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MRTF-A mediates LPS-induced pro-inflammatory transcription by
interacting with the COMPASS complex
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ABSTRACT

Chronic inflammation underscores the pathogenesis of a range of

human diseases. Lipopolysaccharide (LPS) elicits strong pro-

inflammatory responses in macrophages through the transcription

factor NF-kB. The epigenetic mechanism underlying LPS-induced

pro-inflammatory transcription is not fully understood. Herein, we

describe a role for myocardin-related transcription factor A (MRTF-A,

also known as MKL1) in this process. MRTF-A overexpression

enhanced NF-kB-dependent pro-inflammatory transcription,

whereas MRTF-A silencing inhibited this process. MRTF-A

deficiency also reduced the synthesis of pro-inflammatory

mediators in a mouse model of colitis. LPS promoted the

recruitment of MRTF-A to the promoters of pro-inflammatory genes

in an NF-kB-dependent manner. Reciprocally, MRTF-A influenced

the nuclear enrichment and target binding of NF-kB. Mechanistically,

MRTF-A was necessary for the accumulation of active histone

modifications on NF-kB target promoters by communicating with the

histone H3K4 methyltransferase complex (COMPASS). Silencing of

individual members of COMPASS, including ASH2,WDR5 and SET1

(also known as SETD1A), downregulated the production of pro-

inflammatory mediators and impaired the NF-kB kinetics. In

summary, our work has uncovered a previously unknown function

for MRTF-A and provided insights into the rationalized development

of anti-inflammatory therapeutic strategies.
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INTRODUCTION
Macrophages are a group of heterogeneous cells that play a wide

range of roles in maintaining internal homeostasis (Wynn et al.,

2013). When inadvertently activated under stress conditions,

however, macrophages can contribute to the pathogenesis of

human diseases (Hotamisligil, 2006; Qian and Pollard, 2010;

Weber et al., 2008). A paradigm of macrophage-dependent

pathophysiological process is the initiation and perpetuation of

chronic inflammation, which is considered to be pivotal to the

disruption of the physiological integrity of tissues and organs. For

instance, it has been demonstrated that human atherosclerotic

lesions contain high numbers of macrophages (Gown et al.,

1986). Conversely, systemic depletion of macrophages stalls the

development of atherosclerosis in mice (Stoneman et al., 2007).

Lipopolysaccharide (LPS) engages the pattern recognition

receptor TLR4 to launch a strong pro-inflammatory reaction

in macrophages. LPS-induced pro-inflammatory transcription is

programmed by NF-kB, the master regulator of chronic

inflammation (Smale, 2011). Accumulating evidence has helped

to fuel the notion that NF-kB-dependent pro-inflammatory

transcription is a function of chromatin structure modulated by

the epigenetic machinery; chromatin wrapped with acetylated

histones H3 and H4 and methylated histone H3 lysine 4 (H3K4)

generally facilitates NF-kB-mediated transcriptional activation

(Natoli, 2009). Recent investigations have given support to this

model. For instance, Austenaa et al. have demonstrated that the

H3K4 methyltransferase (HMT) MLL4 (also known as KMT2B

or WBP7) is required for LPS-induced gene expression in

macrophages (Austenaa et al., 2012). Wang et al., by contrast,

have shown that another HMT (MLL1, also known as KMT2A) is

indispensable for NF-kB-mediated transcription in response to

TNF-a (Wang et al., 2012). Currently, it is not completely clear

whether NF-kB is self-sufficient in terms of engaging various

epigenetic factors in transcriptional regulation or whether a co-

factor is necessary to act as a bridge between NF-kB and the

epigenetic machinery.

Myocardin-related transcription factor A (MRTF-A, also

known as MKL1) is known to function as a coactivator for

SRF (Wang et al., 2002), Smad3 (Morita et al., 2007) and Sp1

(Luchsinger et al., 2011). Our previous study has found that

MRTF-A can drive the transcription of adhesion molecules in

vascular endothelial cells by directly interacting with the p65

subunit of NF-kB (Fang et al., 2011). The ability of MRTF-A to

steer transcriptional events is derived in part from its extensive

crosstalk with the epigenetic machinery, including histone

modifying enzymes and chromatin remodeling proteins (Hanna

et al., 2009; Lockman et al., 2007; Yang et al., 2013; Zhang et al.,

2007; Zhou et al., 2009). Building on these findings, we

hypothesized that MRTF-A could fine-tune LPS-induced NF-

kB-dependent pro-inflammatory transcription in macrophages.

Our data, as summarized here, support a role for MRTF-A as a

key epigenetic coordinator in NF-kB-mediated pro-inflammatory

transcription both in vitro and in vivo.

RESULTS
MRTF-A is necessary for LPS-induced pro-inflammatory
transcription in macrophages
We have previously shown that MRTF-A interacts with NF-kB to

activate ICAM-1 expression in vascular endothelial cells (Fang

et al., 2011). Because NF-kB is the central mediator of LPS-

induced pro-inflammatory transcription in macrophages, here, we
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Fig. 1. See next page for legend.
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have tackled the question of whether MRTF-A would also be

necessary for this process. Overexpression of MRTF-A enhanced
the kB reporter activity in response to LPS treatment in both
murine (RAW264.7) and human (THP-1) macrophages (Fig. 1A).

