Post-transcriptional regulation of myotube elongation and myogenesis by Hoi Polloi

Aaron N. Johnson^{1,2,*}, Mayssa H. Mokalled³, Juliana M. Valera², Kenneth D. Poss³ and Eric N. Olson^{1,*}

SUMMARY

Striated muscle development requires the coordinated expression of genes involved in sarcomere formation and contractility, as well as genes that determine muscle morphology. However, relatively little is known about the molecular mechanisms that control the early stages of muscle morphogenesis. To explore this facet of myogenesis, we performed a genetic screen for regulators of somatic muscle morphology in *Drosophila*, and identified the putative RNA-binding protein (RBP) Hoi Polloi (Hoip). Hoip is expressed in striated muscle precursors within the muscle lineage and controls two genetically separable events: myotube elongation and sarcomeric protein expression. Myotubes fail to elongate in *hoip* mutant embryos, even though the known regulators of somatic muscle elongation, target recognition and muscle attachment are expressed normally. In addition, a majority of sarcomeric proteins, including Myosin Heavy Chain (MHC) and Tropomyosin, require Hoip for their expression. A transgenic *MHC* construct that contains the endogenous *MHC* promoter and a spliced open reading frame rescues MHC protein expression in *hoip* embryos, demonstrating the involvement of Hoip in pre-mRNA splicing, but not in transcription, of muscle structural genes. In addition, the human Hoip ortholog NHP2L1 rescues muscle defects in *hoip* embryos, and knockdown of endogenous *nhp2l1* in zebrafish disrupts skeletal muscle development. We conclude that Hoip is a conserved, post-transcriptional regulator of muscle morphogenesis and structural gene expression.

KEY WORDS: Myotube elongation, Post-transcriptional regulation, Myogenesis, Drosophila, Zebrafish

INTRODUCTION

The transcriptional regulatory networks that direct muscle precursor cell specification and the expression of muscle structural genes have been well defined. However, the possible post-transcriptional contribution to mesoderm development is only beginning to come to light (Biedermann et al., 2010; Toledano-Katchalski et al., 2007; Yarnitzky et al., 1998). The unique properties of *Drosophila*, including external development and an extensive array of genetic tools, have allowed the discrete cellular processes directing muscle development to be dissected in detail (Guerin and Kramer, 2009a; Schejter and Baylies, 2010; Schnorrer and Dickson, 2004).

Embryonic somatic muscle development in *Drosophila* is a multistep process that initiates with the specification of founder cells from a field of myogenic competent cells in the mesoderm (Carmena et al., 1995; Jagla et al., 1998). Founder cells express a unique set of muscle identity genes, encoding transcription factors, that direct differentiation into one of 30 somatic muscles (de Joussineau et al., 2012). Once specified, muscle founders begin the process of migration and elongation that can be divided into three phases (Schnorrer and Dickson, 2004). During the first phase, founder cells migrate to their correct position within the segment. The second phase begins when the founder cells initiate myoblast fusion and form polarized myotubes that elongate along a single axis. The myotubes then form extensive filopodia in the direction of initial polarity, presumably in response to guidance cues from

*Authors for correspondence (aaron.n.johnson@ucdenver.edu; eric.olson@utsouthwestern.edu)

Accepted 22 June 2013

tendon cells in the overlying epidermis (Guerin and Kramer, 2009a; Schnorrer and Dickson, 2004). The center of the myotube remains localized while the ends of the myotube elongate towards their respective muscle-attachment sites (Schnorrer and Dickson, 2004). The final phase of elongation initiates when the myotube ends reach their muscle attachment sites and filopodia no longer form. The myotube then localizes integrin-mediated adhesion complexes with the overlying tendon cells to establish strong myotendinous junctions (Schejter and Baylies, 2010).

The mechanisms that control myotube elongation during somatic muscle morphogenesis are poorly understood. Slit is the single guidance molecule known to direct both myotube elongation and target site recognition, but loss of Slit modestly affects the elongation of only a subset of myotubes (Kramer et al., 2001). Nascent myotubes must undergo extensive cytoskeletal rearrangements during elongation, and recent work has focused on the role of microtubule dynamics in this process (Folker et al., 2012; Guerin and Kramer, 2009b). Tumbleweed (Tum) is a Rac family GTPase-activating protein that becomes localized to the nuclear periphery via its association with the microtubule-associated protein Pavarotti (Pav). Loss of pav or tum disrupts microtubule polarity and polarized growth, mislocalizes the minus-end microtubule nucleator y-tubulin and causes modest myotube elongation defects (Guerin and Kramer, 2009b). A second regulator of microtubule dynamics, Dynein heavy chain (Dhc64C), is also required for myotube elongation but its role is restricted to the final stages of elongation (Folker et al., 2012). Although microtubule dynamics plays a key role in the process, the mechanisms that initiate myotube elongation and the downstream targets of intracellular messenger proteins, such as Tum, remain largely unknown.

The cellular events that regulate myotube morphology are distinct from the molecular processes that direct terminal differentiation and structural gene expression. Embryos defective in myoblast fusion express Myosin Heavy Chain (MHC) in unfused mononucleate

¹Department of Molecular Biology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390-9148, USA. ²Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204, USA. ³Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA.

founder cells; this striking phenotype has been exploited in genetic screens to identify novel regulators of myoblast fusion (Chen and Olson, 2001). Components of the sarcomere, the basic unit of muscle contraction, are subject to extensive post-transcriptional regulation. For example, *Drosophila* MHC is encoded by a single genomic locus that can produce 480 unique protein isoforms (Zhang and Bernstein, 2001). These isoforms encode variant regions of the MHC globular head and provide diversity in contractile performance (Kronert et al., 1994). However, the RNA-binding proteins (RBPs) that regulate the production of different MHC isoforms have not been identified.

In a screen for genes that regulate somatic muscle morphology in Drosophila, we identified the putative RBP Hoi polloi (Hoip). hoip embryos show two dramatic phenotypes: myotube elongation does not initiate, even though founder cell specification and myoblast fusion initiate normally and striated muscles fail to express multiple sarcomeric proteins, including MHC and Tropomyosin (Tm). hoip expression is tissue specific and within the muscle lineage is restricted to striated muscle precursors. By RNA deep sequencing (RNA-seq), we found that known regulators of myotube elongation are expressed correctly in hoip mutant embryos, suggesting Hoip orchestrates a previously unrecognized post-transcriptional mechanism to initiate elongation. Functional rescue experiments demonstrate that Hoip directs pre-mRNA splicing during myogenesis. The human Hoip ortholog NHP2L1 can rescue the hoip phenotype in Drosophila, and morpholino (MO) knockdown experiments in zebrafish indicate that *nhp2l1* is a conserved essential regulator of myogenesis. This is the first study to show a tissue-specific role for Hoip or its orthologs in vivo, to identify a robust genetic block in the second phase of myotube elongation, and to address post-transcriptional regulation of sarcomeric gene expression by a putative RBP during Drosophila embryogenesis.

MATERIALS AND METHODS

Drosophila genetics

All stocks were obtained from the Bloomington Stock Center unless otherwise noted. The stocks used in this study were: Df(2L)ED90, Df(2L)ED678, Df(2L)Exel6024, Df(2L)Exel7043, Df(2L)Exel7042, Df(2L)Exel8041, Df(2L)BSC216, Df(2L)BSC108, Df(3R)Exel6191, $P\{lacW\}hoip^{k07104}$, $P\{Mhc.EMB\}$ (Wells et al., 1996), Mhc^{l} (Wells et al., 1996), $P\{Gal4-kirre^{rP298}\}$, $P\{kirre^{rP298}.lacZ\}$ (Nose et al., 1998) and the Baylor P-element Mapping Kit (Zhai et al., 2003). The Cyo, $P\{Gal4-Twi\}$, $P\{2X-UAS.eGFP\}$; Cyo, $P\{wg.lacZ\}$; and TM3, $P\{fz.lacZ\}$ balancers were used to identify homozygous embryos.

EMS mutagenesis and gene mapping

Isogenic, starved w¹¹¹⁸ males were fed 25 mM EMS in 1% sucrose overnight and mated *en masse* as shown (supplementary material Fig. S1A). Mapping of *hoip¹* was performed as described previously (Zhai et al., 2003).

Immunohistochemistry, in situ hybridization and imaging

Antibodies used include anti-Mef2 (Lilly et al., 1995), anti-Nau (Wei et al., 2007), anti-Tin (Venkatesh et al., 2000), anti-MHC (Kiehart and Feghali, 1986), anti-Kr (Kosman et al., 1998), anti-MF20 (DSHB), anti-Tropomyosin (Abcam, MAC141), anti-GFP (Torrey Pines Laboratories), anti-βPS (DSHB), anti-Talin (DSHB), anti-22C10 (DSHB) and anti-βgal (Promega). Alexa488-, Alexa633- and HRP-conjugated secondary antibodies in conjunction with the TSA system (Molecular Probes) were used to detect primary antibodies. Antibody staining and *in situ* hybridization was performed as described (Johnson et al., 2007). Mef2 was directly conjugated with Zenon633 (Molecular Probes) for co-labeling with rabbit primary antibodies. The following templates were used to generate *in situ* probes: RE51843 (*hoip*; DGRC) and *Mhc.Exon4-6* (a gift from S. Bernstein, SDSU, San Diego, CA, USA). Images were generated with LSM510 and LSM710 confocal microscopes. Control and mutant embryos were prepared and imaged in parallel.

RT-PCR

Appropriately aged embryos were dechorionated (*Drosophila*) or devitellinated (*Danio*), hand sorted to isolate homozygous mutants where needed, and homogenized in TRizol (Invitrogen). RNA was then extracted as per manufacturer's specification. cDNA was generated using Superscript III (Invitrogen) and qPCR was performed with SYBR Green (Promega) using an ABI Prism 7000. Primers were designed to be intron spanning. qPCR reactions were run in triplicate and normalized to *RpL32* (*Drosophila*) or GAPDH (zebrafish) expression. Primer sequences are provided in supplementary material Table S6.

Western blot

COS-1 cells were transfected with 1 μ g of DNA according to manufacturer's instructions (Fugene6, Roche), maintained for 48 hours, collected and lysed with NP40 lysis buffer. Western blots were performed as described previously (Mokalled et al., 2010).

Transgenes and site-directed mutagenesis

UAS constructs were generated by subcloning *hoip* (DGRC RE51843) and *NHP2L1* (DF/HCC HSCD00326196) ORFs into pUASt. HA-tagged Hoip was made by PCR amplifying the *hoip* ORF and cloning the PCR fragment into pEntr (Invitrogen); after sequence verification, L/R clonase (Invitrogen) was used to recombine *hoip* into THW. For reporter genes, genomic DNA was PCR amplified, cloned into pCRII (Invitrogen), sequence verified, subcloned into pH.Stinger.eGFP (Barolo et al., 2004). Transgenic vectors were injected by standard methods to establish stable transgenic insertions. Multiple independent lines were characterized for each construct. Primer sequences are available upon request. Site-directed mutagenesis to generate Hoip.-225GFP. Δ E was carried out as described previously (Johnson et al., 2011).

RNA-Seq

The SOLiD Total RNA-Seq Kit was used for RNA purification from 6-10 hour embryos and DNA library construction. Libraries were prepared in duplicate and sequenced on a 5500xl SOLiD Sequencer (Life Technologies) using a paired-end reading strategy. Sequencing reads were mapped to the UCSC reference genome using LifeScope (Life Technologies), then assembled and quantified using the Cufflinks algorithm (Trapnell et al., 2010). Assembled sequence reads were visualized using the Integrative Genomics Viewer (Robinson et al., 2011) and GO analysis was performed using the DAVID 6.7 bioinformatics resources (Dennis et al., 2003).

Zebrafish embryology

Fertilized, one-cell stage $Tg(\alpha$ -actin:GFP) zebrafish embryos were injected with 0.08 ng or 0.8 ng of *nhp2l1b* ATG-MO (GGTTCACTTCAGC-TTCAGTCATCTT) or 0.8 ng of Cntrl-MO (Gene Tools). At 14 hpf, embryos were live imaged for GFP, fixed and analyzed for GFP and MF20 expression, or used for RNA isolation and qPCR analysis, by standard methods. Similar experiments were performed for *nhp2l1b* 5'UTR-MO (TTACTTAATAACACACGGTCCTCTC). Annealed oligonucleotides encoding the ATG-MO target sequence were cloned into 5'RV EGFP T7TS (Small et al., 2005). Linearized template was transcribed with T7 mMessage machine (Ambion) to generate injectable RNA. Control and morphant embryos were prepared and imaged in parallel.

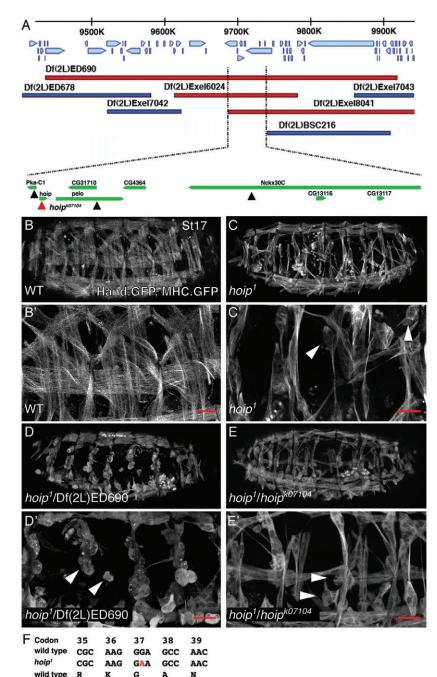
RESULTS

A forward genetic screen identified hoip as an essential regulator of myogenesis

We performed an EMS genetic screen to identify novel mutations that specifically affect somatic muscle morphology. Our screening strategy employed two reporter genes: MHC.rGFP, which expresses a membrane-localized GFP in embryonic somatic muscles (Chen and Olson, 2001); and Hand.nGFP that expresses a nuclear-localized GFP in cardioblasts (CBs) by embryonic stage 12 (St12) (Johnson et al., 2011). The Hand.nGFP reporter served as a control to distinguish mutations that affected early mesoderm patterning events and cardiac cell fate specification, allowing us to focus on

hoip

R


ĸ

N

А

mutations that specifically affected somatic muscle morphology. We screened ~10,000 genomes and identified 96 mutations on the second chromosome that caused somatic muscle defects (supplementary material Fig. S1A). We mapped two mutations to *Kon-tiki* (*Kon*), a known regulator of target site recognition (Schnorrer et al., 2007), and a second mutation to *mind bomb 2*, a known regulator of muscle attachment (Carrasco-Rando and Ruiz-Gómez, 2008).

One mutation that solely affected the pattern of MHC. τ GFP expression mapped to a region of chromosome 2L that contains eight genes (Fig. 1A). Genetic analysis in this region showed that the mutation failed to complement $P\{lacW\}hoip^{k07104}$, so we named the EMS allele *hoip¹*. The Hoip orthologs Snu13 in yeast and NHP2L1 (Non-Histone Protein 2 Like-1) in humans are RNA-binding proteins that bind noncoding RNAs associated with the

spliceosome (Dobbyn and O'Keefe, 2004; Vidovic et al., 2000; Watkins et al., 2002). Compared with live wild-type (WT) embryos (Fig. 1B), somatic muscle morphology was aberrant in live *hoip*¹ homozygous (Fig. 1C), *hoip*¹/Df(2L)ED690 (Fig. 1D) and *hoip*¹/P {*lacW*}*hoip*^{k07104} transheterozygous embryos (Fig. 1E). In particular, the lateral transverse (LT1-4), lateral longitudinal (LL1), lateral oblique (LO1) and dorsal oblique (DO3-5) somatic muscles showed pronounced membrane extensions towards target sites, yet remained rounded in *hoip* mutant embryos (Fig. 1C-E; supplementary material Table S1). This failure in myogenesis prevented *hoip*¹/Df(2L)ED690 and *hoip*¹/P {*lacW*}*hoip*^{k07104} embryos from emerging from the chorion after embryogenesis.

