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Deletion of the titin N2B region accelerates myofibrillar force
development but does not alter relaxation kinetics

Fatiha Elhamine1, Michael H. Radke2, Gabriele Pfitzer1, Henk Granzier3, Michael Gotthardt2 and Robert Stehle1,*

ABSTRACT

Cardiac titin is the main determinant of sarcomere stiffness during

diastolic relaxation. To explore whether titin stiffness affects the

kinetics of cardiac myofibrillar contraction and relaxation, we used

subcellular myofibrils from the left ventricles of homozygous and

heterozygous N2B-knockout mice which express truncated cardiac

titins lacking the unique elastic N2B region. Compared with

myofibrils from wild-type mice, myofibrils from knockout and

heterozygous mice exhibit increased passive myofibrillar stiffness.

To determine the kinetics of Ca2+-induced force development (rate

constant kACT), myofibrils from knockout, heterozygous and wild-

type mice were stretched to the same sarcomere length (2.3 mm)

and rapidly activated with Ca2+. Additionally, mechanically induced

force-redevelopment kinetics (rate constant kTR) were determined

by slackening and re-stretching myofibrils during Ca2+-mediated

activation. Myofibrils from knockout mice exhibited significantly

higher kACT, kTR and maximum Ca2+-activated tension than

myofibrils from wild-type mice. By contrast, the kinetic parameters

of biphasic force relaxation induced by rapidly reducing [Ca2+]

were not significantly different among the three genotypes. These

results indicate that increased titin stiffness promotes myocardial

contraction by accelerating the formation of force-generating cross-

bridges without decelerating relaxation.

KEY WORDS: Crossbridge kinetics, Muscle relaxation, Passive

tension, Titin genotype effects, Diastolic dysfunction

INTRODUCTION
Titin is a giant protein in striated muscle that spans the half

sarcomere from the Z-disc to the M-band. The I-band region of

titin contains a multifunctional spring that determines the elastic

properties of the passive sarcomere. The passive tension of titin is

important for centering the A-band in the middle of the sarcomere

(Horowits and Podolsky, 1987). When the cardiac ventricle is

filled in diastole, the sarcomeres get stretched. Because the

compliant I-band region of titin takes up most of the strain, when

the cross-bridges are detached, titin is the main determinant

of passive stiffness of the sarcomere. The extensible I-band

region of titin contains three types of viscoelastic elements:

(1) the tandem Ig segments composed of serially linked

immunoglobulin-like (Ig-like) domains, (2) the PEVK region,

rich in proline (P), glutamate (E), valine (V), and lysine (K) and

(3) the N2B region (Granzier and Labeit, 2002; Granzier

and Labeit, 2004; Trombitás et al., 1999). Whereas the Ig-like

domains and the PEVK region are found in both cardiac and

skeletal muscle, the unique N2B region is exclusively expressed

in cardiac muscle (Linke et al., 1999).

The high elastic and low viscous modulus of the N2B region

enables the cardiac sarcomere to achieve a high efficiency during

repeated contraction-relaxation work loop cycles (Nedrud et al.,

2011). The elasticity of the N2B region can be modulated

by PKA- or PKG-mediated phosphorylation to adapt to the

mechanical needs (Krüger et al., 2009; Yamasaki et al., 2002)

Recently, we have generated a mouse model deleting exon 49,

which encodes the N2B region and leaves the remainder of the

gene encoding titin intact. The homozygous N2B-knockout mice

exhibit diastolic dysfunction with increased diastolic wall stress

and passive myocyte stiffness. Passive skinned myocytes of N2B-

knockout mice are threefold stiffer than those of wild-type mice,

which can be explained by the increased strain of the remaining I-

band region of titin (Radke et al., 2007). The knockout mice have

been used to test the impact of titin stiffness and titin-based

passive tension on length-dependent activation (LDA), i.e. the

increase in the Ca2+ sensitivity of force development due to

sarcomere stretch that provides the basis of the Frank-Starling

mechanism of the heart (Lee et al., 2013; Lee et al., 2010). These

studies revealed that LDA is enhanced in the knockout mice

compared with LDA of wild-type mice and that LDA correlates

under various conditions with titin-based passive tension.

It is not known whether titin affects cross-bridge kinetics

during Ca2+-induced myocardial contraction and relaxation. A

recent study investigated the effect of altered titin stiffness on

force kinetics using myofibrils of skeletal muscle from rats

harboring a mutation of the multifunctional splicing factor

RBM20 that resulted in longer more-compliant titins (Guo

et al., 2012; Mateja et al., 2013). This revealed a slowed Ca2+-

induced force development and reduced active force (Mateja

et al., 2013). Cardiac trabeculae from the same mutant rats exhibit

reduced passive stiffness, slowed tension redevelopment, reduced

active tension and impaired LDA (Patel et al., 2012). However,

previous studies of myocardial preparations from several species,

including mouse, rat and human, provided evidence that turnover

kinetics of cross-bridges are unaffected by LDA and by changes

of sarcomere length that alter passive tension (Edes et al., 2007;

Wannenburg et al., 2000; Wannenburg et al., 1997). This suggests

that, despite the increased strain of titin, the enhanced force at

greater sarcomere length results from the recruitment of new

cross-bridges rather than from rate-modulation of the transition of

cross-bridges to force-generating states. Thus, it remains unclear

whether the mechanical properties of titin affect cross-bridge
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turnover kinetics and force kinetics of the myofibrillar
contraction-relaxation cycle in the heart.

