from
7-day-old seedling root tips mounted in chloral hydrate using a DIC
microscope. The RAM was measured from the quiescent centre to the point at
which the epidermal cells started to elongate, i.e. were significantly larger
(arrowhead in A). patl2456−/− mutants have a shorter RAM than wild-type
seedlings (B) and are resistant to 10 nM 2,4D (C). In B and C, data are mean±
s.e.m. of three biological repeats. *P<0.05 (unpaired Student’s t-test in B; two-
way ANOVA and Tukey’s multiple comparison tests in C). (D) Root tip growth
direction in wild-type and patl2456−/− mutant seedlings germinated in the
presence of 0.1 μM 2,4D. Root tip direction was evaluated in seedlings 7 days
postgermination. Datawere gathered using ImageJ software and clustered into
eight bins representing the tip direction (n>45).

Fig. 6. PATLs regulate embryo patterning. (A−F) Embryo development in
the wild type and the normal division patterns during basal pole formation
(insets). (G−H′) patl2456−/− mutant embryos displaying abnormal division
planes. Notice the additional divisions in both cases (arrowheads in G,H).
(I−K) Images of mutant embryos obtained from patl2+/−patl3456−/− plants.
They show defects in basal (I) or apical poles (J), as well as an abnormal
morphology at cotyledons (K). Scale bars: 1 mm.
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microRNA precursor MIR319a (plasmid template pRS300). Then, the pro-
duced amiRNA sequences were cloned using Gateway technology and rec-
ombined to expression vectors containing the strong constitutive promoter
RPS5a and transformed by the floral dip method into the quadruple homo-
zygous patl mutant (patl2456−/−). After selection of the transgenic plants,
patl2456−/− amiPATL1 and patl2456−/− amiPATL3 were crossed to generate
a multiple patl mutant patl2456−/− amiPATL1/3.

Expression analysis
Total RNAwas extracted with the RNeasy Mini kit (Qiagen). Isolated RNA
was treated with DNase I recombinant (Roche) to remove contaminating
genomic DNA. For the RT-PCR reactions, Poly(dT) cDNA was prepared
from 1 μg total RNA with an iScript cDNA synthesis kit (BioRad). PCR
conditions were as follows: the PCR mix was heated for 5 min to 95°C,
followed by 30 cycles of denaturation for 30 s at 95°C, annealing at 57°C for
30 s and extension for 60 s at 72°C. As housekeeping gene, the expression
of the constitutive gene ACTIN 8 (AT1G49240) was used. All primers used
are listed in Table S4.

Immunolocalization and microscopy
Primary root and embryo immunolocalization was performed as described
by Sauer et al. (2006) using an automatized alternative. Antibodies were
diluted 1:1000 for rabbit anti-PIN1 (Paciorek et al., 2005) and rabbit anti-
PATL1 (Peterman et al., 2004), and 1:600 for rabbit anti-GFP (Molecular
Probes) and the secondary rabbit anti-IgG conjugated to Cy3 (Sigma-
Aldrich). For measuring the RAM, the root tips were mounted in chloral
hydrate and visualized using an Olympus BX51 DIC microscope. For live
imaging, seedlings at 4 days after germination were mounted in a drop of
liquid Arabidopsis MS medium and visualized immediately. All confocal
pictures were taken with a Zeiss CSLM 710 confocal microscope.
Quantifications of PIN1 auxin lateralization were performed using the
ImageJ software freely available at http://imagej.nih.gov/ij/, as previously
published (Sauer et al., 2006).

Phylogenetic analysis
All Sec14p-like genes in Arabidopsis were identified using the BLAST tool
from TAIR (http://www.arabidopsis.org/Blast/index.jsp), with yeast Sec14p
(scSec14p; YMR079W) as the query sequence. 32 Arabidopsis proteins

appeared as having some degree of homology to scSec14p (Table S2).
Phylogenetic analysis was performed using the web-based tool freely
available at http://www.phylogeny.fr, and the MUSCLE alignment and
neighbour-joining method with 100 bootstraps.
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auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143,
111-121.