The $P\{lacW\}hoip^{k07104}$ insertion was originally identified in a peripheral nervous system (PNS) screen (Kania et al., 1995; Prokopenko et al., 2000). $P\{lacW\}hoip^{k07104}$ embryos showed

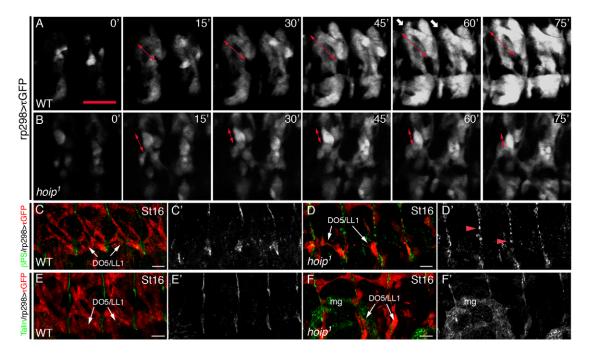
Fig. 1. A mutation adversely affecting somatic muscle development maps to *hoip*. (A) The

genomic region uncovered by Df(2L)ED690. Genes and direction of transcription are shown with blue arrows. Deficiencies that fail to complement hoip are shown in red; deficiencies that complement *hoip*¹ are shown in dark blue. The minimal overlapping area among the deficiencies that fail to complement hoip¹ contains eight genes. Of the four lethal transgene insertions (triangles) in the minimal overlapping area, only *P*{*lacW*}*hoip*^{*k07104*} (red triangle) failed to complement hoip¹. (**B-E**) MHC.τGFP, Hand.nGFP expression in St17 embryos. (B) Wild-type embryos express membrane-localized TGFP in each somatic muscle in all embryonic segments. Somatic muscles are severely rounded (arrowheads) in hoip¹ (C), hoip¹/Df(2L)ED690 (D) and hoip¹/P{lacW}hoip^{k07104} embryos (E). (B'-E') High-magnification views of embryos shown in B-E. (F) hoip¹ is a G37E missense mutation (see supplementary material Fig. S1I). In this and subsequent figures, embryos are oriented with anterior towards the left and dorsal towards the top. Coordinates refer to base pair positions on chromosome 2L. Scale bars: 20 µm.

disorganized dorsal clusters of PNS neurons and axonal path finding defects (Kania et al., 1995). However, the P-element itself was not revertible (Kania et al., 1995) and $P\{lacW\}hoip^{k07104}$ embryos showed global patterning defects that we did not observe in other *hoip* mutant combinations (supplementary material Fig. S1B,C). We assayed PNS morphology in *hoip*¹ and *hoip*¹/P{lacW}hoip^{k07104} embryos ($n \ge 3$) but could not confirm the previously reported PNS defects (supplementary material Fig. S1D-F). These data suggest a lethal mutation on the $P\{lacW\}hoip^{k07104}$ chromosome outside *hoip* disrupts a powerful regulator of embryonic patterning that could affect PNS development.

Sequencing the *hoip¹* allele revealed a G37E missense mutation (Fig. 1F; supplementary material Fig. S1I) within the predicted Hoip RNA-binding domain (Schultz et al., 2006). Based on the predicted crystal structure of this domain (supplementary material Fig. S1G), the acidic amino acid substitution would be expected to eliminate Hoip RNA-binding activity (Vidovic et al., 2000). A tagged *hoip* protein harboring the G37E mutation was detectable by western blot in transfected COS-1 cells, demonstrating that *hoip¹* is not a protein null mutation (supplementary material Fig. S1H).

Myotube elongation does not initiate in *hoip* embryos


To understand the stage of myogenesis regulated by Hoip, we performed time-lapse studies in embryos expressing τGFP under the control of the founder cell driver rp298.gal4. Our analysis focused on the LL, LT, LO and DO muscles, as these muscles were most often disrupted in *hoip* mutant embryos (supplementary material Table S1). Our analysis began in late St12 embryos that expressed rp298>τGFP in nascent myotubes (Fig. 2A). In wild-type embryos, myotubes showed obvious polarization and had elongated

to 50% of segment width after 30 minutes. By 60 minutes, the myotubes had largely completed their extension and created extensive filopodia for attachment site recognition (Fig. 2A; n=2). By contrast, nascent myotubes failed to elongate in $hoip^1$ embryos after 30 minutes even though the myotubes showed an initial polarity (Fig. 2B). By 60 minutes, myotubes failed to extend to 50% of segment width in $hoip^1$ embryos and had lost their polarity (Fig. 2B; n=3). These results demonstrate that myotubes failed to elongate and reach their attachment sites in $hoip^1$ embryos.

To understand whether Hoip controls target site recognition, we repeated time-lapse imaging at higher magnification to document filopodia in detail (supplementary material Fig. S2; n=3). $hoip^1$ embryos extended filopodia exclusively in the direction of myotube polarity. This phenotype contrasts with that of *Kon* mutant embryos, which initiate myotube elongation but, instead of orienting filopodia solely toward muscle attachment sites, extend ectopic filopodia in all directions (Schnorrer et al., 2007). Kon is a transmembrane receptor that regulates myotube target site recognition. As *hoip* myotubes do not phenocopy *Kon* myotubes, we conclude that Hoip does not control attachment site recognition.

Muscle attachment sites are specified in *hoip* embryos

To understand whether tendon cells, which mediate muscle attachment, were specified in *hoip*¹ embryos, we assayed expression of β PS (*myospheroid*), an effector of muscle attachment. β PS is expressed in tendon cells and localizes to myotendinous junctions after attachment-site recognition (Martin-Bermudo and Brown, 2000). β PS was clearly detectable in the epidermis of *hoip*¹ embryos, but showed diffuse localization along the dorsoventral axis compared with wild-type embryos (Fig. 2C,D). As β PS is also

Fig. 2. *hoip* **embryos have myotube elongation defects.** (**A**,**B**) Time-lapse images of rp298>tGFP embryos initiated at late St12. (A) Wild-type embryos showed robust myotube elongation at 30 minutes (double arrows) and developed extensive filopodia for attachment site recognition at 60 minutes (white arrows). (B) Myotubes established polarity in *hoip*¹ embryos at 15 minutes but failed to elongate by 30 minutes. Polarized myofibers at 15 minutes compacted over time (double-headed arrows). (**C**,**D**) St16 rp298>tGFP embryos double labeled for GFP and β PS. (C) β PS localizes to myotendinous junctions in wild-type embryos. (D) Tendon cells express β PS in *hoip*¹ embryos but localization is diffuse (red arrowheads). (**C',D'**) β PS expression alone. (**E**,**F**) St16 rp298>tGFP embryos double labeled for GFP and Talin. Talin is expressed in tendon cells of wild-type (E) and *hoip*¹ (F) embryos. (**E',F'**) Talin expression alone. mg, midgut. Scale bars: 20 µm.

expressed in somatic muscle, we next examined Talin expression. Talin is restricted to tendon cells and acts as a linker between βPS and the cytoskeleton. Similar to βPS , Talin is clearly expressed in the epidermis of *hoip¹* embryos (Fig. 2E,F). Taken together, these results show that the rounded muscle phenotype in *hoip¹* embryos is due to a block at, or prior to, myotube elongation and is not a result of tendon cell mis-specification.

Hoip does not regulate founder cell specification or the first round of myoblast fusion

To further characterize the myogenic phenotype in $hoip^l$ embryos, we examined founder cell specification and myoblast fusion. After specification, founder cells undergo an initial round of fusion that is complete by the end of St12 (Bate, 1990). Subsequent fusion then determines final muscle size and each muscle undergoes a unique number of fusion events. MHC serves as a classic marker for identifying myoblast fusion defects; embryos with defects in the first round of myoblast fusion robustly express MHC in single

hoip¹/Cyo hoip1 В St16 St16 D GFP 208ac7/n **MHC/Mef2** SM VM CBs St13 St16 Tin/Mef5 CBs hoip1/Cyo.lacZ hoip1 hoip¹ rp298>Hoip 0 L V/M NHC

unfused founder cells (Chen and Olson, 2001). To control against possible dominant mutations on the EMS chromosome, we compared MHC expression in *hoip¹* embryos with heterozygous *hoip¹*/Cyo.lacZ embryos. Strikingly, the somatic musculature of St16 *hoip¹* embryos showed almost no MHC protein expression, whereas *hoip¹*/Cyo embryos showed normal MHC expression and somatic muscle morphology (Fig. 3A,B; Table 1).

Another method for identifying myoblast fusion defects is to quantify the temporal expression of muscle identity genes in the dorsal mesoderm (Chen and Olson, 2001). The identity gene *nautilus* (*nau*) is expressed in a subset of founder cells that give rise to the somatic muscles affected in *hoip*¹ embryos, including DA3, DO3, DO4, DO5, VA1, LO1 (Wei et al., 2007). The number of Nau+ nuclei in *hoip*¹ embryos was comparable with *hoip*¹/Cyo.lacZ embryos at St12, but significantly less at St14 (supplementary material Fig. S3A,B). Thus, founder cell specification and the first round of myoblast fusion proceed normally in *hoip*¹ embryos; however, the later rounds of fusion do not occur.

Fig. 3. Hoip regulates somatic muscle and cardioblast maturation but not precursor

specification. (A,B) Mef2 and MHC protein expression in St16 embryos. Lateral views. Robust MHC and Mef2 expression is detectable in somatic muscles of hoip¹/Cyo.lacZ embryos (A). Mef2 expression is unaffected in *hoip*¹ embryos, whereas MHC is nearly absent from the somatic muscle (B). (C-F) St16 rp298.gal4>T.GFP, rp298.nlacZ embryos double-labeled for GFP (red) and lacZ (green). (C-D') Dorsal muscles. The number of lacZ⁺ nuclei is reduced in *hoip*¹ embryos (C) compared with hoip¹/Cyo.lacZ embryos (D); however, binucleated dorsal muscles show complete elongation (arrowheads). (E-F') Lateral and ventral muscles. The number of lacZ⁺ nuclei is also reduced in lateral and ventral muscles in *hoip*¹ embryos. Multinucleate lateral muscles show incomplete elongation (arrows). (G,H) Mef2 and MHC protein expression in St16 embryos. Dorsal views. (G) hoip¹/Cyo.lacZ embryos express Mef2 and MHC in mature CBs. (H) hoip¹ embryos express Mef2 but not MHC in a great majority of CBs. (I-L') Mef2 and Tin protein expression. (I,J) hoip¹/Cyo.lacZ embryos express Mef2 in all myogenic precursors, including CBs. Tin is expressed in four Mef2⁺ CBs per hemisegment at St13 (I: lateral view) and St16 (K: dorsal view). Mef2 and Tin expression in *hoip*¹ CBs is comparable with control embryos at St13 (J) and St16 (L). (K',L') Tin expression alone. (M,N) High magnification micrographs of visceral muscles in St16 embryos. MHC expression is comparable between hoip¹/Cyo.lacZ embryos (M) and *hoip*¹ embryos (N). Both genotypes develop LVMs and CVMs in the visceral mesoderm. (**O**) *hoip*¹ rp298>Hoip embryos express MHC protein at near wild-type levels in the somatic mesoderm. SM, somatic muscle; VM, visceral muscle; LVM, longitudinal visceral muscle; CVM, circular visceral muscle; CBs, cardioblasts. Open arrowheads in I,K show ectodermal cytoplasmic lacZ expression that distinguishes *hoip*¹ heterozygotes from homozygotes. Scale bars: 20 µm.

Genotype	hoip¹/Cyo	hoip ¹	<i>hoip</i> ¹ Rp298 >Hoip	hoip ¹ Rp298 >NHP2L1
MHC+ myofibers*	10.31±1.16	1.40±1.12	7.48±1.56	6.00±1.82
n	26	35	24	21
#LT1-LT4	130/136	3/136	52/128	35/88

To confirm this result, we used the founder cell transgene rp298.nlacZ to assay founder cell specification and myoblast fusion. Similar to Nau, the number of *lacZ*-positive nuclei was comparable between *hoip¹* and *hoip¹*/Cyo.lacZ embryos at St12 (supplementary material Fig. S3C,D), but significantly reduced at St14 and St16 (Fig. 3C-F; supplementary material Fig. S3E-H). However, the fusion defects in *hoip¹* embryos were not restricted to the muscles that showed elongation defects. For example, DO1 and DA1 muscles elongated normally in *hoip¹* embryos but showed dramatically fewer lacZ-positive nuclei than *hoip¹*/Cyo.lacZ embryos (Fig. 3C,D). However, LL1 and LO5 were multinucleate in *hoip¹* embryos but failed to elongate (Fig. 3E,F).

Somatic and cardiac muscle maturation is Hoip dependent

One explanation for the somatic muscle defects in *hoip*¹ embryos was that MHC itself is required for myotube elongation. However, embryos homozygous for the null mutation MHC^1 (Wells et al., 1996) showed normal myotube elongation (supplementary material Fig. S3I,J). Sarcomere assembly occurs after myotube elongation and myofiber attachment (Rui et al., 2010) and embryos defective for the first round of myoblast fusion do express MHC (Chen and Olson, 2001). Together, these observations demonstrate that muscle morphogenesis is genetically separable from muscle structural expression and prompted us to define a secondary role for Hoip during myogenesis.

In *Drosophila*, MHC is the single muscle myosin and is expressed in cardiac, somatic and visceral muscle (Bernstein et al., 1983). Mef2 is also expressed in all myogenic cells and is a direct transcriptional activator of MHC (Bour et al., 1995). Mef2 was expressed at comparable levels in the somatic and cardiac mesoderm of *hoip¹* and *hoip¹*/Cyo.lacZ embryos (Fig. 3A,B,G-L), even though MHC was largely absent from both tissues in *hoip¹* embryos (Fig. 3B,H). The expression of a second transcription factor, Tinman (Tin), is restricted to and orchestrates the maturation of a subset of cardioblasts (CBs) (Reim et al., 2005). Cardiac Tin expression was also comparable between *hoip¹* and *hoip¹*/Cyo.lacZ embryos (Fig. 3I-L). As *Drosophila* CBs are mononucleate, do not undergo elongation, yet fail to express MHC in *hoip¹* embryos, we conclude that Hoip regulates muscle maturation (i.e. muscle structural protein expression) independently of myotube elongation.

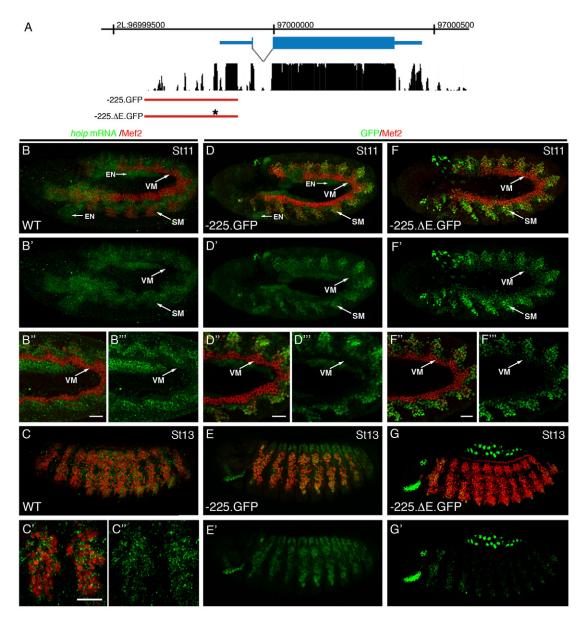
Even though MHC expression was largely absent from CBs and somatic muscles in *hoip¹* embryos, MHC expression in mature visceral muscle was comparable between *hoip¹* and *hoip¹*/Cyo.lacZ embryos (Fig. 3M,N). These results suggest that Hoip performs tissue-specific functions during myogenesis to specifically regulate striated muscle maturation.

