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INTRODUCTION
Lens development is a complex process in which a single epithelial
layer undergoes several stages of competence, induction and
differentiation, ultimately forming a highly specialized organ
(Grainger et al., 1997; Lovicu and Robinson, 2004; Ogino and
Yasuda, 2000). The vertebrate lens comprises only two types of
cells: an anterior lens epithelium (LE) and the derived lens fiber cells
(LFCs). This, along with its morphological isolation from
surrounding tissues, makes the lens an ideal model for the study of
tissue growth and differentiation (Bhat, 2001; Lovicu and Robinson,
2004).

The transcription factor (TF) Pax6 is essential for eye
development in vertebrates and invertebrates (Ashery-Padan and
Gruss, 2001; Gehring, 1996; Grindley et al., 1995; Hogan et al.,
1988; Walther et al., 1991). Interestingly, normal development of the
mammalian eye is dependent on normal Pax6 dosage, as
heterozygotes suffer from pan-ocular disorders such as aniridia in
humans and Small eye (Sey) in mice (Glaser et al., 1994; Glaser et
al., 1990).

Pax6 is expressed throughout all stages of lens development,
except in terminally differentiated LFCs. During early
organogenesis, Pax6 is detected in both the lens-inducing optic
vesicles, and in the lens-forming surface ectoderm (SE) (Walther et
al., 1991). Expression of Pax6 in the SE is required to render it
competent for induction into a lens (Fujiwara et al., 1994; Quinn et
al., 1996). Inductive signals from the optic vesicle (OV) trigger a
thickening of the SE known as the lens placode (LP), which is
intrinsically dependent on Pax6 expression (Ashery-Padan et al.,
2000). Between embryonic day (E) 10 and E11, the LP invaginates
and detaches from the SE to form the lens vesicle. The anterior cells

of the lens vesicle remain as the undifferentiated LE and retain high
expression of Pax6. By contrast, the posterior cells elongate and
differentiate into primary LFCs and lose Pax6 expression. In the
fetal and postnatal stages of development, at the transitional zone
between LE and LFCs, the equatorial epithelial cells undergo
proliferation, cell cycle exit, migration and elongation, and finally
mature into secondary fiber cells deposited around a nucleus of
primary LFCs, all this in a distinct spatial order (Bassnett and Beebe,
1992; Beebe et al., 1982; Rafferty and Rafferty, 1981). Although
Pax6 expression is maintained in the LE and in the equatorial
transitional zone, its role in maintaining an epithelial phenotype or
in LFC differentiation remains largely unknown.

LFCs express high levels of lens-specific crystallins (Bassnett and
Beebe, 1992; Beebe et al., 1982; Beebe and Piatigorsky, 1976;
Rafferty and Rafferty, 1981). Crystallins have distinct expression
patterns, making them the definitive markers of lens differentiation.
The crystallins of the βγ supergroup are highly expressed in
developing LFCs and are used as markers for LFC differentiation,
whereas α-crystallins are differentially expressed between LE and
LFCs (Robinson and Overbeek, 1996). Pax6 activation and its
binding to promoters of crystallin genes have been studied
extensively (Cvekl et al., 2004; Duncan et al., 1996; Muta et al.,
2002; Wawrousek et al., 1990; Yang et al., 2006). Based on its
expression pattern and regulation of crystallins, it has been
suggested that Pax6 plays a dual role, acting as both an activator and
a repressor of crystallin expression (Duncan et al., 1998).
Furthermore, in vitro and chromatin-binding assays indicate that
Pax6 co-operates with the Sox2 TF on specific crystallin enhancers
during early stages of lens formation (Kamachi et al., 2001; Kondoh
et al., 2004). However, the roles of Pax6 and Sox2 in the control of
crystallin gene expression during LFC differentiation have not been
studied in vivo.

Along with TFs, many growth factors and signaling pathways
have been reported to be involved in LFC differentiation (Lovicu
and McAvoy, 2005). Most notably, FGF signaling is differentially
activated along the anterior-posterior axis of the lens, with increased
activity at the posterior side of the lens equator (de Iongh et al., 1997;
Garcia et al., 2005; Robinson, 2006). By contrast, Wnt signaling is
believed to be antagonistic to LFC differentiation. Wnt receptors,
co-receptors and downstream proteins are expressed in the LE (Ang
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et al., 2004; Chen et al., 2004; Chen et al., 2006). When the Wnt co-
receptor Lrp6 was deleted in mice, aberrant LFCs appeared in the
anterior pole of the lens (Stump et al., 2003). Upon inactivation of
the canonical Wnt effector β-catenin, LE markers, proliferation and
differentiation were disrupted (Cain et al., 2008). These findings
suggest a role for Wnt signaling in LE cell fate.

Owing to the severe ocular phenotype of Pax6 mutants, the later
developmental roles of Pax6 could only be extrapolated from in
vitro research. Herein, we introduce the first in vivo loss-of-function
model of Pax6 and its presumed transcriptional partner Sox2. We
show that the loss of Pax6 prevents LFC differentiation and results
in cell death and in an increase in Sox2. However, conditional
deletion of Sox2 reveals that it is dispensable for LFC differentiation.
Furthermore, overexpression of β-catenin results in a differentiation
failure that is similar to, but independent of, that observed following
Pax6 loss. These findings place Pax6 upstream in the cascade of
events leading to the differentiation of LE into lens fibers in
mammals.

MATERIALS AND METHODS
Mouse lines
Mouse lines employed in this study were: Pax6lox (Ashery-Padan et al.,
2000), Mlr10 (Zhao et al., 2004), Catnblox(ex3) (Harada et al., 1999) and
BATlacZ (Nakaya et al., 2005) and are described in Fig. S1 in the
supplementary material. The Sox2loxP line (see Fig. 7A) contains two loxP
sites inserted around the single exon of the murine Sox2 gene using
conventional gene-targeting methods (Joyner, 1995). In the gene-targeting
vector, loxP-frt-pMC1neopA-frt, the neo gene is flanked by frt sites. Flp
recombinase activity within the B6.SJL-Tg(ACTFLPe)9205Dym/J mouse
line (Rodriguez et al., 2000) was used to delete the neo selection cassette.