In particular, it is unknown whether the kinetics of cardiac
myofibrillar relaxation are affected by increased titin-based
passive tension. Knowledge of the latter is important to better
understand the sarcomeric mechanisms causing diastolic

dysfunction. Both the passive tension of titin and the active
tension of cross-bridges can elevate sarcomere tension during
relaxation and thus impair ventricular filling. Incomplete

inactivation, either due to an incomplete reduction in [Ca2+] to
fully relaxing concentrations or due to an incomplete switching
off of the regulatory troponin-tropomyosin system, causes

residual active tension and slows relaxation (Iorga et al., 2008;
Kruger et al., 2005; Stehle et al., 2009). Here, we use the N2B-
knockout mice as a genetic model of diastolic dysfunction to

investigate whether increased titin-based stiffness also slows
down cardiac myofibrillar relaxation. At sarcomere lengths above
the slack length, titin-based passive stiffness is expected to slow
relaxation. We therefore explored the effect of titin stiffness on

relaxation kinetics in cardiac myofibrils by setting the sarcomere
length at relaxation to 2.3 mm, where titin exerts a substantial
passive tension and restoring forces do not apply. Cardiac

myofibrils rapidly equilibrate with the solution and this enables
the analysis of force kinetics induced by rapid defined changes of
[Ca2+]. By comparing force kinetics of cardiac myofibrillar

bundles from the left ventricles of homozygous knockout and
heterozygous mice with those of wild-type mice, we find that the
increased titin stiffness in knockout and heterozygous mice does

not affect relaxation kinetics, whereas it enhances active
maximum force and force-development kinetics.

RESULTS
Three different genotypes were explored: homozygous wild-type
mice (n56) expressing full-length titin, homozygous knockout
mice (n54) lacking exon 49, which encodes the compliant N2B

region of titin, and heterozygous mice (n54), i.e. mice lacking
exon 49 only from one of the two alleles. Titin isoform expression
in the three genotypes was quantified by densitometry of 1%

vertical SDS-agarose gels loaded with left ventricular samples

from 5–7-month-old sex-matched mice. Compared with the wild-
type, in the knockout and heterozygous mice the N2B and N2BA

titin isoforms exhibited a higher mobility, confirming the
expression of truncated N2B (tN2B) and truncated N2BA
(tN2BA) isoforms (Fig. 1A). Interestingly, samples from
heterozygous mice contained significantly more (P50.01)

truncated (tN2B+tN2BA) than full-length (N2B+N2BA) titins.
Instead of the 50% expected for the heterozygous genotype, the
truncated titins amounted to 5562% (n57; 6s.e.m.) of total titin.

In addition, we tested whether titin remains stable during
the preparation of the myofibrils. Subcellular myofibrils were
prepared as described in Materials and Methods for the mechanical

experiments, and titin isoform expression was determined by gel
electrophoresis (supplementary material Fig. S1). The content of
degraded titin in myofibrils was 11–12% for all three genotypes and

was not significantly different to that found in myocardial samples,
indicating the stability of titin during the preparation of myofibrils.

Effects of the N2B deletion on the passive-tension–
sarcomere-length relationship of myofibrils
We tested whether the N2B deletion leads to increased passive
stiffness in myofibril preparations, as shown in previous studies

on cardiomyocytes (Radke et al., 2007). To do this, we stretched
myofibrils at pCa (2log[Ca2+]) 8 to different lengths. After
remaining at the stretched length for 30 s, an image of the

myofibril was taken to evaluate the actual sarcomere length,
and the passive force of the myofibril was measured. Force
was normalized to the cross-sectional area (CSA) calculated

from myofibrillar diameter and passive tension (passive
tension5passive force/CSA) and was plotted against the actual
sarcomere length. The resulting passive-tension–sarcomere-
length relationships of the three genotypes are shown in

Fig. 1B. In line with previous findings on skinned
cardiomyocytes (Radke et al., 2007), at a sarcomere length of
.2.1 mm, myofibrils from knockout mice exhibited ,2.6-fold

higher passive tension than myofibrils from the wild-type
controls. The newly explored heterozygous genotype in this
study yielded a myofibrillar passive tension that was ,2.1-fold

higher than that of the wild-type myofibrils and was more similar

Fig. 1. Expression of truncated titin in heterozygous and knockout mice, and its effects on the passive stiffness of cardiac myofibrils. (A) 1% SDS-
agarose gel electrophoresis of myocardium from the left ventricles of wild-type (WT), heterozygous (HET) and knockout (KO) mice. The higher mobility of the two
titin bands of samples from knockout mice is in agreement with the lack of the N2B region. tN2BA and tN2B indicate the truncated N2BA and N2B
isoforms of titin, respectively. T2 and tT2 indicate a titin degradation product. (B) The effect of genotype on the relationship between passive tension and
sarcomere length. Curves show averaged relationships from 25 wild-type myofibrils, 12 heterozygous myofibrils and 18 knockout myofibrils. For each myofibril, a
passive-tension–sarcomere-length relationship was determined and then the data from all myofibrils of the same genotype were grouped into 0.1-mm intervals of
sarcomere length and averaged. The averaged data for each genotype is fitted to the worm-like chain model of entropic elasticity.

RESEARCH ARTICLE Journal of Cell Science (2014) 127, 3666–3674 doi:10.1242/jcs.141796

3667

http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.141796/-/DC1


Jo
ur

na
l o

f C
el

l S
ci

en
ce

to the passive tension of the samples from knockout mice. This
finding might, in part, be explained by the higher amount of

truncated titin compared with full-length titin in the myofibrils of
heterozygous mice (see Discussion).