Hoip regulates terminal muscle differentiation

To confirm that Hoip regulates myogenesis after founder cell specification, we expressed Hoip with rp298.Gal4 in *hoip*¹ embryos and assayed MHC expression. Founder cell-specific expression of Hoip was indeed sufficient to rescue myotube elongation and MHC

protein expression in somatic muscles of *hoip*¹ embryos (Fig. 3O; Table 1). Hoip therefore regulates myogenesis after founder cell specification in a mesoderm cell-autonomous manner.

hoip is expressed in striated but not visceral muscle progenitors


In situ hybridization using a probe antisense to the full-length *hoip* transcript (Fig. 4A) showed *hoip* expression initiates at low levels in the mesoderm and endoderm of St9 embryos (supplementary material Fig. S4A-C). Robust expression *hoip* mRNA could be detected in St11 embryos and, consistent with the tissue-restricted MHC phenotype in *hoip*¹ embryos, is expressed in the Mef2-expressing cells of the somatic and cardiac mesoderm, but not in the Mef2-expressing cells of the visceral mesoderm (Fig. 4B). *hoip* mRNA is also expressed in the fat body and the endoderm at this stage, but is absent from the neuroectoderm ventral to the Mef2 expression domain. *hoip* mRNA continues to be expressed in the somatic musculature throughout embryogenesis (Fig. 4C; supplementary material Fig. S4D,E). We did not detect *hoip* in the PNS by *in situ* hybridization.

To confirm the *in situ* results, we generated a GFP reporter construct that contained 225 bp of genomic DNA upstream of the *hoip*-coding sequence (Hoip.-225.GFP). This reporter gene directed GFP expression in a pattern that recapitulated *hoip* mRNA expression in St11 and St13 embryos (Fig. 4D,E). Interestingly, the Hoip.-225 sequence contains a conserved E-box sequence (CANNTG, supplementary material Fig. S4F). Basic helix-loop-helix (bHLH) transcription factors bind E-box sequences and a *hoip* reporter gene with a mutated E-box (Hoip.-225\DeltaE.GFP) initiated GFP expression in a manner comparable with Hoip.-225.GFP (Fig. 4F) but did not maintain GFP expression in the mesoderm through St13 (Fig. 4G). These findings demonstrate that *hoip* is expressed in the striated muscle lineage after precursor cell specification, and that maintenance of *hoip* expression depends on a conserved E-box sequence that is likely a bHLH target.

We next assayed Hoip localization in the somatic musculature using an HA-tagged Hoip transgene. Surprisingly, Mef2>Hoip-HA embryos showed both nuclear and cytoplasmic localization of Hoip-HA (supplementary material Fig. S5). Hoip may thus perform multiple molecular functions during myogenesis.

Several sarcomeric genes are downregulated in *hoip* embryos

The Hoip orthologs Snu13 in yeast and NHP2L1 in humans are spliceosomal RNA-binding proteins (Dobbyn and O'Keefe, 2004; Vidovic et al., 2000; Watkins et al., 2002). In eukaryotes, spliceosomes that contain small nuclear (sn) RNAs are believed to remove intronic sequences from pre-mRNAs, whereas spliceosomes that contain small nucleolar (sno) RNAs orchestrate ordered cleavages along pre-rRNAs. Snu13/NHP2L1 proteins preferentially bind to GA-rich RNA sequences in the kink-turn motif of both snRNAs and snoRNAs (Cléry et al., 2007; Nottrott et al., 1999; Schultz et al., 2006; Vidovic et al., 2000).

Fig. 4. *hoip* is expressed in striated but not visceral muscle progenitors. (A) *hoip* gene organization and conservation within the *Drosophila* genus. The red line identifies genomic sequences used to generate the -225.nGFP and -225Δ E.nGFP *hoip* reporter genes. (B) St11 embryo labeled for *hoip* mRNA (green) and Mef2 (red). *hoip* mRNA is expressed in the Mef2-expressing cells of the somatic mesoderm, as well as in the fat body and the endoderm, but is absent from the neuroectoderm. (B') *hoip* expression alone. (B'',B''') High magnification micrograph of the mesoderm shows *hoip* mRNA expression in the somatic but not the visceral mesoderm. (C-C'') At St13, *hoip* mRNA is still detectable in the developing somatic musculature. (D-E') Hoip.-225.AFP embryos labeled for GFP (green) and Mef2 (red). GFP expression recapitulates hoip mRNA expression at St11 (D) and St13 (E). (F-G') Hoip.-225.AE.GFP embryos labeled for GFP (green) and Mef2 (red). GFP expression recapitulates hoip mRNA expression at St11 (F) but is undetectable at St13 (G). SM, somatic mesoderm; VM, visceral mesoderm; EN, endoderm. Scale bars: 20 µm.

We took a non-biased approach to identify potential Hoip targets in the developing mesoderm. As robust *hoip* expression initiates at St11 and continues at high levels through St13, we performed RNA-seq in St11-13 (6-10 hour) embryos. Our analysis identified 353 transcripts that were differentially expressed and 60 transcripts that were expressed approximately at wild-type levels but inappropriately processed in *hoip¹* embryos (supplementary material Tables S2, S3). This RNA-seq analysis also identified the G37E missense mutation in *hoip¹* embryos, confirming the initial genomic sequencing data. In addition, 45S pre-rRNA was processed correctly in *hoip¹* St11-13 embryos, suggesting that Hoip does not regulate ribosome biogenesis during

these stages of development (supplementary material Fig. S6A). These *in vivo* results demonstrate that Hoip is not required to process all pre-mRNA or pre-rRNA transcripts during embryogenesis.

We analyzed the misregulated transcripts in *hoip*¹ embryos by Gene Ontology (GO) functional annotation clustering and found the most significant cluster associated with the GO term Contractile Fiber (Fig. 5A). Strikingly, transcripts within the Contractile Fiber cluster (Table 2) include *Mhc* and other sarcomere components, including *inflated* (*if*), *Myosin light chain 2* (*Mlc2*), *Tropomyosin 2* (*Tm2*), *Troponin C at 47D* (*TpnC47D*) and *Troponin C at 73F* (*TpnC73F*). We confirmed the RNA-seq data for these sarcomeric

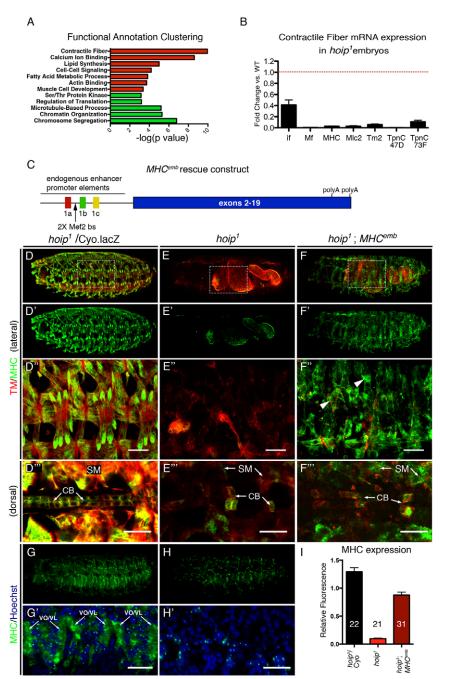


Fig. 5. Hoip processes transcripts encoding sarcomere components. (A) Functional Gene

Ontology (GO) analysis of misregulated transcripts in hoip¹ embryos. Clusters of down- and upregulated transcripts are shown in red and green, respectively. The most significant cluster is associated with the term Contractile Fiber. (B) qPCR of Contractile Fiber transcript expression in hoip¹ embryos compared with wild type. (C) The MHC^{emb} transgene. The construct contains endogenous, somatic muscle MHC enhancer elements, multiple transcriptional start sites (colored 1st exons), an embryonic MHC cDNA and the endogenous poly A sites. bs, binding site. (D-F") St16 embryos doublelabeled for Tropomyosin (Tm) and MHC. Compared with hoip¹/Cyo.lacZ embryos (D), both MHC and Tm are largely undetectable in the somatic and cardiac musculature of hoip¹ embryos (E). In hoip¹; MHC^{emb} embryos, MHC protein expression is restored to near wild-type levels in somatic but not cardiac muscles; Tm remains largely undetectable in *hoip¹; MHC^{emb}* embryos (F). MHC^{emb} does not rescue somatic muscle morphology defects (arrowheads) or MHC expression in cardioblasts (CBs). The Tm antibody recognizes both Tm1 and Tm2: RNA-seq showed a 0.50 (Tm1) and 0.09 (Tm2) fold change in hoip embryos compared with wild type (Table 2). (G,H) St16 embryos co-labeled for MHC mRNA and Hoechst. (G,G') MHC mRNA shows both nuclear and cytoplasmic localization in the somatic muscle fibers of control embryos. (H,H') MHC mRNA is exclusively detected in somatic muscle nuclei of hoip¹ embryos. High magnification views in G' and H' show three segments of ventral oblique (VO) and ventral lateral (VL) muscles. (I) Quantification of MHC expression in the somatic musculature. Mean fluorescent intensity was calculated for lateral muscles over an entire segment (see supplementary material Fig. S7). The number of segments assayed is given for each genotype. Error bars represent s.e.m. Scale bars: 20 µm.

genes by quantitative PCR (qPCR) and found that each transcript was dramatically downregulated in *hoip*¹ embryos compared with controls (Fig. 5B). The RNA-seq data showed that the embryonic sarcomeric actins *Act57B* and *Act87E*, and *Mef2*, the only known robust transcriptional regulator of terminal muscle differentiation genes in *Drosophila*, were expressed at wild-type levels in *hoip*¹ embryos (supplementary material Fig. S6B, Table S2). The developmental time point of our RNA-seq coincided with the onset of muscle structural gene expression at St12. However, *hoip*¹ embryos fail to express MHC protein at all developmental stages (Fig. 3B). These observations suggest that Hoip is required to both initiate and maintain muscle structural gene expression during embryogenesis.

We examined 22 genes experimentally shown to regulate myotube elongation, attachment site recognition or myotendinous

junction formation in our RNA-seq data (supplementary material Table S4). Surprisingly, *pav* expression was not changed in *hoip¹* embryos, whereas *tum* was upregulated (fold change=2.04). However, *tum* overexpression does not affect myotube elongation (Guerin and Kramer, 2009b). Of the remaining 19 genes, only *MSP-300* showed significant downregulation in *hoip¹* embryos (fold change=0.27). Unlike *hoip¹* embryos, *MSP-300* mutant embryos show only a modest somatic muscle phenotype that initiates late in embryogenesis (Rosenberg-Hasson et al., 1996); however, *MSP-300* larvae do show defects in nuclear positioning and microtubule organization (Elhanany-Tamir et al., 2012). The 22 genes regulating somatic muscle morphology also showed normal splicing in *hoip¹* embryos, further arguing that Hoip regulates the expression of other transcripts to initiate myotube elongation.

Table 2. Contractile fiber mRNA expression

Gene	Molecular function	Fold change*
bent	Sarcomere organization	0.055
inflated	Adhesion molecule binding	0.558
Myofilin	Unknown	0.010
Myosin alkali light chain 1	ATPase activity	0.067
Myosin heavy chain	Actin binding	0.054
Myosin light chain 2	ATPase activity	0.093
Tropomyosin 1	Actin binding	0.500
Tropomyosin 2	Actin binding	0.010
Troponin C at 47D	Calcium ion binding	0.038
Troponin C at 73F	Calcium ion binding	0.016
upheld (Troponin T)	Calcium ion binding	0.074
wings up A	Tropomyosin binding	0.071
Zasp66	Protein phosphatase binding	0.013

Post-transcriptional regulation of MHC

The RNA analyses suggested that Hoip processes pre-mRNAs encoding sarcomeric proteins but does not regulate transcription or rRNA processing. To confirm these results, we performed a functional rescue experiment with the MHC^{emb} transgene (Fig. 5C), which uses the endogenous MHC promoter to express a MHC cDNA specifically in somatic muscle (Hess et al., 2007; Wells et al., 1996). If Hoip regulated either ribosome biogenesis or processing of an mRNA whose protein product activates MHC transcription, then MHC^{emb} would not be expected to rescue MHC protein expression in $hoip^1$ embryos. However, if Hoip acts post-transcriptionally to splice the MHC pre-mRNA, then the MHC cDNA, which is expressed from the MHC^{emb} transgene, would generate a functional mRNA that would be appropriately translated in $hoip^1$ embryos.

Indeed, the MHC^{emb} transgene restored MHC protein expression in somatic but not cardiac muscle of *hoip*¹ embryos (Fig. 5D-F,I; supplementary material Fig. S7). This experiment corroborated our MHC. τ GFP expression studies in which the endogenous MHC promoter directed GFP protein expression throughout the somatic mesoderm of *hoip*¹ embryos (Fig. 1C-E). In addition, the MHC^{emb} transgene did not restore somatic muscle morphology in *hoip*¹ embryos, further confirming that Hoip regulates myotube elongation independent of MHC expression. We conclude Hoip is required to perform at least one splice in the MHC pre-mRNA and functions independently of ribosome biogenesis to direct somatic muscle maturation.

MHC mRNA does not translocate out of the nucleus in *hoip* embryos

Two separate transgenes harboring MHC promoters (MHC. τ GFP and MHC^{emb}) were able to direct cDNA expression in *hoip¹* embryos (Fig. 1C, Fig. 5F). However, *MHC* mRNA was nearly undetectable in *hoip¹* embryos by RNA-seq and qPCR (Fig. 5B). We assayed *MHC* mRNA localization by *in situ* hybridization and found only punctate, nuclear *MHC* mRNA localization in *hoip¹* embryos, even though wild-type embryos showed *MHC* mRNA localized throughout the myofiber (Fig. 5G,H). These transgenic and *in situ* results clearly demonstrate that *MHC* is transcribed in *hoip¹* embryos but that the transcript fails to translocate out of the nucleus.

Hoip orthologs are essential regulators of myogenesis

The remarkable homology between Hoip and human NHP2L1 (supplementary material Fig. S1I) suggested that the function of

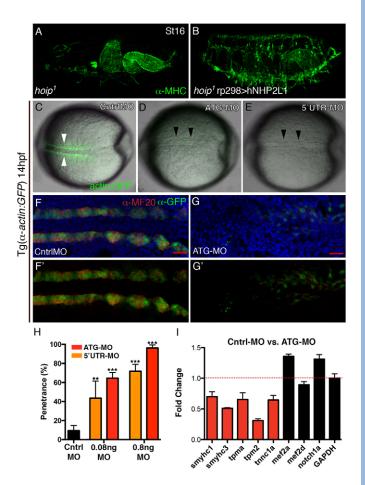


Fig. 6. Hoip is a conserved regulator of myogenesis. (A,B) St16 Drosophila embryos labeled for MHC protein. Compared with hoip¹ embryos (A), hoip¹ rp298>human NHP2L1 embryos show a significant restoration of MHC protein expression and muscle morphology in the somatic mesoderm (B). (C-E) Dorsal views of 14 hpf Tg (a-actin:GFP) zebrafish embryos. Embryos injected with control MO at the one-cell stage express robust GFP in somites (C, white arrowheads). Embryos injected with nhp2l1b ATG-MO (D) or 5'UTR-MO (E) do not initiate GFP expression. ATG-MO and 5'UTR-MO embryos develop a distinguishable neural tube by 14 hpf (black arrowheads). (F-G') Dorsal view of 14 hpf $Tq(\alpha - actin: GFP)$ zebrafish embryos labeled for GFP and MF20 (which reacts with muscle MyHC isoforms). Embryos injected with control MO show robust GFP and MF20 expression in the somatic mesoderm (F), whereas ATG-MO injected embryos display little or no GFP or MF20 staining (G). (H) Dose-dependent response to nhp2l1b MOs. Percent penetrance was calculated as the number of embryos without detectable GFP fluorescence, relative to all injected embryos. Significance between ATG-MO/5'UTR-MO and Cntrl MO was calculated using a t-test. **P<0.01, ***P<0.001. (I) qPCR of mesoderm transcript expression. Relative expression was calculated as mRNA levels in control versus ATG-MOinjected embryos after normalization to GAPDH. Error bars represent s.e.m.