Histology, immunofluorescence analysis, BrdU, TUNEL and X-Gal
assays
Paraffin sections (10 μm) were stained with Hematoxylin and Eosin (H&E)
using standard procedures. Immunofluorescence analysis was performed on
paraffin sections as previously described (Ashery-Padan et al., 2000) using
the following primary antibodies: rabbit anti-Pax6 (1:1000, Chemicon),
mouse anti-Ap2α (1:50, Santa Cruz), rabbit anti-cleaved caspase 3 (1:100,
Cell Signaling), goat anti-αA-crystallin (1:1000, Santa Cruz), goat anti-αB-
crystallin (1:100, Santa Cruz), rabbit anti-βB1-crystallin (1:250, Santa
Cruz), rabbit anti-γF-crystallin (1:50, Santa Cruz), rabbit anti-cyclin D1
(1:250, Thermo Scientific), rat anti-Ki67 (1:100, Dako), goat anti-p57Kip2

(1:100, Santa Cruz), rabbit anti-Prox1 (1:50, Acris) and rabbit anti-Sox2
(1:500, Chemicon). Secondary antibodies were conjugated to RRX or Cy2
(Jackson ImmunoResearch). Nuclei were visualized with DAPI (0.1 μg/ml,
Sigma). For cell cycle quantification, BrdU (10 μl/g of 14 mg/ml) was
injected 1.5 hours before sacrifice. Slides were stained with anti-
phosphohistone H3 (1:500, Santa Cruz), fixed for 10 minutes in 4%
paraformaldehyde, then stained with mouse anti-BrdU (1:100, Chemicon)
as described (Marquardt et al., 2001). Five eyes were used from each
genotype, and the percentage of marker-positive nuclei was calculated from
total DAPI-positive nuclei. A two-tailed Student’s t-test was used for
statistical analysis. X-Gal staining on cryosections was performed as
described (Liu et al., 2003).

Confocal quantification of Sox2 expression
Images of E14.5 lenses were taken using a confocal microscope CLSM410
(Zeiss) and the signal was measured within the linear range using the Range
Indicator application (Zeiss LSM Imager). Five nuclei each from the
extreme anterior, equator and posterior of lens sections were measured for
intensity (pixel values 0-255) and divided by the retinal nucleus intensity for
the same section, using ImageJ software (NIH).

In situ hybridization (ISH)
ISH was performed using DIG-labeled RNA probes (Yaron et al., 2006). The
Prox1 probe was produced from a 947 bp PCR fragment (forward, 5�-
CAGATGCCTAGTTCCACAGACC-3�; reverse, 5�-AGAGCGTTGCA -

ATCTCTACTCG-3�). Other ISH probes used were: Cryaa, Cryab and cMaf
(Robinson and Overbeek, 1996), Sox1, Sfrp2 (Leimeister et al., 1998) and
Six3 (Oliver et al., 1995). All analyses presented in this study were
conducted on at least five eyes of each genotype, from at least two different
litters.

RESULTS
Somatic mutation of Pax6 in the lens results in
small eyes due to lens defects
To study the role of Pax6 in the lens after the lens vesicle stage, we
employed the Mlr10 transgene (Zhao et al., 2004) and the Pax6lox

allele (Ashery-Padan et al., 2000) and established Pax6lox/lox;Mlr10
somatic mutants. Pax6lox/lox littermates were used as controls.
Pax6lox/lox;Mlr10 eyes were significantly smaller than those of
controls (Fig. 1B,D,F; 65% of circumference, P<0.001). This
reduction in size was attributed to the decrease in lens tissue, which
appeared opaque and shapeless (Fig. 1D). In a previous study, Pax6
was shown to have lens-autonomous dosage requirements at the LP
stage (Davis-Silberman et al., 2005). To determine whether there is
haploinsufficiency at later stages of lens development, we
investigated the phenotype of the heterozygous Pax6lox/+;Mlr10
littermates. We did not identify any differences in lens weight, size
or opacity between the Pax6lox/+;Mlr10 animals and controls (Fig.
1E,F). This result implies that a diploid dose of Pax6 is not required
after the lens structure has formed.

Somatic inactivation of Pax6 by E14.5 leads to
failure in LFC differentiation
To characterize the morphological defects of Pax6lox/lox;Mlr10 mice
and to determine the onset of Pax6 inactivation, we conducted a
histological analysis of eyes from embryonic and postnatal stages
and monitored Pax6 loss by immunostaining (Fig. 2) and by activity
of human alkaline phosphatase (hAP) from the Z/AP reporter (see
Fig. S2 in the supplementary material) (Lobe et al., 1999). In
controls, Pax6 expression was high in the anterior LE and equator
of the lens, and diminished as the cells underwent differentiation
(Fig. 2K-M). At E13.5, prior to the loss of Pax6 protein from the LE
(Fig. 2K,N), the Pax6lox/lox;Mlr10 and control lenses appeared
similar in size (Fig. 2A,F). After Pax6 loss at E14.5 (Fig. 2O),
Pax6lox/lox;Mlr10 lenses were slightly more elongated, and a few
small nucleated cells were detected in the posterior part of the lens
(Fig. 2G, arrow). The cornea of E14.5 mutants (Fig. 2G, double
arrow) was thicker than in the controls (Fig. 2B), which suggests
failure of the lens to induce mesenchymal condensation (Sevel and
Isaacs, 1988). By E15.5, the mutant lenses appeared significantly
smaller than the controls (Fig. 2H; 76% of circumference, n=8,
P<0.002). In E15.5 controls, the nuclei of the equatorial transitional
zone, in which LE cells undergo differentiation, were organized in
a characteristic bow pattern (Fig. 2C,D). By contrast, in
Pax6lox/lox;Mlr10 lenses, transitional zone cells were disorganized
(Fig. 2H,I). At later stages, the Pax6lox/lox;Mlr10 lenses remained
significantly smaller than controls, as lens fiber formation seemed
to be arrested from ~E14.5 (Fig. 2; see Fig. S3 in the supplementary
material). By P4, the Pax6lox/lox;Mlr10 lens seemed to be mostly
composed of epithelial cells surrounding a few fiber cells (Fig. 2J).
In the adult [postnatal day (P) 30], only remnants of lens tissue were
detected in the mutant (Fig. 1D). These morphological defects
suggest that Pax6-deficient LE cells fail to differentiate and instead
accumulate at the lens equator and in the posterior lens, and that the
LFCs detected in the Pax6lox/lox;Mlr10 lenses probably originate
prior to Pax6 loss.
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Pax6-deficient LE cells fail to exit the cell cycle at
the lens equator
The first step in LFC differentiation is cell cycle exit (Rafferty and
Rafferty, 1981). Pax6 is expressed in proliferating LE cells, as it
co-localized with Ki67, a marker of actively proliferating cells
(Fig. 3A) (Endl et al., 1997). However, Pax6 was also expressed
after the cells had undergone cell cycle exit (Fig. 3A�, arrow).
This pattern of expression suggests that either Pax6 is involved in
maintaining the proliferation capacity of the anterior LE, or that
it is required for cell cycle exit in the LE of the equatorial zone.
To distinguish between these possibilities, we characterized the
distribution of Ki67 in Pax6lox/lox;Mlr10 embryos. The loss of
Pax6 was accompanied by a change in the distribution of Ki67. In
Pax6lox/lox;Mlr10 lenses, Ki67+ cells were detected posterior to the
lens equator, a region which is normally devoid of proliferating
cells (Fig. 3A,E). To further determine the cell cycle stage of
Pax6-deficient cells at E14.5, we quantified the percentage of
cells in the S and M phases using BrdU incorporation and
phosphorylated histone H3 (PH3) immunostaining, respectively.
Both markers were only detected anterior to the equator in control
lenses (Fig. 3B), whereas in Pax6lox/lox;Mlr10 mutants,
proliferating cells were abundant in the transitional zone and in
the posterior lens (Fig. 3F� and arrowheads). In these regions,
BrdU was detected in 46.2±3.5% (±s.d.) of the nuclei, and PH3
was detected in 32.8±6.2% of the nuclei. We therefore concluded
that Pax6 is required for the cell cycle exit of LE cells at the lens
equator.

