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ABSTRACT
Parasite surfaces support multiple functions required for survival
within their hosts, and maintenance and functionality of the surface
depends on membrane trafficking. To understand the evolutionary
history of trypanosomatid trafficking, where multiple lifestyles and
mechanisms of host interactions are known, we examined protein
families central to defining intracellular compartments and mediating
transport, namely Rabs, SNAREs and RabGAPs, across all available
Euglenozoa genomes. Bodonids possess a large trafficking
repertoire, which is mainly retained by the Trypanosoma cruzi
group, with extensive losses in other lineages, particularly African
trypanosomes and phytomonads. There are no large-scale
expansions or contractions from an inferred ancestor, excluding
direct associations between parasitism or host range. However, we
observe stepwise secondary losses within Rab and SNARE cohorts
(but not RabGAPs). Major changes are associated with endosomal
and late exocytic pathways, consistent with the diversity in surface
proteomes between trypanosomatids and mechanisms of interaction
with the host. Along with the conserved core family proteins, several
lineage-specific members of the Rab (but not SNARE) family were
found. Significantly, testing predictions of SNARE complex
composition by proteomics confirms generalised retention of
function across eukaryotes.
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INTRODUCTION
Membrane trafficking mediates delivery of macromolecules to
discrete intracellular compartments from the site of uptake or
synthesis. Trafficking is essential to nearly all eukaryotic cells,
contributing towards nutrient acquisition, protein processing and
turnover, and, in multicellular organisms, it also participates in
higher-order tissue organisation. The importance of membrane
transport is reflected in the many diseases associated with
trafficking, including diabetes, Alzheimer’s disease and cystic
fibrosis (Birault et al., 2013; Olkkonen and Ikonen, 2006; Rajendran

and Annaert, 2012; Seixas et al., 2013). Development of membrane
trafficking was likely a major evolutionary driver enabling the
transition from prokaryotic to eukaryotic cells (Field et al., 2011;
Dacks et al., 2016). For many pathogens, trafficking has special
relevance in maintaining the host–parasite interface, which is at the
cell surface, and both the surface and underlying trafficking
apparatus are intimately connected with immune evasion,
pathogenesis and life cycle progression (Manna et al., 2013).

Membrane transport requires vesicle formation, translocation,
tethering, docking and fusion to release cargo (Bonifacino and
Glick, 2004), which is achieved though coordinated action by Rab
and ARFGTPases, coat complexes, tethers and SNAREs. Members
of these paralogous families encode specificity for individual
transport events to defined organelles; evolutionary reconstructions
suggest stepwise evolution from a simpler ancestral system before
the last eukaryotic common ancestor (LECA) (Devos et al., 2004,
2006; Dokudovskaya et al., 2006; Field and Dacks, 2009; Schlacht
et al., 2014). A conserved core of Rab, RabGAP and SNARE
proteins has been derived by reconstructing eukaryotic evolutionary
history and broadly supports this model (Arasaki et al., 2015;
Diekmann et al., 2011; Elias et al., 2012; Kienle et al., 2009a;
Vedovato et al., 2009; Yoshizawa et al., 2006). Beyond this are
examples of lineage-specific features in the endosomal sorting
complexes required for transport (ESCRT) system, sortillins and
ARF GTPases in metazoans (Field et al., 2007; Gabernet-Castello
et al., 2013; Leung et al., 2008). In parasitic organisms, adaptin
complexes, important cargo selectors that are otherwise well
conserved in most lineages, are rather variable, possibly because
of specific adaptation (Woo et al., 2015).

Kinetoplastids are unicellular flagellated protists within the
supergroup Excavata, and include free-living species and parasites
that cause many important human diseases, together with species
afflicting animals and plants. Kinetoplastids exhibit varied
lifestyles, host range, distribution and specialisations over long
evolutionary periods. Furthermore, kinetoplastid surfaces are highly
divergent between lineages, likely reflecting specialisations within
membrane transport (Gadelha et al., 2015; Manna et al., 2013).
More remarkable is the highly distinct nature of the proteins and
glycoconjugates present at the cell surface, with recent data
indicating that many surface proteins are restricted to the
kinetoplastids (Adung’a et al., 2013; Field et al., 2007; Jackson,
2016; Gadelha et al., 2015). All of these features can be anticipated
as leaving an imprint in the evolutionary history of the trafficking
system. To address how kinetoplastid trafficking pathways evolved,
we examined the representation of Rabs, RabGAPs and SNAREs
across all currently available genome/transcriptome resources.

SNAREs, mediators of membrane fusion, possess a characteristic
domain, and are classified as Q- or R-SNAREs (Bock et al., 2001;
Fasshauer et al., 1998). Typically, three Q- (a, b or c) and one R-
SNARE form a complex. The complement of Qa and R-SNAREs inReceived 24 October 2016; Accepted 9 February 2017
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the LECA has been established with broad taxonomic sampling
(Arasaki et al., 2015; Vedovato et al., 2009), but the Qb and Qc
families were only assessed by comparative genomics nearly a
decade ago, using the limited sampling of genomes then available
(Kloepper et al., 2007; Yoshizawa et al., 2006) and warrant re-
examination to solidify the definition of the LECA complement. It is
key to have a robust estimate of the overall SNARE complement in
the LECA as the starting point fromwhich we assume kinetoplastids
evolved. Rabs are small GTPases and well established markers of
organellar identity (Brighouse et al., 2010; Pereira-Leal and Seabra,
2001). A broad repertoire of ∼23 Rabs are predicted in the LECA
(Elias et al., 2012). With the exception of metazoa and vascular
plants, where great expansion is evident, Rab proteins have evolved
mainly through small scale expansions and secondary losses, plus
emergence of novel paralogs (Elias et al., 2012; Klöpper et al.,
2012). Rabs are regulated by GTPase-activating proteins (GAPs),
the majority of which possess a Tre-2/Bub2/Cdc16 (TBC) Rab-
binding domain. The LECA possessed about ten TBC subtypes and
subsequent expansions have included domain swapping (Gabernet-
Castello et al., 2013). The greatest number of TBC innovations are in
animals and fungi, although novel subclasses are present in a wide
range of lineages. Detailed analysis of both Rab and SNARE
repertoires in fungi indicates a simple set with minimal variations
between different lineages, despite major diversity in morphology
and transitions between single and multicellular forms, albeit with
evidence for minimisation in some species (Kienle et al., 2009b;
Pereira-Leal, 2008).
Our study indicates that a significant proportion of the putative

LECA repertoire of these protein families is conserved in
kinetoplastids, along with some lineage-specific proteins and
secondary losses. We infer a large ancestral repertoire of Rab and
SNARE proteins (but not TBC Rab-GAPs) associated with
endosomal and late exocytic pathways that appears to undergo
step-wise secondary loss in several parasitic trypanosomatid
lineages (but not so in the Trypanosoma cruzi group). The
proteins associated with these pathways also show high levels of
variation in numbers and level of conservation within the
kinetoplastids, even though no large-scale changes obviously
correlate with parasitism, host range or modes of immune evasion.