Effects of N2B deletion on myofibrillar force kinetics
To explore the effect of titin stiffness on the kinetics of
contraction and relaxation, myofibrils from the left ventricles of
wild-type, heterozygous and knockout mice were mounted in a

setup between a micro-needle and an atomic-force microscope
cantilever. In this setup, a rapid solution change that is based on
switching between two microflows is applied to the myofibril. By

changing rapidly (within ,5 ms) from a flow of low [Ca2+]
(pCa 8) to high [Ca2+] (pCa 4.6), or vice versa (Stehle et al.,
2002b), the myofibril can be rapidly activated and relaxed. The

protocol used for measuring the active force and force kinetic
parameters is illustrated in Fig. 2 (for the non-normalized force
transients see supplementary material Fig. S2). The observed
force kinetics following a step increase of [Ca2+] from pCa 8 to

pCa 4.6 is consistent with previous reports for cardiac myofibrils
of murine left ventricles (Stehle et al., 2002b), revealing a mono-
exponential increase in force (starting at t50.5 s in Fig. 2A) with

a rate constant kACT. ANOVA analysis revealed a highly
significant effect (P,0.001) of the genotype on kACT. Pairwise
post-tests yielded highly significantly (P,0.001) elevated kACT

values for myofibrils from knockout compared with wild-type
mice (Fig. 3A). Accordingly, maximum force (Fmax) per CSA of
the myofibrils tested by ANOVA was genotype-dependent

(P,0.01), and myofibrils of knockout but not of those from
heterozygous mice exhibited a significantly higher Fmax/CSA (i.e.
maximum tension) compared with myofibrils from wild-type
mice in post-test analysis (Fig. 3B). The CSA of the myofibril

bundles was not different between the three genotypes
(supplementary material Fig. S3A), which confirms that the
higher tension of myofibrils from knockout compared with wild-

type mice was not related to differences in the geometry of the
myofibrils that were selected for the force measurements.
Furthermore, the difference in maximum tension between

myofibrils from knockout and wild-type mice was not due to

the higher passive tension of myofibrils from knockout mice. This
is based on our finding that the difference was still significant

after subtracting the passive tension from the maximum tension
(supplementary material Fig. S3B), indicating that also the active
component of tension (i.e. the Ca2+-induced increase in tension)
was 22% higher for myofibrils from knockout versus wild-type

mice. Interestingly, as indicated by the rundown of force, i.e. by
the loss of force when myofibrils are subjected to repeated
contraction-relaxation cycles, there was a trend that myofibrils

from knockout and heterozygous mice were more stable than
those from wild-type animals, although the differences were not
significant (supplementary material Fig. S4). In summary, at

maximum Ca2+-mediated activation, myofibrils containing only
titins lacking the N2B region exhibit significantly faster kinetics
of Ca2+-induced force development and develop higher active

tension than myofibrils containing full-length titin.
Contraction kinetics were further explored by inducing force

development using a mechanical release-restretch maneuver
applied to the myofibril while the [Ca2+] was kept constant at

pCa 4.6. Following the restretch (at t51.5 s in Fig. 2), the force
redevelops in a single exponential manner yielding the rate
constant of tension redevelopment kTR. The value kTR reflects

cross-bridge cycling kinetics, i.e. the sum of apparent rate
constants limiting the forward turnover of cross-bridges from
non-force-generating to force-generating states (fapp) and from

force-generating to non-force-generating states (gapp), i.e.
kTR5fapp+gapp (Brenner and Eisenberg, 1986). As in the former
case of Ca2+-induced force development, the kinetics of

mechanically induced force redevelopment were genotype-
dependent (P,0.01 tested by ANOVA). Post-tests revealed that
the values of kTR were significantly higher (P,0.05) for
myofibrils from both heterozygous and knockout mice

compared with those of the wild-type mice (Fig. 3C). By
contrast, there was no difference between heterozygous and
knockout myofibrils. This apparent dominant effect of N2B

deletion on contraction kinetics might be, at least in part, related
to the higher amount of truncated versus full-length titin in the
myofibrils of heterozygous mice. Overall, the effects of the

genotype on kACT and kTR indicate that the deletion of the elastic

Fig. 2. Typical force transients of cardiac myofibrils from wild-type and knockout mice illustrating the protocol for the measurement of force kinetic
parameters. Transients were normalized to their maximum force (Fmax) to show (A) the differences in force-development kinetics and (B) the similarity of force-
relaxation kinetics between wild-type (gray lines) and knockout (black lines) samples. For force development, a mono-exponential function was used to fit the
force transients, and for relaxation, a biphasic function consisting of a linear and exponential intercept was used, yielding the following parameters: (1) rate
constant of Ca2+-induced force development, kACT54.9 s21 (wild-type) and 5.7 s21 (knockout); (2) rate constant of mechanically-induced tension
redevelopment, kTR56.9 s21 (wild-type) and 7.8 s21 (knockout); (3) kinetic parameters of relaxation – kLIN51.9 s21 (wild-type) and 1.8 s21 (knockout),
tLIN548 ms (wild-type) and 46 ms (knockout) and kREL532 s21 (wild-type) and 33 s21 (knockout).
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N2B region of titin accelerates force development, revealing
a novel role for titin stiffness in modulating the rate of
contraction, regardless of whether contraction is induced by
changing [Ca2+] or is induced by returning from unloaded to

isometric contraction.
The kinetics of force relaxation were induced by lowering the

[Ca2+] from pCa 4.6 to 8 (at t52.5 s in Fig. 2A or t50 s in

Fig. 2B). Myofibrils from all genotypes exhibit the typical
biphasic force decay, as reported previously for cardiac
myofibrils of different species, including mice (Stehle et al.,

2002b). Force starts to decay with a slow linear decay, which has
a rate constant kLIN and lasts for time tLIN, followed by a rapid
exponential decay with a rate constant kREL. However, the

myofibrils from neither heterozygous nor from knockout mice
exhibited significant differences in any of the three relaxation
parameters, kLIN, tLIN or kREL, compared with the wild-type
myofibrils (Fig. 4). Thus, in contrast to force development, the

kinetics of force relaxation were not affected by the deletion of
the elastic N2B region. This implies that the passive tension of
titin does not influence relaxation kinetics.