Compared with MRTF-A, MRTF-B (also known as MKL2),
another member of the MRTF family, was a much weaker
activator of the kB reporter (supplementary material Fig. S1A).
Overexpression of MRTF-A also significantly upregulated

the synthesis of endogenous pro-inflammatory mediators in
macrophages treated with LPS, both at the mRNA level, as
assayed by quantitative (q)PCR (Fig. 1B), and at the protein

level, as measured by enzyme-linked immunosorbent assay
(ELISA) (Fig. 1C). By contrast, overexpression of a dominant-
negative form of MRTF-A, which can interact with p65 but which

lacks the transactivation domain (Fang et al., 2011), suppressed
the activation of the kB reporter (supplementary material Fig.
S1B) and reduced the production of endogenous pro-

inflammatory mediators (supplementary material Fig. S1C,D).
Immunofluorescent staining revealed that treatment with LPS
caused a rapid accumulation of MRTF-A along with the
p65 subunit of NF-kB in the nucleus of RAW264.7 cells

(supplementary material Fig. S1E).
By contrast, when we reduced the expression of MRTF-A in

RAW264.7 cells with small interfering RNA (siRNA; Fig. 1D),

we noticed a decrease in LPS-induced synthesis of pro-
inflammatory mediators (Fig. 1E,F). Several additional lines of
evidence also lent support to the model wherein MRTF-A

enhances LPS-induced pro-inflammatory transcription. First,
bone-marrow-derived macrophages (BMDM) isolated from
MRTF-A-deficient mice (Mrtf-a2/2) produced less mRNA
(Fig. 1G) and protein (Fig. 1H) of pro-inflammatory mediators

in response to LPS treatment compared with that produced by
wild-type (Mrtf-a+/+) BMDMs. Similar observations were made
in murine embryonic fibroblast (MEF) cells (supplementary

material Fig. S1F,G). Second, LPS-induced kB reporter activity
was lost in MRTF-A-deficient MEF cells but could be recovered
once ectopic MRTF-A was introduced (supplementary material

Fig. S1H). Collectively, these data suggest that MRTF-A is
necessary for LPS-induced pro-inflammatory transcription in
macrophages.

MRTF-A deficiency attenuates colitis in mice
Next, we evaluated the role of MRTF-A in a mouse model of
inflammatory disease, namely dextran sodium sulfate (DSS)-

induced colitis. DSS caused weight loss (Fig. 2A) and shortening

(Fig. 2B) of the colon in wild-type mice, both of which were
attenuated in MRTF-A-knockout mice. In addition, there was

reduced intestinal edema, fewer inflammatory infiltrates and
better preservation of intestinal structure in knockout mice, which
collectively resulted in an improved pathology score (Fig. 2C).
Finally, compared with wild-type mice, the intestines of knockout

mice produced fewer pro-inflammatory mediators both at the
mRNA (Fig. 2D) and protein (Fig. 2E) levels. Therefore, MRTF-
A might play a role in modulating the inflammatory response in

vivo.

Reciprocal interaction between MRTF-A and p65
Because the p65 subunit of NF-kB is the chief orchestrator of
LPS-induced pro-inflammatory transcription, we assessed the
possibility that there might be a functional interaction between

MRTF-A and p65. Chromatin immunoprecipitation (ChIP) assays
revealed that MRTF-A was recruited to the promoters of the Il-

1b, Il-6, Mcp-1 and Tnf-a genes with a similar kinetics to the
recruitment of p65 (Fig. 3A). Furthermore, LPS enhanced the

formation of an MRTF-A–p65 complex on the promoters as
measured using the Re-ChIP assay (Fig. 3B). Reducing the
expression of p65 with siRNA (Fig. 3C) significantly reduced the

recruitment of MRTF-A in response to LPS treatment (Fig. 3D),
indicating that MRTF-A relies on p65 to participate in LPS-
induced pro-inflammatory transcription.

To test the hypothesis that MRTF-A might reciprocally
influence the activity of p65, we knocked down endogenous
MRTF-A with siRNA in RAW264.7 cells. Interestingly, the

affinity of p65 for its target genes was reduced (Fig. 3E).
Consistently, in MRTF-A-deficient MEF cells, LPS-induced
binding of p65 to target genes was reduced as opposed to that
of wild-type MEF cells (supplementary material Fig. S2B).

To further verify these observations, we also performed
immunofluorescent staining and gel shift assays. Indeed, in
the absence of MRTF-A, there was less p65 accumulation in

the nucleus (supplementary material Fig. S2C,D). Thus, these
data suggest that while p65 recruits MRTF-A to its target
promoters, MRTF-A is able to actively influence the activity

of p65.

MRTF-A deficiency is associated with a repressed
chromatin structure
Previous studies have indicated that MRTF-A delegates
transactivation to the epigenetic machinery (Fang et al., 2011;
Hanna et al., 2009; Yang et al., 2013; Zhang et al., 2007).

Therefore, we examined whether the attenuation of transcriptional
activation of NF-kB target genes as a result of MRTF-A silencing
could be correlated with a repressed chromatin structure. MRTF-A

knockdown in RAW264.7 cells led to a decrease in the enrichment
of acetylated histone H3 (AcH3; supplementary material Fig. S3A)
and acetylated histone H4 (AcH4; supplementary material Fig.

S3B) on the gene promoters. Similarly, we noted a reduction in the
accumulation of AcH3 (supplementary material Fig. S3C) and
AcH4 (supplementary material Fig. S3D) in MRTF-A-deficient
MEF cells in comparison to wild-type MEF cells. Moreover,

dimethylated histone H3K4 (H3K4me2; Fig. 4A,C) and
trimethylated H3K4 (H3K4me3; Fig. 4B,D) were erased from
the NF-kB target promoters when MRTF-A was silenced. Finally,

the enrichment of BRG1 and BRM (also known as Brahma or
SMARCA2), two core components of the mammalian chromatin
remodeling complex known to participate in LPS-induced