To determine whether Pax6 loss alters the cell cycle dynamics
in the anterior LE itself, we quantitatively analyzed BrdU+ and
PH3+ cells in the LE of control and Pax6-deficient lenses (Fig.
3C). A significant increase in the BrdU incorporation index was
observed in the LE following Pax6 loss (70.7±5.15%), as
compared with the controls (52.8±1.4%, P<0.001). The
proportion of PH3+ cells was similar between the genotypes
(14.3±6.2% in Pax6lox/lox;Mlr10 and 14.7±4.0% in Pax6lox/lox).
This suggests a prolonged S phase in the Pax6-deficient LE,
which is reminiscent of the phenotype reported in Pax6-deficient
cerebral cortex (Estivill-Torrus et al., 2002).

Apoptosis in the Pax6-deficient lens
Although cells in Pax6lox/lox;Mlr10 lenses continued to proliferate,
the overall size of the lens was reduced (Fig. 2). To test whether
this tissue loss was due to apoptosis, we performed TUNEL
analysis, which demonstrated an increase in apoptotic cells in the
Pax6lox/lox;Mlr10 lenses (not shown). To perform a quantitative
analysis, we detected the cleaved form of caspase 3 (cCas3, Fig.
3D,G). However, the number of cCas3+ cells in the
Pax6lox/lox;Mlr10 lenses was low (2.6±2.0 per section, n=8),
suggesting that apoptosis is only partially responsible for the
significant reduction in lens size, which is instead primarily
due to the arrest in LFC differentiation. Interestingly, cCas3+

cells were never BrdU+ (not shown). Thus, the longer S phase
observed in the Pax6– LE is probably not an immediate trigger of
apoptosis.

Pax6 is not required for the regulation of
crystallin genes at late stages of lens
development
The αA-crystallin (Cryaa) promoter has been shown to bind
and to be activated by Pax6 in vitro (Cvekl et al., 1995; Yang
and Cvekl, 2005; Yang et al., 2006). Accordingly, Pax6 was
found to be required in vivo for the onset of Cryaa expression
during early stages of lens development (Ashery-Padan et al.,
2000; Cvekl et al., 1995). To examine whether Pax6 regulates
crystallin expression during secondary LFC differentiation, we
characterized the distribution of crystallin transcripts and
proteins in the Pax6-deficient lenses. Cryaa protein was
detected in both the LE and LFCs of control lenses, with
elevated expression in the latter (Robinson and Overbeek,
1996) (Fig. 4A). Intriguingly, in Pax6lox/lox;Mlr10 lenses,
Cryaa protein was maintained in the LE and in the posterior
aberrant cells, similar to its expression in controls (Fig. 4F;
see also Fig. S4 in the supplementary material). As crystallins
are ultra-stable proteins (Jaenicke, 1996), Cryaa might be
detected because of its low turnover, rather than continued
expression. We therefore examined Cryaa transcripts by in situ
hybridization (ISH). Cryaa transcripts were detected in the LE

2569RESEARCH ARTICLEPax6 is essential for LFC differentiation

Fig. 1. Microopthalmia in
Pax6lox/lox;Mlr10 mice.
(A-E) Eyes (A,B) and isolated
lenses (C-E) from P30 control
(A,C), Pax6lox/lox;Mlr10 (B,D) and
Pax6lox/+;Mlr10 (E) mice.
(F) Quantification of eye
circumference (light-gray bars),
lens circumference (dark-gray
bars) and dry mass (black bars) of
controls, Pax6lox/+;Mlr10 and
Pax6lox/lox;Mlr10 mice. Lens size
and mass could not be measured
in Pax6lox/lox;Mlr10 mice (D,F).
**P=0.004. Scale bars: 500μm.
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of E14.5, E15.5 and E18.5 Pax6lox/lox;Mlr10 lenses in a similar
distribution to that of Cryaa protein (Fig. 4B,G), confirming
that Pax6 is not required for the low-level Cryaa expression in
the LE at these stages (Fig. 4G and data not shown).

Unlike Cryaa, αB-crystallin (Cryab) is strongly expressed in the
LE of the E12.5-15.5 developing lens and is reduced in LFCs,
overlapping with Pax6 expression (Robinson and Overbeek, 1996)
(Fig. 4C). This, together with the results of extensive in vitro
research (Gopal-Srivastava et al., 1996; Yang et al., 2004), suggest
that Pax6 is an important regulator of Cryab expression. However,
Cryab expression was maintained in both control and
Pax6lox/lox;Mlr10 lenses, with high expression in the LE (Fig. 4C,H).
This suggests that Pax6 is not required for Cryab expression during
the later stages of lens development.
β- and γ-crystallins are expressed throughout lens development

exclusively in LFCs. Specifically, βB1-crystallin (Crybb1)
expression is initiated precisely when lens fibers begin to elongate
(Brahma, 1988; Duncan et al., 1996), making it an ideal marker
for LFC differentiation. To examine LFC differentiation in
Pax6lox/lox;Mlr10 mutants, an antibody against Crybb1 that identifies
most β-crystallin (Cryb) proteins was employed. Cryb was detected
in the LFCs of control and Pax6lox/lox;Mlr10 lenses in a similar
pattern (Fig. 4D,I). Cryb was not detected in the LE, transitional
zone and aberrant posterior cells of the Pax6-deficient lenses (Fig.
4I), confirming the undifferentiated state of these cells. Previous in
vitro studies suggested that the high level of Pax6 in the LE
suppresses Crybb1 (Duncan et al., 1996). However, removal of Pax6
from the Pax6lox/lox;Mlr10 lenses was not sufficient to induce
upregulation of Cryb in the LE in vivo (Fig. 4I).