Effects of N2B deletion on the Ca2+ sensitivity of myofibrils
We tested whether the accelerated force development of

myofibrils from knockout compared with wild-type mice are

related to altered Ca2+ sensitivity of contraction. The active forces
of myofibrils from wild-type, heterozygous and knockout mice
were determined by initiating contraction at different [Ca2+] and
the same sarcomere length (2.3 mm), as was performed to

obtain kACT and kTR. The force–pCa relationships of individual
myofibrils were evaluated for pCa50 (i.e. the 2log[Ca2+] required
for half-maximal force production) and for the Hill coefficient nH,

as an indicator for the cooperativity of the force–pCa relationship
(Fig. 5C,D). The averaged force–pCa relationships, derived from
data pooled from all myofibrils of a genotype, are shown in

Fig. 5A. Myofibrils of heterozygous or knockout mice exhibited
no significant difference in pCa50 values compared with
the myofibrils of wild-type mice (Fig. 5C). This result suggests

that the accelerated contraction of myofibrils from heterozygous
and knockout mice does not result from an enhanced Ca2+

sensitivity of force development. However, there is a trend
towards higher cooperativity with the expression of the N2B-

deleted titin (Fig. 5B,D). ANOVA revealed a significant
difference (P,0.05) in the nH values among all genotypes.
Post-test analysis revealed the nH value of myofibrils from

knockout mice to be significantly (P,0.05) higher than that of
the wild-type myofibrils (Fig. 5D). This opens the interesting
possibility that faster force development kinetics of myofibrils

with stiffer titin might, to some extent, relate to enhanced

Fig. 3. The effect of genotype on the
maximum Ca2+-activated force and kinetics
of myofibrillar force development. (A) The
rate constant of Ca2+-induced force
development in 43 myofibrils from wild-type
(WT) mice, 31 myofibrils from heterozygous
(HET) mice and 36 myofibrils from knockout
(KO) mice. (B) The maximum tension
(Fmax/CSA) generated at pCa 4.6; wild type,
n544 myofibrils; heterozygous, n531;
knockout, n532. (C) The rate constant of
mechanically induced tension redevelopment;
wild type, n545; heterozygous, n527;
knockout, n533. All data represent the
mean6s.e.m. based on the single values of
individual myofibrils. *P,0.05, ***P,0.001
(Tukey’s multiple comparison test).

Fig. 4. The effect of genotype on the kinetic parameters of myofibrillar force relaxation. (A) Rate constant of the initial slow linear force decay. (B) Duration
of the initial slow linear force decay. (C) Rate constant of the rapid exponential force decay. All data represent the mean6s.e.m., based on 47 myofibrils
from wild-type (WT) mice, 28 myofibrils from heterozygous (HET) mice and 36 myofibrils from knockout (KO) mice.
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cooperative formation of force-generating cross-bridge
interactions during Ca2+-mediated activation.

DISCUSSION
Here, we present the first functional analysis of myofibrils from

N2B-deficient mice. A major advantage of the myofibril
preparation over multicellular preparations is that it is suitable
for studying force kinetics during a contraction-relaxation cycle

induced by rapid defined changes in [Ca2+]. We find that
increasing myofibrillar stiffness by deleting the elastic N2B
region of titin does not affect relaxation kinetics but accelerates
force-activation kinetics.

Titin stiffness does not affect force-relaxation kinetics
Diastolic function of the heart can be separated into an early and a

late phase related to the isovolumic relaxation and filling. Cardiac
myofibrils allow the study of sarcomere function of both early
and late diastolic processes by analysing the force kinetics during

relaxation and the passive tension after relaxation, respectively.
As titin is the main contributor to the passive tension of the
relaxed sarcomere, the increased passive tension of an N2B-

deficient titin might affect relaxation. Here, we show that the
increased passive force does not alter the relaxation kinetics of
cardiac myofibrils. This is an important finding because it
restricts the main effects of titin-based passive tension to the

filling phase.
Our results demonstrate that myofibrils lacking the N2B region

of titin exhibit an increased steepness of the sarcomere-length–

passive-tension relationship, i.e. increased passive myofibrillar
stiffness. This corroborates the results and interpretations of
previous studies on cardiomyocytes and papillary muscle from

these N2B-deficient mice, confirming the basic mechanical
function of the unique cardiac N2B region as a highly
extensible spring, strongly contributing to the elasticity of the

relaxed sarcomere (Nedrud et al., 2011; Radke et al., 2007).

Increased passive tension upon sarcomere stretch of cardiac
myofibrils lacking this highly elastic region compared with those

containing full-length titin can be explained by the increased
strain of the remaining elastic I-band regions of titin. Myofibrils
from heterozygous mice also exhibited strongly increased passive

stiffness, further corroborating the importance of the extensible
N2B region for cardiac sarcomere compliance. Thus, both
myofibrils from heterozygous and knockout mice can be

regarded as a model to investigate the effect of increased titin-
based passive tension on the dynamics of the Ca2+-controlled
contraction-relaxation cycle.

Here, we find that the rate constant kREL of the rapid relaxation

phase leading to the relaxed state does not depend on the final
passive tension. The rapid phase of relaxation occurs while
sarcomeres re-lengthen from the contracted to the relaxed state

(Stehle et al., 2002a). Hence, during ongoing relaxation, titin
will become gradually more and more strained and titin-based
passive tension increases. Nevertheless, this does not seem to

significantly slow down the transition of the cardiac myofibril to
the relaxed state. The rate constant (kLIN), the time of the initial
slow linear force decay (tLIN) and the rate constant of the final

exponential force decay (kREL) did not differ among the three
genotypes, which is consistent with the notion that a decrease in
active force rather than an increase in passive force determines
the kinetics of the force decay during relaxation (Stehle et al.,