transactivation of pro-inflammatory mediators (Ramirez-Carrozzi

Fig. 1. MRTF-A is necessary for LPS-induced pro-inflammatory
transcription in macrophages. (A) A 2xkB reporter construct was
transfected into RAW264.7 or THP-1 cells with or without MRTF-A followed
by treatment with LPS. Data are expressed as relative luciferase units (RLU).
(B,C) An MRTF-A expression construct was transfected into RAW264.7 cells
followed by LPS treatment for 3 hours. mRNA (B) and protein (C) levels of
pro-inflammatory mediators were examined by qPCR and ELISA,
respectively. (D) RAW264.7 cells were transfected with siRNA targeting
MRTF-A (siMrtf-a) or control siRNA (SCR). mRNA and protein levels of
MRTF-A were examined by qPCR and western blotting, respectively.
(E,F) RAW264.7 cells were transfected with the indicated siRNA, followed by
treatment with LPS. mRNA (E) and protein (F) levels of pro-inflammatory
mediators were examined by qPCR and ELISA, respectively. (G,H) BMDMs
from wild-type or MRTF-A-deficient mice were treated with or without LPS for
3 hours. mRNA (G) and protein (H) levels of pro-inflammatory mediators
were examined by qPCR and ELISA, respectively. All data show the
mean6s.d.; *P,0.05; N.S., non-significant.
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et al., 2006), was also significantly reduced in RAW264.7 cells
without MRTF-A (supplementary material Fig. S3E,F). Taken

together, these data confirm our hypothesis that MRTF-A might
modulate LPS-induced pro-inflammatory transactivation by
altering the chromatin structure.

MRTF-A recruits the COMPASS proteins to activate LPS-
induced pro-inflammatory transcription
The complex associated with SET1 (COMPASS) has been shown
to mediate histone H3K4 methylation in mammals (Shilatifard,
2012). Having observed that MRTF-A deficiency was associated

Fig. 2. MRTF-A-knockout mice are less susceptible to DSS-induced colitis. Age- and sex-matched wild-type (WT) and MRTF-A knockout (KO) mice were
induced to develop colitis as described in Materials and Methods. (A) Changes in weight are shown. *P,0.05. (B) Colon length is shown. (C) Left, representative H&E
staining of colon. Black arrows, loss of intestinal crypt; yellow arrows, intestinal edema. Scale bar: 50 mm. Right, the histology score of H&E-stained colon sections is
shown. (D,E) Intestinal levels of pro-inflammatory mediators were measured by qPCR (D) and ELISA (E). All quantitative data show the mean6s.d.
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Fig. 3. See next page for legend.
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with the disappearance of H3K4me2 and H3K4me3 from the
promoter regions, we decided to examine whether MRTF-A could

recruit COMPASS to activate LPS-induced pro-inflammatory
transcription. Indeed, there was an interaction between MRTF-A
and COMPASS proteins as confirmed by immunoprecipitation

(Fig. 5A). In LPS-treated macrophages, we observed significant
recruitment of several COMPASS components, including ASH2,
WDR5 and SET1 (also known as SETD1A), with a similar kinetics

to the recruitment of MRTF-A and p65 (Fig. 5B). More
importantly, Re-ChIP data suggested that MRTF-A could form a
complex with ASH2 (Fig. 5C), WDR5 (Fig. 5D) and SET1
(Fig. 5E) on the gene promoters in response to LPS stimulation.

By contrast, depletion of MRTF-A significantly reduced the
binding of COMPASS proteins (Fig. 5F), indicating that MRTF-A
is responsible for COMPASS recruitment. Finally, coexpression of

MRTF-A and COMPASS proteins synergistically activated the kB
reporter activity (Fig. 5G).

Recently, Tang et al. have shown that there is a crosstalk

between histone acetylation (mediated by p300) and histone
methylation (mediated by COMPASS) in the regulation of p53-
dependent transcription (Tang et al., 2013). Combining this report

with our own observation that MRTF-A silencing was met with a
decrease in both histone acetylation and methylation, we were
prompted to propose that MRTF-A might be responsible for the
communication between p300 and COMPASS. Indeed, in

RAW264.7 cells treated with LPS, p300 could interact with
ASH2, WDR5 and SET1 on the promoters of several NF-kB
target genes; siRNA-mediated MRTF-A knockdown markedly

disrupted these interactions (supplementary material Fig. S3G).
Similarly, the interaction between p300 and COMPASS following
LPS treatment was less prominent in MRTF-A-deficient MEF

cells than in wild-type MEF cells (supplementary material Fig.
S3H).

Because NF-kB appeared to be essential for MRTF-A

occupancy on the pro-inflammatory promoters (Fig. 3D), a
reasonable question to ask would be whether NF-kB is equally
important for altering the chromatin structure and for COMPASS
recruitment. To text this hypothesis, we depleted the p65 subunit

of NF-kB using siRNA in RAW264.7 cells and then examined
the binding of modified histones and COMPASS proteins in ChIP
assays. Indeed, loss of p65 binding as a result of p65 knockdown

(Fig. 6A) suppressed the deposition of acetylated histones H3
(Fig. 6B) and H4 (Fig. 6C) and methylated H3K4 (Fig. 6D,E),
while simultaneously blocking the occupancies of ASH2

(Fig. 6F) and WDR5 (Fig. 6G) on the pro-inflammatory
promoters. Therefore, we conclude that MRTF-A might
enhance LPS-mediated pro-inflammatory transcription at least
in part by recruiting COMPASS to the NF-kB target promoters

and by coordinating the dialogue between p300 and COMPASS.

COMPASS is necessary for LPS-induced pro-inflammatory
transcription
Finally, we sought to determine the role of COMPASS in LPS-
induced pro-inflammatory transcription. Depletion of individual
components of COMPASS (Fig. 7A–C for knockdown
efficiencies) abrogated the induction of pro-inflammatory

mediators by LPS (Fig. 7D,E). In keeping with the
downregulation of transactivation, the binding of the p65
subunit of NF-kB to its target promoters was, to varied extent,

reduced in the absence of COMPASS proteins (Fig. 7F),
indicating that COMPASS is required for optimal chromatin
positioning of NF-kB.