Similar to Cryb, γ-crystallins (Cryg) are expressed in mature
LFCs and are possible targets for Pax6 regulation based on in vitro
studies (Kralova et al., 2002; Yang et al., 2004). Cryg was not
detected in the LE, transitional zone or aberrant posterior cells of
Pax6lox/lox;Mlr10 lenses (Fig. 4J).

Taken together, these results demonstrate that Pax6 is not required
for the expression of α-crystallins or for the maintenance of an
undifferentiated fate in the LE by inhibiting LFC-specific crystallins.
Importantly, cells at the equator and on the posterior side of
Pax6lox/lox;Mlr10 lenses do not express any crystallin LFC marker
(Fig. 4I,J, arrowheads). Therefore, Pax6 is primarily required for the
normal differentiation of LFCs and this activity does not depend on
its regulation of crystallin expression.

Pax6 requirement for LFC differentiation is not
mediated through Prox1, Sox1 or cMaf
Several TFs have been shown to be essential for LFC differentiation
in vivo, namely Prox1, Sox1 and cMaf (Maf – Mouse Genome
Informatics). To determine whether the lack of LFC differentiation
observed in the Pax6lox/lox;Mlr10 mice is mediated through one of
these TFs, we characterized their expression in Pax6-deficient
Pax6lox/lox;Mlr10 lenses.

Prox1 is essential for the elongation of primary LFCs, exit from the
cell cycle and the expression of several γ-crystallins (Wigle et al.,
1999). Prox1 expression in the LP is dependent on Pax6 activity
(Ashery-Padan et al., 2000). At E14.5, Prox1 transcripts were detected
in both control and Pax6lox/lox;Mlr10 lenses (Fig. 5A,D). As Prox1
protein is differentially localized during lens development (Duncan et
al., 2002), we examined its spatial distribution at E14.5 by
immunolabeling. In both control and Pax6lox/lox;Mlr10 lenses, Prox1
protein was detected in the nuclei and cytoplasm of LE cells, whereas
in the equator and in differentiating LFCs it was mainly nuclear (Fig.
5B,E). The level of Prox1 expression varied among Pax6lox/lox;Mlr10
cells (Fig. 5E,E�, asterisk). However, most nuclei maintained Prox1
expression at E14.5 and during later stages (E15.5; data not shown).
In accordance with the maintenance of Prox1 in Pax6lox/lox;Mlr10
lenses, expression of its downstream targets – cell cycle inhibitory
genes p57Kip2 (Cdkn1c) and p27Kip1 (Cdkn1b) (Wigle et al., 1999) –
was detected in the equatorial region of both control and Pax6-
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Fig. 2. Pax6 ablation in the lens
epithelium coincides with failure of lens
fiber cell differentiation and
morphological defects in the lens.
(A-J) Hematoxylin and Eosin (H&E) staining of
control (A-E) and Pax6lox/lox;Mlr10 (F-J) eyes in
E13.5 (A,F), E14.5 (B,G), E15.5 (C,D,H,I) and
P4 (E,J) mice. D and I are higher
magnifications of the boxed regions from C
and H, respectively. Arrows mark posterior
nucleated cells. Double arrows demonstrate
the thickness of presumptive cornea of
controls (A,B) and mutants (F,G). Asterisks
mark fixation artifacts. (K-P) Pax6 protein in
Pax6lox/lox controls (K-M) and Pax6lox/lox;Mlr10
mutants (N-P) at E13.5 (K,N), E14.5 (L,O) and
E15.5 (M,P). White arrows indicate a few cells
that retain some Pax6 activity owing to the
mosaic nature of Cre activity. co, cornea;
re, retina. Scale bars: 100μm.
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deficient lenses (Fig. 5C,F and data not shown). These results show
that during secondary LFC differentiation, Pax6 does not regulate the
expression of Prox1 or of its cell cycle inhibiting targets, but is still
essential for cell cycle arrest.

TFs of the Sox family are expressed during, and are involved in,
lens development (Kamachi et al., 1995; Kamachi et al., 1998). One
of these, Sox1, has been shown to be essential for complete
elongation of LFCs and for expression of γ-crystallins (Nishiguchi
et al., 1998). Sox1 was expressed in all lens cells at E14.5-15.5, with
a marked increase in differentiating LFCs (Nishiguchi et al., 1998)
(Fig. 5G). The same expression pattern was observed in
Pax6lox/lox;Mlr10 lenses, indicating that Pax6 is not crucial for Sox1
expression (Fig. 5I).

Finally, cMaf is a lens-specific member of the large Maf gene
family. cMaf has been shown to be essential for LFC elongation and
γ-crystallin expression (Kawauchi et al., 1999; Ring et al., 2000;
Yoshida et al., 2001; Yoshida and Yasuda, 2002). In Pax6lox/lox;Mlr10

lenses, the expression of cMaf was similar to in controls. cMaf
transcripts were detected throughout the lens, with elevated expression
at the lens equator (Sakai et al., 1997) (Fig. 5H,J).

Taken together, the apparently normal upregulation of Sox1 and
cMaf at the lens equator, as well as the normal distribution of Prox1
protein, demonstrate that despite Pax6 loss, the cells in the
transitional zone are able to respond to extracellular signals and
activate some differentiation markers. However, even with the
activation of these factors, execution of the lens fiber differentiation
program requires Pax6.

