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INTRODUCTION
In echinoderms, as in vertebrates, the dorsal-ventral axis is
specified after fertilisation by mechanisms that rely on cell-cell
interactions and TGF-� signals of the Nodal family (Duboc and
Lepage, 2006; Duboc et al., 2004). In the sea urchin embryo,
expression of nodal is initiated around the 60-cell stage in most
cells of the presumptive ectoderm and becomes rapidly restricted
to the presumptive ventral ectoderm by mechanisms that remain
unknown.

nodal is the earliest zygotic gene displaying a restricted
expression along the dorsal-ventral axis during sea urchin
development and Nodal function is absolutely required for
establishment of dorsal-ventral polarity. When translation of the
nodal transcript is prevented, specification of both the ventral
and the dorsal ectoderm fails and most of the ectoderm
differentiates into a thickened ciliated ectoderm that represents
the default state in the absence of Nodal. Functional studies have
shown that overexpression of Nodal is sufficient to specify most
ectodermal cells with a ventral fate. Furthermore, rescue
experiments revealed that Nodal-expressing cells have a long-
range organizing activity and are capable of restoring dorsal-
ventral polarity over the whole embryo (Duboc et al., 2005;

Duboc et al., 2004). Nodal activates a regulatory network of genes
necessary for dorsal-ventral axis formation, encoding key
transcription factors such as Goosecoid, Brachyury and FoxA, as
well as signaling molecules such as Bmp2/4 and the Nodal
antagonist Lefty (Duboc and Lepage, 2006; Duboc et al., 2005).
Therefore, the nodal gene is a crucial component of dorsal-ventral
axis formation in the sea urchin and understanding the molecular
mechanisms responsible for the initiation of nodal expression is
important for understanding how the body plan of this organism
is established.

Classical bisection experiments on sea urchin embryos
performed by Hörstadius and more recently by Wilkrayamanake
et al. and Yaguchi et al. demonstrated that in the absence
of vegetal signaling, animal-half explants develop into neurogenic
ectoderm that lacks dorsal-ventral polarity. However, when these
explants are recombined with vegetal blastomeres or when
they are treated with lithium, dorsal-ventral polarity and
stomodeum formation are rescued (Hörstadius, 1973;
Wikramanayake et al., 1995; Yaguchi et al., 2006). Together with
our previous finding that expression of nodal also requires a
functional Tcf/�-catenin pathway (Duboc et al., 2004), these
experiments strongly suggest that a �-catenin-dependent vegetal
signal is required for induction of nodal expression in the animal
hemisphere.

Another molecular pathway implicated in the activation of nodal
expression is the p38 MAP kinase signaling pathway. p38 signaling
is activated around the 60-cell stage ubiquitously and is transiently
inactivated on the presumptive dorsal side. When p38 signaling is
inhibited, nodal expression is not initiated (Bradham and McClay,
2006). The function of p38 during the establishment of nodal
expression is not known.
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A possible link between p38 signaling and the transcriptional
activation of nodal is suggested by the known function of p38 in
the transcriptional responses downstream of oxidative stress
(Torres and Forman, 2003). Experiments performed some years
ago implicated oxidative gradients in the formation of the dorsal-
ventral axis of sea urchin embryos (Czihak, 1971). Intriguingly,
these respiratory gradients, visualized by mitochondrial
cytochrome oxidase activity, prefigure the dorsal-ventral axis of
the early embryo as early as the 8-cell stage (Czihak, 1963). Even
more enigmatic is the finding that orientation of the dorsal-ventral
axis can be biased by using respiratory inhibitors or by culturing
embryos in hypoxic conditions (Child, 1948; Coffman and
Davidson, 2001; Pease, 1941). Recent studies reported that
mitochondria are asymmetrically distributed in the egg of
Strongylocentrotus purpuratus and that microinjection of purified
mitochondria can bias orientation of the dorsal-ventral axis
(Coffman et al., 2004). However, the links between the
mitochondria, redox gradients, p38 signaling and the
transcriptional machinery responsible for initiating nodal
expression remain to be established. Since the nodal gene is
a key regulator of dorsal-ventral axis formation and the
earliest zygotic gene showing a restricted expression along this
axis, it provides an excellent entry point to dissect these
relationships.

In this study, we identified the cis-regulatory elements of the sea
urchin nodal gene and used them to dissect the regulatory
interactions involved in the control of nodal expression.

MATERIALS AND METHODS
Phylogenetic and linkage analyses
Phylogenetic trees were calculated using the maximum likelihood method
with PhyML using the WAG substitution model (http://atgc.lirmm.fr/
phyml/) (Guindon et al., 2005). A consensus tree with a 50% cut-off
value was derived from a 500 bootstrap analysis using Mega 3.1
(http://www.megasoftware.net/). Numbers above branches represent
posterior probabilities, calculated from this consensus.

Linkage analysis was performed by searching the zebrafish (http://
www.ensembl.org/Danio_rerio/index.html) and sea urchin (http://www.
ncbi.nlm.nih.gov/genome/guide/sea_urchin/index.html) genomes for
dvr1/bmp2 and for univin/bmp2/4.

In situ hybridization and quantitative (Q) PCR
The nodal and univin probes have been described previously (Duboc et
al., 2004; Lapraz et al., 2006). For QPCR, total RNA was prepared from
100 embryos using Trizol (Invitrogen) and reverse transcribed using the
TaqmanR PCR Kit (Applied Biosystems) after first removing DNA with
DNaseI. Cycling was performed using a Lightcycler 480 (Roche) and Fast
Start SYBR Green PCR Kit (Roche) with optimized primer pairs.
Relative quantification of nodal expression between experimental
samples and controls was obtained by subtracting the sample Ct
(threshold cycle) from the control Ct and using ubiquitin mRNA as an
internal control.

Treatments, constructs, RNA and morpholino injections
Treatment with 10 �M SB431542 was performed as described previously
(Duboc et al., 2005). Dominant-negative dnTcf mRNA was used at 500
�g/ml and univin mRNA at 800 �g/ml.

The specificity of the Nodal morpholino used in this study has been
demonstrated previously (Duboc et al., 2004). Two oligonucleotides,
directed against different regions of the SoxB1 5� UTR were used and
produced similar phenotypes including radialization, absence of spicules and
gut as described previously (Kenny et al., 2003). Similarly, two different
morpholino oligonucleotides directed against the univin transcript produced

identical phenotypes. A single morpholino directed against the first eight
codons of the alk4/5/7 transcript produced a phenotype extremely consistent
with the presumed role of the protein encoded by this transcript as a receptor
for Nodal. The specificity of this morpholino was demonstrated by
performing a rescue experiment. Sequences of morpholino oligonucleotides
are:
NodalMo, 5�-ACTTTGCGACTTTAGCTAATGATGC;
UnivinMo1, 5�-ACGTCCATATTTAGCTCGTGTTTGT;
UnivinMo2, 5�-GTTAAACTCACCTTTCTAAACTCAC;
SoxBMo1, 5�-GACAGTCTCTTTGAAATTAGACGAC;
SoxB1Mo2, 5�-GAAATAAAGCCAAAGTCTTTTGATG; and
Alk4/5/7Mo, 5�-TAAGTATAGCACGTTCCAATGCCAT.

All injections were repeated three times and for each experiment 50-100
embryos were analyzed. Only representative phenotypes present in at least
80% of the injected embryos are presented.