Hoip during myogenesis is conserved across species. To test this hypothesis, we expressed human NHP2L1 in founder cells of *hoip*¹ embryos with rp298.gal4 and assayed MHC protein expression. Although human NHP2L1 did not rescue *hoip*¹ embryos as effectively as *Drosophila* Hoip (Table 1), we observed a significant restoration of myotube elongation and MHC expression in the somatic musculature, demonstrating that Hoip and human NHP2L1 can perform similar functions during myogenesis (Fig. 6A,B).

Zebrafish *nhp2l1b* is expressed in the paraxial mesoderm at 10 hour post-fertilization (hpf) and throughout the myotome at 19 hpf

(Thisse and Thisse, 2001). We asked whether *nhp2l1b* is essential for zebrafish muscle development using two independent MOs to knockdown endogenous nhp2l1b. One MO targets the nhp2l1b translational start site with 100% identity (ATG-MO), but does not target the highly divergent *nhp2l1a* (supplementary material Fig. S8A-C). The other MO targets the *nhp2l1b* 5'UTR 57 bp upstream of the translational start site and shows no sequence similarity to *nhp2l1a* (supplementary material Fig. S8B). The α -actin:GFP transgenic (Tg) line harbors a skeletal muscle reporter (Higashijima et al., 1997) and Tg(α -actin:GFP) embryos injected with control-MO showed robust GFP expression in the somitic mesoderm by 14 hpf (Fig. 6C). However, both ATG-MO- and 5'UTR-MO-injected embryos showed little or no GFP expression (Fig. 6D,E). The MF20 antibody reacts with all muscle MyHC isoforms, and we observed robust somitic MF20 staining in control-MO but not ATG-MOinjected embryos at 14 hpf (Fig. 6F,G).

Tg(*a-actin:GFP*) expression showed a dose-dependent response to MO concentrations (Fig. 6H). Sixty-five percent (n=259) of embryos injected with 0.08 ng ATG-MO and 96% (n=233) of embryos injected with 0.8 ng ATG-MO failed to initiate α actin:GFP expression; 43% (n=58) of embryos injected with 0.08 ng 5'UTR-MO and 72% (n=87) of embryos injected with 0.8 ng 5'UTR-MO failed to initiate α -actin:GFP expression; 11% (n=302) of embryos injected with 0.8 ng Cntrl-MO showed changes in α actin:GFP expression. With the exception of skeletal muscle marker expression, 0.8 ng ATG-MO-treated embryos appeared normal through 16 hpf; however, MO treatment induced lethality after 16 hpf (supplementary material Fig. S8F,G). The ATG-MO also blocked eGFP translation when the *nhp2l1b* ATG-MO target site was placed upstream of the eGFP-coding sequence (supplementary material Fig. S8D,E). Thus, the ATG-MO targets *nhp2l1b*.

By qPCR, we found that several transcripts encoding sarcomeric proteins were present at reduced levels in ATG-MO 14 hpf embryos, including two slow MyHCs, two troponins and one tropomyosin. Importantly, the expression of other genes essential for mesoderm development, such as *mef2* and *notch1*, was unaffected in ATG-MO embryos. Taken together, these results indicate that the function of Hoip is highly conserved and that *nhp2l1b* regulates myogenesis in vertebrates.

DISCUSSION

The results of this study reveal a specific and essential role for the putative RBP Hoip in the control of embryonic muscle development. *hoip* is expressed in the striated muscle lineage and regulates two distinct processes: myotube elongation and sarcomeric protein expression. Using functional rescue experiments, we have established that Hoip regulates *MHC* pre-mRNA splicing but not *MHC* transcription. The human *hoip* ortholog human *NHP2L1* can rescue myogenesis in *hoip* mutant embryos, and antisense *nhp2l1b* knockdown blocks muscle development in zebrafish. This study is the first to identify a tissue-specific function for *hoip* or its orthologs *in vivo* and highlights the essential role of post-transcriptional gene regulation during tissue morphogenesis.

Non-coding RNAs that function as 'core' spliceosome components can have tissue-specific functions *in vivo*. For example, the mouse genome encodes multiple U2 snRNA genes and the *rnu2-8* U2 snRNA is differentially expressed in the mouse nervous system with peak expression levels in the cerebellum (Jia et al., 2012). *Rnu2-8* knockout mice show normal splicing of constitutive exons, but incomplete splicing of alternative exons solely within the cerebellum (Jia et al., 2012), and *rnu2-8* U2 snRNA is essential for neuron survival in the cerebellum.

The Hoip orthologs Snu13/NHP2L1 proteins have been characterized as 'core' spliceosome components that bind the kink turn motif of U4 snRNAs, U3 snoRNAs and U14 snoRNAs (Schultz et al., 2006). However, we found Hoip expression and function is restricted to the striated muscle lineage within the *Drosophila* mesoderm. RNA-seq and *MHC*^{emb} rescue data clearly demonstrate that Hoip is not a global regulator of pre-mRNA splicing or ribosome biogenesis, but acts specifically on a set of RNAs that encode functionally related proteins.

The MHC^{emb} transgene contains a fully spliced MHC cDNA that encodes exons 2-19 (Wells et al., 1996). The 5' end of the transgene comprises genomic DNA that initiates 450 bp upstream of the first transcriptional start site and terminates in exon 2. This 5' sequence contains the necessary enhancer and promoter elements for transgene expression in the somatic mesoderm, as well as three alternative transcriptional start sites. The 3' end of the transgene contains a complete exon 19 with multiple polyadenylation (poly A) sites, but it does not contain an exogenous poly A signal (i.e. SV40). As MHCemb rescues MHC protein expression in hoip embryos, Hoip must not regulate transcriptional start site selection or 5'UTR stability. In addition, the endogenous 3'UTR is sufficient to restore MHC protein expression, indicating that Hoip does not regulate poly A site choice, polyadenylation itself or 3'UTR stability. Hoip therefore acts post-transcriptionally to control at least one splicing event in exons 2-19.

The apparent specificity with which Hoip targets sarcomeric RNAs is striking. One explanation for this specificity is that the Hoip paralog Nhp2 fulfills the spliceosome functions that Hoip does not. A more intriguing hypothesis is that Hoip facilitates ribonucleotide modifications in a subset of transcripts. For example, NHP2L1/snoRNA processomes direct 2'-O methylation of ribosomal pre-RNAs (Watkins et al., 2002) and 2'-O methylation has been reported to enhance pre-mRNA splicing in some contexts (Ge et al., 2010). Perhaps Hoip confers a similar modification to sarcomeric RNAs that is permissive for pre-mRNA splicing; in this model, unmodified pre-mRNAs would not be spliced and would degrade in the nucleus. We envision Hoip-mediated modifications to be a rate-limiting step that ensures proper stoichiometry of sarcomeric proteins.

This study also identified myotube elongation defects in *hoip* embryos. To our knowledge, this is the first mutation reported that blocks the initiation of myotube elongation (supplementary material Table S4). Accordingly, we failed to identify robust misregulation of genes known to regulate myotube elongation, attachment site recognition or myotendinous junction formation in *hoip* embryos (supplementary material Table S4). The strength of the *hoip* phenotype suggests that a suite of proteins is required for myotube elongation. A second possibility is that some sarcomeric proteins could be required for myotube elongation. We have shown that *MHC* does not regulate elongation; however, tropomyosins regulate actin dynamics outside the sarcomere that influence cell polarity and cell outgrowth in *Drosophila* (Li and Gao, 2003; Zimyanin et al., 2008).

One known regulator of microtubule dynamics during elongation, Tum, is a Rac family GTPase-activating protein (RacGAP). We searched the RNA-seq data for other Rac/Rho family regulators and identified two RhoGAPs and one Rho guanine nucleotide exchange factor (RhoGEF) that were misregulated in *hoip* embryos (supplementary material Table S5). We also identified two Rab family GTPases, the function of which in synaptic endosome trafficking has been well established (Gurkan et al., 2005). Rab family members are essential for microtubule-dependent outgrowth of tracheal and bristle cells (Nagaraj and Adler, 2012; Schottenfeld-Roames and Ghabrial, 2012) and the myotube guidance molecule Grip localizes to endosomes at the ends of extending myotubes (Swan et al., 2004). Finally, overexpressing the tendon cell regulator Stripe in the ectoderm upregulates a number of novel genes (Gilsohn and Volk, 2010a; Gilsohn and Volk, 2010b), including the transmembrane protein Tetraspanin 42Ea (Tsp42Ea). Tsp42Ea orthologs function in cell motility and signal transduction, and *Tsp42Ea* was downregulated in *hoip* embryos. It will be interesting to determine which of these genes are required for myotube elongation *in vivo*.

The zebrafish Hoip ortholog *nhp2l1b* is expressed in the paraxial mesoderm during the 10- to 14-somite stage and in the myotome during the 20- to 25-somite stage (Thisse and Thisse, 2001). Thus, the expression and myogenic function of *hoip/nhp2l1b* appears to be conserved in vertebrates. Despite being one of the most intensely studied developmental systems, skeletal muscle continues to reveal novel developmental mechanisms. In the future, it will be of particular interest to characterize the interactions between transcriptional and post-transcriptional mechanisms that coordinate final muscle morphology and function.

Acknowledgements

We appreciate Mike Buszczak for insights and discussions throughout this study. We thank Sandy Bernstein, Elizabeth Chen, Richard Cripps and Bruce Paterson for reagents.

Funding

E.N.O. is supported by grants from the National Institutes of Health (NIH) [HL-077439], The American Heart Association (AHA)-Jon Holden DeHaan Foundation [0970518N], Foundation Leducq Networks of Excellence, Cancer Prevention & Research Institute of Texas and the Robert A. Welch Foundation [1-0025]. A.N.J. is supported by a Scientist Development Grant [12SDG12030160] from the AHA. K.D.P. is supported by the NIH [GM074057 and HL081674]. Deposited in PMC for release after 12 months.

Competing interests statement

The authors declare no competing financial interests.

Author contributions

Experiments were carried out by A.N.J., M.H.M. and J.M.V. Experimental design, analyses and preparation of the manuscript were carried out by A.N.J., M.H.M., J.M.V., K.D.P. and E.N.O.

Supplementary material

Supplementary material available online at http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.095596/-/DC1

References

- Barolo, S., Castro, B. and Posakony, J. W. (2004). New Drosophila transgenic reporters: insulated P-element vectors expressing fast-maturing RFP. *Biotechniques* **36**, 436-440, 442.
- Bate, M. (1990). The embryonic development of larval muscles in Drosophila. *Development* **110**, 791-804.
- Bernstein, S. I., Mogami, K., Donady, J. J. and Emerson, C. P., Jr (1983). Drosophila muscle myosin heavy chain encoded by a single gene in a cluster of muscle mutations. *Nature* **302**, 393-397.
- Biedermann, B., Hotz, H. R. and Ciosk, R. (2010). The Quaking family of RNAbinding proteins: coordinators of the cell cycle and differentiation. *Cell Cycle* 9, 1929-1933.
- Bloor, J. W. and Brown, N. H. (1998). Genetic analysis of the Drosophila alphaPS2 integrin subunit reveals discrete adhesive, morphogenetic and sarcomeric functions. *Genetics* **148**, 1127-1142.
- Bour, B. A., O'Brien, M. A., Lockwood, W. L., Goldstein, E. S., Bodmer, R., Taghert, P. H., Abmayr, S. M. and Nguyen, H. T. (1995). Drosophila MEF2, a transcription factor that is essential for myogenesis. *Genes Dev.* **9**, 730-741.
- Brown, N. H. (1994). Null mutations in the alpha PS2 and beta PS integrin subunit genes have distinct phenotypes. *Development* **120**, 1221-1231.
- Brown, N. H., Gregory, S. L., Rickoll, W. L., Fessler, L. I., Prout, M., White, R. A. and Fristrom, J. W. (2002). Talin is essential for integrin function in Drosophila. *Dev. Cell* 3, 569-579.