RESULTS
Confirmation of the LECA complement of Qb and Qc SNAREs
Although recent analyses have addressed most protein families and
subfamilies considered here, Qb and Qc SNAREs have not been
characterised in a comparable way. In particular, there are
conflicting views of the distributions of Qb-SNARE Novel Plant
Syntaxin (NPSN) and the Qc-SNARE Syntaxin of Plants 7 (Syp7)
(Sanderfoot et al., 2000). As their names imply, both were proposed
as being plant specific, but other studies suggest orthologues in
several protist lineages, including Trypanosoma and Dictyostelium
(Kloepper et al., 2007; Sanderfoot, 2007; Yoshizawa et al., 2006),
which prompted some authors to suggest that NPSN, at least, was
present in the LECA (Kienle et al., 2009a). To determine whether
NPSN and Syp7 orthologues are present in non-plant eukaryotes,
we performed comparative genomics and phylogenetic analysis.
Searches returned NSPN and Syp7 candidate orthologues from the
genomes of most eukaryotes except animals and non-basal fungi
(Fig. 1). A Qb-SNARE phylogeny strongly supports the identity of
these putative NPSN orthologues and, similarly, the Qc-SNARE
tree strongly supports identity of Syp7 orthologues (Fig. S2F,G).
This analysis suggests that both NPSN and Syp7 were present in the
LECA and later lost from animals and fungi.

The kinetoplastid complement of trafficking proteins
We next considered the genomes of 18 Euglenozoa including basal
bodonids and trypanosomatids. We identified candidate genes for
382 Rabs, 552 SNAREs and 307 TBC RabGAPs. Where possible
these were assigned to subfamilies by phylogenetic analyses with a
reference set of previously defined sequences from across
eukaryotes. Such data are readily available for Rabs and TBC
RabGAPs (Elias et al., 2012; Gabernet-Castello et al., 2013) and
were prepared here for SNAREs using SNARE repertoires from at
least one representative of each eukaryotic subgroup, other than the
Excavata; Homo sapiens and Saccharomyces cerevisiae as
Opisthokonta, Dictyostelium discoideum as Amoebozoa,
Phytopthora sojae as SAR-CCTH (a heterogenous group
comprising stramenopiles, alveolates and Rhizaria along with
cryptomonads, centrohelids, telonemids and haptophytes) and
Arabidopsis thaliana for the Archaeplastida. We were able to
assign a considerable proportion of the kinetoplastid representatives
of all three families (Fig. 2, 3, 4; Fig. S2). Moreover, 86% of LECA
SNAREs, 72% of LECA Rabs and 100% of LECATBC RabGAPs
were identified in one or more members of the lineage, suggesting
that the core machinery of trafficking is well conserved (Table 1).
Most kinetoplastid proteins were assigned by phylogenetic
evidence, but three SNARE proteins, VTI1-like, Syx6-like and
Syx8-like, were assigned only by BLAST and reverse BLAST as
phylogenetic support was low.

Comparing coding content and trafficking repertoire
There is loose correspondence between genome and Rab repertoire
sizes (Gabernet-Castello et al., 2013). While this may reflect a
connection between genome and compartmental complexity, the
huge diversity within eukaryotes makes complexity a difficult
parameter to define, and analysing a group of organisms where the
basic cellular bauplan is well conserved, allows us to re-evaluate this
concept (Fig. S1). The coding content of Bodo saltans is
considerably larger than the parasites, while the excavates
Naegleria gruberi and Euglena gracilis have larger genomes
(Ebenezer et al., 2017; Fritz-Laylin et al., 2010). In keeping with
genome size, B. saltans and N. gruberi possess greater numbers of
SNAREs, Rabs and TBCs compared to kinetoplastids. Despite
comparable coding content for the Trypanosoma brucei and cruzi
group trypanosomes, the latter have larger Rab, TBC and SNARE
repertoires, suggesting further secondary loss in the former group.
Even Leishmania spp. generally have slightly larger numbers of
these proteins, despite smaller predicted coding content. Overall,
this suggests adaptive shaping of trafficking system gene repertoires
rather than changes simply reflecting genome size.

Anterograde trafficking genes are conserved across
kinetoplastids
The gene complements for SNAREs and Rabs at the kinetoplastid
early secretory pathway are highly conserved. In opisthokonts, the
SNARE complex of Qa-Syx5, Qb-Bos1, Qc-Bet1 and R-Sec22
mediates endoplasmic reticulum (ER) to Golgi and intra-Golgi
transport (Hardwick and Pelham, 1992; Newman et al., 1990). A
second Syx5 complex, constituting Qa-Syx5, Qb-Gos1, Qc-Sft1
and R-Ykt6 is thought to exclusively mediate COPI transport within
the Golgi in animals and fungi (Ballensiefen et al., 1998). Whereas
Sft1 and Bet1 are two alternate Qc SNAREs acting at early
anterograde steps (Kloepper et al., 2007), they were unresolved in
our phylogenies (Fig. S2B). It is likely that Bet1 fulfils the
requirements of the kinetoplastid early anterograde pathway as
two Bet1 paralogs are present, similar to inH. sapiens. Significantly
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A. thaliana has an expanded set of four of these proteins (designated
as Bet11, Bet12, Sft11 and Sft12) and D. discoidium just one. The
other SNAREs in these complexes are all singletons in
kinetoplastids except for some species-specific losses (Fig. 5A)
and duplication of Gos1 in Trypanosoma congolense. Syntaxin 17
cycles between the ER and the ER–Golgi intermediate
compartment (ERGIC) in mammalian cells (Itakura and
Mizushima, 2013) and acts in autophagosome formation and
mitochondrial dynamics (Arasaki et al., 2015; Itakura et al.,
2012). Syntaxin 17 is generally patchily distributed across
eukaryotes and absent from all kinetoplastids, signifying a loss
since divergence from the Heterolobosea. Overall, these data
suggest possible differentiation in early secretory events, consistent
with multiple budding pathways at the trypanosome ER, but also
indicating lineage-specific evolution of these steps (Sevova and
Bangs, 2009).

The retrograde pathway from the Golgi to the ER is mediated by a
complex of Qa-Syx18, Qb-Sec20, Qc-Use1 and R-Sec22 in yeast
(Dilcher et al., 2003). Except Use1, all are conserved across
kinetoplastids, bar losses of Syx18 or Sec20 in Phytomonas EM1
and HART1 respectively, and duplication of Sec22 in Trypanosoma
theileri (Fig. 5A). This suggests that canonical retrograde transport
systems are present, consistent with the presence of a KDEL
receptor and ER-retrieval signals onmajor ER proteins (Bangs et al.,
1996; Schwartz et al., 2013).

In opisthokonts, the late exocytic SNARE complex is a specific
ternary complex composed of a plasma membrane syntaxin
(denoted SynPM), SNAP25 and Syb1. A SynPM is identified
across eukaryotes and is likely to be ancient (Dacks and Doolittle,
2002). SynPM has a complex history in kinetoplastids, with two
clear paralogs, SynPM1 and SynPM2. Leishmania braziliensis
and major possess two copies of SynPM1 which are closely

Fig. 1. Distribution of Qb and Qc SNARE family members
across a diverse sampling of eukaryotes. Colour-filled
circles indicate the presence of at least one identified
orthologue, while empty circles indicate failure to identify any
orthologues. Grey-filled circles indicate identification in
downstream analyses focused specifically on kinetoplastid
genomes (see Fig. 5A). Identified sequences and sources are
listed in Tables S1, S3 and S4.
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related lineage-specific duplications. The bodonid Trypanosoma
borreli and cruzi group possess a second SynPM2 protein. No
transmembrane domain (TMD) was detected in SynPM2 of the
duplicated SynPM1 genes in L. braziliensis and L. major, which
are otherwise identical, but for the lack of a TMD in one paralog.
The TMD is also lost from the single SynPM1 in Leishmania
infantum and mexicana but retained by L. donovani. The
localisation of T. brucei SynPM1 (TbSynPM1) is similar to the
TMD-containing SynPM1 from L. major, which localises close to
the flagellar pocket, while as expected the TMD-lacking SynPM1
in L. major is cytosolic (Besteiro et al., 2006). Overall, this
pattern indicates a considerable level of species-specific SynPM
paralogs, suggesting a common requirement to differentiate this
pathway.