Isolation of BAC clones
Paracentrotus lividus and Lytechinus variegatus BAC libraries were
screened with a radioactive probe corresponding to the 5� UTR of nodal and
ten positive clones were further characterized by pulse-field
electrophoresis, PCR and restriction analysis. 15 kb of upstream sequence
were obtained for the longest L. variegatus clone (120 kb) and for the
Paracentrotus (60 kb) clone by subcloning and sequencing restriction
fragments. The entire P. lividus BAC clone was subsequently sequenced by
the Marine Genomics Europe technology platform. Sequence from the
Strongylocentrotus nodal locus was obtained from the Sea Urchin Genome
Assembly.

Comparison of genomic sequences
Sequence comparisons were performed with the Vista platform
(http://genome.lbl.gov/vista/index.shtml). The window size used varied
between 50 and 100 bp, with a window of 50 bp with 75% conservation.

Reporter constructs and mutagenesis
A GFP construct containing the Endo16 basal promoter, EpGFP (Arnone
et al., 1997), was used for spatial expression analysis. For quantitative
analyses, the luciferase expression vector pGL3 Basic was modified by
introducing the endo16 promoter in front of the luciferase start site
(henceforth referred to as EpGluc). The relevant conserved regions were
PCR amplified from the Paracentrotus BAC clone using the Long Expand
PCR System (Roche) and appropriate primers (see Table 1). Each relevant
fragment was introduced into the appropriate vector using standard
molecular biology techniques and each construct was verified by
sequencing. The conserved predicted binding sites for Smad,
homeodomain, TCF, Oct, Sox and bZIP factors were identified using
TransFac and MatInspector software (Genomatix). Primers containing
between four and eight mutated bases were generated for each of these sites
(see Table 1). Mutations were introduced by PCR using Pfx polymerase
(Invitrogen). All mutations were confirmed by restriction digestion and
sequencing.

GFP and luciferase reporter assays
Microinjections of purified and linearized plasmids were carried out by
established protocols (Arnone et al., 2004). In the case of GFP reporters, the
linearized construct was injected at 5 ng/�l together with carrier DNA
(HindIII-digested sea urchin genomic DNA) at 30 ng/�l. In the case of
luciferase reporters, the linearized plasmid was injected at 5 ng/�l, together
with pRL-TK (Renilla luciferase) or Endo16-Renilla DNA at 7.5 ng/�l and
carrier DNA at 30 ng/�l. For each experiment, more than 50 embryos were
mounted and the position of GFP-expressing cells within individual embryos
was scored. For luciferase analysis, between 100 and 150 injected embryos
were collected and the level of luciferase and Renilla determined with the
Dual Luciferase Kit (Promega) according to the manufacturer’s instructions
using a GloMax luminometer with an integration of 10 seconds. The level
of luciferase activity was normalized to the level of Renilla activity for each
experiment. All experiments were repeated three times using separate
batches of embryos.
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Table 1. Oligonucleotides (5�-3�) used in this study
Site/primer Sequence

R-module PCR primers 

5� proximal region A For CGGGTACCCTAGGCCTATACAGATACGTG
5� proximal region A Rev TCCCCCGGGCATTAGTCTATCTCTTTTTTC
R-module For CGGAATTTCGAAAAAAGAGATAGACTAATG
R-module Rev TCCCCCGGGGACACTACCTGCCCCTTAAC

Intron PCR primers

Intron For CGGGGTACCATTATCATCTTATATTTTCG
Intron Rev TCCCCCGGGGAAAGTGAAGGCTTATATTT
R-1 module For CGGGGTACCTCGCTGATCTTGGTGAATAC
A-module For CGGAATTCGAAGTCTATTCGCTCTCCTC
A-module Rev TCCCCCGGGCTGAAAGCTCGAACTTCAGC