2006).
In terms of cross-bridge turnover kinetics, and similarly to the

ratio of ATPase per unit force (called tension cost), kLIN can be

interpreted as a measure of gapp, i.e. the apparent rate by which
cross-bridges leave force-generating states under isometric
conditions (Stehle et al., 2002a; Tesi et al., 2002). The finding

that deletion of the elastic N2B region does not affect kLIN is in
agreement with a recent study by de Tombe’s group exploring the
contraction-relaxation kinetics of myofibrils from tibialis anterior

skeletal muscle of RBM20-deficient rats with altered titin isoform

Fig. 5. The effect of genotype on the Ca2+ dependence of myofibrillar force. Force data from individual myofibrils was normalized to the respective Fmax.
(A) Force-pCa relationships showing the normalized force data pooled from 39 wild-type (WT) myofibrils, 32 heterozygous (HET) myofibrils and 34
knockout (KO) myofibrils. (B) To show the different steepness of the force-pCa relationships, the mid part of the force-pCa relationship was plotted on an
expanded pCa scale (same force scale as in A). (C) The effect of genotype on the Ca2+ sensitivity, i.e. the pCa required for half-maximal force production.
(D) The effect of genotype on the Hill coefficient nH, indicating the steepness of the force-pCa relationships and the cooperativity of Ca2+-dependent force
development. For C and D, data represent the mean6s.e.m. based on the dataset of the single pCa50 and nH values that were derived from fitting the Hill
function to the force-pCa relationship of each individual myofibril. *P,0.05 between knockout and wild type (Tukey’s multiple comparison test). Relationships
plotted in B were calculated by fitting the Hill function to the means shown in C and D.
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expression (Mateja et al., 2013). They showed that kLIN is not
altered by reduced titin stiffness. However, there have been some

divergent results concerning whether the value of g reported by
the tension cost is affected by sarcomere-length-dependent
changes in passive tension (Mateja et al., 2013; Wannenburg
et al., 1997). The only significant difference in the tension cost

between RBM20-deficient rats and wild-type rats was observed at
low sarcomere length, where it was higher for the wild-type
myofibrils. As sarcomere length is reduced below the slack

length, titin exerts a restoring force (Helmes et al., 1996) that
might accelerate cross-bridge detachment. At sarcomere lengths
above the slack length, where our study was conducted, restoring

forces do not apply. Both our study of mice expressing a shorter
titin and previous work in RBM20-deficient rats expressing
longer titin isoforms (Mateja et al., 2013), which evaluate the

isolated passive properties of titin at sarcomere lengths above the
slack length, suggest that titin-based passive tension does not
affect relaxation kinetics.

Furthermore, our results could be affected by the loss of

post-translational modifications on the N2B region of titin.
Phosphorylation within the N2B region of titin by PKA or PKG
reduces passive tension and improves diastolic function (Krüger

et al., 2009; Yamasaki et al., 2002). Accordingly, loss of PKA
and PKG sites in the N2B region would be expected to have
similar effects to those that we expected from increased titin-

based passive tension in slowing down the final phase of
relaxation phase. However, because kREL of myofibrils from all
three genotypes was similar and not reduced by N2B deficiency

in myofibrils from knockout and heterozygous mice compared
with the wild-type myofibrils, it is unlikely that we failed to see
an effect of titin stiffness on relaxation kinetics.

Modulation of force development kinetics by titin
We show that deletion of the elastic N2B region from titin in the
myofibrils of knockout mice enhances passive stiffness,

increases maximum Ca2+-activated force and increases the rate
constant of force development, regardless of whether force is
induced by increased [Ca2+] (rate constant kACT) or by

mechanical manipulation (rate constant kTR). By contrast, the
group of de Tombe and Moss have recently shown that
myofibrils from skeletal muscle and skinned cardiac fibres of
adult RBM20-deficient rats expressing a long compliant titin

isoform in their muscles exhibit reduced passive stiffness,
reduced active force and lower rate constants of force
development (Mateja et al., 2013; Patel et al., 2012).

However, the RBM20-deficient rat model is based on a
spontaneous mutation of the splicing factor RBM20. This
deficiency does not only influence the splicing of titin, where

it is important for the proper splicing of the middle I-band Ig
domains and the PEVK region, it also influences additional
splicing of other targets, such as calmodulin-dependent protein

kinase-IId (CaMKIId) (Guo et al., 2012). CaMKIId also
phosphorylates titin (Hidalgo et al., 2013). Although only the
N2B element is deleted in the knockout mice studied here,
secondary effects cannot be completely excluded. However, in

combination, the recent findings in RBM20-deficient rats and
our present findings in the N2B-knockout mice provide clear
evidence for a positive correlation between the rate constant of

force development and the passive stiffness of titin.
Force-redevelopment kinetics reflect cross-bridge turnover

kinetics; kTR reports the sum of the apparent rate constants

f and g that rate-limit the transition of cross-bridges from

non-force-generating to force-generating states and from force-
generating to non-force-generating states, respectively (Brenner

and Eisenberg, 1986). Because the value of g reported by kLIN is
not significantly different between the three genotypes studied
here, increased titin stiffness predominantly affects cross-bridge
turnover by increasing the probability of the transition of cross-

bridges from weakly bound, non-force-generating states to force-
generating states. Because force is proportional to the apparent
duty ratio [f/(f+g)], an increase of f at constant g results in a

higher force, which could explain, to some extent, the 22% higher
active tension of myofibrils from knockout compared with wild-
type mice. Estimating f from kTR2kLIN (5.01 s21 for wild type

and 5.99 s21 for knockout) and g from kLIN (1.96 s21 for wild
type and 1.85 s21 for knockout) yields duty ratios of 0.719 and
0.764 for wild-type and knockout myofibrils, respectively. Hence,

a 6% higher active force of myofibrils from knockout compared
with wild-type mice is expected from cross-bridge turnover
kinetics. This alone does not seem to be sufficient to explain the
22% higher active tension of myofibrils from knockout compared

with wild-type animals. An additional explanation might be that
increased titin stiffness better maintains the structural integrity of
the sarcomere during repeated activations (for example, by better

keeping the A-bands centered in the sarcomere) and that this
enhances active tension. Consistent with this idea, we show that
in the knockout myofibril, less active tension is lost after a series

of activations than in the wild-type myofibril (supplementary
material Fig. S4). In summary, our results indicate that enhanced
strain by titin increases active force in part by promoting the

turnover of cross-bridges to force-generating states and possibly
also by maintaining the structural integrity of the sarcomeres.