- Bunch, T. A., Graner, M. W., Fessler, L. I., Fessler, J. H., Schneider, K. D., Kerschen, A., Choy, L. P., Burgess, B. W. and Brower, D. L. (1998). The PS2 integrin ligand tiggrin is required for proper muscle function in Drosophila. *Development* 125, 1679-1689.
- Callahan, C. A., Bonkovsky, J. L., Scully, A. L. and Thomas, J. B. (1996). derailed is required for muscle attachment site selection in Drosophila. *Development* **122**, 2761-2767.
- Carmena, A., Bate, M. and Jiménez, F. (1995). Lethal of scute, a proneural gene, participates in the specification of muscle progenitors during Drosophila embryogenesis. *Genes Dev.* 9, 2373-2383.
- Carrasco-Rando, M. and Ruiz-Gómez, M. (2008). Mind bomb 2, a founder myoblast-specific protein, regulates myoblast fusion and muscle stability. *Development* 135, 849-857.
- Chanana, B., Graf, R., Koledachkina, T., Pflanz, R. and Vorbrüggen, G. (2007). AlphaPS2 integrin-mediated muscle attachment in Drosophila requires the ECM protein Thrombospondin. *Mech. Dev.* **124**, 463-475.
- Chen, E. H. and Olson, E. N. (2001). Antisocial, an intracellular adaptor protein, is required for myoblast fusion in Drosophila. *Dev. Cell* **1**, 705-715.
- Cléry, A., Senty-Ségault, V., Leclerc, F., Raué, H. A. and Branlant, C. (2007). Analysis of sequence and structural features that identify the B/C motif of U3 small nucleolar RNA as the recognition site for the Snu13p-Rrp9p protein pair. *Mol. Cell. Biol.* 27, 1191-1206.
- de Joussineau, C., Bataillé, L., Jagla, T. and Jagla, K. (2012). Diversification of muscle types in Drosophila: upstream and downstream of identity genes. *Curr. Top. Dev. Biol.* **98**, 277-301.
- Dennis, G., Jr, Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C. and Lempicki, R. A. (2003). DAVID: Database for annotation, visualization, and integrated discovery. *Genome Biol.* 4, 3.
- Dobbyn, H. C. and O'Keefe, R. T. (2004). Analysis of Snu13p mutations reveals differential interactions with the U4 snRNA and U3 snoRNA. *RNA* **10**, 308-320.
- Elhanany-Tamir, H., Yu, Y. V., Shnayder, M., Jain, A., Welte, M. and Volk, T. (2012). Organelle positioning in muscles requires cooperation between two KASH proteins and microtubules. *J. Cell Biol.* **198**, 833-846.
- Estrada, B., Gisselbrecht, S. S. and Michelson, A. M. (2007). The transmembrane protein Perdido interacts with Grip and integrins to mediate myotube projection and attachment in the Drosophila embryo. *Development* 134, 4469-4478.
- Folker, E. S., Schulman, V. K. and Baylies, M. K. (2012). Muscle length and myonuclear position are independently regulated by distinct Dynein pathways. *Development* 139, 3827-3837.
- Frommer, G., Vorbrüggen, G., Pasca, G., Jäckle, H. and Volk, T. (1996). Epidermal egr-like zinc finger protein of Drosophila participates in myotube guidance. *EMBO J.* **15**, 1642-1649.
- Ge, J., Liu, H. and Yu, Y. T. (2010). Regulation of pre-mRNA splicing in Xenopus oocytes by targeted 2'-O-methylation. RNA 16, 1078-1085.
- Gilsohn, E. and Volk, T. (2010a). Slowdown promotes muscle integrity by modulating integrin-mediated adhesion at the myotendinous junction. *Development* **137**, 785-794.
- Gilsohn, E. and Volk, T. (2010b). A screen for tendon-specific genes uncovers new and old components involved in muscle-tendon interaction. *Fly (Austin)* 4, 149-153.
- Guerin, C. M. and Kramer, S. G. (2009a). Cytoskeletal remodeling during myotube assembly and guidance: coordinating the actin and microtubule networks. *Commun. Integr. Biol.* **2**, 452-457.
- Guerin, C. M. and Kramer, S. G. (2009b). RacGAP50C directs perinuclear gamma-tubulin localization to organize the uniform microtubule array required for Drosophila myotube extension. *Development* **136**, 1411-1421.
- Gurkan, C., Lapp, H., Alory, C., Su, A. I., Hogenesch, J. B. and Balch, W. E. (2005). Large-scale profiling of Rab GTPase trafficking networks: the membrome. *Mol. Biol. Cell* **16**, 3847-3864.
- Hess, N. K., Singer, P. A., Trinh, K., Nikkhoy, M. and Bernstein, S. I. (2007). Transcriptional regulation of the Drosophila melanogaster muscle myosin heavy-chain gene. *Gene Expr. Patterns* **7**, 413-422.
- Higashijima, S., Okamoto, H., Ueno, N., Hotta, Y. and Eguchi, G. (1997). Highfrequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. *Dev. Biol.* **192**, 289-299.
- Jagla, T., Bellard, F., Lutz, Y., Dretzen, G., Bellard, M. and Jagla, K. (1998). ladybird determines cell fate decisions during diversification of Drosophila somatic muscles. *Development* **125**, 3699-3708.
- Jia, Y., Mu, J. C. and Ackerman, S. L. (2012). Mutation of a U2 snRNA gene causes global disruption of alternative splicing and neurodegeneration. *Cell* 148, 296-308.
- Johnson, A. N., Burnett, L. A., Sellin, J., Paululat, A. and Newfeld, S. J. (2007). Defective decapentaplegic signaling results in heart overgrowth and reduced cardiac output in Drosophila. *Genetics* **176**, 1609-1624.
- Johnson, A. N., Mokalled, M. H., Haden, T. N. and Olson, E. N. (2011). JAK/Stat signaling regulates heart precursor diversification in Drosophila. *Development* 138, 4627-4638.

Kania, A., Salzberg, A., Bhat, M., D'Evelyn, D., He, Y., Kiss, I. and Bellen, H. J. (1995). P-element mutations affecting embryonic peripheral nervous system development in Drosophila melanogaster. *Genetics* **139**, 1663-1678.

Kiehart, D. P. and Feghali, R. (1986). Cytoplasmic myosin from Drosophila melanogaster. J. Cell Biol. 103, 1517-1525.

Kosman, D., Small, S. and Reinitz, J. (1998). Rapid preparation of a panel of polyclonal antibodies to Drosophila segmentation proteins. *Dev. Genes Evol.* 208, 290-294.

Kramer, S. G., Kidd, T., Simpson, J. H. and Goodman, C. S. (2001). Switching repulsion to attraction: changing responses to slit during transition in mesoderm migration. *Science* 292, 737-740.

Kronert, W. A., O'Donnell, P. T. and Bernstein, S. I. (1994). A charge change in an evolutionarily-conserved region of the myosin globular head prevents myosin and thick filament accumulation in Drosophila. J. Mol. Biol. 236, 697-702.

Li, W. and Gao, F. B. (2003). Actin filament-stabilizing protein tropomyosin regulates the size of dendritic fields. *J. Neurosci.* 23, 6171-6175.

Lilly, B., Zhao, B., Ranganayakulu, G., Paterson, B. M., Schulz, R. A. and Olson, E. N. (1995). Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. *Science* **267**, 688-693.

Martin-Bermudo, M. D. and Brown, N. H. (2000). The localized assembly of extracellular matrix integrin ligands requires cell-cell contact. *J. Cell Sci.* **113**, 3715-3723.

Mokalled, M. H., Johnson, A., Kim, Y., Oh, J. and Olson, E. N. (2010). Myocardin-related transcription factors regulate the Cdk5/Pctaire1 kinase cascade to control neurite outgrowth, neuronal migration and brain development. *Development* **137**, 2365-2374.

Nagaraj, R. and Adler, P. N. (2012). Dusky-like functions as a Rab11 effector for the deposition of cuticle during Drosophila bristle development. *Development* 139, 906-916.

Nose, A., Isshiki, T. and Takeichi, M. (1998). Regional specification of muscle progenitors in Drosophila: the role of the msh homeobox gene. *Development* 125, 215-223.

Nottrott, S., Hartmuth, K., Fabrizio, P., Urlaub, H., Vidovic, I., Ficner, R. and Lührmann, R. (1999). Functional interaction of a novel 15.5kD [U4/U6.U5] tri-snRNP protein with the 5' stem-loop of U4 snRNA. *EMBO J.* 18, 6119-6133.

Prokopenko, S. N., He, Y., Lu, Y. and Bellen, H. J. (2000). Mutations affecting the development of the peripheral nervous system in Drosophila: a molecular screen for novel proteins. *Genetics* 156, 1691-1715.

Reim, I., Mohler, J. P. and Frasch, M. (2005). Tbx20-related genes, mid and H15, are required for tinman expression, proper patterning, and normal differentiation of cardioblasts in Drosophila. *Mech. Dev.* **122**, 1056-1069.

Robinson, J. T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E. S., Getz, G. and Mesirov, J. P. (2011). Integrative genomics viewer. *Nat. Biotechnol.* 29, 24-26.

Rosenberg-Hasson, Y., Renert-Pasca, M. and Volk, T. (1996). A Drosophila dystrophin-related protein, MSP-300, is required for embryonic muscle morphogenesis. *Mech. Dev.* **60**, 83-94.

Rui, Y., Bai, J. and Perrimon, N. (2010). Sarcomere formation occurs by the assembly of multiple latent protein complexes. *PLoS Genet.* **6**, e1001208.

Schejter, É. D. and Baylies, M. K. (2010). Born to run: creating the muscle fiber. *Curr. Opin. Cell Biol.* 22, 566-574.

Schnorrer, F. and Dickson, B. J. (2004). Muscle building; mechanisms of myotube guidance and attachment site selection. *Dev. Cell* **7**, 9-20.

Schnorrer, F., Kalchhauser, I. and Dickson, B. J. (2007). The transmembrane protein Kon-tiki couples to Dgrip to mediate myotube targeting in Drosophila. *Dev. Cell* **12**, 751-766.

Schottenfeld-Roames, J. and Ghabrial, A. S. (2012). Whacked and Rab35 polarize dynein-motor-complex-dependent seamless tube growth. *Nat. Cell Biol.* 14, 386-393.

Schultz, A., Nottrott, S., Watkins, N. J. and Lührmann, R. (2006). Proteinprotein and protein-RNA contacts both contribute to the 15.5K-mediated assembly of the U4/U6 snRNP and the box C/D snoRNPs. *Mol. Cell. Biol.* 26, 5146-5154.

Small, E. M., Warkman, A. S., Wang, D. Z., Sutherland, L. B., Olson, E. N. and Krieg, P. A. (2005). Myocardin is sufficient and necessary for cardiac gene expression in Xenopus. *Development* 132, 987-997.

Steigemann, P., Molitor, A., Fellert, S., Jäckle, H. and Vorbrüggen, G. (2004). Heparan sulfate proteoglycan syndecan promotes axonal and myotube guidance by slit/robo signaling. *Curr. Biol.* 14, 225-230.

Subramanian, A., Wayburn, B., Bunch, T. and Volk, T. (2007). Thrombospondin-mediated adhesion is essential for the formation of the myotendinous junction in Drosophila. *Development* **134**, 1269-1278.

Swan, L. E., Wichmann, C., Prange, U., Schmid, A., Schmidt, M., Schwarz, T., Ponimaskin, E., Madeo, F., Vorbrüggen, G. and Sigrist, S. J. (2004). A glutamate receptor-interacting protein homolog organizes muscle guidance in Drosophila. *Genes Dev.* 18, 223-237.

Swan, L. E., Schmidt, M., Schwarz, T., Ponimaskin, E., Prange, U., Boeckers, T., Thomas, U. and Sigrist, S. J. (2006). Complex interaction of Drosophila GRIP PDZ domains and Echinoid during muscle morphogenesis. *EMBO J.* 25, 3640-3651.

Thisse, B. and Thisse, C. (2001). Fast Release Clones: A High Throughput Expression Analysis. ZFIN Direct Data Submission. http://zfin.org

Toledano-Katchalski, H., Nir, R., Volohonsky, G. and Volk, T. (2007). Posttranscriptional repression of the Drosophila midkine and pleiotrophin homolog miple by HOW is essential for correct mesoderm spreading. *Development* 134, 3473-3481.

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J. and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. *Nat. Biotechnol.* 28, 511-515.

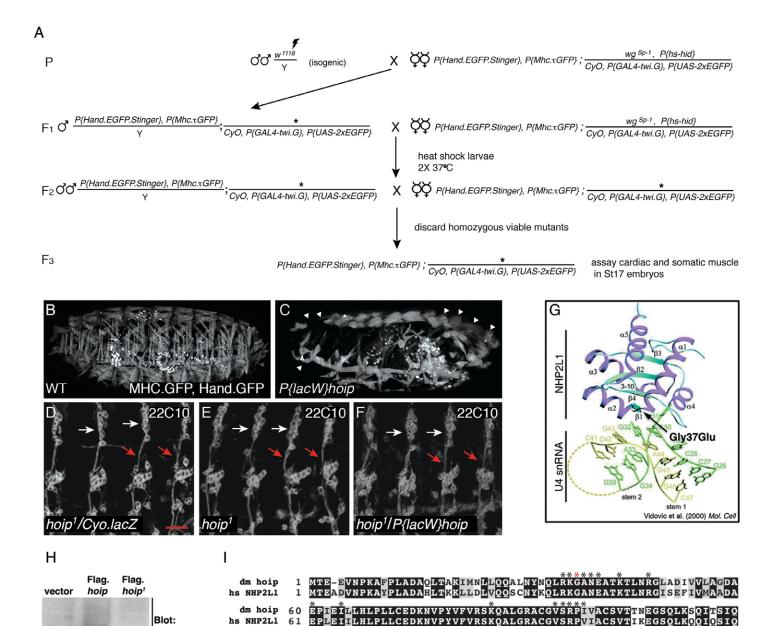
Venkatesh, T. V., Park, M., Ocorr, K., Nemaceck, J., Golden, K., Wemple, M. and Bodmer, R. (2000). Cardiac enhancer activity of the homeobox gene tinman depends on CREB consensus binding sites in Drosophila. *Genesis* 26, 55-66.

Vidovic, I., Nottrott, S., Hartmuth, K., Lührmann, R. and Ficner, R. (2000). Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. *Mol. Cell* **6**, 1331-1342.

Watkins, N. J., Dickmanns, A. and Lührmann, R. (2002). Conserved stem II of the box C/D motif is essential for nucleolar localization and is required, along with the 15.5K protein, for the hierarchical assembly of the box C/D snoRNP. *Mol. Cell. Biol.* 22, 8342-8352.

Wayburn, B. and Volk, T. (2009). LRT, a tendon-specific leucine-rich repeat protein, promotes muscle-tendon targeting through its interaction with Robo. *Development* 136, 3607-3615.

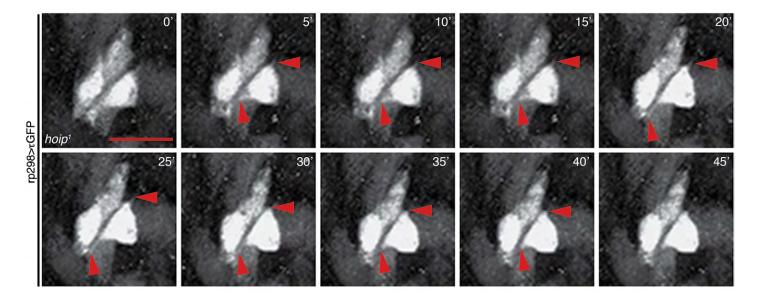
Wei, Q., Rong, Y. and Paterson, B. M. (2007). Stereotypic founder cell patterning and embryonic muscle formation in Drosophila require nautilus (MyoD) gene function. *Proc. Natl. Acad. Sci. USA* **104**, 5461-5466.

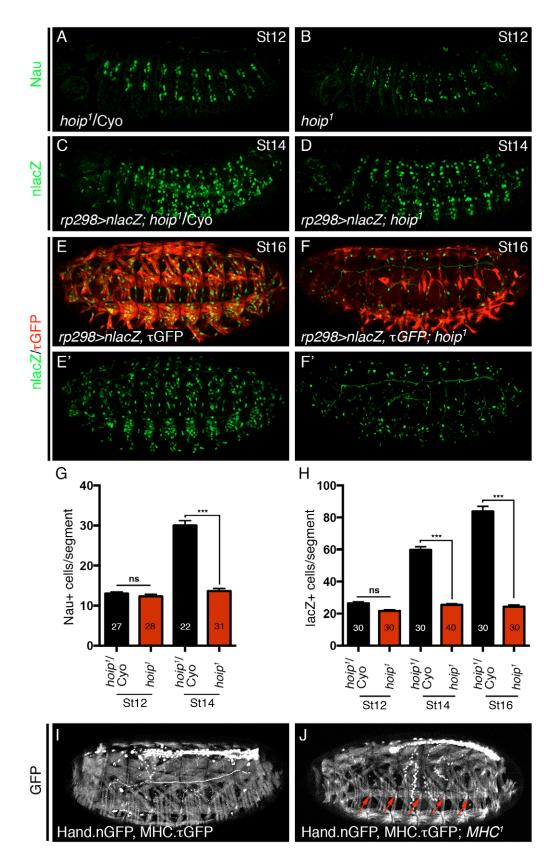

Wells, L., Edwards, K. A. and Bernstein, S. I. (1996). Myosin heavy chain isoforms regulate muscle function but not myofibril assembly. *EMBO J.* 15, 4454-4459.

Yarnitzky, T., Min, L. and Volk, T. (1998). An interplay between two EGFreceptor ligands, Vein and Spitz, is required for the formation of a subset of muscle precursors in Drosophila. *Mech. Dev.* 79, 73-82.

Zhai, R. G., Hiesinger, P. R., Koh, T. W., Verstreken, P., Schulze, K. L., Cao, Y., Jafar-Nejad, H., Norga, K. K., Pan, H., Bayat, V. et al. (2003). Mapping Drosophila mutations with molecularly defined P element insertions. *Proc. Natl. Acad. Sci. USA* **100**, 10860-10865.

Zhang, S. and Bernstein, S. I. (2001). Spatially and temporally regulated expression of myosin heavy chain alternative exons during Drosophila embryogenesis. *Mech. Dev.* **101**, 35-45.