PutativeQbc-type SNAREs are present inB. saltans,T. cruzi andT.
grayi, but do not cluster with canonical yeast or humanQbc SNAREs,
but insteadwith SAR-CCTHandExcavate sequences (Fig. S2E). The
eukaryotic phylogeny of synaptobrevins (Fig. S2D) is also complex,
and the presence of brevins in different clusters of diverse taxa
indicates that they likely emerged independently in several lineages by
loss of the longin domain from a ‘VAMP7’. Moreover, unlike
metazoan brevins, which are truncated at the SNARE domain, longin-
less VAMP7 orthologues have an extended N-terminal domain in
Apicomplexa and Euglenozoa, indicating a separate origin. A single
independently evolved VAMP7 with a divergent/undetected longin
domain is present in kinetoplastids, and in T. brucei this protein
TbVAMP7C has an endosomal localisation in juxtaposition to Golgi
and lysosomal markers (Fig. 6C) rather than the cell membrane.

Fig. 2. Phylogenetic assignment of
kinetoplastid Qa SNAREs. The optimum
PhyML topology is presented. Node values
are iconised as pie charts for three support
values, representing PhyML approximate
likelihood ratio test, PhyML Bootstrap and
MrBayes posterior probabilities and colour-
coded as indicated. Each phylogeny shows
one representative kinetoplastid SNARE
from each sub-type (purple) along with
eukaryotic representative SNAREs from
Opisthokonta (blue), Amoebozoa (pink),
Archaeplastids (green), SAR-CCTH
(orange) and Excavata (light purple). Qa
SNAREs showing orthology with eukaryotic
orthologues for Syx18, Syx5, Syx16, SynE
and SynPM.
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Fig. 3. See next page for legend.
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Rab1, Rab8 and Rab18 are present in the predicted LECA cohort
and associated with anterograde pathways (Elias et al., 2012).
Interestingly, Rab8 is lost from all kinetoplastids, suggesting
differences in post-Golgi trafficking and targeting of material to
the flagellum/recycling endosome (Huber et al., 1993; Klöpper
et al., 2012). Rab1 and Rab18 have a complex history, and
paralogous expansion of Rab1 or Rab18 may have given rise to
two lineage-specific Rabs, KSRX1 and UzRX3, which appear
across the Euglenids as tandem genes and are also present in the
heterolobosids; however, it may be significant that in T. brucei these
proteins have no obvious role in trafficking (Natesan et al., 2009).
While UzRX3 localisation is similar to Rab1 (early secretory
pathway), KSRX1 has a more diffuse localisation (Natesan et al.,
2009). Interestingly, B. saltans has two additional relatives of the
Rab1 and Rab18 clade, suggesting further diversification of these
pathways.
Post-Golgi pathway Rabs include Rab4, Rab14 and Rab11,

which are mostly well-conserved, with the exception that Rab14 is
lost by the T. brucei group (Fig. 5B). This suggests possible further
adaptations of endocytic pathways, an important mechanism for
immune evasion in mammalian infective African trypanosomes.
Like AP-2, however (Manna et al., 2013), Rab14 is present in the
other extracellular trypanosomes of the T. cruzi group (Fig. 5B,
Fig. S3E). We also identified a Rab11-like protein (Rab11B) that
likely arose from duplication of Rab11 at the base of the
kinetoplastids, but this is only retained by B. saltans, Leishmania
spp. and T. cruzi group (Fig. 5B; Fig. S3E). Rab11B may provide
additional flexibility in surface remodelling, and importantly T.
cruzi Rab11 localises to the contractile vacuole, regulating
trafficking of trans-sialidase to the plasma membrane (Niyogi
et al., 2014). Hence, kinetoplastid Rab11 and Rab11B may have
distinct functions, as noted for Rab11 paralogs in mammals and
Archaeplastida (Lapierre et al., 2003; Petrželková and Eliáš, 2014).

Endocytic, retrograde and lysosomal pathway trafficking
We identified four Qa SNARE proteins (SynE1 and SynE2,
Syx16A and SyxB), four Qb SNARE (VTI1-like A, B and NPSNA
and NPSNB), four Qc SNAREs (Syp7A, Syp7B, Syx6-like and
Syx8-like), and four R-SNAREs (VAMP7A, B, C and D) as
orthologues of SNARE proteins involved in endosomal, lysosomal
and retrograde trafficking pathways. For several, multiple paralogs
exist, particularly in the basal bodonids and the T. cruzi group
(Fig. 5A; Fig. S3A–D).
Except for B. saltans and T. vivax, SynE1 is present in all

kinetoplastids and possibly duplicated in the parasitic bodonid T.
borreli. SynE2 is also present in all kinetoplastids and duplicated in
the T. cruzi group. Two paralogs of Syx16, Syx16A and Syx16B,
are conserved across kinetoplastids. Thus, both SynE and Syn16
underwent duplication at least once early in the lineage evolution.
As in the SynPM proteins, all Syx16A proteins lack a TMD, while
all Syx16B except T. borreli retain the TMD. L. braziliensis also
shows lineage-specific duplication of Syx16A, a surprisingly

conserved isoform, which suggests that it must retain a function,
and is perhaps a regulatory protein. Paralogous Syx16 sequences
from other organisms all retain their TMD, suggesting loss of the
TMD is kinetoplastid-restricted. Notably, the Sec1/Munc-like
protein (SM) Vps45, which regulates Syn16, is also duplicated at
the base of the kinetoplastids (Koumandou et al., 2007), and
possibly in the last kinetoplastid common ancestor (LKCA),
suggesting independent regulation of multiple Syn16 complexes.

The Qb (two VTI1 and two NPSN proteins), Qc (two Syp7 and
two Syx6-like proteins) and R-SNAREs (four VAMP7 proteins) are
expanded in kinetoplastids. Specifically, Qb-NPSNA-2, Qc-Syp7B,
R-VAMP7D together with Qa-SynPM2 appear to have arisen at the
base of the kinetoplastids but are retained only in the bodonid and T.
cruzi groups (Fig. 5A). These SNAREs are implicated in plasma
membrane trafficking in plants, suggesting they may mediate a
similar pathway in the kinetoplastida. In addition, the Syp7B clade
also shows evidence for bodonid and T. cruzi group-specific
expansions. Most SNARE losses are scattered with no obvious
pattern, but there are clear instances of co-evolutionary loss of
components of predicted SNARE complexes. SNAREs Qa-
SynPM2, Qbc-SNAP25 and R-VAMP7D, which could form a
putative exocytic complex are all lost in African trypanosomes as
well as the Leishmania and Phytomonad clades. Qb-VTI1-like A2,
Qb-NPSNA2, and Qc-Syx6-like 2, predicted to form complexes
with VAMP7, are coincidentally lost (see Fig. 5A). Except for
SNAP-25 (which shows a broader pattern of loss), these are all
SNAREs derived from kinetoplastid-specific expansions, and likely
indicate loss of kinetoplastid-specific post-Golgi pathways.