DISCUSSION
Chromatin is the hub where different signals and inputs are being

integrated and processed to guide transcription in mammalian
cells. Recent investigations have given rise to the model
wherein NF-kB-dependent pro-inflammatory transcription is
spatiotemporally dictated by chromatin organization (Natoli,

2011). We provide new evidence here that MRTF-A is a co-factor
of NF-kB in macrophages, involved in regulating a histone H3K4
methyltransferase complex to mediate LPS-induced pro-

inflammatory transcription.
We find here that MRTF-A is both necessary and sufficient

to potentiate the transactivation of several pro-inflammatory

mediators in cultured cells. We also find that MRTF-A deficiency
attenuates inflammation in a mouse model of colitis, which is
consistent with several previous reports showing that MRTF-A

ablation alleviates pulmonary and cardiac injury and fibrosis
(Small et al., 2010; Zhou et al., 2013). This could potentially be
interpreted as impaired macrophage activation, supported by the
in vitro observation. Alternatively, our previous investigation has

assigned a role for MRTF-A in mediating the interaction between
endothelial cells and circulating innate immune cells (Fang
et al., 2011). Given that the recruitment of circulating immune

cells plays an important role in the pathogenesis of colitis (Sans
et al., 1999), the diminished inflammatory response in MRTF-A-
deficient mice could also be explained by a reduction in

leukocyte adhesion and/or chemotaxis. In addition, NF-kB has
been shown to program macrophage polarization, favoring a pro-
inflammatory M1 phenotype (Tugal et al., 2013). Mounting
evidence supports a role for MRTF-A in directing

differentiation/trans-differentiation in smooth muscle cells
(Hinson et al., 2007), skeletal muscle cells (Selvaraj and
Prywes, 2003), epithelial cells (Morita et al., 2007),

megakaryocytes (Gilles et al., 2009) and fibroblast cells
(Crider et al., 2011). We therefore speculate that MRTF-A
deficiency could potentially skew the macrophages to an anti-

inflammatory M2 phenotype. Clearly, further studies are
warranted to reconcile these different scenarios and delineate a
more definitive role for MRTF-A.

One major finding in this report is that the interplay between
MRTF-A and the p65 subunit of NF-kB appears to extend both
ways. MRTF-A depends on p65 to gain access to the chromatin,
while, at the same time, actively influencing the nuclear

accumulation and target-binding affinity of p65 (Fig. 3;
supplementary material Fig. S2). The ability of MRTF-A to
modulate the chromatin positioning of p65 could be easily

attributed to the fact that MRTF-A interacts with histone-
modifying enzymes (COMPASS, Fig. 5) and remodeling
proteins (Brg1 and Brm, supplementary material Fig. S3) and

in so doing creates a ‘friendly’ conformation of chromatin for p65

Fig. 3. LPS promotes the interplay between MRTF-A and the p65
subunit of NF-kB. (A) RAW264.7 cells were treated with LPS and harvested
at the indicated time points. ChIP assays were performed with the indicated
antibodies. (B) RAW264.7 cells were treated with LPS for 3 hours. Re-ChIP
assays were performed with the indicated antibodies (Ab). (C) RAW264.7
cells were transfected with control siRNA (SCR) or siRNA targeting p65
(sip65). mRNA and protein levels of p65 were examined by qPCR (left) and
western blotting (right), respectively. (D) RAW264.7 cells were transfected
with the indicated siRNAs, followed by treatment with LPS. ChIP assays
were performed with the p65 or MRTF-A antibodies, as indicated.
(E) RAW264.7 cells were transfected with the indicated siRNAs followed by
treatment with LPS. ChIP assays were performed with antibody against p65.
All quantitative data show the mean6s.d.; *P,0.05.
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Fig. 4. MRTF-A is responsible for active chromatin
structure in LPS-induced pro-inflammatory
transcription. (A,B) RAW264.7 cells were transfected
with control siRNA (SCR) or siRNA targeting MRTF-A
(siMftf-a), as indicated, followed by treatment with
LPS. ChIP assays were performed with antibody
against dimethylated H3K4 (A) or trimethylated H3K4
(B). (C,D) Wild-type or MRTF-A-knockout MEF cells
were treated with LPS for 3 hours and a ChIP assay
was performed with antibody against dimethylated
H3K4 (C) or trimethylated H3K4 (D). All data show the
mean6s.d.; *P,0.05.

RESEARCH ARTICLE Journal of Cell Science (2014) 127, 4645–4657 doi:10.1242/jcs.152314

4651



Jo
ur

na
l o

f C
el

l S
ci

en
ce

Fig. 5. MRTF-A recruits
COMPASS to the
promoters of pro-
inflammatory genes.
(A) Co-immunoprecipitation
assays were performed
using whole-cell lysates from
RAW264.7 cells, with the
indicated antibodies.
(B) RAW264.7 cells were
treated with LPS and
harvested at the indicated
time-points. ChIP assays
were performed with the
indicated antibodies.
(C–E) RAW264.7 cells were
treated with or without LPS
for 3 hours. Re-ChIP assays
were performed with the
indicated antibodies (Ab).
(F) RAW264.7 cells were
transfected with control
siRNA (SCR) or siRNA
targeting MRTF-A (siMrtf-a),
as indicated, followed by
treatment with LPS. ChIP
assays were performed with
the indicated antibodies.
(G) A 2xkB reporter
construct was transfected
into RAW264.7 cells with the
indicated expression
constructs, followed by
treatment with LPS. Data
show relative luciferase units
(RLU). All quantitative data
show the mean6s.d.;
*P,0.05.
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to bind. This model is further supported by our previous

observation that silencing of Brg1 or Brm impedes the binding
of p65 to the promoters of adhesion molecules (Fang et al., 2013)
and our current observation that silencing the COMPASS

complex disrupts the binding kinetics of p65 on the promoters
of pro-inflammatory mediators (Fig. 7). By contrast, the
depletion of p65 negatively impacted the binding of the