Pax6 negatively regulates Sox2 in the equatorial
zone of the embryonic lens
The Sox2 TF is expressed in the developing lens and has been
implicated to function with Pax6 in initiating crystallin expression
(Kamachi et al., 1998; Kamachi et al., 2001; Kondoh et al., 2004;
Stevanovic et al., 1994; Yang et al., 2004). Furthermore, direct
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Fig. 3. Pax6-deficient lens epithelium fails to exit the cell cycle at the lens equator and undergoes apoptosis. (A-B�,E-F�) Antibody
labeling of control (A,B) and Pax6lox/lox;Mlr10 (E,F) lenses from E14.5 mouse embryos. (A,E) Expression of Pax6 (red) and Ki67 (green) with co-
expression in the lens epithelium (LE) of Ki67 and Pax6 (A, yellow). Some Ki67– cells express Pax6 (A�, arrowhead). In Pax6lox/lox;Mlr10, Pax6– Ki67+

cells are detected in the transitional zone (E�) and in the posterior lens (E, arrowhead). (B,F) Phosphohistone H3 (PH3, green) and BrdU (B,F, red)
were detected in the Pax6lox/lox LE up to the lens equator (arrow, B) but also posterior to the lens equator in the Pax6lox/lox;Mlr10 lenses (F,F�) and in
the posterior lens (F, arrowheads). (C) Quantitative analysis reveals a significant increase in the percentage of BrdU+ cells in Pax6lox/lox;Mlr10 lenses
(70.7±5.1% s.d.) as compared with the control LE (52.8±1.4%, **P<0.001). The percentage of PH3+ cells is not altered in the Pax6– LE (control
14.3±6.2%; mutant 14.7±4.1%). (D,G,G�) Cleaved caspase 3 (cCas3)-positive cells detected in the LE of Pax6lox/lox;Mlr10 lenses (G,G�, red,
arrowhead) but not in the control E14.5 mouse embryo (D). Counterstaining is with DAPI (blue). co, cornea; re, retina. Scale bar: 100μm.

Fig. 4. Pax6 is not essential for maintaining the expression of α-crystallins or for the downregulation of βγ-crystallins during LFC
differentiation. Control (A-E) and Pax6lox/lox;Mlr10 mutant (F-J) E14.5 mouse lenses labeled with antibodies against αA-crystallin (Cryaa, A,F, red),
β-crystallins (D,I, green) and γ-crystallins (E,J, green), or subjected to ISH with probes against αA-crystallin (B,G) and αB-crystallin (C,H). Arrows
indicate the LE, arrowheads to Pax6– cells accumulating in the posterior lens. co, cornea; re, retina. Scale bar: 100μm. D
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regulation of Sox2 by Pax6 has been demonstrated in neural
progenitor cells (Wen et al., 2008). The role of Sox2 and whether it
interacts with Pax6 during later stages of lens development are
unknown. We therefore characterized the expression of Sox2
following Pax6 loss. We utilized Ap2α (Tcfap2a), a TF that is
expressed in the anterior LE and is essential for early lens
development, as a marker for the anterior LE (Pontoriero et al.,
2008; West-Mays et al., 1999). Double immunolabeling for Ap2α
and Sox2 revealed that in the control lens at E14.5, Ap2α is co-
expressed with Sox2 in the anterior LE, whereas in the transitional
zone only Sox2 was detected (Fig. 6A). In the conditional mutant,
Ap2α was restricted to a small population of the most anterior cells
of the LE. By contrast, Sox2+ cells were detected in a much wider
population of cells at the Pax6lox/lox;Mlr10 equator and at a high
level of expression, similar to that in the retina. Ectopic cells at the
lens posterior were also intensely Sox2 positive (Fig. 6B). Sox2
expression was quantified by confocal microscopy. In controls, only
a low level of Sox2 was observed in the anterior LE, the same as in
the lens equator and about half of that in the retina (Fig. 6A).
Anterior LE cells of the Pax6lox/lox;Mlr10 had expression levels
comparable to those of controls, but equatorial and posterior cells
showed a 2.2-fold increase in expression (P=0.0001), attaining
levels greater than in the retina (Fig. 6B,C). Therefore, following
Pax6 ablation, cells of the lens equator fail to differentiate into
LFCs, increase at the expense of anterior Ap2α+ LE, express high
levels of Sox2 and expand into the posterior lens.

The differentiation failure and proliferation of
aberrant LE are not mediated through Sox2
Sox2 is known to be involved in the determination of stem cell fate
and in the proliferation of neural stem cells (Episkopou, 2005). To
examine the role of Sox2 in the lens and to determine whether the
significant increase in Sox2 expression in Pax6lox/lox;Mlr10 lenses
mediates the observed differentiation failure, we established the

Sox2lox allele, which includes two loxP sequences flanking the single
exon of the murine Sox2 gene (Fig. 7A). This allele was employed
in combination with Mlr10 to inactivate either Sox2 alone
(Sox2lox/lox;Mlr10) or Sox2 together with Pax6
(Sox2lox/lox;Pax6lox/lox;Mlr10). The Sox2lox/lox;Mlr10 embryos and
adult mice did not exhibit any abnormal ocular phenotypes (not
shown). This is in agreement with an apparent reduction in Sox2
expression at E12.5-15.5 (Nishiguchi et al., 1998), suggesting that
the low-level expression of Sox2 in E14.5 lenses is not essential for
lens development.

In the Sox2lox/lox;Pax6lox/lox;Mlr10 double somatic mutants, both
Pax6 and Sox2 are deleted exclusively in the lens (Fig. 7).
Accordingly, Sox2 protein was not detected in the
Sox2lox/lox;Pax6lox/lox;Mlr10 lens, but was preserved in the adjacent
optic cup, where Cre is not active (Fig. 7I). Despite the obvious loss
of Sox2, the ocular phenotype of the double somatic mutant was
strikingly similar to that of Pax6lox/lox;Mlr10 mutants. The
Sox2lox/lox;Pax6lox/lox;Mlr10 lenses were smaller than controls and
epithelial cells accumulated posterior to the lens equator (Fig. 7H).
The anterior LE, as identified by Ap2α expression, was reduced
in size (Fig. 7I). Moreover, similar to the phenotype of
Pax6lox/lox;Mlr10, in Sox2lox/lox;Pax6lox/lox;Mlr10 lenses αA-
crystallin protein and transcripts were strongly expressed in the
LFCs and weakly in the LE and in the aberrant posterior cells
(Fig. 7K and data not shown), whereas β-crystallin was absent from
cells of the lens equator and from the aberrant posterior cells
(Fig. 7L). Failure of cell cycle exit was also evident in
Sox2lox/lox;Pax6lox/lox;Mlr10 lenses (Fig. 7J,J�). Finally, some
Sox2lox/lox;Pax6lox/lox;Mlr10 LE cells underwent apoptosis, as
demonstrated by cCas3 immunostaining (Fig. 7M,M�). Therefore,
when Sox2 overexpression is prevented, Pax6-null LE cells undergo
the same LFC differentiation failure and cell death as observed in
lenses that overexpress Sox2. Thus, the LFC differentiation failure
observed in Pax6lox/lox;Mlr10 mutants is independent of Sox2.
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Fig. 5. Intrinsic requirement for Pax6 in
LFC differentiation is not mediated
through Prox1, Sox1 or cMaf.
(A-J) Expression patterns in E14.5
(A,B,D,E,G,I) or E15.5 (C,F,H,J), control
(A-C,G,H) and Pax6lox/lox;Mlr10 (D-F,I,J) mouse
eyes, showing Prox1 transcript (A,D) and
protein (B,E, boxed regions magnified in
B�,B�,E�,E�, red), p57Kip2 protein (C,F, red),
and Sox1 (G,I) and cMaf (H,J) transcripts.
Asterisk in E� marks a patch of low-level
Prox1 expression. Counterstaining is with
DAPI (B-C,E-F, blue). co, cornea; eq, lens
equator; LE, lens epithelium; re, retina. Scale
bars: 100μm.
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Ectopic Wnt/β-catenin activity inhibits LFC
differentiation
Sox2 is a known target of Wnt signaling in the retina (Van Raay et
al., 2005), and members of the Sox family modulate β-catenin
activity (Sinner et al., 2007; Sinner et al., 2004). Therefore, we
examined a possible connection between loss of Pax6 and canonical
Wnt signaling. We first characterized the expression of Sfrp2, a
secreted inhibitor of Wnt signaling and a target of Pax6 (Kim et al.,
2001). In control E14.5 lenses, Sfrp2 was detected anterior to the
lens equator (Fig. 8A) (Chen et al., 2004). By contrast, Sfrp2 was
not detected in Pax6lox/lox;Mlr10 lenses (Fig. 8E). Thus, Pax6
regulates Sfrp2 in the LE, which might play a role in the attenuation
of Wnt signaling during LFC differentiation.