Of the endocytic Rabs (Rab5, Rab20 or Rab24, Rab21, Rab22
and Rab50), kinetoplastids retain Rab5, Rab21 and Rab24, albeit
with Rab24 bodonid restricted (Fig. 5). Early endocytic Rab5
experienced a single basal duplication in kinetoplastids and both
paralogs are stably retained (Fig. S3E) and have acquired distinct
functions (Pal et al., 2002). This contrasts with the fungal Ypt5,
which is less well retained, with several instances of species or
clade-specific expansions and losses (Pereira-Leal, 2008). Rab21 is
generally stable with no major expansion in eukaryotes, but there are
at least two paralogs at the base of the kinetoplastids (Fig. S3E);
Rab21 mediates intermediate endosomal trafficking in T. brucei, a
conserved function with higher eukaryotes (Ali et al., 2014). An
expanded Rab21 subfamily is only retained by bodonids and the T.
cruzi group, suggesting additional endosomal pathways. In
Phytomonas spp., which have lost Rab21, there is clear
minimisation of endocytic Rabs. Rab2 and Rab6, which mainly
mediate retrograde trafficking at the Golgi complex, are also stably
retained. Two copies of Rab2 are present in the bodonids and T.
grayi, but cluster separately from the canonical Rab2.

Rab7, which mediates late endocytic trafficking, is represented
by a single paralog in trypanosomatids; however, a Rab7-like
protein is found in B. saltans and T. borreli (Fig. 5). Rab28 also has
an endosomal function in T. brucei (Lumb et al., 2011) and except
for Phytomonads is present across all kinetoplastids. Rab23 and the
Rab-like intraflagellar transport protein 27 (IFT27), which are
involved in the biogenesis of cilia/flagella, are both fully retained as
expected. Rab32 is involved in the biogenesis of lysosome-related
organelles (LROs) and autophagosome formation in mammalian
cells (Hirota and Tanaka, 2009), as well as mitochondrial dynamics
(Bui et al., 2010; Ortiz-Sandoval et al., 2014). In T. cruzi, Rab32 is
involved in the biogenesis and maintenance of acidocalcisomes
(Niyogi et al., 2015), and presents complex evolution in
kinetoplastids, being present only in the bodonids and T. cruzi
group, where one copy of the canonical Rab32 appears to have

Fig. 3. Phylogenetic relationships of kinetoplastid Rabs. The consensus
Bayesian topology is shown. Nodes are iconised as colour-coded circles
according to MrBayes posterior probabilities and PhyML approximate
likelihood ratio test as shown in the key. The figure includes two representative
kinetoplastid Rabs from each subfamily cluster along with representative Rabs
from across eukaryotes. Assigned kinetoplastid-specific Rabs are in blue,
lineage-specific Rabs in red, unassigned orphan Rabs in green, while
representative eukaryotic Rabs are black. LECA Rabs for which no
kinetoplastid orthologues were found (Rabs 8, 22, 34, 50 and Titan) were not
included in the analysis. Ran is used as outgroup.
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undergone duplication giving rise to Rab32-like proteins (Fig. 5B).
Many trypanosomes may thus have reduced or alternative pathways
for autophagosome biogenesis and/or mitochondrial dynamics, but
by contrast, the emergence of Rab32-like proteins likely suggests

the development of novel or more complex LROs, particularly in B.
saltans, which has up to five Rab32-like proteins. TBCs associated
with endosomal Rabs include TBC-B, which acts on Rab2, Rab7,
Rab11 and Rab21 and TBC-D, which is a GAP for Rab1, Rab7,

Fig. 4. Phylogenetic relationships of kinetoplastid TBC-domain-containing predicted proteins. The optimum PhyML topology is shown. Node values are
iconised as pie charts as in Fig. 4. Each phylogeny shows one representative kinetoplastid TBC from each sub-type cluster (purple) along with eukaryotic
representative SNAREs fromOpisthokonta (blue), Amoebozoa (pink), Archaeplastida (green), SAR-CCTH (orange) and Excavata (light Purple). TBCs B, D, F, L,
M and Root A are supported by at least two support values above 90/90/0.9 (for MrBayes/PhyML-BS/PhyML-aLRT, respectively) and TBCs G, N, K and I have at
least one value above 0.9/90/90 confidence. TBC-Q has two support values above 0.7/70/70, while TBC-ExA has even lower support with one value over 0.5/50/
50 and one over 0.7/70/70. In the latter case this suggests that the clade may not be monophyletic. The protein previously described as TBC-E, failed to resolve
and is highlighted with an asterisk.
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Rab11 and RabL5 (Fukuda, 2011; Gabernet-Castello et al., 2013).
This latter TBC is implicated in recycling of VAMP7 vesicles and
endosome to Golgi transport. TBC-B is retained in all kinetoplastids
as a single copy but lost in the phytomonads. TBC-D is stably
retained across all eukaryotes with occasional duplications, but has
multiple paralogs in kinetoplastids (Fig. 5B). Other TBCs exhibit
lineage-specific duplications or losses but there is no obvious co-
evolutionary relationship with the Rabs. For example, TBC-F is
duplicated in bodonids, four of the five Leishmania spp. have
duplicated TBC-I (L. donovani is missing TBC-I), and T. grayi and T.
theileri have two copies of TBC-RootA. Major TBC losses are
present in Phytomonas spp., and all lack TBC-B and TBC-E; P.
serpens and HART1 also lack TBC-G, TBC-H, TBC-I and TBC-L,
while P. serpens is specifically missing TBC-M. These Phytomonad
TBC families are small when considered relative to the modest Rab
complement.

Orphan and unassigned SNAREs, Rabs and TBCs
Several sequences could not be unambiguously assigned. Examples
include lineage-specific KSRabX4, likely a result of a T. brucei-
specific duplication: only T. brucei and T. gambiense have two
neighbouring copies with ∼52% identity, while remaining species
possess one paralog (Fig. S3E). KSRabX6 is only found in the
bodonids and T. cruzi group and BLAST searches into opistokhonts
suggest similarity to Rab5 (Fig. 5B; Fig. S3E). Several other
unassigned Rabs are also present in B. saltans and T. borreli.
Among SNAREs, a tomosyn-like regulatory R-SNARE is present
(Fig. S2D) and exhibits patchy distribution, while an
unconventional longin-domain protein with no apparent SNARE
domain is patchily distributed. Its structure is reminiscent of plant
phytolongins, which are derived from VAMP7 (Vedovato et al.,
2009) but the kinetoplastid protein appears to be closely related to
another R-SNARE, Sec22 (Fig. S2E). Much of the expansion of
lineage-specific paralogs is due to duplication at the base of the
lineage and asymmetrical retention, highly suggestive of a genome
duplication event at the kinetoplastid root.

Conserved localisation of R-SNAREs
We are, in essence, using phylogeny and orthology as a predictor of
function, which over the 109 years divergence between kinetoplastids
and opisthokonts, is not necessarily valid. For example, associations
between orthologous SNAREs within specific complexes could have
changed over such a great period. To address this directly, we tagged
VAMP7A, VAMP7B and VAMP7C at the C-terminus and Ykt6 at
the N-terminus to facilitate overexpression in procyclic form T. brucei
(Fig. 6A–D). All three VAMP7s are likely largely endosomal.