Zimyanin, V. L., Belaya, K., Pecreaux, J., Gilchrist, M. J., Clark, A., Davis, I. and St Johnston, D. (2008). In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. *Cell* **134**, 843-853.


Fig. S1. A forward genetic screen identified Hoip as a novel regulator of mesoderm development. (**A**) Crossing scheme to generate EMS mutants in a double GFP reporter background. Over 10,000 mutagenized genomes were screened. (**B**,C) MHC.τGFP, Hand.n-GFP expression in St17 embryos. Compared with wild-type embryos (B), *P{lacW}hoipk07104* homozygous embryos (C) show severe muscle defects and apparent segmentation defects (white arrowheads). (**D**-**F**) St16 embryos stained with the PNS marker 22C10. Micrographs show four dorsal neuron clusters. The organization of the dorsal clusters (white arrows) and the pathway of the descending nerve (red arrows) are comparable among *hoip¹/Cyo* (D), *hoip¹* (E) and *hoip¹/P{lacW}hoip^{k07104}* (F) embryos. (**G**) Crystal structure of hNHP2L1 bound to U4 snRNA as reported previously (Vidovic et al., 2000), except the position of the 37th residue (mutated in *hoip¹* embryos) is shown. (**H**) α-Flag western blot from COS cells transfected with empty pcDNA.Flag, pcDNA.Flag.Hoip or pcDNA.Flag.Hoip¹. (**I**) Alignment of Hoip and hNHP2L1 protein sequence. The two proteins are 79% identical and 89% similar. hNHP2L1 amino acids required for RNA binding are indicated with an asterisk (Schultz et al., 2006). The red asterisk shows the position of the *hoip¹* missense mutation. Scale bar: 20µm.

dm hoip 120 OEIERLLV hs NHP2L1 121 OSIERLLV

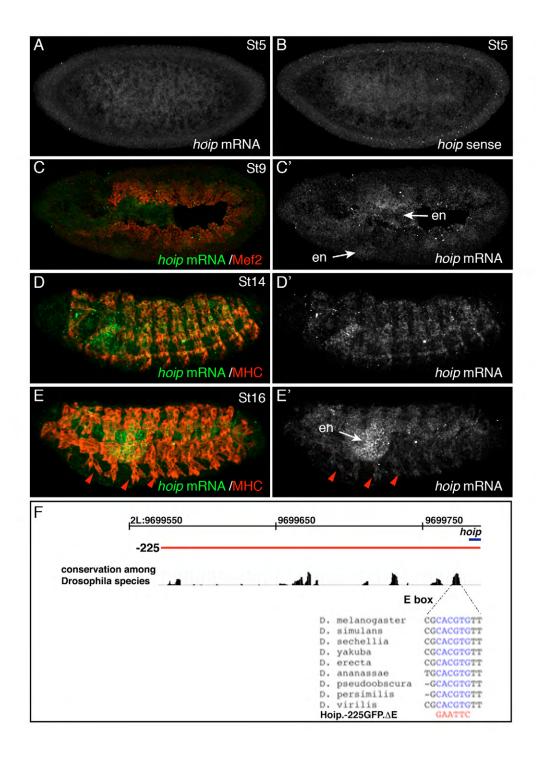

Flag

Fig. S2. Somatic muscles in *hoip* **embryos extend filapodia in the direction of polarization.** Time-lapse images of rp298. gal4> τ GFP *hoip*¹ somatic muscles beginning at late St12. Filapodia extend in the axis of myotube polarization (red arrowheads) and then retract. Scale bar: 10 µm.

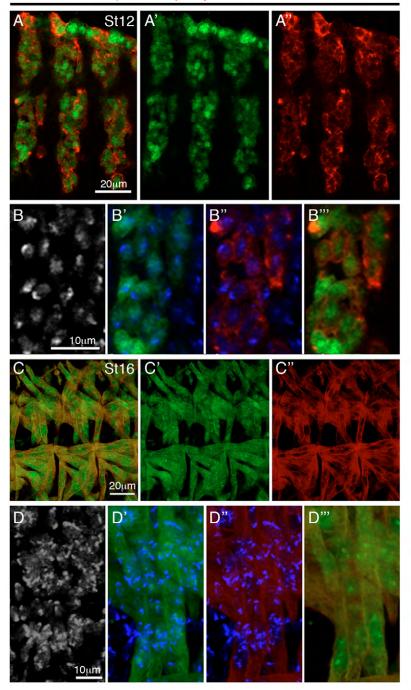


Fig. S3. Muscle morphology and identity gene expression. (**A**,**B**) Nau expression in St12 embryos. The number of Nau+ nuclei is comparable between control and *hoip*¹ embryos. (**C**,**D**) rp298.lacZ expression in St12 embryos. The number of lacZ⁺ nuclei is comparable between control and *hoip*¹ embryos. (**E**,**F**) St16 rp298.gal4> τ .GFP, rp298.nlacZ embryos double-labeled for GFP (red) and lacZ (green). *hoip*¹ embryos showed a significant reduction in the number of lacZ⁺ nuclei (F) compared with wild type (E). (**G**,**H**) Quantification of Nau⁺ and rp298.lacZ⁺ positive nuclei in the dorsal mesoderm. The number of segments quantified is given for each genotype and time point. Unpaired *t*-tests were performed to establish significance. Error bars represent s.e.m. (**I**,**J**) MHC. τ GFP, Hand. nGFP expression in St16 embryos. (I) Wild-type and (J) *MHC*¹ embryos show similar somatic muscle morphology. In particular LL1/ DO5 muscles have elongated and attached in all segments (red arrows). ns, not significant; ****P*<0.001.

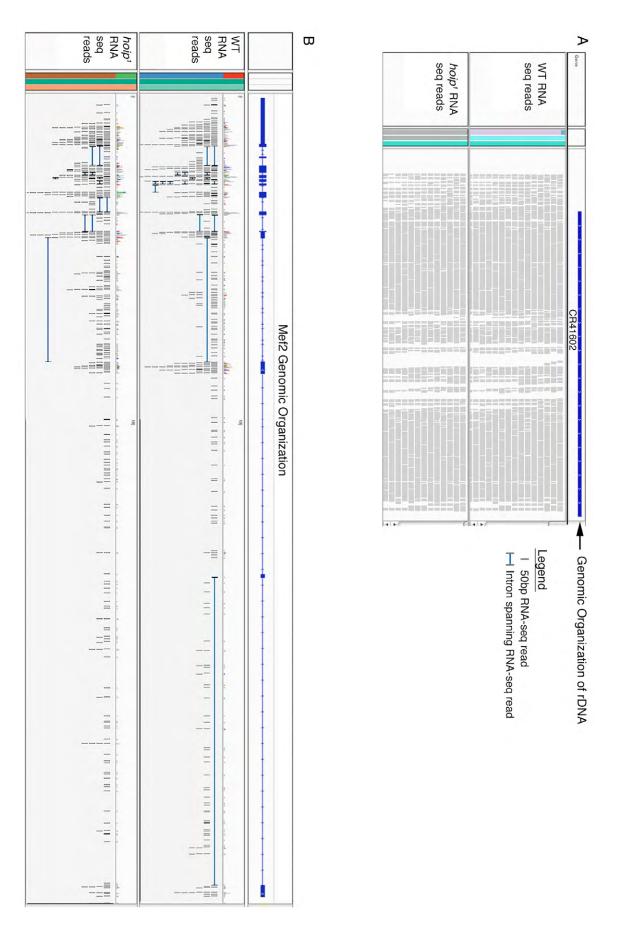


Fig. S4. *hoip* expression during embryonic development. (A-E) Wild-type embryos hybridized with RNA probes antisense (A,C-E) or sense (B) to the *hoip* mRNA. (**A**,**B**) Post-cellularization blastoderm embryos. Fluorescent intensity is comparable between the antisense and sense probes. (**C**) St9 embryo co-labeled for *hoip* (green) and Mef2 (red). Weak *hoip* expression has initiated in the endoderm and mesoderm. (**D**,**E**) St14 (D) and St16 (E) embryos co-labeled for *hoip* (green) and MHC (red). *hoip* is expressed at high levels in the endoderm (en) and at lower levels in the somatic musculature (red arrowheads). (**F**) Genomic conservation 225 bp 5' to the *hoip* transcriptional start site. The highly conserved E-box sequence and mutations in Hoip.-225. Δ EGFP are shown. Genomic coordinates refer to base pair positions along chromosome 2L.

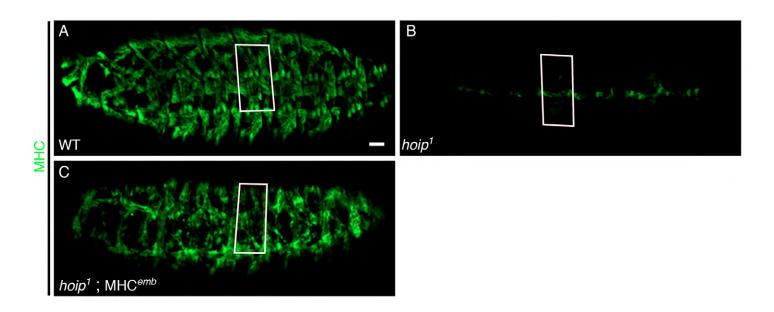

Hoip-HA/Tropomyosin/Hoechst

Fig. S5. Hoip localizes to both the nucleus and the cytoplasm. (A-D) Mef2>Hoip-HA embryos co-labeled for HA (green) and Tropomyosin (red). (**A**,**B**) Hoip is largely localized to the nucleus in St12 embryos, although some cytoplasmic staining is present. (**C**,**D**) Hoip is localized throughout the myofibers of St16 embryos. Enhanced localization is apparent in a subnuclear domain.

Fig. S6. rRNA processing and *Mef2* **expression are not affected in** *hoip*¹ **embryos.** (A,B) Screen shot from Integrative Genome Viewer at the rDNA locus (A; CR41602) and the Mef2 locus (B) showing RNA-seq reads from wild-type and *hoip*¹ embryos. Vertical grey bars represent a single sequencing read. Horizontal blue lines indicate a sequencing read across an intron. The number and positions of RNA-seq reads is comparable between genotypes at both loci.

Fig. S7. Method to quantify MHC expression by mean fluorescence intensity. (A-C) Z-stacks including only the somatic muscles from St16 embryos stained for MHC. MHC expression was clearly restored in *hoip*¹ embryos by *MHC*^{emb}; however, muscle morphology was not (compare A with C). To quantify MHC expression in the somatic musculature (SM), we used the Zeiss LSM Zen 2011 software to trace the medial region of a segment using SBMs to define anterior-posterior position of each segment (white boxes). The software then calculated mean fluorescent intensity (MFI) within each boxed region. We also measured fluorescent intensity in the visceral musculature (VM). To normalize MHC expression, we divided SM MFI by VM MFI to obtain relative fluorescence for each segment.

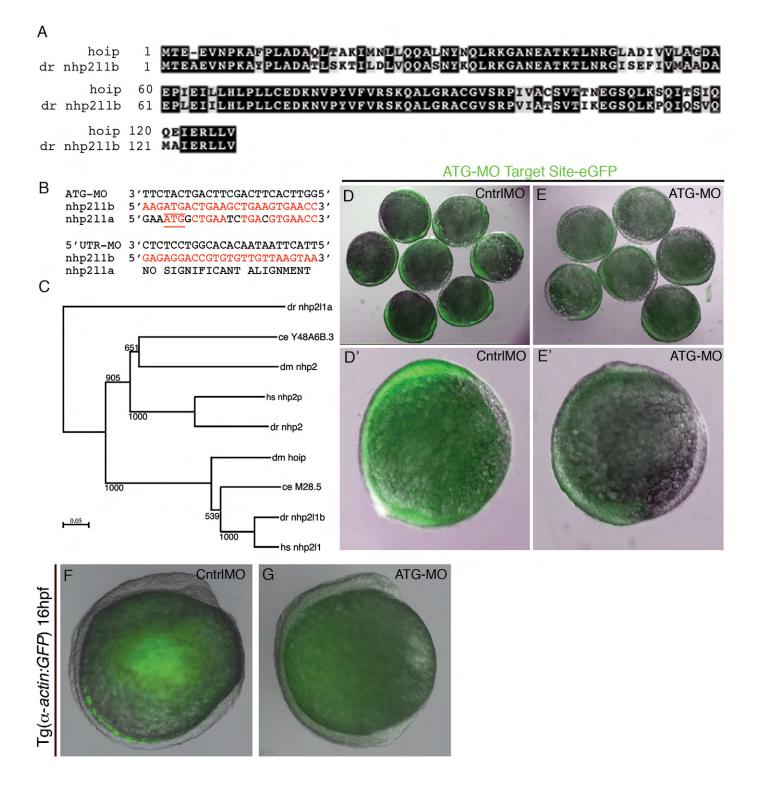


Fig. S8. *nhp2l1b* is a Hoip orthologue and the *nhp2l1b* ATG-MO efficiently blocks translation. (A) Alignment between Hoip and zebrafish *nhp2l1b* protein sequences. Identical amino acids are shaded black; similar amino acids are shaded gray. (B) Alignment of the *nhp2l1a/b* translational start sequences with the ATG-MO and 5'UTR-MO. Target nucleotides are red. The beginning of the ORF is underlined. (C) Phylogenetic analysis of NHP2 and NHP2L1 proteins in worms (ce), flies (dm), zebrafish (dr) and humans (hs). Bootstrap values are given. (D) Zebrafish embryos co-injected with Control-MO and an eGFP construct containing the *nhp2l1b* target site in the 5'UTR show robust eGFP expression at 12 hpf. (E) Embryos co-injected with ATG-MO and the same eGFP construct as in D show a significant reduction in eGFP expression. (F,G) Tg(α -actin:GFP) embryos injected with ATG-MO did not develop beyond 16 hpf.