Taking this into consideration, we hypothesized that
overexpression of β-catenin (Catnb; Ctnnb1) would result in LFC
differentiation failure. To test this hypothesis, we established
Catnblox(ex3);Mlr10-Cre gain-of-function mutants. In the Catnblox(ex3)

allele, Cre-mediated deletion of exon 3 results in accumulation of β-
catenin in the nucleus, enabling expression of its target genes
(Harada et al., 1999).

Catnblox(ex3);Mlr10 adult lenses were significantly smaller
than controls (not shown). At E15.5, the morphology of
Catnblox(ex3);Mlr10 lenses was abnormal, with epithelial cells
accumulating at the lens equator and in the posterior lens (Fig. 8F),
similar to the Pax6lox/lox;Mlr10 phenotype (Fig. 2H-J).

The transcriptional control function of β-catenin, as opposed to
its structural role, depends on its cellular localization. In the control,
β-catenin was detected primarily in the cell membranes (Fig. 8C),
whereas in the Catnblox(ex3);Mlr10 lenses it was detected in the
cytoplasm and nuclei (Fig. 8G). Nuclear localization was detected
by co-immunostaining with an antibody against cyclin D1 (Fig.
8C,G), a plausible target of the canonical Wnt pathway (Shtutman
et al., 1999; Tetsu and McCormick, 1999). Similar to in
Pax6lox/lox;Mlr10, proliferation, as detected by BrdU, was detected
in the large mass of small nucleated cells of the equator and posterior
lens (Fig. 8H). Apoptotic cells were detected in the
Catnblox(ex3);Mlr10 lens, but not in controls (Fig. 8I,N).

Pax6 was apparently unaffected by the activation of the Wnt
pathway in Catnblox(ex3);Mlr10 lenses, as it showed strong
expression in the anterior LE and weak expression in the equator and
in the aberrant cells of the posterior lens (Fig. 8J,O). In contrast to
in Pax6lox/lox;Mlr10 lenses, Sox2 was not upregulated at the equator
of Catnblox(ex3);Mlr10 lenses (Fig. 8P), suggesting Pax6-dependent
repression of Sox2 in lens cells. Moreover, it seems that Wnt/β-
catenin does not activate Sox2 in the mammalian lens.

The canonical Wnt pathway is inactive during
secondary LFC differentiation and is not regulated
by Pax6
To directly examine whether Wnt/β-catenin signaling is active in
Pax6lox/lox;Mlr10 lenses, we employed the BATlacZ transgene
(Nakaya et al., 2005). In this reporter line, lacZ is expressed under
control of the Tcf/Lef promoter, which is activated by β-catenin.
As expected, in Catnblox(ex3);Mlr10;BATlacZ embryos, β-
galactosidase activity was detected in most lens cells, especially
in the nucleated, undifferentiated cells at the equator and posterior
of the lens (Fig. 8Q). In Pax6lox/lox;Mlr10;BATlacZ animals, β-
galactosidase activity was identical to that of control littermates
and was not detected in the lens at E14.5 (Fig. 8L,M).
Furthermore, β-catenin remained confined to the cellular
membrane and did not enter the nucleus of Pax6lox/lox;Mlr10
lenses (Fig. 8R). This indicates that the failure of Pax6-negative
cells to differentiate into LFCs is unlikely to be mediated through
Wnt/β-catenin transcriptional activity.

DISCUSSION
In this study, we established the first in vivo model in which Pax6
is abolished from a formed embryonic lens, constituting a direct
tool for the study of the role of Pax6 during secondary lens fiber
differentiation. The findings presented reveal that Pax6 is
essential for lens fiber differentiation but is dispensable for
maintaining a lens epithelial identity. This role of Pax6 is not
mediated by changes in canonical Wnt pathway activity, or by the
upregulation of Sox2 observed in Pax6-deficient lenses. Known
transcriptional regulators of LFC differentiation – Sox1, cMaf and
Prox1 – are not dependent on Pax6 activity, but are, however,
insufficient to enable lens fiber differentiation without Pax6.
Therefore, Pax6 activity within the lens is crucial for cell cycle
exit and for initiation of the lens fiber differentiation program in
the mammalian eye.