The rate constant f (i.e. the probability of the cross-bridge
transition to force-producing states) can be regarded as a product

of the fraction of cross-bridges attached to actin in a pre-force-
generating state multiplied by the rate constant of the forward
transition from this pre-force state to force states. One possibility

would be that the higher passive tension transmitted from titin to
the myosin filament reduces the lattice spacing in the A-band, so
that non-force-generating cross-bridges get closer to the thin

filament, enhancing their attachment in the pre-force-generating
configuration to the activated thin filament. The idea of improved
cross-bridge attachment at reduced radial spacing is related to the
inter-filament spacing hypothesis that has been a widely held

hypothesis for explaining LDA (McDonald and Moss, 1995), but
which has become controversial (Konhilas et al., 2003). In our
study, the activation of myofibrils was initiated at a sarcomere

length of 2.3 mm, at which myocardium from knockout
relative to wild-type animals exhibits significantly increased
LDA (+0.07 pCa) and modestly but significantly reduced

myofilament lattice spacing (21.9 nm) (Lee et al., 2013; Lee
et al., 2010). However, whereas there is consensus among studies
that lattice compression using up to 4% dextran usually slightly

increases the maximum force, which might explain the increased
Fmax in our study (Kawai and Schulman, 1985; Konhilas et al.,
2002; Lee et al., 2013; McDonald and Moss, 1995; Millman,
1998), there is divergence on whether lattice compression slightly

decelerates (Kawai and Schulman, 1985) or slightly accelerates
cross-bridge turnover (McDonald and Moss, 1995). We consider
it unlikely, therefore, that the higher kTR obtained with myofibrils

from heterozygous and knockout mice can be fully explained by
decreased lattice spacing.

In our experimental system, we did not detect significant

differences in the Ca2+ sensitivity of force generation between
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myofibrils from wild-type and knockout mice – unlike the
previously published higher Ca2+ sensitivity (+0.07 pCa) of

skinned knockout papillary muscles compared with wild-type
papillary muscles (Lee et al., 2013; Lee et al., 2010). Thus, it is
unlikely that the faster cross-bridge kinetics of myofibrils from
knockout compared with wild-type mice results from an

increased Ca2+ sensitivity or LDA.
The present study reveals an increased maximum force (Fmax)

of myofibrils from knockout compared with wild-type mice,

which had not been detected in studies using skinned myocytes
(Radke et al., 2007) or skinned papillary muscle (Lee et al.,
2010). The reason for this divergent finding in myofibrils

compared with the other preparations of higher structural
complexity is not clear. However, each preparation has
advantages and disadvantages. As the force exerted by

myofibrils results almost solely from their unidirectional
aligned sarcomeres it provides a more pure preparation for
probing sarcomere function but it does not include additional
effects resulting from the higher structural complexity and

extracellular properties of myocardium. Additionally, owing to
the short diffusion distances in myofibrils, the build-up of
metabolites that can depress force (e.g. ADP, Pi) will be much

less than in myocytes and papillary muscle, and the myofibril
might provide more accurate force levels.

The mechanism of how strain in the I-band region of titin

modulates cross-bridge turnover kinetics is unknown. However,
because titin attaches to the myosin filament, passive tension is
communicated to the thick filament, and this might affect cross-

bridge behavior. Consistent with this hypothesis, X-ray
diffraction studies reveal that the proximity of myosin heads to
the thin filaments, as indicated by the intensity ratio I11/I10 of
equatorial reflections, is favored at high passive tension (Lee

et al., 2013). Furthermore, a recent X-ray diffraction study
performed by Farman and co-workers showed that LDA might be
based on the ordering of weakly bound cross-bridge orientation

prior to activation (Farman et al., 2011). Titin winds along the
myosin filament (Al Khayat et al., 2013), and it is tempting to
speculate that increased passive tension affects myosin such that

it enhances the probability of cross-bridge transitions to force-
generating states, as reflected by the higher kACT and kTR in
myofibrils from knockout compared with wild-type mice in our
study. Regarding the physiological situation when the sarcomeres

are stretched during diastolic filling of the heart, the acceleration
of cross-bridge cycling by increased titin-based passive tension
might compensate for the potential slowing down of cross-bridge

cycling resulting from the reduction of filament overlap. Further
studies are required to dissect the individual contributions of the
I-band regions of titin and the A-band lattice in priming the cross-

bridges prior to activation for a faster transition to force-
generating states upon Ca2+-induced contraction.

Dominant effects of N2B-deleted titin in myofibrils from
heterozygous mice
Interestingly, the passive stiffness of myofibrils from
heterozygous mice was higher than expected from the

55%:45% ratio of N2B-deleted titin to wild-type titin and was
almost as high as that of myofibrils from the knockout mice. Titin
heterozygotes are unique in their mixed expression of titin

molecules, as compared with homozygous animals, which
express either only wild-type or only N2B-deficient isoforms.
The net effect of how coexisting wild-type and N2B-deficient

titin isoforms will affect passive stiffness is difficult to predict,

especially as data on the spatial organization of titin within the
intact sarcomere structure is scarce. Based on three-dimensional

single-particle analysis of electron-microscopy micrographs, A-
band titin might exist in pairs (Al Khayat et al., 2013; Zoghbi
et al., 2008). The distal tandem Ig segment has been suggested
to form a higher-order structure of a side-to-side hexamer