Muscle*	DO1	DO2	DA	DO	DO	DO	<i>LT1-</i>	DT	LO	SBM	VO	VA
			3	3	4	5	4	1	1		1-3	1-2
hoip ¹	97	94	33	13	38	19	47	91	47	94	61	64
	(36)	(36)	(36)	(36)	(36)	(36)	(144)	(36)	(36)	(36)	(90)	(62)
<i>hoip¹</i> /Df(2L)ED690	77	100	38	16	54	32	41	93	41	67	52	77
	(31)	(31)	(31)	(31)	(31)	(31)	(124)	(31)	(31)	(31)	(93)	(62)
hoip ¹ /P{lacW}hoip ^{K07104}	100	100	53	14	44	41	33	76	50	91	71	75
	(34)	(34)	(34)	(34)	(34)	(34)	(136)	(34)	(34)	(34)	(66)	(48)
P{lacW}hoip ^{K07104}	86	78	9	0	18	18	4	36	4	59	16	23
	(22)	(22)	(22)	(22)	(22)	(22)	(88)	(22)	(22)	(22)	(66)	(44)

*Muscles extending across the segment scored positive

Data are percentage of positive muscles (number of muscles scored)

Gene	Wild-type value	<i>hoip</i> value	Fold change	P value
abba	25.7008	0.3275	0.01274	0.00002
Acsl	193.6320	82.4571	0.42584	0.00143
Actn	235.0040	103.6920	0.44124	0.00014
Adh	308.0260	45.7923	0.14866	0.00000
Adk1	66.7169	5.9337	0.08894	0.00033
Ahcy13	355.8390	152.4240	0.42835	0.00401
alphaTub85E	99.3420	25.6589	0.25829	0.00004
arg	285.5680	34.4369	0.12059	0.00445
Atf6	184.9760	74.7937	0.40434	0.00113
ATPsyn-g	620.1150	296.6300	0.47835	0.00164
betaTub97EF	124.1460	13.9371	0.11226	0.00000

 Table S2. Differential gene expression in 6-10 hour *hoip*¹ embryos

BM-40-SPARC	197.7130	54.6709	0.27652	0.00022
bt	248.1740	13.6823	0.05513	0.00000
Ca-alpha1D	27.9455	10.2013	0.36505	0.00417
Ca-beta	24.3753	2.5030	0.10268	0.00062
cals	521.7950	248.3170	0.47589	0.00810
CaMKI	182.9920	64.2499	0.35111	0.00020
САР	86.9704	36.7742	0.42284	0.00011
Caps	179.0760	75.8946	0.42381	0.00000
Cda4	140.2440	65.9648	0.47036	0.00617
Cf2	66.7754	20.9347	0.31351	0.00101
CG10249	65.6698	27.0462	0.41185	0.00023
CG10591	2167.7900	628.6480	0.29000	0.00000
CG10625	96.9136	2.9092	0.03002	0.00000
CG10737	142.7700	42.1398	0.29516	0.00000
CG11155	26.3139	6.6147	0.25138	0.00258

CG11198	81.6923	31.6125	0.38697	0.00047
CG11255	199.1450	88.5562	0.44468	0.00039
CG11658	124.5830	58.0435	0.46590	0.00199
CG11883	17.8655	1.6973	0.09500	0.00033
CG12769	27.3271	8.2212	0.30084	0.00727
CG13124	34.9772	12.4803	0.35681	0.00720
CG13183	30.3052	5.5422	0.18288	0.00318
CG13397	70.7670	21.9354	0.30997	0.00209
CG13698	145.5600	53.7993	0.36960	0.00039
CG14265	191.3600	0.0000	0.00000	0.00023
CG14817	589.0110	97.1897	0.16500	0.00833
CG14869	32.6878	11.2547	0.34431	0.00039
CG15093	157.8800	12.2214	0.07741	0.00000
CG15251	34.8088	1.9145	0.05500	0.00643
CG15309	53.2676	15.7721	0.29609	0.00827

CG15618	20.70(4	9.6678	0.22446	0.00003
CG15018	29.7964	9.0078	0.32446	0.00003
CG15822	45.2577	17.9422	0.39644	0.00026
CG1607	68.4284	23.6532	0.34566	0.00357
CG1674	104.1200	3.5355	0.03396	0.00001
CG16884	156.7830	1.3108	0.00836	0.00000
CG16885	247.5510	2.8119	0.01136	0.00004
CG17549	104.3110	13.2131	0.12667	0.00017
CG17598	164.8950	69.0480	0.41874	0.00311
CG1764	62.8433	21.1004	0.33576	0.00455
CG17816	34.8959	12.4392	0.35647	0.00207
CG1824	81.5638	40.0639	0.49120	0.00400
CG18522	38.5264	18.1660	0.47152	0.00566
CG18661	32.8536	5.0490	0.15368	0.00362
CG18675	15.8026	1.5630	0.09891	0.00653
CG2219	143.0870	56.4341	0.39441	0.00381

CG2930	66.8025	6.7124	0.10048	0.00001
CG2950	68.0822	34.2304	0.50278	0.00443
CG2962	372.1370	100.6710	0.27052	0.00003
CG30101	96.4232	11.8547	0.12294	0.00004
CG3011	106.0890	34.2676	0.32301	0.00327
CG30458	44.2715	0.7229	0.01633	0.00007
CG30460	78.2668	31.4999	0.40247	0.00002
CG31004	88.4885	17.5975	0.19887	0.00000
CG31140	58.8638	19.0361	0.32339	0.00000
CG31323	20.3243	1.9758	0.09721	0.00058
CG3164	354.7930	173.0310	0.48769	0.00035
CG31999	54.3378	10.3593	0.19064	0.00000
CG32352	17.0136	1.9147	0.11254	0.00009
CG32373	26.2502	3.7408	0.14250	0.00380
CG32581	33.2508	2.7799	0.08360	0.00151

CG32813	97.8948	46.8468	0.47854	0.00294
CG33144	47.1899	23.2984	0.49371	0.00270
CG33205	151.1240	9.7741	0.06468	0.00000
CG33977	733.7690	54.7722	0.07465	0.00085
CG3588	54.3898	5.6839	0.10450	0.00001
CG3793	69.7514	16.3636	0.23460	0.00510
CG40263	77.1697	14.6049	0.18926	0.00005
CG42326	24.2489	0.4969	0.02049	0.00018
CG42492	84.9767	30.5867	0.35994	0.00000
CG42527	185.2060	89.3761	0.48258	0.00129
CG42533	45.7777	19.2573	0.42067	0.00501
CG42673	77.4045	32.9339	0.42548	0.00614
CG42741	20.4978	1.1266	0.05496	0.00641
CG4467	40.2310	18.5803	0.46184	0.00049
CG4562	34.0110	2.9619	0.08709	0.00001

CG4692	912.1890	414.2920	0.45417	0.00773
CG4822	63.7431	15.4715	0.24272	0.00014
CG5080	476.0120	126.7830	0.26634	0.00000
CG5322	36.5403	7.3002	0.19978	0.00082
CG5381	46.1005	12.6364	0.27411	0.00561
CG5804	267.2140	0.0000	0.00000	0.00174
CG5830	162.1450	80.2979	0.49522	0.00334
CG5853	88.4155	26.1122	0.29533	0.00096
CG5910	39.0743	3.5508	0.09087	0.00227
CG5958	1026.3700	428.3170	0.41732	0.00144
CG6043	32.5517	6.9578	0.21374	0.00032
CG6388	92.7134	28.3814	0.30612	0.00301
CG6672	151.9640	72.3595	0.47616	0.00080
CG6972	86.6755	10.0643	0.11611	0.00012
CG7203	103.2540	0.0000	0.00000	0.00001

CG7203	103.2540	0.0000	0.00000	0.00001
CG7298	226.4770	2.8344	0.01252	0.00000
CG7675	82.4901	34.9946	0.42423	0.00001
CG7715	105.4550	0.0000	0.00000	0.00035
CG7920	179.5330	61.1720	0.34073	0.00001
CG7998	352.3630	75.3197	0.21376	0.00000
CG8086	16.4205	4.7136	0.28705	0.00745
CG8193	835.7910	220.8040	0.26419	0.00007
CG8303	39.5537	12.0205	0.30390	0.00285
CG8630	41.7814	1.5594	0.03732	0.00001
CG9184	2626.3900	896.2130	0.34123	0.00000
CG9331	163.9160	31.4306	0.19175	0.00010
CG9380	101.9050	26.2261	0.25736	0.00000
CG9416	159.5170	72.8624	0.45677	0.00637
CG9527	52.0325	12.0834	0.23223	0.00155

CG9603	1277.9900	593.6690	0.46453	0.00003
CG9619	23.3602	4.1184	0.17630	0.00006
CG9743	121.2990	43.6324	0.35971	0.00018
CG9747	109.8010	38.4442	0.35013	0.00073
CG9850	16.3071	1.7034	0.10446	0.00034
CG9990	38.8872	3.9755	0.10223	0.00001
cher	268.4920	90.8359	0.33832	0.00000
chrb	524.0690	248.8120	0.47477	0.00065
Cht3	183.3590	39.5191	0.21553	0.00000
Cpr62Bc	73.4912	3.4134	0.04645	0.00006
Cpr65Ea	768.1140	33.2480	0.04329	0.00000
cpx	64.3182	14.6317	0.22749	0.00010
CRMP	86.8474	31.3974	0.36152	0.00227
CYLD	137.7420	46.6807	0.33890	0.00405
Cyp309a2	51.1353	13.0595	0.25539	0.00027

deltaCOP	280.8840	141.0960	0.50233	0.00001
dpr7	45.0698	6.2485	0.13864	0.00272
drpr	80.2505	40.6775	0.50688	0.00000
emp	91.7095	23.7796	0.25929	0.00040
Epac	44.0771	13.2918	0.30156	0.00006
eya	64.8562	23.1432	0.35684	0.00510
fau	135.1110	0.0000	0.00000	0.00000
fok	231.0960	100.3170	0.43409	0.00547
Gad1	24.8103	1.6205	0.06531	0.00002
Galpha73B	30.3547	0.9903	0.03262	0.00615
Gasp	1254.2300	379.6490	0.30270	0.00000
Gel	113.5200	36.9592	0.32557	0.00059
Gfat1	112.0150	30.1142	0.26884	0.00008
Gfat2	148.8290	67.0459	0.45049	0.00280
Glut1	64.3970	25.5972	0.39749	0.00155

Got2	92.7271	24.2257	0.26126	0.00179
Gpo-1	42.2637	4.4773	0.10594	0.00011
grn	103.0120	50.6430	0.49162	0.00188
haf	127.1860	60.3035	0.47414	0.00462
ia2	24.9502	0.9657	0.03870	0.00000
ImpL3	354.4180	65.5088	0.18484	0.00000
iotaTry	23222.1000	7344.8800	0.31629	0.00000
kdn	406.4710	191.7070	0.47164	0.00196
l(2)01289	34.9121	1.5863	0.04544	0.00000
1(2)03709	453.0830	212.6080	0.46925	0.00169
l(2)efl	139.5990	5.9545	0.04265	0.00003
LamC	181.5150	37.5050	0.20662	0.00000
mas	155.4540	60.9205	0.39189	0.00084
mbl	182.6290	86.3384	0.47275	0.00398
Megalin	194.0080	47.3070	0.24384	0.00000

Mf	160.0220	1.6157	0.01010	0.00000
Mhc	726.6050	38.8825	0.05351	0.00000
Mipp1	223.4110	112.1830	0.50214	0.00691
Mlc1	837.2200	56.5194	0.06751	0.00000
Mlc2	738.3910	68.5564	0.09285	0.00000
Mob2	63.0313	25.5342	0.40510	0.00001
Msp-300	156.9930	43.6981	0.27834	0.00000
Msr-110	183.3070	40.4618	0.22073	0.00000
mura	149.8970	53.8473	0.35923	0.00007
n-syb	38.6363	3.4608	0.08957	0.00022
Nckx30C	18.8468	2.6763	0.14200	0.00002
Nep2	121.8840	43.4931	0.35684	0.00157
Nnfla	162.6400	45.1467	0.27759	0.00213
Nurf-38	324.2540	155.6600	0.48005	0.00255
Oatp33Ea	44.0468	12.5061	0.28393	0.00338

Obp44a	206.1100	0.0000	0.00000	0.00008
obst-E	62.6213	0.9349	0.01493	0.00005
pgant3	67.1310	26.2108	0.39044	0.00028
Pgm	730.4410	149.3760	0.20450	0.00588
Pif1A	60.5008	21.7064	0.35878	0.00001
PKD	77.6680	24.3038	0.31292	0.00075
PQBP-1	78.8846	38.2711	0.48515	0.00206
ps	360.4450	174.2810	0.48352	0.00000
Rab-RP4	495.6050	62.7785	0.12667	0.00262
Rab7	496.8930	236.2550	0.47546	0.00496
Rbp6	68.6119	9.4344	0.13750	0.00001
rec	24.9292	6.0120	0.24116	0.00236
RhoGAP100F	38.6191	15.9435	0.41284	0.00011
rut	47.1320	20.9665	0.44485	0.00042
Rya-r44F	62.7417	27.0400	0.43097	0.00065

salm	131.1010	62.0813	0.47354	0.00000
scaf	101.2600	16.3263	0.16123	0.00000
SelG	148.5730	47.7733	0.32155	0.00167
serp	422.5820	155.8250	0.36875	0.00000
sgl	271.7720	127.0570	0.46751	0.00501
slo	17.1657	4.4506	0.25927	0.00414
Spn77Ba	21.9980	1.1494	0.05225	0.00544
Strn-Mlck	25.6701	6.5128	0.25371	0.00000
SV	61.5652	26.8702	0.43645	0.00333
synaptogyrin	24.1509	2.5238	0.10450	0.00089
Syt1	26.7950	7.0848	0.26441	0.00062
Tace	57.4618	16.9370	0.29475	0.00417
TepII	85.7617	36.8163	0.42929	0.00575
Tina-1	376.2530	92.1554	0.24493	0.00006
Tm1	1179.4600	590.3450	0.50052	0.00000

Tm2	236.8290	23.4468	0.09900	0.00000
Трі	85.7148	26.3455	0.30736	0.00735
TpnC47D	1137.7500	43.3073	0.03806	0.00000
TpnC73F	310.8360	45.3916	0.14603	0.00000
trol	92.6705	14.6083	0.15764	0.00000
Tsp42Ea	98.0492	46.6541	0.47582	0.00832
TwdlL	187.6780	0.0000	0.00000	0.00000
Uhg5	276.9450	101.8660	0.36782	0.00362
Unc-89	17.9081	1.4018	0.07828	0.00000
up	496.6070	36.6903	0.07388	0.00000
usnp	239.4150	96.9262	0.40484	0.00781
Vha13	599.8410	275.5040	0.45929	0.00003
Vha68-1	82.3499	33.4698	0.40643	0.00045
vig	385.8230	153.7520	0.39851	0.00000
vkg	156.3580	31.1849	0.19945	0.00000

wupA	387.3000	27.5334	0.07109	0.00000
Zasp66	87.0525	1.1663	0.01340	0.00003
Zn72D	139.6570	57.0876	0.40877	0.00230
zormin	47.2647	10.4859	0.22185	0.00000
Acph-1	43.4594	241.1100	5.54793	0.00000
Aefl	146.4810	297.2880	2.02954	0.00478
aPKC	121.9500	279.3850	2.29097	0.00001
Art1	242.4790	531.7740	2.19307	0.00118
Ate1	39.0081	73.1226	1.87455	0.00308
aub	56.4823	98.7710	1.74871	0.00793
ball	171.4560	333.7020	1.94628	0.00034
Bap60	421.5060	697.0230	1.65365	0.00036
bcd	63.8502	160.6040	2.51533	0.00078
BicC	27.4546	107.4950	3.91537	0.00001
BicD	111.1150	206.2440	1.85613	0.00057

borr	313.7790	629.6920	2.00680	0.00021
Bsg25D	146.2920	276.9470	1.89311	0.00038
BubR1	80.5678	180.9800	2.24630	0.00005
bur	180.8900	338.4700	1.87113	0.00121
CG10083	102.4790	201.0980	1.96234	0.00012
CG11164	76.2473	199.2020	2.61257	0.00722
CG12391	161.1550	321.4480	1.99464	0.00737
CG12734	73.7598	145.6700	1.97493	0.00006
CG14435	36.5679	99.6366	2.72470	0.00030
CG14764	163.1420	353.1810	2.16487	0.00004
CG15141	163.9630	351.3140	2.14264	0.00609
CG1518	247.8010	384.9000	1.55326	0.00167
CG16970	4.5993	23.3453	5.07585	0.00528
CG1962	198.9030	413.9530	2.08118	0.00175
CG2051	205.5650	419.1920	2.03922	0.00818

CG2924	364.3240	729.1350	2.00133	0.00000
CG2938	75.4931	176.2400	2.33451	0.00173
CG30085	125.2360	343.5470	2.74318	0.00000
CG30497	278.0410	538.4850	1.93671	0.00016
CG31755	24.9920	69.3976	2.77679	0.00188
CG31875	17.2983	103.0400	5.95669	0.00063
CG3227	144.5160	332.4690	2.30057	0.00345
CG32365	63.6367	164.4680	2.58449	0.00220
CG3238	66.1893	193.1280	2.91780	0.00036
CG33181	55.1074	139.6530	2.53420	0.00146
CG42351	16.7495	62.3572	3.72293	0.00515
CG42732	5.1984	16.5247	3.17884	0.00448
CG4300	321.5820	670.3470	2.08453	0.00000
CG4911	243.5320	419.8970	1.72420	0.00541
CG5003	117.4080	221.5270	1.88682	0.00664

