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Epithelial–mesenchymal status influences how cells deposit
fibrillin microfibrils
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ABSTRACT

Here, we show that epithelial–mesenchymal status influences how

cells deposit extracellular matrix. Retinal pigmented epithelial (RPE)

cells that expressed high levels of E-cadherin and had cell–cell

junctions rich in zona occludens (ZO)-1, b-catenin and heparan

sulfate, required syndecan-4 but not fibronectin or protein kinase C

a (PKCa) to assemble extracellular matrix (fibrillin microfibrils

and perlecan). In contrast, RPE cells that strongly expressed

mesenchymal smooth muscle a-actin but little ZO-1 or E-cadherin,

required fibronectin (like fibroblasts) and PKCa, but not syndecan-4.

Integrins a5b1 and/or a8b1 and actomyosin tension were common

requirements for microfibril deposition, as was heparan sulfate

biosynthesis. TGFb, which stimulates epithelial–mesenchymal

transition, altered gene expression and overcame the dependency

on syndecan-4 for microfibril deposition in epithelial RPE cells,

whereas blocking cadherin interactions disrupted microfibril

deposition. Renal podocytes had a transitional phenotype with

pericellular b-catenin but little ZO-1; they required syndecan-4 and

fibronectin for efficient microfibril deposition. Thus, epithelial–

mesenchymal status modulates microfibril deposition.
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INTRODUCTION
Fibrillin, the main component of microfibrils of the extracellular

matrix (ECM), supports elastic fibre formation and controls
transforming growth factor b (TGFb) bioavailability (Baldwin
et al., 2013; Ramirez and Sakai, 2010). Its importance is

highlighted by mutations that cause Marfan syndrome (Ramirez
and Dietz, 2009), and Weill–Marchesani and stiff skin syndromes
(Faivre et al., 2003; Loeys et al., 2010). Although mechanisms of
microfibril assembly and deposition are incompletely understood,

in mesenchymal cultures the adhesive glycoprotein fibronectin
(FN) is needed (Kinsey et al., 2008; Sabatier et al., 2009;
Zilberberg et al., 2012). This relationship was unexpected, as

fibrillin microfibrils arose in early metazoans but FN-like
molecules only in chordates (Ozbek et al., 2010; Piha-Gossack

et al., 2012; Tucker and Chiquet-Ehrismann, 2009).
Although FN is a regulator of ECM deposition (Sottile and

Hocking, 2002), the underlying mechanism is unclear. ECM

fibrillogenesis requires Arg-Gly-Asp (RGD) engagement of a5b1
integrin (Takahashi et al., 2007) and RhoA activation of Rho
kinases, which regulate stress fibres, focal adhesions and cortical
myosin (Singh et al., 2010; Yoneda et al., 2007), with cytoskeletal

tension exposing FN self-assembly sites. Epithelial cadherin
junctions can operate analogously to the focal adhesions of
cultured mesenchymal cells, transferring to integrins the tension

needed for FN fibrillogenesis (Dzamba et al., 2009). Fibrillin-1
can interact with FN, which could be a microfibril template
(Hubmacher et al., 2011; Kinsey et al., 2008; Sabatier et al.,

2009). However, microfibrils are deposited in FN-null cultures
(Dallas et al., 2005). We have also shown that microfibril
deposition needs FN RGD, a5b1 integrin and Rho kinase (Kinsey
et al., 2008), implicating FN-induced cytoskeletal tension in

fibrillin-1 assembly.
Heparan sulfate (HS) proteoglycans also influence microfibril

assembly. Although FN and fibrillin-1 both bind HS (Cain et al.,

2008; Ritty et al., 2003; Singh et al., 2010; Tiedemann et al.,
2001), exogenous heparin, heparinase or b-D-xyloside block only
microfibril deposition (Chung and Erickson, 1997; Ritty et al.,

2003; Tiedemann et al., 2001). Syndecans 2 and 4, widely
expressed transmembrane HS proteoglycans, are implicated in
FN deposition. Syndecan-2 affects FN deposition by signalling

(Klass et al., 2000) and sulfation (Galante and Schwarzbauer,
2007). Syndecan-4 binds FN, inducing the formation of focal
adhesions (Gopal et al., 2010; Woods et al., 2000) and activation
of Rho, Rac and protein kinase Ca (PKCa) (Bass et al., 2008;

Dovas et al., 2006), yet syndecan-4-depleted cells deposit FN
(Galante and Schwarzbauer, 2007). Mice null for syndecan-4
and syndecan-1 have wound healing phenotypes, implying

compensatory effects; syndecan-1 is also implicated in
epithelial–mesenchymal transition (EMT) (Couchman, 2010;
Masola et al., 2012; Stepp et al., 2007). Perlecan, a basement

membrane component, binds fibrillin-1 and FN through protein
and HS interactions (Cain et al., 2006; Hopf et al., 2001;
Tiedemann et al., 2005).

Although most mesenchymal cells deposit abundant fibrillin

microfibrils, only certain epithelial cells express fibrillin-1
(Dzamba et al., 2001; Haynes et al., 1997; Ritty et al., 2003).
Here, we have investigated deposition of microfibrils and

perlecan in human retinal pigmented epithelial (ARPE-19)
cells, a model of microfibril deposition (Boregowda et al.,
2012; Massam-Wu et al., 2010; Nonaka et al., 2009; Wachi et al.,

2005), and in podocytes, which are specialised glomerular
epithelial cells (Lennon et al., 2013). Both of these cell types
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contribute to elastic-fibre-containing membranes in vivo (Bruch’s
membrane; glomerular basement membrane). We show that

cells in distinct epithelial–mesenchymal states have different
dependencies on FN, syndecan-4 and PKCa for microfibril
deposition, that cadherins modulate microfibril deposition, and
that a5b1 and a8b1 integrins, cytoskeletal tension and HS are

essential for the process.