VAMP7A and VAMP7C are juxtaposed to the lysosome, with
VAMP7A showing occasional overlap and VAMP7B being slightly
more distal from the lysosome. Both VAMP7B and VAMP7C are
juxtaposed to the Golgi and appear to be associated with the Golgi
during its duplication (seen as two GRASP-stained puncta during cell
division). As material building the new Golgi is derived from the old
Golgi stack (Wang and Seemann, 2011), VAMP7B and VAMP7C
may play a role in this transfer given their presence with both the
Golgi stacks. The Golgi-SNARE Ykt6 does colocalise with the
Golgi. These localisations are consistent with the behaviour of
the yeast and human orthologues.

Conservation of VAMP7C interactions
To examine VAMP7C interactions, we used immunoisolation and
mass spectrometry. In opisthokonts, VAMP7 forms two complexes,
the first with SynE, Syx8 and VTI1B, to mediate lysosomal
transport, and the second with Syx6, Syx16 and VTI1A for
endosomal trafficking (Jahn and Scheller, 2006). In T. brucei, we
consistently identified VTI1-like A and B, Syx8-like, Syx6-like1,
Syx16B and SynE (Table 2), a complex composition that is also
consistent with their localisation (Fig. 6E). Opisthokont VAMP7 is
also implicated in plasma membrane trafficking, with Qa-SynPM
and Qbc SNARE SNAP-25 or SNAP-23 (Jahn and Scheller, 2006)
and in plants in complex with Qa-SynPM, Qb-NPSN and Qc-Syp7
(Suwastika et al., 2008; Zheng et al., 2002). We reproducibly
recovered TbNPSNA as a candidate VAMP7C interactor, albeit
with poor emPAI support, but not TbSyp7, suggesting that a
different T. brucei VAMP7 (TbVAMP7A or B) is required or that
the SNARE complex composition for plasmamembrane targeting is
divergent. Therefore, endosomal interactions between VAMP7 and
partners are apparently conserved with the opisthokont SNARE
complexes.

DISCUSSION
The kinetoplastids encompass many parasitic species with a
particularly broad range of niches and life cycles. Surface
components are critical to their success, which is partly reflected
within the trafficking system, and our analysis here provides a
comprehensive view of these processes. The repertoire of Rabs,
RabGAPs and SNAREs at the LCKA resembles that predicted for
LECA, and the free-living B. saltans possesses the largest
repertoire, with several kinetoplastid-specific members that were
likely to originate in the LCKA. Significantly, we also find that the
frequency of paralogous pairs is high in kinetoplastids, which may
indicate a whole genome duplication event at the base of the
kinetoplastid lineage. Rather than a precipitous decrease as

Table 1. Extent of conservation of LECA trafficking family proteins in kinetoplastids

Family LECA repertoire
Total in
LECA

Absent from
kinetoplastids

LECA proteins retained
in kinetoplastids non-LECA proteins

SNAREs 20 18/21 (86%)
Qa Syx18, Syx5, Syx16, SynE, SynPM, Syx17 Syx17 Qa1, Syx16 (2)
Qb Sec20, Bos1, Gos1, VTI1, NPSN None VTI1-like (3), NPSN (3)
Qc Use1, Bet1, Syx6, Syx8, Syp7 Use1 Bet1 (2), Syp7 (2), Syx6-like (2)
Qbc SNAP-25 Very restricted
R Sec22, Ykt6, VAMP7, R.reg None VAMP7 (4)
Rab 1, 2, 4, 5, 6, 7, 8, 11, 14, 18, 20/24, 21, 22, 23,

28, 32A/B, 34, 50, RTW, IFT27, Titan
22 8, 22, 32B, 34, 50,

Titan
16/22 (72%) Rab11-like, Rab32-like, Rab21 (2),

KSRX1, UzRX3, KSRX4
TBC B, D, E, F, I, L, M, N, Q, RootA 10 None 10/10 (100%) ExA (2)

Putative LECA subtypes of each protein family are presented along with those that were not identified in kinetoplastids. In the penultimate column, the proportion of
theseLECAproteins identified in kinetoplastids are listed. In the final column, proteins predicted to be in the last kinetoplastid commonancestor (LKCA) but not in the
LECAare shown. These include proteins predicted to be derived from expansion of LECA proteins. Numbers in parentheses indicate the number of copies present.
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kinetoplastids transitioned from free-living to parasitic forms, there
is gradual loss of trafficking genes, and likely corresponding
pathway simplification (Jackson et al., 2015). Whereas some LECA
proteins (e.g. SNAP-25, Rab24, Rab32 and TBC-N) are lost, a large
proportion of losses are of lineage-specific duplications originating
in the last common excavate ancestor or in the LCKA. Hence,
radical intracellular remodelling did not accompany the transition to
parasitism. The extensive bodonid repertoire is mainly due to

retention of the LECA/LKCA gene complement, and the most
prominent expansions appear to be Syp7 and Rab32.

The putative common ancestor of African trypanosomes seems to
have had a single instance of coordinated loss of several SNARE
complex subunits, specifically post-Golgi SNAREs, which is
accompanied by the loss of Rabs predicted to act in similar
pathways (phagocytic Rab14 and putative recycling Rab11B).
Leishmania and trypanosomes have both lost the endosomal Rab32,

Fig. 5. Representation of SNAREs, Rabs and RabGAPs in kinetoplastids. Individual subtype clades as found in kinetoplastids (assigned to known eukaryotic
sub-types or lineage-specific) are shown by columns, with taxa shown as rows, with the hypothetical last common kinetoplastid ancestor as the lowest row.
A schematic taxon phylogeny is at the left. Black indicates at least one member of the clade was found with phylogenetic support of 80/50/0.5 (MrBayes/PhyML-
BS/PhyML-aLRT, respectively) or more; grey indicates lower support but above 50 (MrBayes) or in the case of the LKCA, indeterminable presence from given
data. SNARE subtypes are shown in Fig. 5A and are colour-coded as Qa, blue; Qb, Qc, Qbc, red; and R, green/teal. Subtypes with single asterisks indicate that
assignment was via BLAST only due to unresolved phylogeny. Rab and RabGAPs are shown in Fig. 5B.
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Fig. 6. Sub-cellular localisation of T. brucei R-SNAREs. (A–D) Myc-tagged TbVAMP7A (A), HA-tagged TbVAMP7B (B), TbVAMP7C (C) and TbYkt6 (D) in
procyclic T. brucei cells are shown. Localisation of each SNARE (red) is shown relative to markers (green) for the endoplasmic reticulum (TbBiP) (top), the
lysosome (p67) (middle) and the Golgi complex (TbGRASP) (bottom). The nucleus and kinetoplast are stained with DAPI and pseudocoloured in blue. Tagswere
visualised with rat anti-Myc antibody or rat anti-HA antibody as appropriate. (E) Localisation of candidate TbVAMP7C interactors. HA-tagged VAMP7C (red), is
shown relative to putative interactors tagged with Myc (top five rows) and V5 (lower two rows), in green. The nucleus and kinetoplast were stained with DAPI.
VAMP7C was stained with rat anti-HA, SNARE interactors were stained with mouse anti-Myc antibody and non-SNARE interactors were stained with mouse anti-
V5 antibody. Scale bar: 2 µm.
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Rab21B and Rab21C, SNAREs NPSN1 and SNAP25, and TBC-
ExA and TBC-N. The T. cruzi group exhibit the greatest degree of
inter-lineage variation, perhaps reflecting the varied lifestyles and
disparate hosts and vectors that this group enjoys. Moreover,
bodonids and the T. cruzi group have several clade and species-
specific gains and losses indicating highly dynamic shaping of
trafficking genes in these organisms.