COMPASS complex and the deposition of acetylated and

methylated histones (Fig. 6). It is of particular importance to
note that our data also suggest that MRTF-A could directly
regulate the nuclear localization of p65. Thus, these data, when

taken together, seem to argue that epigenetic modulation of pro-
inflammatory transcription takes place in a feed-forward manner
– co-factors (e.g. MRTF-A) facilitate the translocation of

Fig. 6. The p65 subunit of NF-kB is necessary for maintaining an active chromatin structure at pro-inflammatory genes in response to LPS
stimulation. (A–G) RAW264.7 cells were transfected with control siRNA (SCR) or siRNA targeting p65 (sip65), as indicated, followed by treatment with LPS.
ChIP assays were performed with antibodies against p65 (A), acetylated H3 (B), acetylated H4 (C), dimethylated H3K4 (D), trimethylated H3K4 (E), Ash2 (F) and
Wdr5 (G). All data show the mean6s.d.; *P,0.05.
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Fig. 7. See next page for legend.
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sequence-specific transcription factors (e.g. p65). The latter then

recruit co-factors to DNA in a context-dependent manner.
Consequently, co-factors enlist histone-modifying enzymes and
chromatin remodelers to reorganize the chromatin structure, thus

allowing more transcription factors to bind to chromatin (Natoli,
2009).

Our data also implicate MRTF-A as a coordinator of the

crosstalk between histone acetyltransferases (HATs) and HMTs
(supplementary material Fig. S3). It is not entirely clear at this
point how this is achieved. The most straightforward explanation

is that MRTF-A interacts with p300 and COMPASS and, as such,
could act as a mediator. It is, however, equally plausible that
MRTF-A might rely on other means to broker this dialogue. For
instance, both HATs and HMTs are known to prefer certain

chromatin structure to exert their effects (Holbert et al., 2007;
Krajewski and Reese, 2010). Therefore, MRTF-A could,
independently of its interaction with COMPASS and p300,

recruit Brg1 or Brm to reorganize the chromatin to establish a
suitable chromatin environment for HATs and HMTs to engage
on. Hopefully ChIP-seq analyses of the binding patterns of

MRTF-A, Brg1, Brm, COMPASS and p300 in the context of
LPS-induced pro-inflammatory conditions would shed more light
on the mechanism whereby MRTF-A helps different histone-
modifying enzymes to navigate the genome.

An interesting observation in the present study is that both
primary response genes (e.g. Tnf-a) and secondary response genes
(e.g. Il-6) seem to be affected by the NF-kB–MRTF-A–COMPASS

complex. However, cautions need to be taken in interpreting these
data. Chromatin structure is determined cumulatively by the
presence of different histone modifications, remodeling proteins

and histone variants. Although the COMPASS complex might bind
to both early- and late-response genes, the kinetics are quite different
(Fig. 5). In addition, the presence of COMPASS does not

necessarily mean that it is the rate-limiting factor for the
transcription of its target genes. Instead, its role needs to evaluated
in the context of other histone-modifying enzymes (e.g. p300) and
chromatin remodelers (e.g. Brg1) that can also be recruited by

MRTF-A. Further complicating the role of COMPASS in the current
model is the fact that the action of COMPASS can be antagonized by
demethylases, which are not examined in the current report but are

nonetheless involved in NF-kB-dependent transcription (Fuchs,
2013). Again, more investigations are needed to more clearly define
the role of COMPASS in pro-inflammatory transcription.

In essence, our report indicates that the NF-kB–MRTF-A
interaction is responsible for the epigenetic regulation of pro-
inflammatory transcription induced by LPS (Fig. 7G). However,

it is paramount not to overstate this conclusion, because there are
still several unsolved issues regarding the current model. First, it

cannot be ignored at this point that other transcription factors (e.g.
SRF and AP-1) might also participate in this process by

modulating chromatin structure and/or influencing the access of
NF-kB–MRTF-A to chromatin. In fact, our previous report has
suggested such a role for SRF in the regulation of ICAM-1
activation in endothelial cells (Fang et al., 2011). Second, the

current study focuses entirely on the proximal promoter region,
whereas the role of distal regulatory elements is left unaddressed.
Numerous investigations have established that epigenetic events

taking place at enhancers are key to inflammation-related
transcription (Arvey et al., 2014; Ghisletti et al., 2010; Li et al.,
2013). It is possible that different isoforms of MRTF-A

might interact with different sites to drive pro-inflammatory
transcription. Finally, MRTF-A activity is impacted by the
reorganization of actin filaments as a result of RhoA activation

(Olson and Nordheim, 2010). Several reports have suggested that
RhoA signaling might be transmitted to the nucleus to influence
differential recruitment of epigenetic factors and gene expression
(Helms et al., 2007; Kim et al., 2005; Ling and Lobie, 2004).

The question as to whether MRTF-A serves as the moderator
linking cytoskeletal dynamics and epigenetic regulation of pro-
inflammatory genes is certainly worth further investigation.

In summary, our data, as reported here, reaffirm the role of
MRTF-A as a key epigenetic orchestrator regulating LPS-
induced NF-kB-dependent pro-inflammatory transcription in

macrophages. A lingering question of the current report is
whether the proposed model is cell-specific (i.e. restricted to
macrophages). MRTF-A has been implicated in the regulation of

smooth muscle cell phenotypic modulation and epithelial-to-
mesenchymal transition (EMT), both of which involve extensive
chromatin reorganization of MRTF-A target genes (Alexander
and Owens, 2012; Tam and Weinberg, 2013). Tissue-specific

animal models of MRTF-A deficiency would help clarify this
issue and enable us to better understand the cell-autonomous role
of MRTF-A for the ultimate goal of rationalized development of

MRTF-A-targeting therapeutic strategies.