RESULTS
We investigated the differences and similarities in the deposition
of fibrillin microfibrils and perlecan between epithelial cells
and adult human dermal fibroblasts (HDFs). Initial epithelial

experiments used ARPE-19 cells (designated ARPE-19A) from the
American Tissue Culture Collection (batch 58280268). Subsequent
experiments compared ARPE-19A cells with additional cultures

(batch 59270158, designated ARPE-19B, and batch 60279299,
designated ARPE-19C). We also assessed human podocytes for
dependence of microfibril deposition on FN and syndecan-4.
HaCaT and human mammary epithelial cells (MCF10A) did not

deposit detectable microfibrils (data not shown).

ARPE-19A cells do not require FN for microfibril deposition
We and others have shown that depletion of FN in fibroblasts
(Kinsey et al., 2008; Sabatier et al., 2009) blocks deposition of
fibrillin microfibrils. To investigate whether FN is indispensable

for microfibril deposition by other cell types, we compared
ARPE-19A cells with HDFs (Fig. 1A; supplementary material
Fig. S1A,B).

Real-time quantitative PCR (qPCR) analysis of expression of
mRNA encoding fibrillin-1 and FN in ARPE-19A and HDF cells
revealed that ARPE-19A cells expressed 1.4-fold more fibrillin-1
than FN, whereas HDFs expressed 8.3-fold more FN than

fibrillin-1 (supplementary material Fig. S2Ai,iv). FN was
depleted from ARPE-19A cells or HDFs for up to 8 days by
siRNA treatment repeated every 48 hours, to ensure maximal

knockdown (.98% in both ARPE-19A and HDF cultures)
(supplementary material Fig. S3A,C). Western blotting of
medium and cell layer extracts of knockdown cultures revealed

reduced levels of extracellular fibrillin-1 (Fig. 1D).
In control and FN-depleted ARPE-19A cultures, microfibrils

were detected by immunostaining (with the anti-fibrillin-1
antibody HPA021057 (Fig. 1A) and also antibody 11C1.3 (not

shown) (see Fig. 8A, which shows that microfibril assembly
occurs basally). Electron microscopy (EM) confirmed these
results (Fig. 1C). Thus, unlike HDFs, ARPE-19A cells did not

depend on FN expression for microfibril deposition. In contrast,
FN depletion in adult HDFs blocked microfibril deposition
(supplementary material Fig. S1), as reported previously (Kinsey

et al., 2008; Sabatier et al., 2009).

ARPE-19B and ARPE-19C cells require FN for microfibril deposition
Given that the ability of ARPE-19A cells to deposit microfibrils
when FN was depleted was unexpected, we tested independent
batches of ARPE-19 cells (ARPE-19B, ARPE-19C), which were
cultured in the same manner as ARPE-19A cells.

qPCR analysis revealed that ARPE-19B cells expressed
comparable levels of fibrillin-1 and FN to ARPE-19A cells,
with 1.7-fold more fibrillin-1 than FN (supplementary material

Fig. S2Aii). FN was depleted from ARPE-19B cells by siRNA as
above (99% knockdown) (supplementary material Fig. S3B).
Western blotting of medium and cell layer extracts after FN

knockdown revealed high levels of fibrillin-1 in medium

(Fig. 1D). EM failed to detect microfibrils in FN-depleted
ARPE-19B cultures (not shown). Immunofluorescence

microscopy confirmed lack of microfibrils in FN-depleted
ARPE-19B and ARPE-19C (99% knockdown) cultures
(Fig. 1Bi,ii). Thus, FN is required for microfibril deposition by
these cells, even though fibrillin-1 is expressed and secreted.

Supplementing control ARPE-19B cultures with cellular FN
(cFN; 10 mg/ml) for 12 days (replaced every 48 hours, with repeated
FN siRNA) enhanced abundance of microfibrils and FN

(supplementary material Fig. S4). With FN-siRNA-treated ARPE-
19B cells, cFN only slightly enhanced fibrillin-1 deposition
(supplementary material Fig. S4).

Podocytes require FN for abundant microfibrils
qPCR analysis of proliferating podocytes revealed that they

expressed higher levels of FN but lower levels of fibrillin-1 than
ARPE-19 cultures (supplementary material Fig. S2Aiii). FN was
depleted by siRNA, as above (98% knockdown) (supplementary
material Fig. S3D). Western blotting, after FN knockdown,

detected fibrillin-1 predominantly in medium (Fig. 1E). EM
detected a few microfibrils in FN-depleted podocyte cultures but
no arrays (Fig. 1C); immunofluorescence microscopy confirmed

these findings (Fig. 1Biii,iv). Thus, although FN is not needed to
assemble microfibrils, it greatly enhances their deposition.

ARPE-19 cells vary in dependency on FN for perlecan deposition, but
do not require perlecan for FN or microfibril deposition
Perlecan is a component of basement membranes and

mesenchymal matrices (Melrose et al., 2008). qPCR revealed
that perlecan mRNA expression level was 2.5-fold less in
ARPE-19A than in ARPE-19B cells; HDFs expressed
abundant perlecan (supplementary material Fig. S2A).

Immunofluorescence microscopy of FN-depleted cultures, as
above, revealed that FN was required for deposition of perlecan
by ARPE-19B cultures and HDFs, but not ARPE-19A cultures

(supplementary material Fig. S5). Perlecan knockdown was
performed to determine whether it influenced deposition of FN
or microfibrils. Western blotting revealed that fibrillin-1 and FN

were abundant in medium and cell layer extracts of perlecan-
depleted ARPE-19A and ARPE-19B cultures (Fig. 1D).
Immunofluorescence microscopy revealed that perlecan was
not required for their deposition (supplementary material Fig.