(Houmeida, et al., 2008). Nevertheless, the orientation and
localization of titin along the sarcomere is not sufficiently
resolved. If titin mainly traverses the sarcomere I-band as dimers,

then heterodimers consisting of an N2B-deleted and a wild-type
titin strand would have a higher stiffness than the two monomeric
strands, because the extension of the elastic N2B element of wild-

type titin will be restricted owing to lateral interactions that keep
it in register with the shorter N2B-deleted titin strand. This would
result in a dominant effect of the shorter titin. If titin mainly exists

as monomers, thereby acting as an independent passive spring,
then passive stiffness should increase linearly with the amount of
the stiff N2B-deleted titin isoform. In this case, passive stiffness
of myofibrils from heterozygous mice would scale at 55%

relative to that of wild-type (0%) and knockout (100%)
myofibrils. By contrast, if titin mainly forms dimers, the
passive stiffness of myofibrils from heterozygous mice would

scale at 80% relative to that of wild-type (0%) and knockout
(100%) myofibrils, calculated based on a random probability of
the formation of wild-type and knockout homodimers (WT–WT

and KO–KO) and heterodimers (WT–KO), consistent with our
findings.

The dominant effect of the N2B-deletion is also observed on

kTR, suggesting that cross-bridge turnover kinetics are
accelerated by the increased titin stiffness in myofibrils of
heterozygous mice. However, this was not associated with an
elevated active force. Although an inhomogeneous distribution

of wild-type and N2B-deficient titin could also result in a lower
active force, it is unlikely that titins expressed from different
alleles distribute non-uniformly among sarcomeres because, in

a recent study, we always observed a homogeneous distribution
of GFP-tagged titin versus non-tagged titin in heterozygous
animals from different alleles (da Silva Lopes et al., 2011).

However, even a homogeneous distribution of wild-type and
N2B-deficient titin would not stabilize the filament lattice as
expected from the increase in passive stiffness, because the
unequal tensile forces that WT–WT titin double strands exert

compared with those of WT–KO and KO–KO strands on a
thick filament would shift the position of the thick filament
from the center of the surrounding hexagonal array of the thin

filaments. As a result, some of the cross-bridges cannot form
force-generating interactions with the thin filament, which
might explain why active force is not increased in myofibrils

from heterozygous mice.

Conclusions
Increased titin-based stiffness does not affect the relaxation
kinetics of cardiac myofibrils. This contrasts with our previous
findings showing that incomplete inhibition of active tension by
impaired regulatory function of cardiac troponin I slows down

relaxation by decreasing the rate constant kREL. In combination,
these findings will be useful for better differential diagnosis of
diastolic dysfunction that is generally indicated by impaired

filling and elevated end-diastolic pressure (EDP). However,
elevated EDP can be either based on elevated passive tension or
residual active tension and, thus, can underlie completely

different pathomechanisms, requiring different therapies. We
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therefore propose that impaired relaxation kinetics could be a
specific indicator of the dysregulation of active tension.

By contrast, our results indicate that titin-based passive tension
affects systolic function by promoting the turnover of cross-
bridges to force-generating states upon Ca2+-induced contraction.
Further work is required to determine whether this underlies

similar mechanisms to the ones proposed for LDA. Independent
of the detailed mechanism, the results suggest that titin-based
tension tunes cross-bridge turnover kinetics during the cardiac

cycle in an advantageous manner, by accelerating cardiac
contraction without decelerating relaxation.

MATERIALS AND METHODS
Preparation of myofibrils
The generation of N2B-deficient mice expressing cardiac titin that

lacks the elastic N2B region has been described previously (Radke

et al., 2007). Age-matched (5–7-months-old) homozygous knockout,

heterozygous and wild-type mice of either gender were sacrificed by

cervical dislocation as approved by the institutional Animal Care and Use

committee. Immediately after heart excision, the papillary muscles were

dissected from the left ventricle and pinned with needles at their ends on

the Sylgard surface of a chamber. To dissolve all membranous structures,

the papillary muscles were incubated for 2 h in 1% Triton X-100

skinning solution containing 5 mM potassium phosphate, 5 mM

potassium azide, 2 mM magnesium acetate, 5 mM K2EGTA, 3 mM

Na2ATP and 47 mM potassium creatine phosphate (pH 7.0). The

solution was then replaced by an identical one without Triton X-100,

and samples were stored for up to 24 h at 0 C̊. Immediately before the

experiment, the skinned papillary muscles were homogenized at 4 C̊ for

5–10 s at maximum speed with a blender (Ultra-Turrax T25, Janke &

Kunkel, Staufen, Germany). Some of the myofibril suspension was used

for protein analysis, and the rest was used for mechanical measurement.

SDS-gel electrophoresis
The titin protein analysis of fresh myocardial samples or myofibrillar

preparations prepared as described above was performed as described

previously (Warren et al., 2003). Myocardial samples were frozen in

liquid N2 and homogenized with a mortar. The homogenized

myocardium or the pellet of centrifuged myofibrillar suspensions was

solubilized in lysis buffer containing 8 M urea, 50% (v/v) glycerol,

80 mM dithiothreitol (DTT) and protease inhibitors (Roche). Titin

isoforms were separated by using an SDS-agarose gel electrophoresis

system followed by Coomassie Blue staining. Quantification of the

expression of titin isoforms was performed using Phoretix software

(Biostep, Jahnsdorf, Germany).

Mechanical measurements
The force measurement was performed at 10 C̊ using an experimental

setup described previously (Stehle et al., 2002a; Stehle et al., 2002b).