CG5098	51.4592	113.8990	2.21339	0.00398
CG5568	22.7570	61.9223	2.72102	0.00439
CG6051	128.0830	383.6580	2.99538	0.00000
CG6241	55.6652	133.7950	2.40357	0.00432
CG6425	43.2409	117.9910	2.72869	0.00411
CG6461	30.9774	127.6630	4.12116	0.00000
CG7357	89.1638	221.8540	2.48816	0.00419
CG7433	115.4730	434.6690	3.76427	0.00000
CG7824	64.8566	184.4170	2.84345	0.00450
CG8116	154.2400	285.7130	1.85239	0.00471
CG8173	159.6780	380.9250	2.38560	0.00012
CG8177	123.7370	243.6640	1.96922	0.00000
CG8290	73.7468	142.1180	1.92711	0.00721
CG8944	109.7400	194.5750	1.77306	0.00573
CG9062	82.6832	185.9320	2.24873	0.00020

CG9393	135.6090	303.3170	2.23671	0.00002
chif	171.8770	342.3200	1.99166	0.00000
cnn	178.3990	374.4030	2.09868	0.00095
coro	201.5780	359.2250	1.78206	0.00018
Cpsf160	86.3761	182.3080	2.11064	0.00151
crm	101.2880	178.3820	1.76114	0.00168
CycA	552.3510	939.0740	1.70014	0.00003
CycB	1287.3700	2954.1100	2.29469	0.00023
Edc3	114.6820	241.3340	2.10437	0.00226
exu	16.0356	63.6793	3.97110	0.00044
fl(2)d	200.3200	343.5310	1.71491	0.00055
for	168.6020	330.3640	1.95943	0.00352
fs(2)ltoPP43	149.0240	291.3330	1.95493	0.00133
G-ialpha65A	322.3930	630.7580	1.95649	0.00003
Gap69C	131.7660	218.4400	1.65778	0.00320

hang	222.0300	391.2560	1.76218	0.00346
nang	222.0300	391.2300	1.70218	0.00340
heix	161.8620	264.4980	1.63410	0.00008
HP5	146.5290	289.1320	1.97320	0.00474
l(1)G0269	106.2820	165.2180	1.55453	0.00305
Lk6	434.1760	776.2680	1.78791	0.00809
LpR2	33.5198	78.2008	2.33297	0.00120
Mapmodulin	485.4570	951.0330	1.95905	0.00023
mol	116.6800	285.0380	2.44289	0.00000
mrj	201.0180	371.7790	1.84948	0.00130
Msh6	27.7488	67.7988	2.44332	0.00697
muskelin	106.5290	340.6590	3.19780	0.00001
ncd	178.4470	379.7040	2.12783	0.00009
Nlp	1328.1400	2396.1700	1.80415	0.00820
norpA	13.8622	41.4837	2.99258	0.00265
Not1	363.3890	603.0990	1.65965	0.00000

Nuf2	99.5041	183.2350	1.84148	0.00297
Obp56a	0.0000	161.2760	und	0.00157
otu	18.2523	56.1326	3.07537	0.00350
РЕК	150.9750	288.4890	1.91084	0.00427
Pink1	110.5080	203.3170	1.83983	0.00350
Pmm45A	111.6540	296.5350	2.65584	0.00034
Poc1	81.7573	196.7340	2.40632	0.00711
poe	133.7730	214.7520	1.60534	0.00003
proPO-A1	43.5178	222.5680	5.11442	0.00000
ptip	65.7316	118.5520	1.80357	0.00011
ptr	22.4477	43.1218	1.92099	0.00781
Pxt	26.5660	117.9900	4.44139	0.00003
Rcd1	197.9670	319.0070	1.61142	0.00193
RhoGAP54D	30.3514	72.4985	2.38864	0.00750
rig	58.3268	108.5820	1.86161	0.00732

Ripalpha	106.0340	392.3240	3.69996	0.00003
RPA2	104.9070	372.4870	3.55067	0.00091
RpII215	232.9340	372.1600	1.59771	0.00281
Rpt4	327.0040	623.6410	1.90714	0.00051
SMC2	96.7567	200.4190	2.07136	0.00005
smg	750.2190	2228.2500	2.97014	0.00000
ssp3	47.9181	104.9210	2.18959	0.00326
sti	185.6460	353.5520	1.90444	0.00323
Su(var)2-10	322.9430	560.4340	1.73540	0.00000
Su(var)2-HP2	112.7700	207.5120	1.84013	0.00519
Taf12	179.4620	399.9310	2.22851	0.00021
thr	115.3340	328.6780	2.84980	0.00001
tlk	246.1990	403.7060	1.63976	0.00001
tor	38.6324	94.7882	2.45360	0.00091
Trf4-1	160.3040	315.3580	1.96725	0.00279

tum	258.8920	528.6690	2.04205	0.00212
twe	138.3430	396.1770	2.86374	0.00000
Uba2	244.0670	419.2780	1.71788	0.00008
UbcD2	318.5530	673.5540	2.11442	0.00027
Uch-L3	169.4910	324.7130	1.91581	0.00775
Uev1A	574.7470	923.3250	1.60649	0.00280
Usp7	202.0050	337.6360	1.67142	0.00000
vlc	283.0970	505.1150	1.78425	0.00001
wapl	115.2550	253.6930	2.20115	0.00041
wdn	127.8800	229.4830	1.79452	0.00280
yuri	19.1355	71.9366	3.75932	0.00024

Downregulated transcripts are shaded red; upregulated transcripts are shaded green.

Gene	Wild-type value	<i>hoip</i> value	Fold change	P value	Transcript defect
ub	56.48230	98.77100	1.74871	0.00793	Enhanced splicing
ptip	65.73160	118.55200	1.80357	0.00011	Enhanced splicing
sti	185.64600	353.55200	1.90444	0.00323	Enhanced splicing
CG8177	123.73700	243.66400	1.96922	0.00000	Enhanced splicing
CG42748	175.85800	90.52090	0.51474	0.00432	Exon inclusion
kcc	89.84850	46.96120	0.52267	0.00085	Exon inclusion
Ser	84.99020	44.45880	0.52311	0.00064	Exon inclusion
Ppn	555.02200	306.51800	0.55226	0.00000	Exon inclusion
Ca-P60A	498.64100	275.82100	0.55315	0.00723	Exon inclusion
CG32000	480.65000	268.36300	0.55834	0.00024	Exon inclusion
nth	835.08400	505.59300	0.60544	0.00059	Exon inclusion
Mbs	167.98500	107.22400	0.63830	0.00395	Exon inclusion

	tlk	246.19900	403.70600	1.63976	0.00001	Exon inclusion
Н	Su(var)2- P2	112.77000	207.51200	1.84013	0.00519	Exon inclusion
	rig	58.32680	108.58200	1.86161	0.00732	Exon inclusion
	ptr	22.44770	43.12180	1.92099	0.00781	Exon inclusion
	CG8290	73.74680	142.11800	1.92711	0.00721	Exon inclusion
	chif	171.87700	342.32000	1.99166	0.00000	Exon inclusion
	bip2	311.99200	203.80600	0.65324	0.00047	Exon skipping
	Atpalpha	619.91700	429.29900	0.69251	0.00385	Exon skipping
	dikar	85.61790	120.58700	1.40843	0.00286	Exon skipping
	CG1518	247.80100	384.90000	1.55326	0.00167	Exon skipping
10	Su(var)2-	322.94300	560.43400	1.73540	0.00000	Exon skipping
	vlc	283.09700	505.11500	1.78425	0.00001	Exon skipping
	Ate1	39.00810	73.12260	1.87455	0.00308	Exon skipping
	for	168.60200	330.36400	1.95943	0.00352	Exon skipping

shot	177.77600	112.71300	0.63401	0.00722	Exon skipping/exon inclusion
mrj	201.01800	371.77900	1.84948	0.00130	Exon skipping/exon inclusion
sano	95.19750	52.42650	0.55071	0.00662	Exon skipping/inclusion
CG34417	31.43320	16.63610	0.52925	0.00058	No splicing
mrt	79.34430	42.20550	0.53193	0.00438	No splicing
sm	266.06100	135.89400	0.51076	0.00830	Reduced splicing
crol	319.13200	169.49200	0.53110	0.00000	Reduced splicing
fz2	300.78100	160.47500	0.53353	0.00062	Reduced splicing
if	86.65180	48.43270	0.55893	0.00119	Reduced splicing
VhaSFD	325.35600	182.20800	0.56003	0.00003	Reduced splicing
CG14425, Sxl	368.62100	209.39300	0.56804	0.00010	Reduced splicing
CG14767	311.92900	178.67400	0.57280	0.00070	Reduced splicing
PNUTS	187.48500	107.55800	0.57369	0.00145	Reduced splicing
Pdp1	154.50300	89.82400	0.58137	0.00835	Reduced splicing

A2bp1	203.49100	118.55600	0.58261	0.00818	Reduced splicing
ct	94.26300	56.17210	0.59591	0.00489	Reduced splicing
rictor	83.02180	49.61840	0.59766	0.00072	Reduced splicing
nkd	215.54700	130.30700	0.60454	0.00083	Reduced splicing
Cirl	438.24000	271.95700	0.62057	0.00068	Reduced splicing
par-1	190.83200	124.93800	0.65470	0.00019	Reduced splicing
Aats- glupro	212.19200	140.44800	0.66189	0.00034	Reduced splicing
grh	178.67900	123.00500	0.68841	0.00292	Reduced splicing
Rcd1	197.96700	319.00700	1.61142	0.00193	Reduced splicing
hang	222.03000	391.25600	1.76218	0.00346	Reduced splicing
Nlp	1328.14000	2396.17000	1.80415	0.00820	Reduced splicing
fs(2)ltoPP 43	149.02400	291.33300	1.95493	0.00133	Reduced splicing
G- ialpha65A	322.39300	630.75800	1.95649	0.00003	Reduced splicing

сро	180.11500	105.18600	0.58399	0.00013	Reduced splicing/exon inclusion
Pvr	126.49100	75.74530	0.59882	0.00122	Reduced splicing/exon inclusion
Eip75B	341.18800	207.52200	0.60823	0.00418	Reduced splicing/exon skipping
l(3)82Fd	159.89400	100.41200	0.62799	0.00255	Reduced splicing/exon skipping
Imp	551.30400	374.13400	0.67863	0.00303	Reduced splicing/exon skipping
Dscam	147.12600	112.67700	0.76585	0.00043	Reduced splicing/exon skipping

Gene	function		Stage of muscle	Reference
		<i>hoip</i> ¹ embryos*	phenotype	
Dynein heavy chain C	Elongation	NC	Stage 15	(Folker et al., 2012)
pavarotti	Elongation	NC	Stage 16	(Guerin and Kramer, 2009)
tumbleweed	Elongation	2.04	Stage 14/15	(Guerin and Kramer, 2009)
derailed	Recognition	NC	Stage 14	(Callahan et al., 1996)
echinoid	Recognition	NC	Stage 16	(Swan et al., 2006)
kon-tiki	Recognition	NC	Stage 13	(Schnorrer et al., 2007)
MSP-300	Recognition	0.27	Stage 16	(Rosenberg-Hasson et al., 1996)
perdido	Recognition	NC	Stage 13	(Estrada et al., 2007)
roundabout	Recognition	NC	Stage 14	(Steigemann et al., 2004)
Slit	Recognition	0.66	Stage 14	(Steigemann et al., 2004)
Stripe	Recognition/	NC	Stage 14	(Frommer et al., 1996)

attachment

Glutamate Receptor Binding Protein	Attachment	NC	Stage 13	(Estrada et al., 2007)
inflated	Attachment	0.56	Stage 17	(Bloor and Brown, 1998)
Leucine-rich tendon- specific protein	Attachment	NC	Stage 16	(Wayburn and Volk, 2009)
mind bomb 2	Attachment	NC	Stage 15	(Carrasco-Rando and Ruiz-Gomez, 2008)
multiple edematous wings	Attachment	NC	Stage 16	(Chanana et al., 2007)
myospheroid	Attachment	NC	Stage 16	(Brown, 1994)
rhea	Attachment	NC	Stage 16	(Brown et al., 2002)
slowdown	Attachment	NC	Stage 16	(Gilsohn and Volk, 2010a)
Thrombospondin	Attachment	NC	Stage 16	(Subramanian et al., 2007)
Tiggrin	Attachment	NC	Stage 16/17	(Bunch et al., 1998)
vein	Attachment	NC	Stage 16	(Yarnitzky et al., 1998)

*Fold change compared with wild-type embryos

Actin binding GTPase	hoip ¹ embryos 0.32
0	0.32
GTPase	0 4 -
	0.13
GTPase	0.48
Rho GAP	2.30
Rho GAP	0.41
Transmembrane protein	0.48
Rho GEF	0.07
	Rho GAP Transmembrane protein Rho GEF

Primer	Forward primer	Reverse primer
Site-directed mutagenesis		
hoip¹	ATCAACTGCGCAAGGAAGCCAACGAGGCCAC	GTGGCCTCGTTGGCTTCCTTGCGCAGTTGAT
Hoip225.GFP*	TCTAGAACTCGCGGATGCGC	GGTACCAAGTGCTTTAAAATGCAACCTCTC
Hoip225∆E.GFP	TTTCTAACGCTAACGGAATTCTTTGAAAGCGATTTC	GAAATCGCTTTCAAAGAATTCCGTTAGCGTTAGAAA
qPCR		
if	CGATCCTTCCCACGAGATTA	GCAGTGGATTCTACGGCAAT
Mf	TCCAAAGCAGGTTGTCATTG	GCCACTCGGTATCTTTGAGC
МНС	CTGTTCAAGTGGCTGGTGAA	AATGGGTGTTGGTCAGCTTC
MIc2	CAGCAACTGGGTGAAGTTGA	CAGCCAGAGATTCAGTGTGC
Tm2	CAGCTGACCAACCAGTTGAA	AAATCGTCGCAGATTGCTTT
TpnC 47D	TTTATTCAAGCCTCGGGTGT	CAGTCGTTAGCGGTGATCG
TpnC 73F	CAACAGCTTCGATCACCAGA	AAGTGGGTGGTGTTTTCCAG
smyhc1	GAGGAACCAGCAGAGAGTGG	CAGATTGTTGCGTCTCTCCA
smyhc3	TGGAGAGACGCAACAATCTG	CTGCCTCCTCAACCTCAGTC

tpma tpm2	CCCGTAAGCTGGTGATTGTT	ACGAGTCTCAGCCTCCTTCA TTGAGCGCGATCTAACTCCT	*The PCR product was digested with Kpn/ <i>Eco</i> RI to generate the Hoip225 fragment
ιρπΖ	IGCAGAIGCICAAACIGGAC	TIGAGCGCGATCTAACTCCT	generate the holp225 hagment
Mef2a	GGCTCTCCAGGGCTCTCTAT	CATCGTAGGAGGAGCAGGAG	
Mef2d	GAGAATGCTCAGCGGTTAGG	TGTTGCCAAGTGGTCATGTT	
notch1	CGAGCCCTTGTCATTATGGT	TCGCAGACACACTCATAGCC	
GAPDH	GATACACGGAGCACCAGGTT	AACAGCAAAGGGGTCACATC	
Rpl32	TTACTCGTTCTCTTGAGAACGC	CTTCAAGATGACCATCCGC	