R-module mutagenesis primers*

M1 XhoI Fw  GAAAAAAGAGATAGACCTCGAGTTAACACTTAGAAGG
XhoI Rev  CCTTCTAAGTGTTAACTCGAGGTCTATCTCTTTTTTC

M2 XhoI Fw  ATAGACTAATGCTTACTCGAGAGAAGGACTACCC
XhoI Rev  GGGTAGTCCTTCTCTCGAGTAAGCATTAGTCTATC

M3 BglII Fw  CTTAACACTTAGAAGGAAGATCTTTTTATTGTCGTTTGG
BglII Rev  CCAAACGACAATAAAAAGATCTTCCTTCTAAGTGTTAAG

M4 Xba Fw  GAAGGACTACCCTTTTTCTAGAATTGTCGTTTGGTTAAAAC
Xba Rev  GTTTTAACCAAACGACAATTCTAGAAAAAGGGTAGTCCTTC

M5 NsiI Fw  CCCTTTTATTGTCGTTATGCATAAACTAATTATAGTGTG
NsiI Rev  CACACTATAATTAGTTTATGCATAACGACAATAAAAGGG

M6 PstI Fw  GTCGTTTGGTTAAAACCTGCAGGCTTAGGGTGTTACAAAAG
PstI Rev  CTTTTGTAACACCCTAAGCCTGCAGGTTTTAACCAAACGAC

M7 ClaI Fw  GTTAAAACTAATTATAGTATCGATAGGGTGTTACAAAAG
ClaI Rev  CTTTTGTAACACCCTATCGATACTATAATTAGTTTTAAC

M8 BamHI Fw  GTGCTTAGGGTGTTAGGATCCAGCCGATTCATTGTTAATTAG
BamHI Rev  CTAATTAACAATGAATCGGCTGGATCCTAACACCCTAAGCAC

M9 NotI Fw  CTTAGGGTGTTACAAAAGAGCGCGGCCGCTGTTAATTAGGAAGAC
NotI Rev  GTCTTCCTAATTAACAGCGGCCGCGCTCTTTTGTAACACCCTAAG

M10 SphI Fw  CAAAAGAGCCGATTCATTGGCATGCAGGAAGACGGGTTGGG
SphI Rev  CCCAACCCGTCTTCCTGCATGCCAATGAATCGGCTCTTTTG

M11 SacI Fw  GAAGACGGGTTGGGAGGAGCTCTCCTTGTGTAGTGGG
SacI Rev  CCCACTACACAAGGAGAGCTCCTCCCAACCCGTCTTC

M12 BamHI Fw  CTTGTGTAGTGGGCCGAGGGATCCTGCTTCTATTCAACGTG
BamHI Rev  CACGTTGAATAGAAGCAGGATCCCTCGGCCCACTACACAAG

M13 XhoI Fw  GGGTGAAAGGTTTTTACTCGAGATGCTTCGATTGCTAAAC
XhoI Rev  GTTTAGCAATCGAAGCATCTCGAGTAAAAACCTTTCACCC

M14 EcoRI Fw  GTTTTTAGCATGAATGCTTCGGAATTCAAACAATGCGCGCGCATG
EcoRI Rev  CATGCGCGCGCATTGTTTGAATTCCGAAGCATTCATGCTAAAAAC

M15 BamHI Fw  CATGAATGCTTCGATTGCTGGATCCTGCGCGCGCATGTGGGG
BamHI Rev  CCCCACATGCGCGCGCAGGATCCAGCAATCGAAGCATTCATG 

M16 XhoI Fw  CGATTGCTAAACAATGCCTCGAGATGTGGGGTTAGGAG
XhoI Rev  CTCCTAACCCCACATCTCGAGGCATTGTTTAGCAATCG

M17 HindIII Fw  GTGGGGTTAGGAGTTTTTAAGCTTGGTGTCTGATTAGACTG
HindIII Rev  CAGTCTAATCAGACACCAAGCTTAAAAACTCCTAACCCCAC 

S2 XhoI Fw  GATTCATTGTTAATTAGGACTCGAGGTTGGGAGATGGGTTC
XhoI Rev  GAACCCATCTCCCAACCTCGAGTCCTAATTAACAATGAATC

S3 XhoI Fw  GTTAGGAGTTTTTGAAAAGGGCTCGAGATTAGACTGTTAAGGGGC
XhoI Rev  GCCCCTTAACAGTCTAATCTCGAGCCCTTTTCAAAAACTCCTAAC

S4 BglII Fw  GAAAAGGGCTCGAGATAGATCTGTTAAGGGGCAGG
BglII Rev  CCTGCCCCTTAACAGATCTATCTCGAGCCCTTTTC

Intron Smad mutagenesis primers†

S1 XbaI Fw  GCGTGTTTGCTCAATCTAGAAAAATGGTCATAAAAATG
XbaI Rev  CATTTTTATGACCATTTTTCTAGATTGAGCAAACACGC

S2 HindIII Fw  CTCATTGACTTTGTTTTGAAAAGCTTTCGCTCTCCTCTAACACC
HindIII Rev  GGTGTTAGAGGAGAGCGAAAGCTTTTCAAAACAAAGTCAATGAG

S3 BamHI Fw  CCAAATTGTTTTCTAATTAACTCGGATCCGCTATTCCGTTATCGGATAA
BamHI Rev  TTATCCGATAACGGAATAGCGGATCCGAGTTAATTAGAAAACAATTTGG

S4 XhoI Fw  CAGATCAAAGGGATGGGACCTCGAGCTTTTGTTCAGAAGACCG
XhoI Rev  CGGTCTTCTGAACAAAAGCTCGAGGTCCCATCCCTTTGATCTG

S5 Bam Fw  CTCTTTTGTTCAGAAGACCGGATCCATGCTGAAGTTCGAGCTTTC
Bam Rev  GAAAGCTCGAACTTCAGCATGGATCCGGTCTTCTGAACAAAAGAG

Table continued on next page.
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Fig. 1. Phylogenetic footprinting and regulatory element expression analysis of nodal. (A) Diagram showing the position of the P. lividus
nodal gene in the BAC (top) and the region used for the phylogenetic footprinting analysis (brackets). (B) 15 kb of sequence surrounding the P.
lividus nodal gene was aligned with 15 kb of S. purpuratus (Sp) and 9 kb of L. variegatus (Lv) genomic sequence using Vista. The two exons are
labeled in blue and non-coding sequence showing more than 75% homology in pink. (C) Enlargement of the two non-coding conserved regions
used for the expression and deletion analyses. Broken lines delineate the sequences used for the deletion analysis in D. (D) P. lividus genomic DNA
sequence was used to drive GFP expression in P. lividus embryos. Merged GFP-fluorescent and DIC images of pluteus-stage embryos illustrating the
results of the deletion analysis.

Table 1. Continued
Site/primer Sequence

Intron Smad mutagenesis primers†

S6 BglII Fw  CTCGAGCTTTTGTTCAGAGATCTGGATCCATGCTGAAGTTC
BglII Rev  GAACTTCAGCATGGATCCAGATCTCTGAACAAAAGCTCGAG

S7 EcoRI Fw  CTTTTGTTGCGGATTGAATTCCAGTGTGTTAATGG
EcoRI Rev  CCATTAACACACTGGAATTCAATCCGCAACAAAAG

S8 SacII Fw  GTGTGTTAATGGAACCGCGGCTTGAAAAGAGGGG
SacII Rev  CCCCTCTTTTCAAGCCGCGGTTCCATTAACACAC

S9 HindIII Fw  GGCAAGTCAGAACAGTTAACAAAAGTGATACGTC
HindIII Rev  GACGTATCACTTTTGTTAACTGTTCTGACTTGCC

S10 XhoI Fw  GTTAATAATATTCGCTCGAGGCATCGACCTTGGG
XhoI Rev  CCCAAGGTCGATGCCTCGAGCGAATATTATTAAC

S11 XbaI Fw  CATCGACCTTGGGCGTCTAGATAACTATTAATTAC
XbaI Rev  GTAATTAATAGTTATCTAGACGCCCAAGGTCGATG

S12 EcoRI Fw  GATTTGCGATTTTGAATTCTACAATGCAAAACC
EcoRI Rev  GGTTTTGCATTGTAGAATTCAAAATCGCAAATC

Restriction sites are underlined.
*Correspond to mutant site numbers (M1-M17; Smad mutants S1-S4) as shown in Fig. 4.
†Correspond to site numbers (S1-12) as shown in Fig. S1 in the supplementary material.
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RESULTS
Identification of the cis-regulatory elements
driving nodal expression
In order to identify cis-regulatory regions responsible for the control
of nodal expression, we used phylogenetic footprinting. Previous
studies have shown that comparisons of genomic sequences between
Lytechinus variegatus and Strongylocentrotus purpuratus allow
efficient identification of the highly conserved regions expected to
contain regulatory elements (Revilla-i-Domingo et al., 2004; Yuh et
al., 2002). BAC recombinant clones containing the nodal gene were
isolated from P. lividus and L. variegatus. The sequence of the S.
purpuratus nodal locus was obtained in silico from the sea urchin
genome sequence. We scanned the genomic sequences of the three
nodal genes for short conserved motifs with the Vista program using
as parameters a 70% identity in a 50 bp window. In addition to
regions corresponding to the coding sequences, this comparison
identified three highly conserved non- coding regions (Fig. 1A,B).
These consist of a 700 bp region just 5� of the transcriptional start
site, a 650 bp region within the intron, and a 600 bp region
corresponding to the 3� UTR (Fig. 1B,C).

In order to test the regulatory function of these conserved regions,
we created GFP constructs with the 5� proximal region and the full
intron region, injected these into fertilized embryos and scored GFP
expression at various developmental stages. Both the 5� proximal
region and the intron GFP constructs drove robust GFP expression
in embryos at blastula stage (data not shown). By contrast, the region
corresponding to the 3� UTR of the transcript did not drive
significant expression of the reporter gene.

In order to determine which areas of the conserved 5� and intronic
sequences contained sites involved in the transcriptional activation
and/or spatial repression of nodal expression, we performed a
deletion analysis (Fig. 1C,D). A fragment containing the first 350 bp
of the 5� proximal region did not drive detectable expression of the
GFP reporter gene (Fig. 1D). By contrast, a fragment containing the
last 300 bp of the proximal region efficiently drove expression of the
reporter gene (Fig. 1D). Finally, a deletion that removed 600 bp of
the proximal region, leaving only the last 50 bp and the predicted

TATA box, did not show any expression (data not shown). This
indicates that cis-regulatory elements driving nodal expression are
located within a 300 bp region just upstream of the transcriptional
start site.