S5; and not shown).

ARPE-19 cells and podocytes vary in expression of epithelial–
mesenchymal markers
We investigated why ARPE-19B but not ARPE-19A cultures
required FN for microfibril and perlecan deposition, and why

podocytes assembled a few microfibrils when FN was depleted
yet required FN to deposit microfibril arrays. Because FN
fibrillogenesis is regulated by focal adhesions (Singh et al., 2010)

or by epithelial cell–cell junctions (Dzamba et al., 2009), and
given that ARPE-19 cells can undergo EMT (Chen et al., 2012; Li
et al., 2011; Tian et al., 2005), we assessed their EMT marker
expression (Fig. 2).

Expression of transcription factors implicated in EMT was
examined (Fig. 2; supplementary material Fig. S2B; Fig. S3D).
There was lower expression of SNAI1 in ARPE-19B than

ARPE-19A cells or podocytes. SNAI1 and SNAI2 can induce
EMT (Kalluri and Weinberg, 2009). SNAI2 expression was
high in podocytes and ARPE-19A cells but low in ARPE-19B

cultures. TWIST1 expression was similar in all cultures. All cells
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Fig. 1. ARPE-19A cells did not depend on FN for microfibril deposition. Immunofluorescence microscopy of (A) ARPE-19A cells and (B) ARPE-19B,
ARPE-19C cells and podocytes (all after 7 days), showing deposition of fibrillin-1 (Fibr-1; black and white, red) and FN (black and white, green), with nuclei
stained with DAPI (blue). Images were taken using a 206objective. Specific band-pass filter sets for DAPI, FITC and Cy3 or Cy5 were used to prevent bleed-
through. Control cultures (Con) showed partial colocalisation of fibrillin-1 and FN (yellow). (A) FN knockdown (kd) ARPE-19A cultures had microfibrils, shown at
two magnifications [(i) and (ii)]; (B) FN kd ARPE-19B and ARPE-19C cultures had no detectable microfibrils. FN kd podocytes exhibited limited extracellular
fibrillin-1 staining, shown at two magnifications [(iii) and (iv)]. Scale bars: 100 mm (Ai,Bi,Bii,Biii); 25 mm (Aii,Biv). Representative images from n55 (A,Bi) or n53
(Bii,Biii,Biv) experiments are shown. (C) Electron microscopy of 12-day ARPE-19A cell layers, showing extracellular microfibril bundles (black arrows) in control
and FN kd cultures. Scale bars: 500 nm. (D) Medium and cell layer extracts from ARPE-19A and ARPE-19B cultures in control (Con) and knockdown (kd)
experiments (FN, syndecan-2, syndecan-4, EXT1, perlecan or PKCa) were separated on 3–8% Tris-acetate gels in reducing conditions, and analyzed by
western blotting for fibrillin-1 (antibody HPA021057) or FN (antibody FN-3E2), and b-actin (mAbAC-74; as a loading control for cell layer extracts). Molecular
mass markers are indicated. Quantification of band intensity is shown as percentage of control band intensity (where Con5100%). Data shown are from a
representative experiment, with biological and technical repeats exhibiting the same trends (n53). (E) Medium and sequential intracellular (1% NP40 extraction)
and cell layer (CL; soluble and insoluble) extracts from podocyte cultures in control (Con) and knockdown (kd) experiments (FN or syndecan-4) were separated
on 3–8% Tris-acetate gels in reducing conditions, and analyzed by western blotting for fibrillin-1 (antibody HPA021057) or FN (antibody FN-3E2), and b-actin
(mAbAC-74; as loading control for cell lysates). Molecular mass markers are indicated.
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expressed mesenchymal markers [smooth muscle a-actin (SMA)
and PDGF receptor-b].

We also analyzed cell–cell junction proteins in ARPE-19
cells and podocytes. After 7 days of culture, ARPE-19A cells
expressed the highest levels of E-cadherin; N-cadherin levels
were high in ARPE-19 cultures and podocytes (Fig. 2A;

supplementary material Fig. S2B; Fig. S3D). Immunostaining
of ZO-1 (also known as TJP1; antibody T11, clone R40.76)
revealed that ARPE-19A cultures, but not ARPE-19B cultures

or podocytes, had well-organised tight junctions (Fig. 2B).
Western blotting for E-cadherin (antibody 24E10) confirmed that
ARPE-19A cultures had higher levels of E-cadherin protein

than ARPE-19B cells (Fig. 2C) or podocytes (not shown).
Immunomicroscopy for E-cadherin showed punctate localisation
most prominently in ARPE-19A cells, whereas N-cadherin and b-

catenin localised at cell junctions in ARPE-19A cells and podocytes
(Fig. 2D).

Thus, ARPE-19A cultures are the most epithelial on the basis
of highest levels of E-cadherin, and cell–cell staining of ZO-1,

b-catenin and N-cadherin. Podocytes appear to be transitional,
with cell–cell staining but high levels of SNAI1 transcription
factors. ARPE-19B cells are less epithelial on the basis of reduced
E-cadherin and poorly defined cell–cell junctions.

Inhibition of cadherin junctions disrupt microfibril deposition
Dzamba et al. (Dzamba et al., 2009) have shown that cadherin

junctions can regulate FN assembly in epithelial cells. A peptide
inhibitor of cadherin interactions (A7) (Devemy and Blaschuk,
2009) disrupted microfibril assembly by ARPE-19A and ARPE-

19B cultures, and FN formed only punctate arrays (Fig. 3). Thus,
cadherin junctions influence microfibril deposition. When FN
was depleted, only ARPE-19A cells deposited some microfibrils

in the presence of the blocking peptide; in these cells, cadherin-
blocking effects were FN independent.