Briefly, small myofibril bundles (diameters of 1.5–4 mm) were mounted

in relaxing solution (pCa 8) between the tip of an atomic-force

cantilever and the tip of a length-driving stiff tungsten needle. After

mounting, the slack sarcomere length (SL0), overall length and the

diameter of the bundles were determined. Myofibril bundles from

knockout mice had a slightly but not significantly shorter SL0

(1.95960.009 mm, n531; 6s.e.m.) than bundles from heterozygous

(1.98560.007 mm, n531) and wild-type mice (1.97660.006 mm,

n544). The passive-force–sarcomere-length relationship was

determined by stretching the myofibrils in relaxing buffer by 4%, 8%,

12%, 16% and 20% of their slack length. At 50 s after each stretch, an

image of the myofibril was captured to allow the evaluation of the actual

sarcomere length. Immediately after image capture, the myofibril was

rapidly slackened to determine passive force from the drop of force to

zero force. Prior to activation, all myofibrils were stretched to a

sarcomere length of 2.3 mm. The activation and relaxation cycle was

induced by a rapid solution change (within 10 ms) that was applied to

the mounted myofibril bundles (Colomo et al., 1998; Stehle et al.,

2002b). To determine the isometric steady force during activation

(pCa 4.6) and force-redevelopment kinetics, a release-stretch protocol

was applied to the myofibrils. After an initial activation at maximum

[Ca2+] (pCa 4.6), the myofibril was subjected to a series of submaximal

activations at increasing [Ca2+] and a final activation at pCa 4.6. Force–

pCa relationships were produced by normalizing force data to the mean

of the first and the last activation performed at pCa 4.6.

Data analysis and statistics
To determine the rate constant kACT of the Ca2+-induced force

development and the rate constant kTR of the mechanically induced force

development, the transients were fitted with a single exponential function.

The kinetic parameters of relaxation, kLIN, tLIN and kREL, were obtained by

fitting the force decay following the rapid reduction of [Ca2+] from pCa 4.6

to 8 by a function consisting of a linear and an exponential equation (Stehle

et al., 2002b). To determine the 2log[Ca2+] required for half-maximum

activation (pCa50) and the Hill coefficient, force–pCa relationships of

individual myofibrils were fitted by the Hill equation F5Fmin+(12Fmin)/

[1+10nH(pCa2pCa50)], where F is the steady-state force measured at each

pCa normalized to the steady-state force at pCa 4.6, Fmin is the minimum

force at low [Ca2+], pCa50 is the – log([Ca2+]) at which the force is half

maximal and nH (Hill coefficient) is the slope of the force–pCa

relationship.

One-way analysis of variance (ANOVA) was used to compare the

means of functional parameters between groups. The significance of

differences between two genotypes was determined by using Tukey’s

multiple comparison test and is indicated in the results as *P,0.05,

**P,0.01 and ***P,0.001. All values are given as the mean6s.e.m.

obtained from n individual myofibril bundles from each genotype.
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Medicine, University of Cologne (Köln Fortune) to R.S. Deposited in PMC for
release after 12 months.

Supplementary material
Supplementary material available online at
http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.141796/-/DC1

References
Al-Khayat, H. A., Kensler, R. W., Squire, J. M., Marston, S. B. and Morris, E. P.
(2013). Atomic model of the human cardiac muscle myosin filament. Proc. Natl.
Acad. Sci. USA 110, 318-323.

Brenner, B. and Eisenberg, E. (1986). Rate of force generation in muscle:
correlation with actomyosin ATPase activity in solution. Proc. Natl. Acad. Sci.
USA 83, 3542-3546.

Colomo, F., Nencini, S., Piroddi, N., Poggesi, C. and Tesi, C. (1998). Calcium
dependence of the apparent rate of force generation in single striated muscle
myofibrils activated by rapid solution changes. Adv. Exp. Med. Biol. 453, 373-
381, discussion 381-382.

da Silva Lopes, K., Pietas, A., Radke, M. H. and Gotthardt, M. (2011). Titin
visualization in real time reveals an unexpected level of mobility within and
between sarcomeres. J. Cell Biol. 193, 785-798.
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Supplemental Figures 
 

 
Fig. S1 Effect of N2B deletion on the structural stability of titin in myofibrils. A 

representative 1% SDS-agarose gel electrophoresis of myofibrils isolated from left ventricles of 

wild-type (WT), heterozygous (HET) and knockout (KO) mice. tN2BA and tN2B indicate the 

truncated N2BA and N2B isoforms of titin, respectively. T2 and tT2 indicate the degradation 

products. 

 

 

 
Fig. S2 Force transients from cardiac myofibrils from wild-type (grey lines) and knockout 

mice (black lines). Force is related to the cross-sectional area (CSA) of the respective myofibril 

bundle (wild type: 3.1 µm2, knockout: 7.0 µm2) to illustrate the difference in maximum tension. 
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Fig. S3 Cross-sectional area and the maximum active tension of the myofibril bundles. (A) 

The cross-sectional area (CSA) was computed from the diameter of the myofibril bundles by 

assuming a circular shape. No statistically significant effect of the genotype on the CSA was 

observed. (B) Maximum active force (FACT) was determined by subtracting the passive tension 

(Fpass) measured prior activation from maximum tension (Fmax). * indicate significant difference 

(p < 0.05) of knockout (KO) compared to wild-type (WT) and heterozygous (HET) revealed by 

Tukey´s multiple comparison tests. Bars show means ± SEM based on n = 44 (WT), n = 31 

(HET) and n = 32 (KO) myofibrils. 
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Fig. S4 Effects of N2B deletion on the stability of contractile function. The myofibrils were 

subjected to several contraction-relaxation cycles. After the first activation at maximum [Ca2+] 

(pCa 4.6) for determining FMAX, five partial Ca2+ activations ranging from pCa 6.16 to 5.02 were 

applied followed by a final control activation at pCa 4.6. The percentage reduction of force 

produced in the final compared to the first activation is expressed as rundown of maximum force. 

Rundown of myofibrils from knockout (KO) mice is smaller than those from heterozygous (HET) 

and wild-type (WT) mice but differences are not significant. 
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