Deletion analysis of the intron region showed that neither the first
half nor the last 464 bp of the intron is able to drive GFP expression,
whereas a small conserved region of 350 bp is capable of driving
strong expression (Fig. 1D). These results indicate that regulatory
elements sufficient to drive nodal expression reside in a short region
just upstream of the first exon (R-module) and in a small, highly
conserved region within the intron.

Spatial regulatory activity of the conserved nodal
cis-regulatory sequences
In order to determine whether the identified regulatory modules
are sufficient for the proper spatial expression of nodal on the
oral side, we examined the spatial expression profiles of GFP
reporter genes driven by the R-module (the 300 bp 5� of exon 1)
or by various regions derived from the intron (Fig. 2A and Table
2).

Embryos injected with the R-module GFP construct (R-module
GFP) and the whole intron GFP construct showed different spatial
expression profiles. Overall, 57% of the embryos injected with R-
module GFP displayed expression and of these, 87% displayed GFP
expression in the oral ectoderm, whereas 35% displayed ectopic
expression in other territories. The whole, highly conserved 5�
proximal region (700 bp 5� of exon 1) showed a similar spatial
expression profile (data not shown). Similar to the R-module, the
whole intron drove oral expression in 85% of the GFP-expressing
embryos; however, the percentage expressing GFP ectopically rose
to 52% (Table 2). When these two regulatory regions were fused
together into a mini-gene, the construct showed an oral bias similar
to that of the R-module alone (Fig. 2B; Table 2).

Taken together, these data suggest that both the R-module and the
intron contain regulatory elements involved in the spatial restriction
of nodal and that the combinatorial activity of these elements may
restrict nodal expression to the oral territory. However, the relatively

3653RESEARCH ARTICLETranscriptional regulation of nodal in the sea urchin embryo

Fig. 2. Spatial GFP expression driven
by the R-module and intron GFP
reporters. (A) Diagram of the five
regulatory elements from sea urchin nodal
used for the spatial expression analysis.
(B) Expression data summary for GFP
constructs containing the various
regulatory elements. Embryos with
expression clones just in the oral
ectoderm were scored as oral only; clones
in either aboral ectoderm or endoderm
were scored as ectopic only; and embryos
that contained clones in both oral and
ectopic territories were scored as
oral+ectopic. (C-E) Examples of embryos
that fit into these categories: (C) oral only,
(D) oral+ectopic, (E) ectopic only.
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high level of ectopic expression of the R-module- and intron-driven
reporter constructs suggests that additional repressor elements might
be involved in the spatial control of nodal expression.

Deletion analysis of the intron
Deletion analysis of the intron revealed that it contains a central
module involved in global activation (the A-element), flanked by
two restriction elements (R1 and R2) involved in spatial restriction
(Fig. 2A,B). The A-element drives robust GFP expression evenly
throughout the embryonic territories (overall: oral 66%, ectopic
66%), suggesting that this element responds to broadly distributed
factors that regulate nodal expression. Embryos injected with an
R1+A-element GFP construct displayed GFP expression similar to
embryos injected with the full intron GFP reporter (overall: 72%
oral, 52% ectopic). Embryos injected with an R2+A-module GFP
construct also showed preferential expression of GFP in the oral
territory (overall: 83% oral, 36% ectopic). Both of these constructs
showed a decrease in the overall aboral and endoderm ectopic
expression and a concomitant rise in the oral expression compared
with the A-module. The effect of the R1-module on the spatial
restriction of the reporter is modest (R1+A, 14% aboral decrease,
8% endoderm decrease), suggesting that it acts as a weak repressor
element. The R2-module is more effective than R1 in restricting the
spatial expression of the reporter (R2+A, 28% aboral decrease, 20%
endoderm decrease), suggesting that R2 can exert negative control
of nodal expression (Table 2). The extent of this effect is in keeping
with other negative-regulatory spatial elements characterized in
several sea urchin genes (Minokawa et al., 2005; Ransick and
Davidson, 2006). Thus, the 3� half of the intron sequence contains
regulatory elements that are able to respond to a positive regulator(s)
that is globally expressed, as well as elements that are necessary to
repress nodal expression in the endoderm.

The proximal R-module and the intron both
contain Smad binding sites involved in
autoregulation by Nodal
Studies on the regulation of nodal gene expression in vertebrates
have shown that regulatory elements upstream of the first exon
control activation of nodal and that elements within the introns
contain binding sites that are necessary for the autoregulation by
Smad2/3 (Norris et al., 2002; Osada et al., 2000). To examine the
regulatory architecture of the sea urchin nodal gene, we compared
the kinetics of luciferase expression driven by the R-module and
by the intron (Fig. 3A). When the R-module was fused to a
luciferase reporter construct carrying the endo16 basal promoter
(EpGluc), it activated luciferase expression as early as the 60-cell
stage (Fig. 3A) and levels of expression rose until the mesenchyme
blastula stage, similar to endogenous nodal activation (Duboc et
al., 2004). However, the intron region did not activate luciferase
expression until the very early blastula stage and the level of

expression was reduced when compared with R-module
expression at this stage. The activity of the intron-driven luciferase
reporter continued to rise, with a sharp increase between early
blastula and mesenchyme stages, perhaps indicating the time when
autoregulation by Nodal signaling is strongly influencing the
promoter (Fig. 3A). These data suggest that the R-module contains
transcription factor binding sites necessary for the activation of
nodal around the 60-cell stage, whereas the function of the intronic
modules might be to respond to autoregulation by Nodal signaling.
We reasoned that mutating the predicted Smad binding sites
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Table 2. Spatial expression profiles of GFP reporter genes driven by the R-module or various regions derived from the nodal
intron

Specific domain expression % (n) Overall expression % (n)

Total Expressing Oral only Oral+ectopic Ectopic only Oral Ectopic Aboral Endoderm

R-module 531 57 (302) 65 (196) 22 (66) 13 (40) 87 (262) 35 (106) 26 (80) 13 (39)
Intron 322 52 (168) 48 (80) 37 (62) 25 (26) 85 (142) 52 (88) 35 (58) 27 (45)
Fusion 202 64 (130) 69 (90) 22 (29) 8 (11) 92 (119) 31 (40) 22 (28) 13 (17)
A-module 264 56 (147) 34 (50) 31 (45) 35 (52) 65 (95) 66 (97) 50 (74) 46 (67)
R1+A-module 220 55 (118) 48 (57) 27 (32) 25 (29) 75 (89)  52 (61) 36 (42) 37 (44)
R2+A-module 200 56 (111) 61 (68) 20 (22) 19 (21) 81 (90) 39 (43) 22 (24) 26 (29)
R-module Myb mutant 233 57 (133) 47 (63) 26 (35) 26 (22) 74 (98) 53 (70) 32 (43) 33 (44)
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expression profiles and are both influenced by autoregulation
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present within these regions should uncover which module is
involved in autoregulation, as the mutated construct would no
longer be able to respond to Nodal autoregulation. We mutated all
four Smad binding sites present within the R-module and all 12
sites present within the intron (Fig. 4 and see Fig. S1 in the
supplementary material). In both cases, mutation of the Smad
binding sites caused a sharp decrease of the activity of the reporters
at the hatched blastula stage. However, the R-module Smad mutant
still retained 35% of its original expression when compared with
the normal R-module, whereas the intron Smad mutant had only
3% residual expression compared with the normal intronic region
(Fig. 3B). Similarly, injection of the Nodal morpholino or
treatments with the Alk4/5/7 receptor inhibitor SB431542 (Inman
et al., 2002), which should both inhibit autoregulation by Nodal,
severely decreased the activity of the intronic reporter gene,

whereas it only moderately affected the activity of the R-module
reporter (Fig. 3B). Taken together, these data suggest that both the
R-module and the intron act as autoregulatory elements. However,
when compared with the intron, the R-module still drove relatively
high levels of luciferase expression in the absence of
autoregulatory Smad binding sites, suggesting that it contains other
transcription factor binding sites necessary for full nodal
expression.