Robustness of fetal stage LE to haploinsufficiency
of Pax6
The vertebrate eye is sensitive to changes in Pax6 dosage: both
reduction and elevation result in severe ocular phenotypes (Duncan
et al., 2004; Glaser et al., 1994; Glaser et al., 1990; Hogan et al.,
1988; Sanyal and Hawkins, 1979; Schedl et al., 1996). We have
previously shown that the lens is intrinsically sensitive to Pax6
dosage reduction, as somatic inactivation of one copy of Pax6 in the
SE mimics the lens phenotype of Pax6 heterozygotes (Davis-
Silberman et al., 2005).
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Fig. 6. Pax6 downregulates Sox2 in the lens
equator. (A,B) Immunofluorescent detection of Sox2
(green) and Ap2α (red) in E14.5 control (A) and
Pax6lox/lox;Mlr10 (B) mouse lenses. Arrowheads in B
indicate elevated expression of Sox2 at the lens equator
and in the posterior lens. (A�,B�) Counterstaining of A,B
with DAPI. (C) Quantification of Sox2 protein by
confocal image analysis (n=6, **P<0.001). eq, lens
equator; LE, lens epithelium; re, retina. Scale bar:
100μm.
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In contrast to the phenotype observed in the SE following Pax6
reduction, we observed no phenotypic difference between
Pax6lox/+;Mlr10 lenses and controls, even in adult mice (1 year old,
not shown). Therefore, a diploid dose of Pax6 is not necessary
during the late stages of lens development, in contrast to the
sensitivity to Pax6 reduction during formation of the LP. This
confirms previous hypotheses, which attributed the Pax6 dosage
requirement to lens placode formation, based on the analysis of lens
development in Pax6+/– mutants (van Raamsdonk and Tilghman,
2000) or deletion of the Pax6 ectoderm enhancer (Dimanlig et al.,
2001).

Pax6 is required for cell cycle exit, cell survival
and lens fiber differentiation
Pax6 is expressed in both the proliferating anterior LE and in the
transitional zone, including non-proliferating cells (Ki67– BrdU–;
Fig. 3). Pax6 loss from the whole lens alters cell proliferation in both
regions, increasing the proportion of cells in the S phase in the LE
and preventing cell cycle exit in the transitional zone (Fig. 3). Pax6
involvement in cell cycle regulation has been reported in the
developing retina (Marquardt et al., 2001; Oron-Karni et al., 2008).
During brain development, Pax6 loss results in a shortened cell cycle
during early corticogenesis but a prolonged S phase during later
stages (Estivill-Torrus et al., 2002).

Pax6 involvement in cell cycle regulation might be through its
direct interactions with cell cycle components, including the
retinoblastoma protein (pRb; Rb1), which has been found to be
associated with Pax6 in vitro and in lens extracts (Cvekl et al., 1999).
Accordingly, the phenotype of pRb loss-of-function includes cell
differentiation arrest, persistent proliferation and reduced survival –
a phenotype reminiscent of Pax6lox/lox;Mlr10 lenses (Morgenbesser
et al., 1994; Pan and Griep, 1994). Other proposed mechanisms
include direct association of Pax6 with the centrosomes or mitotic

chromosomes in proliferating cortical progenitors and cultured cells,
respectively (Tamai et al., 2007; Zaccarini et al., 2007). The
relevance of the above findings to Pax6 function in cell cycle
regulation in the lens remains to be investigated.

Pax6 is known to bind, activate and repress crystallin gene
expression in vitro and in vivo during early stages of development
(Cvekl and Duncan, 2007; Cvekl et al., 2004). During the late stages
of newt lens regeneration, which emulates normal lens development,
Pax6 has been shown to be needed for LFC differentiation but not
for crystallin maintenance (Madhavan et al., 2006). In accordance
with this, our results show that removal of Pax6 does not alter the
expression of α-crystallins in the LE, but at the same time precludes
the upregulation of crystallin expression observed in differentiating
LFCs (Fig. 4). The requirement for Pax6 for the onset of LFC
differentiation can be explained by the recently proposed chromatin
remodeling model (Yang et al., 2006), according to which TFs
operate in a temporal order on enhancer sequences of the Cryaa
gene, each TF enabling chromatin remodeling and activity of further
TFs. In Pax6lox/lox;Mlr10 mutants, Pax6 might enable basal
expression of Cryaa and Cryab by ‘opening’ chromatin to
transcription prior to mutation onset in LE cells. After the initiation
of α-crystallin expression, Pax6 is dispensable for its maintenance
in the LE. In the transitional zone, upregulation of Cryaa and the
initiation of β- and γ-crystallin activation do require Pax6.

Pax6 seems to govern some, but not all, of the processes
associated with LFC differentiation. In the Pax6lox/lox;Mlr10 lenses,
expression of differentiation regulators (Sox1, cMaf and Prox1) and
cell cycle inhibitors (p27Kip1 and p57Kip2) is not lost in the
transitional zone (Fig. 5). In fact, the transitional zone seems to be
expanded, probably due to the continued proliferation of Pax6-
deficient cells. This expansion might also be occurring at the
expense of the anterior LE, as can be seen by the large population of
Sox2+ cells at the equator and the relatively small population of
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Fig. 7. Arrest of LFC differentiation following Pax6 loss is not mediated by upregulation of Sox2. (A) Sox2lox targeting vector and somatic
deletion allele. The neo selection cassette is flanked by frt sites (blue triangles). The single Sox2 exon is flanked by loxP sites (green triangles).
(B-M�) Cre-mediated deletion results in the Sox2Δ allele. Sox2lox/lox;Pax6lox/lox control (B-G) and Sox2lox/lox;Pax6lox/lox;Mlr10 E14.5 double somatic
mutant (H-M�) mouse lenses analyzed by H&E staining (B,H) and antibody labeling for Sox2 and Ap2α (C,I, green and red, respectively),
phosphohistone H3 (PH3, red in D,J,J�), αA-crystallin (E,K), β-crystallin (F,L) and cleaved caspase 3 (cCas, red in G,M,M�). Counterstaining was with
DAPI (D,F,G,J,L,M). Arrows indicate the lens equator, arrowheads to the aberrant cells in the lens posterior. LE, lens epithelium; re, retina. Scale bar:
100μm.
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anterior Ap2α+ cells (Fig. 6). It appears that cells at the Pax6-
deficient lens equator are competent to respond to some external
cues that trigger the expression of transitional zone markers.
However, without Pax6, these factors are insufficient to bring about
cell cycle exit, or to activate crystallin expression and cellular
elongation. Knockout models of Sox1, cMaf and Prox1 show that
these TFs are directly essential for crystallin accumulation and
elongation of LFCs (Kawauchi et al., 1999; Nishiguchi et al., 1998;
Ring et al., 2000; Wigle et al., 1999; Yoshida and Yasuda, 2002). In
the transitional zone, Pax6 is co-expressed with these factors and has
been found to co-operate with cMaf (Sakai et al., 2001; Yoshida et
al., 2001). Thus, although Pax6 is not required for the onset of
expression of Sox1, cMaf and Prox1, it might function with them to
regulate LFC differentiation.