Robert, H. S., Grones, P., Stepanova, A. N., Robles, L. M., Lokerse, A. S.,
Alonso, J. M., Weijers, D. and Friml, J. (2013). Local auxin sources orient the
apical-basal axis in Arabidopsis embryos. Curr. Biol. 23, 2506-2512.

Robert, H. S., Grunewald, W., Sauer, M., Cannoot, B., Soriano, M., Swarup, R.,
Weijers, D., Bennett, M., Boutilier, K. and Friml, J. (2015). Plant embryogenesis
requires AUX/LAX-mediated auxin influx. Development 702-711.

Ruiz Rosquete, M., Barbez, E. and Kleine-Vehn, J. (2012). Cellular auxin
homeostasis: Gatekeeping is housekeeping. Mol. Plant 5, 772-786.
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Figure S1. Microarray for auxin effect on PIN lateralization identifies PATELLINS as candidate genes.
A. PIN1 and PIN2 are basally localized in endodermis and young cortex cells, respectively, pumping auxin in 
the direction of the root tip. Auxin is able to modify PIN1 and PIN2 localization to baso-lateral. This effect is 
dependent on the AXR3-mediated transcription of so far unknown components.
B. Microarray results. Among the auxin-regulated genes in wild type, we selected 245 gene candidates as 
being auxin inducible but differentially expressed in the dominant negative version of AXR3 (HS:axr3-1). 
C, D. PATELLINs are auxin-regulated genes in an AXR3-dependent fashion. PATL6 is auxin inducible 
depending on AXR3. On the other hand, PATL2 and PATL4 are negatively regulated by auxin and in the 
HS:axr3-1 mutant background these effects were lost. In D, the Fold Change (FC)  and the P values for the 
PATL genes  obtained in the microarray data.

Jo
ur

na
l o

f C
el

l S
ci

en
ce

 •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n

J. Cell Sci. 131: doi:10.1242/jcs.204198: Supplementary information



B

wild type

0.5 kb

patl2

PATL2
patl3

PATL3
patl4

PATL4
patl5

PATL5
patl6

PATL6

A

C

PATL3

ACT8

patl2456 −/−

Figure S2. PATELLIN quadruple mutant
patl2456−/ −

A-C. Scheme of PATL genes representing exons
(boxes) and introns (lines) and the insertion sites of
the T-DNA insertions in the patl mutants (A). RT-
PCR analysis for PATL gene expression in wild
type and patl2456−/− quadruple knockout mutants
(B) and patl3 knockdown mutant (C).
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Figur e S3. PATELLIN localization in FP-PATL overexpressors lines.
FP-PATL1-5 are localized at the PM or cell plates, and GFP-PATL6 is accumulated at  PATL localization 
was observed in primary roots in GFP-PATL (C to G, N) or RFP-PATL (A, B, H to L) reporter lines 
expressed in wild type plants using the Cauliflower mosaic virus 35S promoter. Arrowheads are used to 
highlight asymetric localization at plasma membranes (B, G), arrowheads depict asymmetric PATL 
localization at the plasma membrane (C, I, J, O) and arrows indicate cell plate localized PATLs (D, H). . 
All images are representative of at least 20 different individuals. Bar size= 20 µm. 

Table S1. Candidates genes differentially regulated in HS::axr3-2 compared  to auxin-regulated genes in wild type. 
The gene model description is depicted as it appears in TAIR database. In bold are indicated the candidates that 
were tested for defects on PIN polarity.  

Click here to Download Table S1
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Table S2. Sec14-like proteins in Arabidopsis.  

Gene model ATI code 
Sec14p homology  

Other protein domains Identities + E value 
AtSFH1/COW1 AT4G34580 102/242 152/242 1e-53 Nodullina 

AtSFH2 AT4G39180 102/236 146/236 2e-53 Nodullina 

AtSFH3 AT2G21540 104/250 150/250 1e-52 Nodullina 

AtSFH4 AT1G19650 103/241 150/241 1e-51 Nodullina 

AtSFH5 AT1G75370 101/241 147/241 3e-48 Nodullina 

AtSFH6 AT4G39170 97/239 149/239 1e-50 Nodullina 

AtSFH7 AT2G16380 102/248 149/248 1e-49 Nodullina 

AtSFH8 AT2G21520 97/243 150/243 7e-49 Nodullina 

AtSFH9 AT3G24840 100/242 141/242 2e-47 Nodullina 

AtSFH10 AT2G18180 89/232 140/232 1e-47 Nodullina 
AtSFH11 AT5G47510 95/236 133/236 2e-46 ND 
AtSFH12 AT4G36490 91/243 146/243 4e-47 Nodullina 