Identification and functional analysis of binding
sites for transcription factors in the nodal
R-module
To identify additional transcription factors necessary for R-module
activity, we searched the R-module sequence for known transcription
factor binding sites using MatInspector software (Cartharius et al.,
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Paracentrotus      -GAAAAAAGAGATAGAC-TAATGCTTAACACTTAGAAGGACTACCC-TTTTATTGTCGTT 57 
Purpuratus         -GAGAAAGAAGATAGAC-TAATGCGTAACACTTAGCAGGACTACCC-TTTTATTGTCGTT 57 
Lytechinus         AAGAAAGAAAAACAGACATAATGTGCGACACTTAGCAGGGCTACCCCTTTTATTGTCGTT 60 
                       **   * * **** *****    ******** *** ****** *************  

Paracentrotus      TGGTTAAAACTAATTATAGTGTGCTTAGGGTGTTACAAAAGAGCCGATTCATTGTTAATT 117 
Purpuratus         TGGTTACAACTAATTATAGTGTGCTTAGAGTCCTACAAAAGAGCCGATTCATTGTTAATT 117 
Lytechinus         TGGTTACAACTAATTATAGTGTGCTTAGGGTGCTACAAAAGAGCCGATTCATTGTTAATT 120 
                   ****** ********************* **  *************************** 

Paracentrotus      AGGAAGACGGGTTGGG------------------AGATGGGTTCCTTGTGTAGTGGGCCG 159 
Purpuratus         AGGAAGACGGGATGGGT-ACATGTCGAGCAGCCGGGATGGGTTCAATGCATAGTGGCCCG 176 
Lytechinus         AAGAAGACGGGATGGGGGAGATCTTGAACAGTCGGAATGGGTTTCTTGTATTGTGACCCG 180 
                   * ********* ****                    *******   **  * ***  *** 

Paracentrotus      AGAACCGTTGCTTCTATTCAACGTGCTCCGGGTGAAAGGTTTTTAGCATGAATGCTTCGA 219 
Purpuratus         AGAACCGTTGCTTTCATTCACCGTGGTTCGGCTGAATGGTTTTTAGCATGAATGCTTGAA 236 
Lytechinus         AGAACCGTTGGATCTATTCAACGTCATCCCGGTGAAAGGTTTTTTGCATCAATGCCCAGA 240 
                   **********  *  ***** ***  * * * **** ******* **** *****    *  

Paracentrotus      TTGCTAAACAATGCGCGCGCATGTGGGGTTAGGAGTTTTTGAAAAGGGTGTCTGATTAGA 279 
Purpuratus         TTGCGAAACAATGCGCGCGCATGTTGAGCTAGGGGTCTTTGAAAAGAGTGTCTGATTAGT 296 
Lytechinus         TTGCGAAACAATGCGCGCGCATGGTGAGCCGGGGATCTCTGAAAAG-GTGTCTGATTAGG 299 
                   **** ******************  * *   **  * * ******* ************ 

Paracentrotus      CTG-TTAAGGGGCAGGTAGTGTCTGGAAAGTTCAGGTCTCAAGTATTTAAGATGTCTGGC 338 
Purpuratus         GTG-GCAAGGCGAGAGTAGTGTCTGGGAAGGTAAGGTCTCAAGTATTTAAGATGTCTGGC 355 
Lytechinus         ATGCGAAAGGGGGGAGTAGTGTCTGGGAAGTCTAAGACTGGAGTATTTAAGATGTCTGGC 359 
                    **   **** *   *********** ***   * * **  ******************* 

Paracentrotus      CAACTTTCACCT-CATCATTTCGTCAGAAA +1 mRNA
Purpuratus         TCACTTTCACCTTCATCATTTCGTCAGAAA 
Lytechinus         TCACTTTCACCC-CATCATTCTGTCAGAA- 
                     *********  *******  ******* 
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2005). This analysis indicated that the R-module contains multiple
candidate binding sites for several families of transcription factors.
We then mutated 17 conserved motifs within the R-module, including
the predicted binding sites as well as other well conserved regions
and analyzed the effect of each mutation alone, or in combination
with other mutations, on the activity of the luciferase and GFP
reporters at blastula stages (Fig. 4). These functional tests allowed the
identification of six motifs which, when mutated, caused a strong
decrease in reporter gene activity at the hatched blastula stage,
suggesting that these sites are necessary for activation of nodal
expression. Each of the sites found in the systematic screen
corresponds to a predicted transcription factor binding site (Fig. 4A-
C). Mutation of all three predicted homeodomain factor binding sites
decreased luciferase expression to about 5% of that of control
constructs (Fig. 4C). Similarly, a mutation that maps to one of the
predicted bZIP binding sites caused a 20-fold reduction of the activity
of the reporter (Fig. 4C). Interestingly, the sequence of this motif,
GCCGATTCAT, resembles the antioxidant responsive element
(ARE), GCNNNGTCAY, which mediates transcriptional regulation
of antioxidant proteins (Rushmore et al., 1991). These data suggest
that both homeodomain and bZIP transcriptional regulators are
crucial for the activation and/or maintenance of nodal expression. In
addition to homeodomain and bZIP, three mutations produced strong
effects on the activity of the reporter. These mapped to a motif,
TACAAAAGA, that resembles a Tcf binding site (A/TA/TCAAAG)
(Giese et al., 1991; van de Wetering and Clevers, 1992), to a motif,
AACAAT, which fits the consensus Sox binding site (AACAAT) (van
Beest et al., 2000) and to a motif, ATGCTAAA, that resembles the
Oct1 consensus binding site (ATGCAAA) (Jin and Li, 2001).
Mutation of the TCF-like, Sox or Oct sites decreased the activity of
the R-module-driven reporter gene to ~64%, ~40% and 30%,
respectively, of its original value (Fig. 4C).

Interestingly, we identified a site which, when mutated,
consistently resulted in an almost 3-fold stimulation of the
expression of the reporter gene (Fig. 4D). The sequence of this
motif, CAACGGT, fits the consensus binding site sequence for
Myb (YAACG/TG) (Luscher and Eisenman, 1990). The Myb
transcription factor is known to act as a repressor and a global
regulator of chromatin structure (Coffman et al., 1997; Lipsick,
2004). To determine whether this site is involved in spatial restriction
of nodal, we introduced the mutation into the R-module GFP
construct and assayed spatial expression at the early pluteus stage
(Fig. 4E). Indeed, the percentage of embryos displaying restricted
expression of GFP in the oral territory decreased from 65% to 47%
when this site was mutated. Furthermore, when the Myb site was
mutated, the percentage of embryos expressing GFP in aboral and
endoderm also increased compared with the wild-type R-module
(4% and 20% increase, respectively). These variations in the spatial
expression of reporter genes are somewhat modest, but they are of
the same order of magnitude as those caused by mutating important
transcription factor binding sites in other spatially regulated sea
urchin genes (Minokawa et al., 2005; Ransick and Davidson, 2006).
Thus, the Myb-like binding site is likely to bind a regulatory factor
that represses nodal expression in the aboral and endomesodermal
territory. Alternatively, the function of this repressor site might be to
control the level of nodal expression in the oral ectoderm.