Fig. 2. ARPE-19A and ARPE-19B cultures differ in epithelial–mesenchymal status. (A) Real-time quantitative PCR (qPCR) analysis of gene expression of
E-cadherin (E-cad), fibrillin-1 (Fibr-1), fibronectin (FN), N-cadherin (N-cad), PDGF receptor-b (PDGFRb), smooth muscle a-actin (SMA), SNAI1, SNAI2 and
TWIST1 in ARPE-19A and ARPE-19B cultures and podocytes after (i) 2 days (ARPE-19A and ARPE-19B only) and (ii) 7 days. E-cadherin expression is reduced
in ARPE-19B cells at days 2 and 7. FN expression is increased in ARPE-19B cells at day 2, and SMA is increased at day 7. PDGFRb expression is
increased in ARPE-19B cultures at both time points. E-cadherin and PDGFRb expression is lower in podocytes than ARPE-19A cells, with expression of FN,
SNAI1 and SNAI2 higher in podocytes (day 7). Expression was normalised using a combination of GAPDH and TATA box binding protein (TBP) expression,
and is reported relative to expression levels in ARPE-19A cultures (where ARPE-19A expression is set at 1). All data are represented as the mean6s.e.m.
and analyzed by two-way ANOVA (ARPE-19A versus ARPE-19B and ARPE-19A versus podocyte). *P,0.05; **P,0.01; ***P,0.001. The ‘Gene Study’
functionality of CFX Manager was utilised. For (i) n53 for ARPE-19A cells and n56 for ARPE-19B cells; for (ii) n53 for podocytes. See supplementary material
Table S2 for details of n-values for ARPE-19A and ARPE-19B cells. (B) Immunofluorescence microscopy of ARPE-19A and ARPE-19B cells, and podocytes
(all 7 days), showing localisation of ZO-1 (black and white, green), with nuclei stained with DAPI (blue). Localisation of tight junction protein ZO-1 at
cell–cell junctions was detected only in ARPE-19A cells (arrows). Images were taken using a 606objective. Scale bars: 25 mm. Representative images from
n52 experiments are shown. (C) Cell lysates of ARPE-19A and ARPE-19B cells were separated on 4–12% Bis-Tris gels in reducing conditions, and analyzed
by western blotting for E-cadherin or b-actin. E-cadherin was detected only in ARPE-19A cultures. b-actin was loading control. (D) Immunofluorescence
microscopy of ARPE-19A and ARPE-19B cells, and podocytes (7 days), showing localisation of N-cadherin, E-cadherin and b-catenin (green), with nuclei
stained with DAPI (blue). Images were taken using a 606objective. Scale bars: 25 mm. Representative images from n52 experiments are shown.
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Syndecan involvement in microfibril deposition
Syndecans interact with FN and integrin receptors (Couchman,
2010). qPCR analysis of the relative abundance of syndecan
receptors 1–4 revealed that, in all cultures, syndecan-2 and -4

were most abundant (supplementary material Fig. S2A).
Podocytes had highest levels of syndecan-1 and -4, and lowest
levels of syndecan-2. All ARPE-19 cultures had low levels of

syndecan-1. FN knockdown had little effect on syndecan
expression (supplementary material Fig. S6C). Fluorescence-
activated cell sorting (FACS) confirmed that podocytes expressed
the highest levels of syndecan-4, and that it was depleted upon

knockdown (Fig. 4D). Hence, we tested whether either syndecan
was required for microfibril deposition by ARPE-19 cells or
podocytes (Fig. 4; supplementary material Fig. S5D).

Syndecan-2 is not required for microfibril deposition
Knockdown of syndecan-2 with siRNA treatment that was

repeated every 48 hours resulted in syndecan-2 knockdown by
97% compared to lipofectamine-treated control ARPE-19A cells,
by 99% in ARPE-19B cells, and 97% in HDFs (supplementary
material Fig. S3E–G). Western blotting of the syndecan-2

knockdown cells showed abundant FN and fibrillin-1 in
medium and cell layer extracts (Fig. 1D; supplementary
material Fig. S1C). After syndecan-2 depletion, microfibrils

were deposited by all cultures, especially ARPE-19A (Fig. 4;
supplementary material Fig. S5D). Hence, overall, syndecan-2 is
not essential for microfibril deposition.

Syndecan-4 is required for microfibril deposition by ARPE-19A
and podocytes
Syndecan-4 was knocked down every 48 hours for 7 days in
ARPE-19A cells (96% knockdown), ARPE-19B cells (96%
knockdown) and in podocytes (98% knockdown), or for 8 days
in HDFs (95% knockdown) (supplementary material Fig. S3E–G;

Fig. S6A). Western blotting of revealed that, compared to

lipofectamine-treated ARPE-19 cultures, ARPE-19A syndecan-4

knockdown cultures had grossly reduced fibrillin-1 levels in
medium (Fig. 1D). ARPE-19B syndecan-4 knockdown cultures
had reduced fibrillin-1, and FN, in medium. Podocytes secreted

fibrillin-1 into medium that appeared unprocessed, as judged by
slower migration (Fig. 1E). Immunofluorescence microscopy
showed that ARPE-19A and podocytes, but not ARPE-19B

cultures (Fig. 4), required syndecan-4 for microfibril deposition.
Syndecan-4 localised at podocyte cell–cell junctions (Fig. 6A).
Syndecan-4 knockdown HDF cultures had reduced microfibrils
(supplementary material Fig. S5D).