MATERIALS AND METHODS
Cell culture
Murine RAW264.7 macrophages (ATCC) and human THP-1 monocytic/

macrophage-like cells (ATCC) were maintained in DMEM supplemented

with 10% FBS. Murine bone-marrow-derived macrophages (BMDM)

were isolated and cultured as described previously (Xu et al., 2012).

Mouse embryonic fibroblast (MEF) cells were isolated from wild-type

and MRTF-A-knockout mice as described previously (Sun et al., 2006).

LPS was purchased from Sigma.

Plasmids, transfection and reporter assay
Expression constructs for MRTF-A (Cen et al., 2003), ASH2, WDR5 and

SET1 (Wu et al., 2008), as well as the kB reporter (Rosette and Karin,

1995) have been described previously. siRNA sequences are listed in

supplementary material Table S1. Transient transfections were performed

with Lipofectamine LTX (Invitrogen). An EGFP expression construct

was included in each well to monitor transfection efficiency. Luciferase

activities were assayed at 24–48 hours after transfection using a

luciferase reporter assay system (Promega). Luciferase activities were

normalized to both protein concentration and GFP fluorescence.

Experiments were routinely performed in triplicate wells and repeated

three times.

Animal studies
All animal protocols were approved by the intramural Ethics Committee

on Animal Studies and performed in accordance with the National

Institutes of Health Guidelines for the Care and Use of Laboratory

Fig. 7. COMPASS is necessary for LPS-induced pro-inflammatory
transcription in macrophages. (A–C) RAW264.7 cells were transfected
with control siRNA (SCR) or siRNA targeting Ash2 (siAsh2), Wdr5 (siWdr5)
or Set1 (siSet1). mRNA and protein levels of Ash2 (A), Wdr5 (B) and Set1
(C) were examined by qPCR and Western. (D–F) RAW264.7 cells were
transfected with the indicated siRNAs followed by treatment with LPS. mRNA
(D) and protein (E) levels of pro-inflammatory mediators were examined by
qPCR and ELISA, respectively. (F) ChIP assay was performed with antibody
against p65. All quantitative data show the mean6s.d.; *P,0.05. (G) A
schematic model depicting LPS-induced MRTF-A-dependent epigenetic
regulation of pro-inflammatory transcription. TLR4, Toll-like receptor 4; IKK,
inhibitor of nuclear factor kappa-B kinase; SRF, serum response factor;
TRAM, TRIF-related adaptor molecule; AP-1, activator protein 1; MyD88,
myeloid differentiation factor 88; Ub, ubiquitylation.
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Animals. MRTF-A-deficient mice have been described previously (Sun

et al., 2006). To induce colitis, 6–8-week-old MRTF-A-deficient mice

and their littermates were given 2% (w/v) DSS (MP Biomedicals) in their

drinking water for 7 days.

Protein extraction, immunoprecipitation, western blotting and
gel shift assay
Whole-cell lysates were obtained by resuspending cell pellets in RIPA

buffer with freshly added protease inhibitor tablet (Roche). Nuclear

proteins were prepared with the NE-PER Kit (Pierce) following the

manufacturer’s recommendations. Specific antibodies or pre-immune

IgG were added to and incubated with cell lysates overnight before the

solutions were incubated with Protein A/G-plus Agarose beads (Santa

Cruz). Precipitated immune complexes were released by boiling with 16
SDS electrophoresis sample buffer. Western analyses were performed

with antibodies against b-actin (Sigma), MRTF-A, p65, lamin B, a-

tubulin (Santa Cruz), ASH2, WDR5 and SET1 (Bethyl Laboratories).

Electrophoresis mobility shift assay (EMSA) was performed essentially

as described previously (Yang et al., 2013).

ChIP and Re-ChIP assay
ChIP assays were performed essentially as described previously (Chen et al.,

2013; Fang et al., 2013; Tian et al., 2013). Aliquots of lysates containing

200 mg of nuclear protein were used for each immunoprecipitation reaction

with antibodies against MKL1, p300, p65, Brg1, Brm (Santa Cruz), ASH2,

WDR5, SET1 (Bethyl Laboratories), acetylated H3, acetylated H4, acetylated

H3K9, acetylated H3K14, acetylated H3K18, acetylated H3K27, dimethylated

H3K4 and trimethylated H3K4 (Millipore/Upstate). For Re-ChIP, immune

complexes were eluted with the elution buffer (1% SDS, 100 mM NaCO3),

diluted with the Re-ChIP buffer (1% Triton X-100, 2 mM EDTA, 150 mM

NaCl, 20 mM Tris-HCl pH 8.1), and subjected to immunoprecipitation with a

second antibody of interest. Precipitated genomic DNA was amplified by real-

time PCR with the primers listed in supplementary material Table S2.

RNA extraction and real-time PCR
RNA was extracted using an RNeasy RNA isolation kit (Qiagen).

Reverse transcriptase reactions were performed using a SuperScript First-

strand synthesis system (Invitrogen). Real-time PCR reactions were

performed on an ABI STEPONE Plus (Life Tech) with primers and

Taqman probes purchased from Applied Biosystems.

Histology
Immunohistochemistry was performed as described previously (Xu et al.,

2011). Paraffin sections of colon were processed by standard techniques.

Longitudinal sections of 5-mm thick were stained with hematoxylin and

eosin (H&E). Pictures were taken using an Olympus IX-70 microscope

and examined by two independent pathologists using a scoring system as

described previously (Zaki et al., 2011).

Immunofluorescence microscopy
Formaldehyde-fixed cells were blocked with 5% bovine serum albumin

(BSA), and incubated with the indicated primary antibodies overnight.

After several washes with PBS, cells were incubated with FITC-labeled

secondary antibodies (Jackson) for 30 minutes. DAPI (Sigma) was

added and incubated with cells for 5 minutes prior to observation.