Lens inversion experiments have demonstrated that lens polarity
is dependent on the cellular environment (Coulombre and
Coulombre, 1963). Since then, numerous growth factor families
have been reported to influence LFC differentiation (reviewed by
Lovicu and McAvoy, 2005). Most notably, FGFs were shown to
initiate LFC differentiation in a concentration-dependent manner
(Robinson, 2006). Mlr10-Cre-mediated inactivation of three FGF
receptors resulted in complete arrest of LFC differentiation at the
lens vesicle stage and reduced expression of Prox1, cMaf, p27Kip1

and p57Kip2 (Zhao et al., 2008). This phenotype was more severe
than that of the Pax6 mutant presented here, which suggests that
Pax6 is not absolutely essential for the capacity of cells to respond
to FGF signaling, although it might regulate some components of
this pathway.

A complex relationship between Pax6 and Sox2:
Pax6 inhibits the expression of Sox2 at the lens
equator
Pax6 and Sox2 have been shown to form a functional complex that
is required for the activation of crystallin genes at the placodal stage
(Cvekl et al., 2004; Kamachi et al., 2001; Kondoh et al., 2004; Smith

et al., 2005). In addition, Pax6 has been shown to bind enhancer
sequences of Sox2 and to activate Sox2 expression in lens cells
(Inoue et al., 2007; Lengler et al., 2005) and in neuronal progenitors
(Wen et al., 2008), suggesting a positive effect of Pax6 on Sox2
expression.

We show that during late stages of development, Pax6 ablation
results in a dramatic increase in Sox2 expression in the transitional
zone but not in the anterior LE (Fig. 6C). Sox2 is associated with
maintenance of a progenitor phenotype and stem cell
characteristics (Graham et al., 2003; Loh et al., 2008; Pan and
Thomson, 2007). Therefore, the observed upregulation of Sox2
might be the result of reversion to a more primal state that lacks
the capacity to differentiate. However, by deleting Sox2 in Pax6-
deficient lenses, we demonstrated that the increase in Sox2 is not
the cause of the observed phenotype. The analysis of Sox2-
deficient lenses suggests that Sox2 is not required at later stages
of lens development (Fig. 7 and not shown). Moreover, when LE
cells fail to differentiate because of β-catenin activation, Sox2
expression does not increase (Fig. 8P), contradicting the notion
that Sox2 upregulation is the default result of differentiation
failure in the LE.

The Wnt pathway and LFC differentiation
During lens induction, Wnt signaling in the SE is essential for
preventing ectopic lens formation in the surrounding head
ectoderm, and overexpression of β-catenin in the SE prevents lens
induction and inhibits expression of both Pax6 and Sox2 (Miller et
al., 2006; Smith et al., 2005; Stump et al., 2003). The involvement
of the canonical Wnt pathway in LFC differentiation is still under
debate. β-catenin loss-of-function phenotypes have been largely
attributed to its structural, rather than transcriptional, role (Kreslova
et al., 2007; Smith et al., 2005). Nevertheless, many components of
the Wnt signaling pathway are expressed in distinct temporal and
spatial patterns throughout lens development (Ang et al., 2004;
Chen et al., 2004; Lovicu and McAvoy, 2005). In addition, the Wnt
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Fig. 8. β-catenin overexpression leads to LFC
differentiation failure independently of Pax6.
(A,E) Sfrp2 transcripts in control (A) and
Pax6lox/lox;Mlr10 (E) E14.5 eyes. (B-D,F-K,N-P) E15.5
control (B-D,I-K) and Catnblox(ex3);Mlr10 (F-H,N-P)
lenses. (B,F) H&E staining reveals aberrant accumulation
of cells at the lens equator of Catnblox(ex3);Mlr10 mice
(F, arrowhead). (C,G)β-catenin and cyclin D1 (green
and red, respectively) detected by antibody labeling.
(D,H) BrdU+ cells (red) found anterior to the lens
equator in the control (D, arrow) accumulate posterior
to the lens equator of Catnblox(ex3);Mlr10 lenses (H,
arrows). (I,N) cCas3 (red) is not detected in controls (I)
but is detected in Catnblox(ex3);Mlr10 lenses (N, arrows).
(J,O) Pax6 protein is detected in the Catnblox(ex3);Mlr10
lenses (O), as in the control (J). (K,P) Sox2 is weakly
expressed in control LE and in the lens equator of
Catnblox(ex3);Mlr10 (arrows). (L,M,Q) β-galactosidase
activity (β-Gal, blue) in E14.5 lenses of BATlacZ (L),
Catnblox(ex3);Mlr10;BATlacZ (Q) and
Pax6lox/lox;Mlr10;BATlacZ (M). β-galactosidase activity is
detected in the developing eyelid (el, arrow) but not in
lenses of Pax6lox/lox;Mlr10;BATlacZ (M). (R) Antibody
labeling against β-catenin (green) and cyclin D1 (red).
Counterstaining is with DAPI (blue, D,H,I,N). el, eyelid;
eq, lens equator; re, retina; lf, lens fiber. Scale bars:
white/black, 100μm; gray, 400μm.
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co-receptor Lrp6 has been shown to delay LFC differentiation
(Stump et al., 2003). These findings suggest that canonical Wnt/β-
catenin signaling does play an antagonistic role in LFC
differentiation.

Recently, lens-specific β-catenin loss-of-function mutants were
established (Catnblox/lox;Mlr10). Analysis of these mutants
revealed that β-catenin is required for proliferation and
differentiation of the LE (Cain et al., 2008). In accordance with
this, the constitutive stabilization of β-catenin conducted in the
current study resulted in the prevention of cell cycle exit and of
LFC differentiation (Fig. 8). The seemingly similar phenotypes of
β-catenin gain-of-function and Pax6-deficient lenses, together
with the downregulation of Sfrp2 in the latter, led to the hypothesis
that the phenotype of the Pax6lox/lox;Mlr10 lens is mediated by
alterations in the canonical Wnt/β-catenin signaling pathway. This
hypothesis was tested in this study through the use of the BATlacZ
transgene (Nakaya et al., 2005). The lacZ reporter was activated in
the lens of E14.5 β-catenin gain-of-function mutants, enabling
detection of canonical Wnt pathway activity in the lens. lacZ was
not active in control or Pax6lox/lox;Mlr10 lenses. From this, we
infer that β-catenin transcriptional control activity does not play a
major role in the LE at E14.5. Moreover, it seems that the
phenotype of Pax6lox/lox;Mlr10 lenses is not mediated by Wnt/β-
catenin signaling, although Pax6 involvement in LFC
differentiation through the non-canonical Wnt pathways remains
to be investigated.
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Supplementary Figure 1, Shaham et al., 2009 
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Supplementary Figure 2, Shaham et al., 2009 
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Supplementary Figure 3, Shaham et al., 2009 
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