As syndecan-4 can internalise a5b1 integrin in fibroblasts
(Bass et al., 2011; Morgan et al., 2013), we investigated the
presence of surface b1 integrin (antibody MAR4) following

syndecan-4 siRNA treatment in ARPE-19 cultures. Flow
cytometry, at 24 hours post-knockdown, revealed no changes in
b1 integrin levels, and microscopy did not detect changes in actin

organisation (not shown).

ARPE-19 cells vary in dependency on PKCa for microfibril deposition
Syndecan-4 binds to, and can stimulate, PKCa, which in turn

regulates Rho GTPases (Couchman, 2010). We investigated
whether PKCa underpins dependency on syndecan-4 for
microfibril deposition by ARPE-19A cells (Fig. 4;

supplementary material Fig. S5D).
We treated cells with siRNA targeting PKCa every 48 hours

(85% PKCa knockdown in ARPE-19A cells at 7 days, 74%

PKCa knockdown in ARPE-19B cells at 7 days, and 92% PKCa
knockdown in HDFs at 8 days) (supplementary material Fig.
S3E–G). In ARPE-19A cultures, PKCa depletion significantly

reduced mRNA levels of fibrillin-1 and FN (supplementary
material Fig. S3E). Western blotting confirmed reduced PKCa
protein in ARPE-19 cells (supplementary material Fig. S3H).
Blotting revealed that PKCa knockdown in ARPE-19B cells

markedly reduced fibrillin-1, and also FN, in cell layer extracts

Fig. 3. Effects of cadherin-blocking peptide on microfibril and FN deposition by ARPE-19A and ARPE-19B cultures. Immunofluorescence microscopy of
ARPE-19A and ARPE-19B (control and FN kd, 7 days), showing deposition of fibrillin-1 (Fibr-1; black and white, red) and FN (black and white, green), with nuclei
stained with DAPI (blue), in the presence or absence of the cadherin-blocking peptide A7 (Devemy and Blaschuk, 2009). Images were taken using a 206
objective. Specific band-pass filter sets for DAPI, FITC and Cy3 or Cy5 were used to prevent bleed-through. Boxed areas are shown as zoomed images on right.
Scale bars: 100 mm (for first three lanes); 25 mm (zoom).
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(Fig. 1D). Immunofluorescence microscopy revealed that,
following PKCa knockdown, microfibrils were detected in
ARPE-19A cultures, but not ARPE-19B cultures or HDFs

(Fig. 4; supplementary material Fig. S5D).
Thus, dependency of epithelioid ARPE-19A cells on syndecan-

4 for microfibril deposition does not involve PKCa; however,

mesenchymal ARPE-19B cells and HDFs require PKCa.

ARPE-19 cells require a5b1 and/or a8b1 integrins for
microfibril deposition
We have previously shown that disrupting FN RGD or a5b1
integrin inhibits microfibril deposition in fibroblasts (Kinsey
et al., 2008). As fibrillin-1 can bind a5b1 and avb3, and avb6 in

keratinocytes (Bax et al., 2003; Jovanovic et al., 2007), and
perlecan can bind a2b1 (Bix et al., 2004) and a8b1 (Sato et al.,
2013), and as epithelial cells express these integrins, we explored

their involvement in microfibril deposition by ARPE-19 cultures
(Fig. 5).

Incubation of ARPE-19A cells with function-blocking

antibodies to a2b1 (Gi9; also JA218, not shown), a5 (mAb16),
a8 (T-20), b1 (mAb13), av (17E6), avb3 (LM609 and 23C6; not
shown) or avb6 (10D5) integrins revealed that microfibril

deposition was blocked by antibodies to a8 and b1, reduced by
antibodies to a5, but not by antibodies to av, avb6, avb3 or a2b1
(Fig. 5A; avb3 not shown). When ARPE-19B cultures were
treated with the same integrin-blocking antibodies, microfibril

Fig. 4. Effects of depleting syndecan-2 or syndecan-4, or PKCa, on microfibril deposition by ARPE-19 cells and podocytes. Immunofluorescence
microscopy of (A) ARPE-19A cells, (B) ARPE-19B cells and (C) podocytes (all after 7 days), showing deposition of fibrillin-1 (Fibr-1; black and white, red) and FN
(black and white, green), with nuclei stained with DAPI (blue). Images were taken using a 206objective. Specific band-pass filter sets for DAPI, FITC and Cy3 or
Cy5 were used to prevent bleed-through. Boxed areas are shown as zoomed images on right. ARPE-19A and ARPE-19B control cultures (Con) showed partial
colocalisation of fibrillin-1 and FN (yellow). Syndecan-4 knockdown (kd) ARPE-19A cells had no microfibrils or FN fibrils. In contrast, syndecan-4 kd ARPE-19B
cells had prominent microfibrils and FN. PKCa kd ARPE-19A cells had prominent microfibrils and FN, whereas PKCa ARPE-19B cultures had no microfibrils
and few FN fibrils. Syndecan-2 kd did not block FN deposition and microfibril formation in either ARPE-19A or B cells. Syndecan-4 kd podocytes had no
microfibrils or FN fibrils, but knockdown of syndecan-2 did not disrupt FN deposition and microfibril formation. Scale bars: 100 mm (for first three lanes); 25 mm
(zoom). Representative images from n54 (A,B) and n53 (C) experiments are shown. (D) Flow cytometry traces showing levels of syndecan-4 at cell surfaces
of ARPE-19A and ARPE-19B cells, and podocytes, in control and syndecan-4 knockdown cells. Labelling with anti-syndecan-4 antibody 5g9 (solid lines)
revealed low levels of syndecan-4 at the cell surface of ARPE-19A and ARPE-19B cells, compared to secondary antibody-only controls (dashed lines). Podocyte
cultures had higher levels of syndecan-4 than ARPE-19 cultures. siRNA knockdown of syndecan-4 was effective in all cultures.
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deposition was blocked by inhibition of a5b1 or a8b1 integrins,
and by a2b1, but not by av integrins (Fig. 5B). Thus, both

cultures require a8b1 integrin, ARPE-19A cells show partial
dependency on a5b1, and ARPE-19B cells require a2b1. Neither
culture needed av integrins for microfibril deposition.