MATERIALS AND METHODS
Sequence data collection
To identify SNARE sequences, a validated dataset of 26 predicted SNARE
sequences obtained for T. brucei (Murungi et al., 2014) and 27 sequences
from L. major (Besteiro et al., 2006) were used to query predicted proteomes
for Trypanosoma brucei brucei 927, T. b. gambiense, T. congolense,
T. vivax, T. cruzi, T. grayi, Leishmania major, L. mexicana, L. braziliensis,
L. infantum, Bodo saltans, Phytomonas serpens, Phytomonas EM1,
Phytomonas HART1 (http://www.genedb.org/ or TriTrypDB) and the
heterolobosid Naegleria gruberi (Fritz-Laylin et al., 2010) (http://genome.
jgi.doe.gov/Naegr1) by BLAST. tBLASTp was used to search
transcriptome data from T. theileri, T. carassii, Trypanoplasma borrelli
and Euglena gracilis (S.K. and M.C.F., unpublished data). All sequences
returned with e-values <10−3 were retained. This dataset was parsed to
remove redundancies using >99% sequence identity as criteria for exclusion.
ClustalW (Thompson et al., 2002) was used to align each dataset and
generate neighbour-joining (NJ) trees (Saitou and Nei, 1987). Sequences
which were excluded or weakly clustering were validated for a SNARE
domain via Interpro (Hunter et al., 2009, http://www.ebi.ac.uk/interpro) and
SNARE-DB (Kloepper et al., 2007, http://bioinformatics.mpibpc.mpg.de/
snare/index.jsp). Sequences incorporating a SNARE-domain (SNARE,
t/v-SNARE, sec20, syntaxin, longin and synaptobrevin) were retained.
Sequences in which no domain was detected but were between 70 and 500
residues were also retained.

A pfamRas domain (PF00071) HMMSCAN (Eddy, 1998) (http://hmmer.
org) search was conducted against 50 eukaryotic proteomes, including those
listed above to identify Rabs. Sequences with e-values <10−3 were retained
and used to generate a NJ tree. Kinetoplastid Rab candidates were identified
and tentatively assigned on the basis of association with defined Rab
sequences. One sequence from each cluster was used as a query to define the
cluster by reciprocal best hit (rbh) BLAST and another round of rbhBLAST
performed using sequences from the first round as queries. Rbh requires that
potential positive hits retrieve the original query when used to search. The
tree was annotated accordingly to verify initial assignments. Additionally,
assignments were made using Rabifier (Diekmann et al., 2011). All
collected kinetoplastid sequences were classed as either a tentative Rab
subfamily member or as stray. Identical procedures were undertaken with
the TBC domain (pfam PF00566) and HMMSCAN to recover sequences.

For analyses addressing the evolution of NPSN and Syp7, a broader
eukaryotic sampling and separate phylogenetic methods were used.
Homology searches were performed using Homo sapiens, Saccharomyces

cerevisiae and Arabidopsis thaliana sequences; protein sequences from a
broad sampling of eukaryotes were retained. Positive BLAST hits for each
protein of interest were aligned using MUSCLE v3.8.31 (Edgar, 2004).
Where very similar sequences were present from the same or closely related
organisms, those that aligned least well were removed to limit
overrepresentation of some taxonomic groups in the Hidden Markov Model
(HMM). For each potential orthologue identified by HMMER (e-value 0.05),
reverse BLAST searches were performed as before. Homology search results
were summarised using Coulson Plot Generator (Field et al., 2013).

Phylogenetic reconstruction
SNARE, Rab and RabGAP datasets were aligned using MAFFT (Katoh
et al., 2005) using the E-INS-i strategy and manually edited in Jalview
(Waterhouse et al., 2009). The alignment was used to generate maximum-
likelihood trees in PhyML v3.0 (Guindon et al., 2010) using the LG model
with the following parameters: number of substitution rates, 4; starting tree,
BioNJ, tree topology search; NNI moves and statistics, aLRT SH-like and
bootstrap (100 or 1000 replicates as indicated in the figures). Bayesian
inference was implemented in MrBayes v3.2 on the CIPRES server (Miller
et al., 2010; Ronquist and Huelsenbeck, 2003), generally with 8×106

Markov chain Monte Carlo (MCMC) generations where convergence was
achieved, as measured by a splits frequency below 0.01. Substitution models
employed for inferring trees were selected using ProtTest v3 (Abascal et al.,
2005) for PhyML and the mixed model for MrBayes. One representative
from each well supported clade (>0.9, 90, MrBayes, PhyML support
respectively) along with a panel of known eukaryotic SNAREs, Rabs and
TBC Rab-GAPs were analysed to determine orthology and define
subfamilies. A SNARE panel was created from SNARE sequences from
Homo sapiens, Saccharomyces cerevisiae, Arabidopsis thaliana,
Phytopthora sojae and Entamoeba histolytica obtained from SNARE-DB.
For Qb and Qc, LECA complement datasets were assembled from the
searches. Alignments generated for HMMs or phylogenetic analysis were
constructed using MUSCLE v3.8.31 (Edgar, 2004) and edited using
Mesquite (Maddison and Maddison, 2015). Maximum likelihood
phylogenies were constructed using RAxML (Stamatakis, 2014) with the
Protein GAMMA model for rate heterogeneity and the LG4X substitution
matrix. Values from 100 bootstraps were mapped onto the best of 20
topologies constructed from the original alignment. Bayesian phylogenetic
analysis was performed using MrBayes, and run for 8–10 million MCMC
generations with the Mixed substitution model, and the final average
standard deviation of split frequencies decreased to less than 0.008. Several
trees were constructed iteratively for each dataset, with removal of manually
selected sequences to improve resolution.

Trypanosome cell culture
Procyclic culture form (PCF) T. b. brucei Lister 427 were grown as previously
described (Brun et al., 1979). Expression of plasmid constructs was maintained
using antibiotic selection at the following concentrations: G418 or hygromycinB
at 25 μg/ml, blasticidin at 10 μg/ml and puromycin at 2 μg/ml.

Expression constructs
Putative trypanosome SNAREs TbVAMP7C (Tb427.10.790), TbVAMP7A
(Tb427.2.5120), TbVAMP7B (Tb427.5.3560), TbYkt6 (Tb927.9.14080)
were amplified from T. b. brucei 427 genomic DNA using Hercules DNA
polymerase (Aligent Technologies).

For hemagglutinin (HA)-tag fusion, the PCR products containing
sequence for a C-terminal HA-epitope were cloned into the PCF
expression vector pLew79 (Wirtz et al., 1999) using AvrII and BamHI
(TbVAMP7 isoforms) using the following primers: 5′-TTGTGTCCTAG-
GATGCTTATATCTGCCTCCTT-3′ pLewVAMP7A_F and ACTCAAG-
GATCCTTAAGCGTAATCTGGAACATCGTATGGGTACTTTTTGCA-
CTTGAGGTTAG-3′ pLewVAMP7A_R; 5′-TTGTGTCCTAGGATGCC-
CATTAAATATAGTTG-3′ pLewVAMP7B_F and 5′-ACTCAAGGATC-
CTTAAGCGTAATCTGGAACATCGTATGGGTATGACTTGCAGTTG-
GAAAAGT-3′ pLewVAMP7B_R; 5′-TTGTGTCCTAGGATGCAGGG-
AGGAACAAAAAT-3′ pLewVAMP7C_F and 5′-ACTCAAGGATCCTT-
AAGCGTAATCTGGAACATCGTATGGGTACTTCTTTTCCTCTTTTT-
TAC-3′ pLewVAMP7C_R.