Initiation of nodal expression requires TCF, SoxB1
and early TGF-� signaling
Since the R-module contains binding sites for Sox and Tcf and
because both factors are expressed maternally and are broadly
distributed in the early embryo (Huang et al., 2000; Kenny et al.,

2003), we examined whether Tcf and SoxB1 function is required for
expression of endogenous nodal and of the nodal reporter genes.
Consistent with previous studies (Kenny et al., 2003), we found that
interfering with SoxB1 function using antisense morpholino
oligonucleotides severely affected dorsal-ventral patterning, causing
embryos to develop with a strongly radialized phenotype (data not
shown). Examination of endogenous nodal expression in the SoxB1
morpholino-injected embryos at early blastula stages revealed that
nodal expression was abolished (Fig. 5A). Also, the activity of the
R-module-driven reporter gene decreased to 18% of its normal value
in embryos injected with the SoxB1 morpholino at the hatched
blastula stage (Fig. 5D). Similarly, co-injection of RNA encoding a
dominant-negative (dn) version of Tcf reduced the activity of the
reporter gene to 11% of its original value (Fig. 5D). We conclude
that TCF and SoxB1 function is essential for nodal expression,
possibly through direct binding to the R-module.

We had shown previously that maintenance of nodal expression
strongly depends on an autoregulatory loop and that in the absence
of Nodal signaling or following overexpression of Lefty protein,
nodal expression is lost at late blastula stages (Duboc et al., 2005;
Duboc et al., 2004). To further test whether nodal expression also
requires TGF-� signaling and to determine the period when
autoregulation becomes important for maintenance of nodal, we
microinjected morpholino oligonucleotides directed against nodal
or alk4/5/7, which encodes a candidate Nodal type I receptor
(Lapraz et al., 2006), and analyzed the temporal and spatial
expression of nodal by in situ hybridization and QPCR (Fig. 5B).
Strikingly, nodal expression was barely detectable in the MoNodal-
injected embryos at the early 64/128-cell stage (Fig. 5Bf-h) and
completely absent starting at the early blastula stage (Fig. 5Bi-j). In
the MoAlk4/5/7-injected embryos, nodal expression was not
detectable at any stage (Fig. 5Bk-o). Consistent with these
observations, MoNodal injection or SB431542 treatment caused a
3- to 4-fold decrease of the activity of the luciferase reporter gene
(Fig. 5D). These results suggest that a Nodal-dependent
autoregulatory loop is active very early and its integrity is crucial to
maintain nodal expression.

Univin, a maternally expressed TGF-�, is the sea
urchin ortholog of Vg1 and acts upstream of
nodal expression
During the experiments described above, we noticed that nodal
expression was more effectively downregulated in embryos treated
with SB431542 or microinjected with MoAlk4/5/7 than in embryos
injected with the Nodal morpholino. This suggested that another
early-acting TGF-� signal might participate in the regulation of
nodal expression. Univin is a good candidate for this additional
early-acting TGF-� signal required for nodal expression as it is an
abundant, ubiquitously expressed maternal transcript and because
its zygotic expression pattern encompasses that of nodal (Lapraz et
al., 2006).

We tested whether Univin is the early signal required for nodal
expression. Following injection of the Univin morpholino, nodal
transcripts could not be detected by in situ hybridization (Fig. 5Bp-
t), although a residual level of nodal transcripts could be detected
by QPCR (Fig. 5E). Injection of the Univin morpholino also caused
a reduction in the activity of the R-module-driven luciferase
reporter gene at the hatched blastula stage (Fig. 5D). However, as
in the presence of the Alk4/5/7 inhibitor or in the absence of Smad
binding sites, the activity of the R-module was not completely
abolished, suggesting that initial activation of nodal is achieved by
transcription factors that act in parallel with TGF-� signaling.

RESEARCH ARTICLE Development 134 (20)
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Furthermore, unlike nodal, which requires Nodal and Alk4/5/7
signaling early to be maintained, univin expression was found to be
independent of Alk4/5/7 signaling (Fig. 5C) or nodal expression
(data not shown), consistent with the idea that Univin acts very
early to regulate nodal expression. Finally, in an attempt to link the
zygotic expression of univin with the activity of maternal
transcription factors, we examined the dependence of univin

expression on maternal Wnt/�-catenin signaling and SoxB1. We
found that zygotic expression of univin, like zygotic expression of
nodal, critically requires TCF and SoxB1 function (Fig. 5A). Taken
together, these results show that Univin, a maternally deposited
TGF-�, is required early for nodal expression during sea urchin
development and that both univin and nodal expression require Tcf
and SoxB1 function.

3657RESEARCH ARTICLETranscriptional regulation of nodal in the sea urchin embryo

Fig. 5. nodal expression in the sea urchin relies early
on autoregulation and Univin signaling and requires
SoxB1 and TCF function. (Aa-h) Effects of SoxB1
morpholino and dnTcf mRNA on the expression of the
endogenous nodal and univin genes. (d,e) Injection of
SoxB1 morpholino diminishes SoxB1 protein expression.
Anti-SoxB1 in green (arrow). (Ba-t,Ca-j) Effects of the
Nodal, Alk4/5/7 and Univin morpholinos on the expression
of the endogenous nodal and univin genes. (D) Effects of
treatment with SB431542, of microinjection of dnTcf
mRNA and of Nodal, SoxB1 and Univin morpholinos on
the transcriptional activity of the R-module at the hatched
blastula stage. The data are presented as the ratio of
luciferase expression between EpGluc and the wild-type
module. Two different morpholino oligonucleotides
directed against univin and soxB1 were used and gave
similar results. (E) QPCR analysis of nodal expression in
SB431542-treated or MoUnivin-injected embryos. VEB,
very early blastula; EB, early blastula; PHB, pre-hatching
blastula.
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Loss of Univin function phenocopies the loss of
Nodal
To further document the function of Univin in the regulation of nodal
expression, we performed gain- and loss-of-function analyses. As
described above, two different antisense morpholino oligonucleotides
directed against Univin were similarly effective in suppressing nodal
expression (Figs 5, 7). Consistent with these observations, the Univin
morphants obtained with either morpholino developed with a fully
penetrant, extremely severe phenotype: numerous spicule rudiments
formed around the archenteron that remained straight, the mouth
never formed, and the whole ectoderm differentiated into a thick,
ciliated epithelium without any apparent dorsal-ventral polarity (Fig.
7Ab,c,g,h). This phenotype is indistinguishable from that caused by
inhibition of Nodal function (Fig. 7Aa-c,f-h). Consistent with the loss
of nodal expression in these embryos, expression of the aboral
marker 29D was suppressed in most of the ectoderm, except the sub-
anal region, and the ciliary band marker gene tubulin was expressed
in a large apical domain, exactly as in the nodal morphants (Fig.
7Ba,b,f,g) (see also Duboc et al., 2004).