ARPE-19 cells required HS biosynthesis for microfibril deposition
HS is a component of syndecan receptors that binds FN

(Couchman, 2010), and it strongly interacts with fibrillin-1
(Cain et al., 2008; Tiedemann et al., 2001). Immunofluorescence
localisation of HS in the ARPE-19 cultures revealed that HS

(antibody 10E4) was concentrated at ARPE-19A cell–cell
junctions and showed little colocalisation with FN (antibody
FN-3E2) (not shown). Podocytes had abundant HS staining,
which appeared partially extracellular.

To explore whether HS influences the differential deposition of
microfibrils by ARPE-19A and ARPE-19B cells (Figs 1, 4), we
knocked down exostosin-1 (EXT1), an early enzyme in the HS

synthetic pathway. EXT1 depletion inhibits HS biosynthesis,
with only short sulfated chains generated (Busse et al., 2007;

Osterholm et al., 2009), and impairs focal adhesions
(Mahalingam et al., 2007). EXT1 siRNA was repeated every
48 hours (supplementary material Fig. S3A–C). Immunostaining

for HS confirmed greatly reduced HS in all cases (not shown).
Immunofluorescence microscopy revealed that FN was deposited
pericellularly as short arrays, but fibrillin-1 appeared intracellular

(Fig. 6B; supplementary material Fig. S7B). EXT1 knockdown
increased expression of fibrillin-1 by ARPE-19 cells and HDFs,
as judged by qPCR; ARPE-19A cells had reduced FN

(supplementary material Fig. S3A–C). Western blots of ARPE-
19A and ARPE-19B medium after EXT1 knockdown showed
reduced fibrillin-1 compared to control cells (Fig. 1D), but in cell
layer extracts, there was increased fibrillin-1 compared to control

cells. EXT1 knockdown in HDFs did not alter fibrillin-1 levels in
cell layer extracts (supplementary material Fig. S1B). In ARPE-
19A and ARPE-19B cells, there was also significantly enhanced

Fig. 5. Effects of integrin blocking on microfibril and FN deposition by ARPE-19A and ARPE-19B cultures. Immunofluorescence microscopy of fibrillin-1
(Fibr-1) and FN in (A) ARPE-19A cultures and (B) ARPE-19B cultures after 7 days in the presence of integrin function-blocking monoclonal antibodies (mAb), as
indicated, or no mAb (Con), or non-functional mAb11 (not shown), highlighting deposition of fibrillin-1 (black and white, red) and FN (black and white, green), with
nuclei stained with DAPI (blue). Images were taken using a 206objective. Specific band-pass filter sets for DAPI, FITC and Cy3 or Cy5 prevented bleed-
through. Boxed areas are shown as zoomed images on right. (A) ARPE-19A control cultures had microfibrils and FN; cultures treated with blocking mAbs to
avb6 (10D5), a2b1 (Gi9; also JA218, not shown) showed robust microfibrils and FN; cultures treated with anti-av (17E6) had microfibrils and prominent cell-
associated FN; cultures treated with anti-a5 (mAb16) had greatly reduced microfibrils and FN; microfibrils were not detected in cultures treated with anti-a8 (T-20)
but did have traces of FN; microfibrils and FN were not detected in cultures treated with anti-b1 (mAb13). Scale bars: 100 mm (for first three lanes); 25 mm
(zoom). (B) ARPE-19B control cultures had microfibrils and FN; cultures treated with anti-avb6 (10D5), showed robust microfibrils and FN; cultures treated with
anti-av (17E6) had microfibrils and prominent cell-associated FN; microfibrils were not detected in cultures treated with anti-a2b1 (Gi9), anti-a8 (T-20) and anti-a5
(mAb16) but did have traces of FN; cultures treated with anti-b1 (mAb13) had no detectable microfibrils or FN. Scale bars: 100 mm (for first three lanes); 25 mm
(zoom). Representative images from n52 experiments are shown.

RESEARCH ARTICLE Journal of Cell Science (2014) 127, 158–171 doi:10.1242/jcs.134270

164



Jo
ur

na
l o

f C
el

l S
ci

en
ce

E-cadherin expression (supplementary material Fig. S6B). In

HDF cultures, EXT1 knockdown induced disordered microfibrils,
but FN fibrils appeared unaffected (supplementary material
Fig. S1A).

Thus, HS biosynthesis regulates microfibril assembly.

Although EXT1 siRNA in ARPE-19 cells enhanced fibrillin-1
expression, it also disrupted its secretion and assembly. As
fibrillin-1 deposition by both ARPE-19 cultures was similarly

affected by EXT1 siRNA, HS cannot underlie their differential
FN dependency for microfibril deposition.

ARPE-19 cells require cytoskeletal tension for microfibril deposition
We next investigated whether contractile cytoskeleton is
necessary for microfibril deposition by ARPE-19 cells, using

cytoskeletal inhibitors every 48 hours over 7 days (Fig. 6C;
supplementary material Fig. S7). In both ARPE-19 cultures,
blebbistatin inhibition of myosin II or Y-27632 inhibition of
Rho kinase inhibited FN and microfibril deposition. The RhoA

activator lysophosphatidic acid did not further enhance
microfibril deposition. Vinculin links integrins and cell
junctions to actin (Braga et al., 1997; Terry et al., 2011;

Yamada and Nelson, 2007); both cultures had prominent

pericellular vinculin, with many ARPE-19B cell junctions
under tension (Fig. 6D). Thus, contractile actomyosin was
needed for microfibril deposition by ARPE-19 cells.