AtSFH13 AT1G55690 90/237 141/237 5e-40 Nodullina 

AtSFH14 AT5G56160 90/236 142/236 4e-43 ND 

PATL1 AT1G72150 58/221 100/221 2e-11 GOLD; CRAL/Trio 
PATL2 AT1G22530 69/221 103/221 3e-11 GOLD; CRAL/Trio 
PATL3 AT1G72160 62/216 106/216 4e-17 GOLD; CRAL/Trio 
PATL4 AT1G30690 68/224 106/224 2e-16 GOLD; CRAL/Trio 
PATL5 AT4G09160 62/217 101/217 2e-15 GOLD; CRAL/Trio 
PATL6 AT3G51670 68/232 102/232 1e-14 GOLD; CRAL/Trio 

AtPITPs AT4G36640 75/254 116/254 9e-18 - 
 AT5G47730 60/209 99/209 2e-16 -

 AT1G55840 62/209 98/209 4e-16 -

 AT1G01630 66/218 98/218 1e-15 -

 AT1G75170 67/217 102/217 4e-15 -

 AT1G22180 31/96 56/96 7e-08 -

 AT4G08690 56218 97/218 2e-10 -

 AT1G14820 54/222 96/222 2e-08 -

 AT3G46450 54/213 86/213 2e-06 -

 AT1G05370 41/182 79/182 5e-05 -

 AT5G63060 52/214 88/214 2e-03 -

 AT3G22410 39/183 85/183 5e-04 -
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Table S3. Segregation of patl2 mutant allele in the progeny of a single patl2 +/− 3456 −/− mutant plant.

patl2 nO fO nE fE 

χ2 = 13.861 
p = 0.001 

+ / + 14 0.1944 18 0.25 

+ / − 51 0.7083 36 0.5 

− / − 7 0.0972 18 0.25 

TOTAL 72 1 72 1 

nOobserved amount; fO observed frequency; nEexpected amount; fE expected frequency. Expected 
values under the assumption of Mendelian traits and no linkage among the different alleles. 
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Table S4. List of primers used for cloning procedures, patl mutant genotyping, amiRNA construct 
and transcripts level analysis. 

Gene Sequence Orientation Application 
PATL1 ATGGCTCAAGAGGAAGTAC Fw Cloning coding sequence, RT-PCR 
PATL1 AGTTTTGAACCTGTAGTAG Rv Cloning coding sequence, RT-PCR 
PATL2 ATGGCTCAAGAAGAGATAC Fw Cloning coding sequence, RT-PCR 
PATL2 TGCTTGGGTTTTGGACCTG Rv Cloning coding sequence, RT-PCR 
PATL3 ATGGCTGAAGAACCTACTAC Fw Cloning coding sequence, RT-PCR 
PATL3 GAGAGGTTTGACATTGAAC Rv Cloning coding sequence, RT-PCR 
PATL4 ATGACTGCTGAAGTTAAGG Fw Cloning coding sequence, RT-PCR 
PATL4 GGAAGAGGATTCAGTCTTG Rv Cloning coding sequence, RT-PCR 
PATL5 ATGTCTCAAGATTCTGCAAC Fw Cloning coding sequence, RT-PCR 
PATL5 CTCACAAGCTAAAGGCTTA Rv Cloning coding sequence, RT-PCR 
PATL6 ATGGATGCTTCATTGTCTCC Fw Cloning coding sequence, RT-PCR 
PATL6 GACGGTTGTAGTAGATTTCCGG Rv Cloning coding sequence, RT-PCR 