Table 2. Proteins identified as potential VAMP7C interactors

Accession ID
# of
peptides emPAI Family

Tb427.10.790 Handle-VAMP7C 10 5.74 SNARE
Tb09.211.3920 Qa-Syx16B 10 1.98 SNARE
Tb427.03.5570 Qa-SynE 7 1.27 SNARE
Tb427.10.1830 Qc2a-Syp7B 6 1.25 SNARE
Tb427.08.3470 Qb2-VTI1-like A 6 1.22 SNARE
Tb427.08.1120 Qb3-VTI1-like B 2 0.87 SNARE
Tb427.10.2340 Qc3-Syx8-like 2 0.67 SNARE
Tb427.10.6780 VPS45 10 0.67 SM protein
Tb427.10.9950 Qa-Syx18 4 0.32 SNARE
Tb427.10.14200 Qa-Syx5 3 0.28 SNARE

Data are arranged by emPAI rank order. Bold indicates an interaction validated
by co-immunofluorescence (Fig. 6). All experiments and identifications were
confirmed in a total of four biological replicates.
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The PCR product of TbYkt6 was cloned into pHD1034 containing an
N-terminal HA-epitope using HindIII and AflI using the following primers:
5′-GGCCAAGCTTTATACTCCCTGGCAAT-3′ pHD1034Ykt6F and
5′-CCGTCTTAAGTCACATGACGGTGCAACA-3′ pHD1034Ykt6R.

Putative SNARE interactors TbSyx16B (Tb427tmp.211.3920), TbSynE
(Tb427.03.5570), TbVTI1-likeA (Tb427.8.3470), TbVTI1-likeB (Tb427.
08.1120), TbSyx6-like1 (Tb427.10.1830) and TbSyx8-like (Tb427.10.
2340) were also similarly amplified. For 6× Myc tagging, the product of
each gene was cloned into pRPΔOP (with thanks to Lucy Glover, Institut
Pasteur, Paris, France) containing 6× cMyc-epitope using HindIII and XbaI
using the following primers: 5′-GCGCGCAAGCTTATGAGCGGGGAC-
GGCGTTGG-3′ pRPCTb427.8.1120F and 5′-GCGCGCTCTAGAAACT-
TTCCCCAGAAACTTCC-3′ pRPCTb427.8.1120R; 5′-GCGCGCAAGC-
TTATGGACGATCCAAGTTGGCA-3′ pRPCTb427.3.5570F and 5′-GC-
GCGCTCTAGATACTTTATGGTACGCAACGA-3′ pRPCTb427.3.5570-
R; 5′-GCGCGCAAGCTTATGTCGTCTCTGCAAGATCC-3′ pRPCT-
b427.10.1830F and 5′-GCGCGCTCTAGAACTAAAGACACAATAGA-
AGA-3′ pRPCTb427.10.1830R; 5′-GCGCGCAAGCTTATGTCTAAAC-
AAGAA-3′ 2F_PRP_Tb427.10.2340_C and 5′-GCGCGCTCTAGAAA-
GTATTAAAAGCAC-3′ 2R_PRP_Tb427.10.2340_C; 5′-GCGCGCAAG-
CTTATGTCATCTGATCTT-3′ 3F_PRP_Tb427.08.3470_C and 5′-GCG-
CGCTCTAGACTTCCAAAATACAAT-3′ 3R_PRP_Tb427.08.3470_C;
5′-GCGCGCAAGCTTATGGCGACCCGTGAC-3′ 4F_PRP_Tb427.211.
3920_C and 5′-GCGCGCTCTAGAAGACAGCATCTTTTG-3′ 4R_PR-
P_Tb427.211.3920_C.

Putative interactors TbVps45 (Tb427.10.6780) and TbSly1 (Tb427tmp.
160.0680) were cloned into pMOT vector (Oberholzer et al., 2006) with
3xV5 tag using the following primers: 5′-AGGTCCTGTGCACGCCTG-
CATCGGTGGGACTGGAGTCCTTAACAGTGAAACCTTCCTGAGC-
CTGCTAGCAGCGCACGCAGGTACCGGGCCCCCCCTCGAG-3′ VP-
S45pMOT_F and 5′-GTATTTTGGTTTCGTTTATTCATACCACCATG-
CGGAGGCGCAATGTCCCCGCCAAAACAGGCGAGGGCGGCACA
TGGCGGCCGCTCTAGAACTAGTGGAT-3′ VPS45_pMOT_R; 5′-G-
GTTAGTTATGGCTGTACCGCAATGCTGACGGGGAATGAAGCAC
TGCGCCAGCTTACTGTTCTTGGTGAAGGAATATCAGGTACCGGG
CCCCCCCTCGAG-3′ Sly1_pMOT_F and 5′-AAAGCACGTTAGGATA
GTATCTGAAAGTGGGAAAACGCCAAATGGCACAAAGACCAAAA
CGGCCGGGCCGGTGCTGGCGGCCGCTCTAGAACTAGTGGAT-3′
Sly1_pMOT_R.

All constructs were verified by sequencing and linearised with NotI prior
to transfection into cells. Clonal transformants were selected by resistance to
antibiotics as relevant to each vector and cell line.

Transfection of PCF T. brucei
1.6×107 cells per transfection were harvested at 4°C, washed in cytomix and
resuspended in 500 μl cytomix. Electroporation was performed with 5–
15 μg of linearised DNA using a Bio-Rad Gene Pulser II (1.5 kV and
25 μF). Cells were transferred to 9.5 ml SDM-79 medium and incubated for
6 h, after which selection antibiotics were added. The cells were then diluted
into 96-well microtiter plates. Positive transformants were picked into fresh
selective medium 10–15 days post transfection.

Identification of protein–protein interactions
Interactions between VAMP7C (Tb427.10.790) and other trypanosome
proteins were analysed by immunoisolation. 5×1010 procyclic cells
habouring VAMP7C tagged at the C-terminus with HA were lysed by
mechanical milling in a Retsch Planetary Ball Mill PM200 using liquid
nitrogen cooling (Retsch, UK). Aliquots of powder were thawed in
solubilisation buffer (50 mMTris-HCl pH 8.0, NaCl 100 mM, 1%Triton X-
100 or CHAPS+1 mM NEM, and 50 mM Tris-HCl pH 8.0, 100 mM NaCl,
5 mM EDTA, 1% Triton-X100 and/or 0.5% Triton-X114+1 mM NEM).
VAMP7C::HA was isolated using Pierce anti-HA magnetic beads. All
washes were in the same buffer without NEM. Following analysis of an
aliquot by SDS-PAGE, affinity-isolated proteins were precipitated in 90%
ethanol (v/v). The precipitated samples were trypsinised and analysed by
liquid chromatography tandem mass spectrometry at the University of
Dundee Fingerprints Proteomics Service. Peak lists were submitted to
ProFound and searched against an in-house T. brucei database using data

from GeneDB (www.genedb.org). An untagged wild-type cell line treated
identically served as background control.

Immunofluorescence microscopy
Cells were prepared as previously described (Leung et al., 2008). Antibodies
were used at the following concentrations: rat anti-HA (cat. no.
11867423001, Roche) 1:1000; mouse anti-cMyc (Santa Cruz
Biotechnology 9E10) 1:500; mouse anti-p67 (James Bangs, University of
Wisconsin-Madison, WI) 1:1000; rabbit anti-GRASP (Graham Warren,
Vienna, Austria) 1:500 in 20% fetal calf serum (FCS) in PBS (v/v). Wide-
field epifluorescence images were acquired using a Nikon Eclipse E600
epifluorescence microscope equipped with a Hamamatsu ORCA CCD
camera, and data captured using MetaMorph (Universal Imaging, Marlow,
UK).