Effects of TGFb on ARPE-19A and ARPE-19B cells, and podocytes
As TGFb can induce EMT (Kalluri and Weinberg, 2009), we
investigated how TGFb affects microfibril deposition by ARPE-

19 cells and podocytes (Fig. 7).
For ARPE-19A control cells, TGFb increased fibrillin-1

expression 3-fold, and thick microfibrils were deposited. In FN

siRNA cells, TGFb increased fibrillin-1 expression .3-fold;
microfibrils were deposited with or without TGFb. In syndecan-4
siRNA cells, TGFb increased fibrillin-1 expression 1.8-fold;

some colocalising microfibrils and FN were present. ARPE-19A
cells had ZO-1-staining junctions with or without TGFb (Fig. 2B;
not shown).

For ARPE-19B control cells, TGFb increased fibrillin-1

expression ,3-fold, and microfibrils were deposited. In FN
siRNA cells, TGFb increased fibrillin-1 expression .2-fold, but
there were no microfibrils. In syndecan-4 siRNA cells, TGFb

Fig. 6. Effects of actomyosin inhibitors or HS depletion on ARPE-19 cultures. (A) Immunofluorescence microscopy of ARPE-19 cells and podocytes (after
7 days), showing localisation of syndecan-4 and HS. For ARPE-19A cells in particular, HS localised at cell–cell contacts (arrows). Images were taken using a
206objective. Scale bars: 25 mm. Representative images from n52 experiments are shown. (B) Immunofluorescence microscopy of ARPE-19A and ARPE-19B
cells (cultured for 7 days) following knockdown of EXT1 (depleting HS). Images were taken using a 206objective. EXT1 knockdown in both ARPE-19 cultures
ablated microfibrils, with only cellular fibrillin-1 staining and punctate pericellular FN (arrows). Scale bars: 25 mm. Representative images from n54 experiments
are shown. For microscopy, specific band-pass filter sets for DAPI, FITC, and Cy3 or Cy5 were used to prevent bleed-through. (C) Immunofluorescence
microscopy of ARPE-19 cells (cultured for 7 days), showing deposition of fibrillin-1 (Fibr-1). Images were taken using a 206objective. Cells were incubated for
7 days in the presence of myosin II inhibitor blebbistatin (10 mM), or Rho kinase inhibitor Y27632 (10 mM), or RhoA activator lysophosphatidic acid (LPA) (20 mM),
with DMSO controls (DMSO). Microfibrils were reduced in all cells treated with blebbistatin or Y27632. Scale bars: 25 mm. Representative images from n52
experiments are shown. (D) Immunofluorescence microscopy of ARPE-19 cells (cultured for 7 days), showing localisation of phalloidin (Phal) and vinculin (Vinc).
Vinculin accumulated at cell-cell contacts in ARPE-19A and ARPE-19B cells; in ARPE-19B cells, these junctions appeared under tension. Phalloidin staining was
similar in ARPE-19A and ARPE-19B cells. Images were taken using a 606objective. Boxed areas are shown as zoomed images on right. Scale bars: 25 mm
(for first two lanes); 10 mm (zoom). Representative images from n52 experiments are shown.
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Fig. 7. See next page for legend.
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increased fibrillin-1 expression 1.4-fold; microfibrils and FN
were seen. ARPE-19B cells had no ZO-1-staining junctions with
or without TGFb (Fig. 2B; not shown).

For control podocytes, TGFb increased fibrillin-1 expression
.2-fold, and microfibrils were abundant. In FN siRNA cells,
TGFb increased fibrillin-1 expression .3-fold; some microfibrils

were seen. In syndecan-4 siRNA cells, TGFb increased fibrillin-1
expression ,2-fold; staining was pericellular. No ZO-1-staining
junctions were seen with or without TGFb (Fig. 2B; not shown).

TGFb1 had many other effects on gene expression; in
particular it enhanced expression of FN, PDGFRb and SMA in
all cells, and SNAI2 in FN-depleted ARPE-19B cells (Fig. 7).

Following FN siRNA, TGFb did not alter cell-specific
dependencies on FN. TGFb did induce deposition of fibrillin-1
and FN in syndecan-4 siRNA ARPE-19A cells, which

colocalised, thus overcoming dependency on syndecan-4 for
microfibril deposition in these cells.

In summary, we have shown epithelial–mesenchymal cell-

specific mechanistic differences in ECM deposition.

DISCUSSION
The discovery that mesenchymal cells require FN to deposit
fibrillin microfibrils (Kinsey et al., 2008; Sabatier et al., 2009)
was unexpected from an evolutionary perspective (Ozbek et al.,

2010). We have explored this relationship by comparing HDFs
with ARPE-19 cells (Cain et al., 2009; Massam-Wu et al., 2010)
and podocytes (Lennon et al., 2013), all of which deposit ECM.

Our data show that FN is not essential for microfibril formation
by all cells, and we identify roles for syndecan-4, HS and
epithelial cell–cell junctions in microfibril deposition.