Immunofluorescence was visualized on a confocal microscope (LSM

710, Zeiss). For quantification, 30 cells were counted in triplicate culture

dishes for each condition.

ELISA
Supernatants containing pro-inflammatory mediators were collected from

cultured cells or tissue lysates and ELISA was performed to measure IL-

1, IL-6, MCP-1 and TNF-a using commercially available kits (Ray

Biotech, Norcross, GA).

Statistical analysis
Two-tailed t-test (for experiments involving two groups) or one-way

ANOVA with post-hoc Scheffe analyses (for experiments involving at

least three groups) were performed using an SPSS package. P values

smaller than 0.05 were considered statistically significant.
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Fig.S1: (A) A 2xB reporter construct was transfected into RAW264.7 cells with or without 
MRTF-A/MRTF-B followed by treatment with LPS. Data are expressed RLU. (B) A 2xB 
reporter construct was transfected into RAW264.7 cells with or without dominant negative 
(DN) MRTF-A followed by treatment with LPS. Luciferase activities are expressed as RLU. 
(C, D) MRTF-A DN construct was transfected into RAW264.7 cells followed by treatment 
with LPS. Message RNA (C) and protein (D) levels of pro-inflammatory mediators were 
examined by qPCR and ELISA. (E) RAW264.7 cells were treated with LPS and harvested at 
indicated time points for cytoplasmic/nuclear fractionation. Western blotting was performed 
with indicated antibodies. (F, G) MEFs from wild type or MRTF-A deficient mice were 
treated with or without LPS for 3 hours. Message RNA (F) and protein (G) levels of 
pro-inflammatory mediators were examined by qPCR and ELISA. (H) A 2xB reporter 
construct was transfected into WT or MRTF-A KO MEF cells with or without MRTF-A 
followed by treatment with LPS. Data are expressed RLU. *, p＜.05. All quantitative data 
show the mean±S.D. 
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Fig.S2: (A) WT or MRTF-A KO MEF cells were treated with LPS for 3 hours and ChIP 
assay was performed with anti-p65. (B) WT or MRTF-A KO MEF cells were treated with 
LPS for 1 hour and immunofluorescence staining was performed with anti-p65. Scale bar, 
20m (C) RAW264.7 cells were transfected with indicated siRNAs followed by treatment 
with LPS. Gel shift assay was performed as described under Methods. *, p＜.05. All 
quantitative data show the mean±S.D. 
  
 
  

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80

0

10

20

30

40

50

60

70

80
LPS
LPS
LPS
LPS

%
 c

el
ls

 w
it

h
 n

u
cl

ea
r 

p
6

5

KOWT



Mrtf-a-/-
Mrtf-a+/+

Mrtf-a-/-
Mrtf-a+/+

0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

8

9

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

LPS    LPS    LPS    LPS   

R
e

la
ti

v
e

 e
n

ri
c

h
m

e
n

t

R
e

la
ti

ve
 e

n
ri

c
h

m
e

n
t

R
el

at
iv

e
 e

n
ri

ch
m

en
t

R
e

la
ti

v
e 

e
n

ri
c

h
m

e
n

t

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

LPS    LPS    LPS    LPS   

R
e

la
ti

v
e

 e
n

ri
c

h
m

e
n

t

R
e

la
ti

ve
 e

n
ri

c
h

m
e

n
t

R
el

at
iv

e
 e

n
ri

ch
m

en
t

R
e

la
ti

v
e 

e
n

ri
c

h
m

e
n

t

A

* * * *
Il-1b ChIP                         Il-6 ChIP                     Mcp1 ChIP                      Tnf-a ChIP

p65

LPS (h)      0       1       3       0       1       3      
siMrtf-a SCR

NF-B-DNA complex

Free probe

C

WT MEF

Mrtf-a-/- MEF

LPS

LPS

LPS

LPS

B DAPI                 p65                  Merge

Journal of Cell Science | Supplementary Material



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

8

9

10

LPS    LPS    LPS    LPS   

R
el

at
iv

e 
en

ri
ch

m
en

t

R
el

at
iv

e 
e

n
ri

ch
m

en
t

R
el

at
iv

e 
e

n
ri

ch
m

en
t

R
el

at
iv

e 
en

ri
ch

m
e

n
t

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

0

0.5

1

1.5

2

2.5

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

LPS    LPS    LPS    LPS   

R
el

at
iv

e 
en

ri
ch

m
en

t

R
el

at
iv

e 
e

n
ri

ch
m

en
t

R
el

at
iv

e 
e

n
ri

ch
m

en
t

R
el

at
iv

e 
en

ri
ch

m
e

n
t

AcH3A
siMrtf-a
SCR
siMrtf-a
SCR

*
*

* *

Il-1b ChIP                    Il-6 ChIP                   Mcp1 ChIP                 Tnf-a ChIP

0

5

10

15

20

25

30

35

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.5

1

1.5

2

2.5

3

3.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

LPS    LPS    LPS    LPS   

R
el

a
ti

v
e 

en
ri

ch
m

e
n

t

R
el

at
iv

e 
en

ri
ch

m
en

t

R
el

at
iv

e 
en

ri
ch

m
en

t

R
e

la
ti

ve
 e

n
ri

c
h

m
en

t

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

LPS    LPS    LPS    LPS   

R
el

a
ti

v
e 

en
ri

ch
m

e
n

t

R
el

at
iv

e 
en

ri
ch

m
en

t

R
el

at
iv

e 
en

ri
ch

m
en

t

R
e

la
ti

ve
 e

n
ri

c
h

m
en

t

AcH4B
siMrtf-a
SCR
siMrtf-a
SCR

Il-1b ChIP                    Il-6 ChIP                   Mcp1 ChIP                 Tnf-a ChIP