Western blotting
Whole-cell lysates in SDS-PAGE sample buffer containing 107 cells/lane
were resolved by SDS-PAGE. Proteins were transferred to polyvinylidene
fluoride membranes (Millipore) and blocked using 5% semi-skimmed milk.
Antigens were visualised using standard methods. Primary antibody
concentrations were: rat anti-HA (cat. no. SC-40, Roche) at 1:10,000,
mouse anti-cMyc (cat. no. ab39688, Abcam) 1:5000. Primary antibody
binding was detected using horseradish peroxidase (HRP)-conjugated anti-
IgG antibodies (Sigma-Aldrich) at 1:10,000. Detection of HRP-conjugated
secondary antibody was achieved with chemiluminescence and luminol.
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Figure	S1.	Representation	of	SNARE,	Rab	and	TBC	coding	sequences	in	selected	eukaryotic	genomes	
and	kinetoplastids.	Genomes	are	arranged	by	phylogenetic	relationships.	The	five	classically	
recognised,	sensu	Adl	2005,	eukaryotic	super	groups	and	each	sub-group	of	kinetoplastida	are	colour-

coded	according	to	the	colour	key	on	either	side	of	the	dividing	dashed	line	respectively.	Blue	symbols	
and	solid	line	represent	the	total	coding	content	of	the	respective	organism	by	total	number	of	
predicted	ORFs	(reads	are	shown	on	the	y-axis,	right).	Numbers	of	SNARE,	Rab	and	TBC	ORFs	are	

represented	by	dark,	medium	and	light	gray	bars	respectively	(x-axis,	left).	

	
Adl, S. M., Simpson, A. G. B., Farmer, M. A., Andersen, R. A., Anderson, O. R., Barta, J. R., Bowser, S. S., Brugerolle, G., Fensome, R. A., Fredricq, S. et al. (2005). The 
new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 52, 399-451. 

	

Jo
ur

na
l o

f C
el

l S
ci

en
ce

 •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n 





Figures S2. Phylogenetic assignment of kinetoplastid SNAREs (A-C), SNAP-25 (D) and 
synaptobrevins (E) and Qb (F) and Qc SNAREs (G) confirming NPSN and Syp7 were part 
of the LECA complement. Best PhyML topology of Qb (S2A) and Qc (S2B), and best Bayesian 

topology of R (S2C) SNARE phylogeny is presented. Node values are iconised as pie charts for 

three support values each representing PhyML approximate likelihood ratio test, PhyML 

Bootstrap and MrBayes posterior probabilities and colour-coded as shown in the key. Each 

phylogeny shows one representative kinetoplastid SNARE from each sub-type cluster (Purple) 

along with eukaryotic representative SNAREs from Opisthokonta (Blue), Amoebozoa (Pink),

Archaeplastids (Green), SAR-CCTH (Orange) and Excavata (light Purple). In S2A, Qb SNAREs 

showing orthology with eukaryotic orthologs for Gos1, Npsn, Sec20 and Bos1. Qb2 and Qb3 

are putative Vti SNAREs on the basis of BLAST and reverse BLAST into H. sapiens and S. 

cerevisiae genomes as well as our proteomic data. In S2B, Qc SNAREs showing orthology with 

Bet1 and Syp7 and a putative QbcSNARE is shown. Qc2, 3 and 4 have not been sufficiently 

confidently placed. In S2C, R-SNAREs showing orthology with eukaryotic Ykt6, Sec22 and 

VAMP7. R1-SNARE can be deduced to be an R.reg Tomosyn-like SNARE from the sequence 

length and domain structure, but its orthologs are not presented due to formation of long 

branches, possibly because of the derived nature of the proteins. Note Sec22-like protein has 

no SNARE domain but only a single longin domain. Figure S2D shows the best PhyML topology 

rooted on Qb-Gos1 sequences is present. Eukaryotic representative SNAP-25like SNAREs 

identified in Opisthokonta (Blue), Amoebozoa (Pink), Archaeplastids (Green), SAR-CCTH 

(Orange) and Excavata (light Purple) are shown. Note expansions in archaeplastids and 

opisthokonts are lineage specific. Higher-level relationships between clusters is not resolved, 

but presence of several separate clusters indicates divergence of sequences in different 

lineages. Kinetoplastid Qbc-like sequences are found to cluster with representative 

stramenopile sequences (A. astacii and P. sojae), marked with a vertical line. Figure S2E shows 

all R-SNARE synaptobrevin domain (IPR01388) containing sequences from selected eukaryotic 

representatives were analysed. PhyML bootstrap and Bayesian analyses were inconclusive due 

to very low supports and unresolved relationships respectively so only the PhyML aLRT 

analysis is shown. Statistical support at key nodes are presented as circles filled in in gray-scale 

according to the key shown. Eukaryotic representative sequence are colour-coded as 

Opisthokonta (Blue), Amoebozoa (Pink), Archeplastids (Green), SAR-CCTH (Orange) and 

Excavata (light Purple). Sec22 and Ykt6 are conserved compared to other VAMPs. R.reg forms 

long branches likely due to derived nature of the sequences. ‘Brevin’-like VAMPs, lacking the N-

terminal longin domain are marked with an asterisk (*). Their presence in different clusters 

indicates a likely convergent lineage specific evolution. Robust reconstruction of an NPSN (F) 

and Syp7 (G) clade, including sequences from all supergroups, confirms the ancient origin of 

NPSN and Syp7. Accession numbers and sources are listed in Tables S4-S6. 
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Figure S3A-F. Phylogenetic tree of kinetoplastid SNAREs (A-D), Rabs (E) and TBCs 

(F). PhyML topology of all kinetoplastid Qa (S3A), Qb (S3B), Qc (S3C) and R (S3D) SNAREs 

is shown. PhyML approximate likelihood ratio test values are shown at nodes, and clades 

are labelled with assigned identity on branches. T. brucei IDs are shown in red. In S3E, 

MrBayes topology of all kinetoplastid Rab sequences is shown. Mr Bayes posterior 

probabilities (100) are indicated at nodes and clades are labelled with assigned identity on 

branches. In S3F, PhyML topology of all kinetoplastid TBC RabGAPs is shown. PhyML 

approximate likelihood ratio test values are shown at nodes, and clades are labelled with 

assigned identity on branches. 
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Table S1. Accession numbers. Sequences in each dataset (Rab, TBC, and SNARE) were 

given unique 4-digit ID codes that can be cross-referenced with the trees to check sub-family 

assignment and the fasta files to pull out the sequence. 

Table S2. Raw data from proteomic analysis. Raw data of mass spectrometry results 

from four buffer conditions as described in methods. WT = results from untagged cell line, 

790 = results from TbVAMP7C::HA. 

Table S4. Qb and Qc SNAREs identified in a diverse sampling of eukaryotes. 
Accession numbers and annotations are listed for sequences identified through a 

combination of homology searching and phylogenetics analysis, as described in the 

methods.  Sheet 1: Qb, sheet 2: Qc. Sources of sequence data are listed in Table S4 

Table S3. Protein sequence data accessed for analysis of Qb and Qc SNARE LECA 
complement. Resources are listed by species name.  References to relevant publications 

are also included as appropriate. 
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