Overexpression of Univin by microinjection of synthetic mRNA
into the egg perturbed dorsal-ventral patterning and produced
radialized embryos that only partially resembled those obtained by
overexpression of nodal (Fig. 7Ad). Molecular analysis revealed that
nodal was expressed ectopically in most of the Univin-
overexpressing embryos (Fig. 7Bd,i), half of them displaying a
completely radial expression (Fig. 7Be,j). This indicates that when
overexpressed, univin is able to induce nodal expression in the aboral
ectoderm, possibly by overwhelming a repression mechanism
operating in this territory. Simultaneous overexpression of Univin and
inhibition of Alk4/5/7 with SB431542 (Fig. 7Ae) produced embryos
with a phenotype identical to that caused by MoAlk4/5/7 (Fig. 6) or
SB431542 treatment (Fig. 7Ai) and not resembling the phenotype of
Univin-overexpressing embryos (Fig. 7Ad), suggesting that Univin
signals through the same receptor as nodal, namely Alk4/5/7.

The striking effects on nodal expression resulting from
overexpression or downregulation of Univin prompted us to re-
examine the phylogenetic relationships between this TGF-� and
Nodal. Previous phylogenetic comparisons indicated that Univin is
most closely related to BMPs and Vg1 (Stenzel et al., 1994),
whereas more recent comparisons indicated a close evolutionary
relationship with Gdf factors (Lapraz et al., 2006). To precisely
determine the orthology relationship of Univin, we performed a
phylogenetic analysis using a set of sequences that included several
vg1 members (Fig. 8A). This analysis confirmed that Univin is more
closely related to Vg1 from Xenopus, Dvr1 from zebrafish, and to
Gdf1 and Gdf3 from mouse, than to BMPs. This strong phylogenetic
relationship is further supported by genomic linkage data (Fig. 8B).
In the zebrafish genome, the dvr1 gene is located 8 kb from bmp2a.
Similarly, the univin transcription unit lies only 32 kb from bmp2/4.
The synteny of univin/bmp2/4 and dvr1/bmp2a in the sea urchin and
zebrafish genomes strongly suggests that these two genes evolved
by gene duplication before emergence of the chordates.

DISCUSSION
Nodal expression and Wnt/�-catenin signaling
The regulation of expression of nodal genes by the Wnt/�-catenin
pathway is well documented in zebrafish (Bellipanni et al., 2006;
Kelly et al., 2000), Xenopus (Agius et al., 2000; Hyde and Old, 2000;
Rex et al., 2002; Schohl and Fagotto, 2003; Takahashi et al., 2000;
Xanthos et al., 2002; Yang et al., 2002) and mouse (Ben-Haim et al.,
2006; Chazaud and Rossant, 2006; Huelsken et al., 2000). Studies
performed in Xenopus and mouse identified the regulatory elements
responsible for regulation of nodal genes and, in the case of Xnr1
and Xnr3, Wnt-responsive elements containing consensus binding
sites for the Lef-1/Tcf proteins have been identified (Hyde and Old,
2000; Kofron et al., 1999; McKendry et al., 1997; Osada et al.,
2000). Inspection of the sea urchin nodal promoter detected one
such motif and mutational analysis indicated that it is indeed
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Fig. 6. Sea urchin Alk4/5/7 is required for dorsal-ventral axis formation and Nodal signaling. (Aa-d) MoAlk4/5/7 disrupts dorsal ventral axis
formation and blocks the response to nodal overexpression. (Ba-h) Rescue experiment to demonstrate the specificity of the Alk4/5/7 morpholino.
Embryos were injected with Alk4/5/7 morpholino (b,e) or alk4/5/7 mRNA (c,f) alone, or successively injected with the Alk4/5/7 morpholino then
with a synthetic alk4/5/7 mRNA containing eight mismatches over the region recognized by the morpholino (d,g,h). Whereas embryos injected with
the Alk4/5/7 morpholino alone developed with a radialized phenotype indicative of inhibition of Nodal signaling, embryos co-injected with the
Alk4/5/7 morpholino and the modified wild-type alk4/5/7 mRNA developed into normal pluteus larvae. 
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essential for high-level promoter activity. Furthermore, inhibition of
Tcf function severely affected expression of a nodal reporter gene.
Thus, expression of nodal (Duboc et al., 2004) and Univin (this
work) requires Tcf activity, further reinforcing the idea that in the
sea urchin, as in vertebrates, initiation of nodal expression critically
relies on prior activation of the Wnt/�-catenin pathway. In the future,
it will be important to determine whether the Tcf/�-catenin complex
binds directly to the nodal promoter, or if a relay molecule produced
at the level of the vegetal pole mediates this effect.

Sox factors: conserved regulators of nodal
expression with opposing functions in sea urchin
and vertebrates
Recently, SoxB1-type factors have emerged as evolutionarily
conserved maternal/early zygotic regulators of germ layer
specification and axis formation in deuterostomes (Kenny et al.,
2003; Zhang et al., 2005; Zhang et al., 2004; Zhang et al., 2003). In
Xenopus, the SoxB1 family member Sox3 is expressed maternally
in the animal hemisphere, where it restricts mesendoderm induction
(Penzel et al., 1997). Studies in Xenopus and zebrafish have also
shown that Sox3 acts as a transcriptional repressor of Xnr5 (Zhang
et al., 2003). Based on the conservation of Sox3 function in
vertebrates, Zhang et al. proposed that SoxB1 proteins might fulfil
a phylogenetically conserved role in regulating cell fate specification
along the animal-vegetal axis through the regulation of nodal-like
genes.

During sea urchin early development, SoxB1 is expressed in the
presumptive animal hemisphere, where it prevents the early �-
catenin-dependent vegetal signaling necessary for specification of
the mesendoderm (Kenny et al., 1999; Kenny et al., 2003). Our
finding that SoxB1 is required for expression of both nodal and
univin, confirms that SoxB1 factors do indeed play a
phylogenetically conserved role as regulators of nodal expression in
deuterostomes. However, it appears that the function of SoxB1
factors has diverged in the two phyla as they serve as positive
regulators of nodal in the sea urchin but act as repressors of nodal
expression in vertebrates.

An ancient and conserved positive regulatory
interaction between univin/vg1 and nodal
vg1 was discovered as a maternal mRNA localized at the vegetal
pole of Xenopus eggs. Overexpression of mature Vg1 mimics
ectopic expression of nodal resulting in strong induction of
mesoderm and endoderm (Thomsen and Melton, 1993).
Conversely, when Vg1 signaling is blocked, or in embryos
depleted of endogenous vg1 transcript, endomesoderm
development and formation of the organizer fail (Birsoy et al.,
2006; Joseph and Melton, 1998). Transcripts encoding Dvr1, the
zebrafish ortholog of Vg1, are also deposited maternally and are
distributed throughout the dorsal-ventral axis (Dohrmann et al.,
1996; Helde and Grunwald, 1993). Mature Dvr1 is a potent
inducer of dorsal mesoderm, but loss-of-function experiments