* *

**

0

1

2

3

4

5

6

7

8

0

0.5

1

1.5

2

2.5

3

3.5

4

0

1

2

3

4

5

6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Mrtf-a-/-
Mrtf-a+/+ AcH3C

LPS    LPS    LPS    LPS   

R
e

la
ti

ve
 e

n
ri

ch
m

e
n

t

R
e

la
ti

ve
 e

n
ri

ch
m

e
n

t

R
e

la
ti

ve
 e

n
ri

c
h

m
e

n
t

R
el

at
iv

e
 e

n
ri

c
h

m
en

t

Il-1b ChIP                     Il-6 ChIP                       Mcp1 ChIP                      Tnf-a ChIP

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.5

1

1.5

2

2.5

3

3.5

4

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Mrtf-a-/-
Mrtf-a+/+

Mrtf-a-/-
Mrtf-a+/+ AcH3C

LPS    LPS    LPS    LPS   

R
e

la
ti

ve
 e

n
ri

ch
m

e
n

t

R
e

la
ti

ve
 e

n
ri

ch
m

e
n

t

R
e

la
ti

ve
 e

n
ri

c
h

m
e

n
t

R
el

at
iv

e
 e

n
ri

c
h

m
en

t

Il-1b ChIP                     Il-6 ChIP                       Mcp1 ChIP                      Tnf-a ChIP

* *
*

*

0

1

2

3

4

5

6

7

8

9

10

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Mrtf-a-/-
Mrtf-a+/+ AcH4D

LPS    LPS    LPS    LPS   

R
el

at
iv

e 
en

ri
c

h
m

e
n

t

R
el

at
iv

e 
e

n
ri

ch
m

en
t

R
el

at
iv

e 
en

ri
c

h
m

en
t

R
el

at
iv

e 
e

n
ri

ch
m

en
t

Il-1b ChIP                          Il-6 ChIP                     Mcp1 ChIP                     Tnf-a ChIP

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Mrtf-a-/-
Mrtf-a+/+

Mrtf-a-/-
Mrtf-a+/+ AcH4D

LPS    LPS    LPS    LPS   

R
el

at
iv

e 
en

ri
c

h
m

e
n

t

R
el

at
iv

e 
e

n
ri

ch
m

en
t

R
el

at
iv

e 
en

ri
c

h
m

en
t

R
el

at
iv

e 
e

n
ri

ch
m

en
t

Il-1b ChIP                          Il-6 ChIP                     Mcp1 ChIP                     Tnf-a ChIP

* *
* *

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

0

1

2

3

4

5

6

7

8

R
e

la
ti

v
e 

e
n

ri
ch

m
en

t

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

R
el

at
iv

e 
e

n
ri

c
h

m
e

n
t

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

0

0.5

1

1.5

2

2.5

3

3.5

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0

1

2

3

4

5

6

R
el

at
iv

e
 e

n
ri

c
h

m
e

n
t

R
el

at
iv

e
 e

n
ri

c
h

m
e

n
t

LPS    LPS    LPS    LPS   

Il-1b ChIP Il-6 ChIP                     Mcp1 ChIP                   Tnf-a ChIP

E
Brg1

siMrtf-a
SCR
siMrtf-a
SCR

* *
*

*

Journal of Cell Science | Supplementary Material



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.S3: (A, B) RAW264.7 cells were transfected with indicated siRNAs followed by 
treatment with LPS. ChIP assays were performed with anti-acetyl H3 (A) or anti-acetyl H4 
(B). (C, D) WT or MRTF-A KO MEF cells were treated with LPS for 3 hours and ChIP 
assay was performed with anti-acetyl H3 (C) or anti-acetyl H4 (D). (E, F) RAW264.7 cells 
were transfected with indicated siRNAs followed by treatment with LPS. ChIP assays were 
performed with anti-Brg1 (E) or anti-Brm (F). (G) RAW264.7 cells were transfected with 
indicated siRNAs followed by treatment with LPS. Re-ChIP assays were performed with 
indicated antibodies. (H) WT or MRTF-A KO MEF cells were treated with LPS for 3 hours. 
Re-ChIP assays were performed with indicated antibodies. *, p＜.05. All quantitative data 
show the mean±S.D. 
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Table 1: siRNA sequences 
 
Mouse Mrtf-a CATGGAGCTGGTGGAGAAGAA 

Mouse p65 UGUGUCCAUUGUCUCACUC 

Mouse Ash2 CGAGTCTTGTTAGCCCTACAT 

Mouse Wdr5 GCCGTTCATTTCAACCGTGAT 

Mouse Set1 CAGCATATTATGAAAGCTGGA 

 
Table 2: ChIP Real-time qPCR primers 

 

Mouse Il-1 Forward: 5’-AACGGAGGAGCCGTTGATATG -3’ 

Reverse: 5’-AGAGCATCTTCCTAATGC-3’ 

Mouse Il-1 intron Forward: 5’-AACGTCTGTGTCCGTGTG-3’ 

Reverse: 5’-ACTCTATCCAGGGATTTAG-3’ 

Mouse Il-6 Forward: 5’- AGCTCATTCTGCTCTG-3’ 

Reverse: 5’-AGATTGCACAATGTGACGTCG-3’ 

Mouse Il-6 intron Forward: 5’-AAGGTCAGACTAGACTGTG-3’ 

Reverse: 5’-ATCCCCACCTAAGAACGAATAG-3’ 

Mouse Mcp-1 Forward: 5’-CGTGGGAAAATCCAGTATTTTAATG-3’ 

Reverse: 5’-CAAATGTATCACCATGCAAATATGC-3’ 

Mouse Tnf Forward: 5’-TGAGTTGATGTACCGCAGTCAAGA-3’ 

Reverse: 5’-AGAGCAGCTTGAGAGTTGGGAAGT-3’ 

Mouse Cxcl2 Forward: 5’-CAACAGTGTACTTACGCAGACG-3’ 

Reverse: 5’-CTAGCTGCCTGCCTCATTCTAC-3’ 
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