ACTIN8 ACCTTGCTGGTCGTGACCTTACTG Fw RT-PCR 
ACTIN8 GATCCCGTCATGGAAACGATGTCTC Rv RT-PCR 
PATL1 GGATTTTTAACGGATCACTC Fw Promoter sequence cloning 
PATL1 CTTTCTTGTCTGATTTTAGA Rv Promoter sequence cloning 
PATL2 TCCGGTTTGACTGGATTTTT Fw Promoter sequence cloning 
PATL2 GATCACTTGATTCGAAAGGG Rv Promoter sequence cloning 
PATL3 TTTTTACTTGTGCCGTCTTG Fw Promoter sequence cloning 
PATL3 GCAGGTTTAGGAAACAATTC Rv Promoter sequence cloning 
PATL4 ATAACTGTTGACTTCAACTA Fw Promoter sequence cloning 
PATL4 CTTAAAGCCTGTCATTCAGA Rv Promoter sequence cloning 
PATL5 CCCTAATTCACATTGGTC Fw Promoter sequence cloning 
PATL5 TTTTTTATTGTTCTTGAA Rv Promoter sequence cloning 
PATL6 TATTTAGCCATAGTGGAAAG Fw Promoter sequence cloning 
PATL6 TGTTTCTTGAGAGTTTTTC Rv Promoter sequence cloning 
PATL2 GGAAAAATCTCTTGAGGCTGAA Right Genotyping patl mutants 
PATL2 CTTGTTTGTCGACACCGTGAG Left Genotyping patl mutants 
PATL3 GTCATTGGATCCAATTTCACG Right Genotyping patl mutants 
PATL3 AACCTTCTCAAGATCATCCAC Left Genotyping patl mutants 
PATL4 TCTACTGTTTTGAACCCACCG Right Genotyping patl mutants 
PATL4 CTGAGGCTGTTGTTACCGAAG Left Genotyping patl mutants 
PATL5 TTTGTAGCTGGTGGTGTTTCC Right Genotyping patl mutants 
PATL5 GGCTTTTGTTACTCACAAGC Left Genotyping patl mutants 
PATL6 CAAACCCAAGAAAGAAAACCC Right Genotyping patl mutants 
PATL6 ATTTGTGCGGTTTCTTGAG Left Genotyping patl mutants 
LBb1+ ATTTTGCCGATTTCGGAAC  Genotyping patl mutants 
LBa1 TGGTTCACGTAGTGGGCCATCG  Genotyping patl mutants 

PATL1 gaTATAGTGTAGTTTGCTGGCGGtctctcttttgtattcc miR-s amiRNAa 
PATL1 gaCCGCCAGCAAACTACACTATAtcaaagagaatcaatga miR-a amiRNAa 

PATL1 gaCCACCAGCAAACTTCACTATTtcacaggtcgtgatatg miR*s amiRNAa 

PATL1 gaAATAGTGAAGTTTGCTGGTGGtctacatatatattcct miR*a amiRNAa 

PATL1 gaTCGAATTGTTTAACAGCCCGTtctctcttttgtattcc miR-s amiRNAb 
PATL1 gaACGGGCTGTTAAACAATTCGAtcaaagagaatcaatga miR-a amiRNAb 

PATL1 gaACAGGCTGTTAAAGAATTCGTtcacaggtcgtgatatg miR*s amiRNAb 

PATL1 gaACGAATTCTTTAACAGCCTGTtctacatatatattcct miR*a amiRNAb 

PATL3 gaTGTCTTATTATAAAGCTCCGTtctctcttttgtattcc miR-s amiRNAa 
PATL3 gaACGGAGCTTTATAATAAGACAtcaaagagaatcaatga miR-a amiRNAa 

PATL3 gaACAGAGCTTTATATTAAGACTtcacaggtcgtgatatg miR*s amiRNAa 

PATL3 gaAGTCTTAATATAAAGCTCTGTtctacatatatattcct miR*a amiRNAa 

PATL3 gaTACACATAAGATATCTCGCTTtctctcttttgtattcc miR-s amiRNAb 
PATL3 gaAAGCGAGATATCTTATGTGTAtcaaagagaatcaatga miR-a amiRNAb 

PATL3 gaAAACGAGATATCTAATGTGTTtcacaggtcgtgatatg miR*s amiRNAb 

PATL3 gaAACACATTAGATATCTCGTTTtctacatatatattcct miR*a amiRNAb 
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