3659RESEARCH ARTICLETranscriptional regulation of nodal in the sea urchin embryo

Fig. 7. Univin functions in the
Nodal signaling pathway.
(Aa-j,Ba-j) Functional analysis of sea
urchin univin. Inhibition of Univin
function phenocopies the loss-of-
function of Nodal, whereas
overexpression of Univin causes
ectopic expression of nodal.
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Fig. 9. Expression territory comparisons of Vg1/Univin signals with Nodal and nuclear �-catenin in sea urchin, chick, zebrafish and
Xenopus. Embryos are depicted before gastrulation. (A) In the early sea urchin embryo, nuclear �-catenin is present in the vegetal pole region
while zygotic univin and nodal are expressed in the overlying presumptive ectoderm. (B) In the chick embryo, Vg1 and Wnt8c are expressed in the
posterior marginal zone and cooperate to induce nodal expression in the adjacent epiblast and primitive streak. (C) In the zebrafish embryo,
maternal Vg1 transcripts are expressed ubiquitously, while �-catenin accumulates in nuclei of the dorsal marginal zone and zygotic nodal transcripts
at the blastoderm margin. (D) In Xenopus embryos, �-catenin is stabilized on the dorsal side while Xnr transcripts and Vg1 are expressed in a
dorsal-to-ventral gradient. Data taken from the published literature (Skromne and Stern, 2001; Agius et al., 2000; Helde and Grunwald, 1993;
Schier and Talbot, 2005) and this study.
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Fig. 10. Model of nodal regulation and dorsal-ventral axis specification in the sea urchin embryo. (A) Integration of signaling and
maternal transcription factor inputs by cis-regulatory elements of the nodal gene. (B) Starting at the 32-64 cell-stage, nodal expression is initiated
throughout most of the presumptive ectoderm by combinatorial maternal inputs from p38 MAP kinase and maternal Univin, as well as from signals
emanating from the vegetal pole. Unidentified repressors prevent expression of nodal and zygotic expression of univin in the animal pole domain.
These signals are transduced by maternal transcription factors such as Smad, homeodomain, Oct, bZIP families and require SoxB1 and TCF, resulting
in a broad initial expression of nodal in the ectoderm. Expression of nodal and zygotic expression of univin at the vegetal pole is prevented by the �-
catenin-mediated downregulation of SoxB1. (C) Starting at the very early blastula stage, an endogenous ventral-dorsal redox gradient, possibly
related to an asymmetric distribution of mitochondria in the egg and/or early embryo and acting on bZIP and other redox-sensitive transcription
factors, results in a slightly increased expression of nodal on the presumptive ventral side, thereby reinforcing the Nodal autoregulatory loop. This
slight asymmetry in the expression of nodal is translated into a corresponding asymmetry in the expression of Lefty, which starts downregulating
Nodal signaling on the presumptive dorsal side. (D) During blastula stages, Nodal autoregulation and Lefty-mediated lateral inhibition then establish
a robust reaction diffusion system which results in the sharp restriction of nodal expression to the ventral territory.
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have not been performed to demonstrate that Dvr1 is required for
axis formation. A chick ortholog of vg1 has also been
characterized (Seleiro et al., 1996; Shah et al., 1997).
Overexpression of chick Vg1 is capable of initiating formation of
an ectopic embryonic axis and organizer by cooperating with
canonical Wnt signals, such as Wnt1 and Wnt8, to induce nodal
(Bertocchini et al., 2004; Skromne and Stern, 2001; Skromne and
Stern, 2002). The mouse genome contains two genes, Gdf1 and
Gdf3, that are closely related to vg1 (Jones et al., 1992; Lee,
1991), and functional experiments demonstrated that they act in a
Nodal signaling pathway and share several properties with Nodal
factors (Andersson et al., 2006; Chen et al., 2006; Cheng et al.,
2003). For example, Gdf1 and Gdf3, like nodal, can induce an
ectopic embryonic axis when overexpressed. Gdf1 and Gdf3 also
form a complex with activin receptors, require the EGF-CFC co-
receptor cripto (also known as cryptic) and, like Nodal, their
activity is inhibited by Lefty. Furthermore, embryos mutant for
Gdf3 frequently display abnormal expression of Nodal, indicating
that Gdf factors participate in the regulation of Nodal expression
in the mouse (Chen et al., 2006). Taken together, these
experiments suggest that Gdf1 and Gdf3 are indeed functional
homologs of Vg1 in the mouse (Shen, 2007).

Examination of the recently sequenced sea urchin genome
revealed that univin is the only gene related to Gdf1/3 (Lapraz et al.,
2006). The functional relationship between Univin and other TGF-
� proteins, such as Vg1 and Nodal, escaped attention in previous
studies partly because both GDFs and Univin were initially
described as related to BMPs. The subsequent finding that univin lies
only a few kb from Bmp2/4 in the sea urchin genome further
reinforced the idea that univin and bmp2/4 were closely related and
recently duplicated genes (Lapraz et al., 2006). However, the
functional analysis of Univin led us to reinvestigate the relationships
between Univin and other TGF-� proteins and to discover that the
function of Univin is much more closely related to that of Nodal than
of Bmp2/4. Overexpression of Univin induces ectopic expression of
nodal in the aboral ectoderm, whereas blocking translation of univin
transcripts prevents initiation of nodal expression. univin is
expressed maternally throughout the dorsal-ventral axis, then
zygotically in a large belt of cells surrounding the equatorial region
starting at the early blastula stage (Lapraz et al., 2006; Stenzel et al.,
1994). Therefore, in the sea urchin, as in vertebrates, the territories
expressing univin/vg1 and nodal/xnr are overlapping, consistent
with the finding that Univin and Vg1 factors act upstream of
nodal/Xnr expression (Fig. 9). Furthermore, the linkage between
Univin and Bmp2/4 suggests that one gene derived from the other
by gene duplication. Finally, the strong regulatory interaction
between Univin and nodal suggests that an ancestral function of
Vg1/Univin might have been to regulate expression of nodal genes
and that this regulatory interaction may have been an evolutionary
conserved early step in the establishment of the dorsal-ventral axis
of deuterostomes.

Homeodomain factors, bZIP, Oct and Myb:
candidate regulators of nodal expression
SoxB1, TCF and Smads have already been implicated in patterning
of the ectoderm along the animal-vegetal axis of the sea urchin
embryo (Huang et al., 2000; Kenny et al., 2003; Yaguchi et al.,
2007). In this study, we showed that these maternal factors are also
required for dorsal-ventral axis formation upstream of nodal
expression. In addition, we identified several binding sites for
potential novel regulators of nodal expression including activating
binding sites for homeodomain, Oct and bZIP factors, along with a

binding site for a repressor, possibly Myb (Coffman et al., 1997). It
is intriguing to note that several of the candidate transcription factors
predicted to bind to this promoter are known to be regulated by
redox signaling, including bZIP (Liu et al., 2005), Oct (Guo et al.,
2004; Zheng et al., 2003) and Myb (Bergholtz et al., 2001;
Brendeford et al., 1997; Myrset et al., 1993). In particular, a wealth
of data is available on the role of bZIP transcription factors as
sensors of redox signaling downstream of MAP kinases (Amoutzias
et al., 2006; Liu et al., 2005). It is therefore tempting to speculate that
in the sea urchin embryo, bZIP, Oct and Myb act downstream of p38
and redox gradients to regulate nodal expression (Fig. 10). Further
studies will be required to identify and characterize these
transcription factors. These studies are warranted because nodal is,
to our knowledge, the earliest gene displaying a restricted expression
along the dorsal-ventral axis in the sea urchin embryo. Analysing the
regulatory circuit driving nodal expression might therefore help to
understand how maternal information is integrated at the level of the
promoter sequence of regulatory genes to specify the secondary axis
of polarity of the embryo.
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