Fig. 7. Effects of TGFb1 on microfibril deposition by ARPE-19 cells and podocytes. Immunofluorescence microscopy of deposition of fibrillin-1 (Fibr-1;
black and white, red) and FN (black and white, green) was conducted, along with real-time quantitative PCR (qPCR) analysis of gene expression in ARPE-19A
and ARPE-19B cells, and podocytes (all 7 days) which were cultured in the presence or absence of 160 pM TGFb1. TGFb1 was added to control cultures, and to
(A) FN knockdown (kd) and (B) syndecan-4 kd cultures. Gene expression of fibrillin-1 (Fibr-1), fibronectin (FN), syndecans (syn) 1–4, E-cadherin (E-cad),
N-cadherin (N-cad), PDGF receptor-b (PDGFRb), smooth muscle a-actin (SMA), SNAI1, SNAI2 and TWIST 1 is shown. Expression was normalised using a
combination of GAPDH and TATA box binding protein (TBP) expression, and reported relative to expression levels in ARPE-19A control cultures with no added
TGFb1 (where ARPE-19A control expression was set at 1). All data are represented as mean6s.e.m. and were analyzed by two-way ANOVA. *P ,0.05;
**P ,0.01; ***P ,0.001. The ‘Gene Study’ functionality of CFX Manager was utilised. For microscopy, nuclei were stained with DAPI (blue); Scale bars: 100 mm.
n52 for all samples. Boxed area is shown as a zoom in the top right-hand corner for ARPE-19A syn-4 kd cells with TGFb1.

Fig. 8. Pericellular microfibril assembly. (A) Confocal microscope image of ARPE-19A cells (after 7 days) showing deposition of fibrillin-1 (red) and FN
(green). The montage shows a z-stack of 54 images grouped in sets of six slices. The focus starts at the surface of the glass coverslip and moves to the top of
the cell. Fibrillin-1 microfibrils are deposited on the surface of the coverslip and the FN fibrils above fibrillin-1. Also shown is the xz and yz projections of the
original image stack. Scale bars: 50 mm. Images were taken with a 606 objective on a Nikon C1 upright confocal. (B) Model of how epithelial–mesenchymal
status might influence microfibril assembly, with newly secreted fibrillin-1 aligned for assembly by HS-rich focal adhesions that are differentially induced by
epithelial cell–cell junctions or mesenchymal FN.
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We found that epithelial ARPE-19A cells are not dependent on
FN or PKCa for microfibril deposition, unlike the more-

mesenchymal ARPE-19 cells. Deposition of perlecan, an
unrelated ECM molecule, has similar cell-specific dependencies
to that of FN, which are thus not unique to fibrillin-1. Although
podocytes (which have specialised slit-diaphragm junctions with

components of tight and adherens junctions) can also assemble
microfibrils after FN depletion, abundant microfibril deposition
required FN, indicating that FN is required for this process to be

efficient.
We found that HS biosynthesis was also required for fibrillin-1

secretion and microfibril deposition by ARPE-19 cells. Heparin/

HS strongly binds fibrillin-1 (Cain et al., 2008; Tiedemann et al.,
2001) and might be needed to direct assembly interactions. As FN
formed only short pericellular arrays after HS knockdown, HS

also influences FN fibrillogenesis, yet the extracellular presence
of FN but not microfibrils in these experiments argues against
FN as a template for fibrillin-1. Furthermore, microfibrils were
disrupted by HS depletion in HDF cultures, which had abundant

FN. In FN-dependent ARPE-19B cells, deletions of EXT1 or
PKCa also depleted extracellular FN, which might have
contributed to their reduced microfibrils.

How then might FN enhance microfibril deposition in a cell-
specific manner? Given the need for HS, its localisation at cell–
cell junctions in epithelioid ARPE-19A cultures implies that it

has a role in FN-independent microfibril assembly. Another clue
might lie in our discovery of the essential role for a8b1 integrin in
microfibril assembly by ARPE-19 cells; the requirement for a5b1

and/or a8b1 integrins, and cytoskeletal tension for microfibril
deposition by ARPE-19 cells confirms our earlier HDF data
(Kinsey et al., 2008). a8b1, like a5b1, can engage FN but it also
binds nephronectin, which is needed for epithelial–mesenchymal

interactions in kidney development (Hartner et al., 2012; Müller
et al., 1997; Sato et al., 2013). Thus, the cell-specific balance of
activating (or inhibiting, e.g. fibulin-5; Lomas et al., 2007)

ligands for a5b1 or a8b1 integrins might regulate cytoskeletal
tension and focal adhesion formation.

The contributions of syndecans to microfibril assembly were

complex. Whereas syndecan-2 was not essential for microfibrils,
syndecan-4, but not its effector PKCa, was needed by ARPE-19A
cells and podocytes for fibrillin-1 secretion and assembly. Given
that syndecan-4 is a component of focal adhesions (Gopal et al.,

2010; Woods et al., 2000), it could be needed to form
cytoskeletally linked adhesions at cell junctions. Syndecan-1,
which is implicated in EMT, could serve a similar role in other

epithelial cells (Masola et al., 2012; Stepp et al., 2007).
It is unclear why cFN did not effectively rescue microfibrils in

ARPE-19B cells or why podocytes needed FN for efficient

microfibril deposition. A general possibility is that their cell–cell
organisation was insufficient to support assembly. Because only
ARPE-19A cells had defined HS-rich tight junctions, tight

junctions could be necessary for the FN-independent microfibril
deposition in these cells. The more-mesenchymal cells that lack
tight junctions might instead rely on FN to induce HS-rich focal
adhesions. ARPE-19A cells and podocytes also have adherens

junctions, which affect microfibril deposition, as they function in
the FN assembly by certain epithelial cells (Dzamba et al., 2009).
Given that blocking cadherin interactions induced short FN arrays

resembling those after HS depletion, FN assembly might also
require HS-rich cell junctions.

EMT involves complex cellular changes (Thiery and Sleeman,

2006; Kalluri and Weinberg, 2009), and can be induced by TGFb,

which upregulates FN and SMA (Fig. 7). Marker analysis
suggested that cultured ARPE-19 cells were in epithelioid

or mesenchymal states and that podocytes were in transition.
TGFb1 partially overcame the dependency on syndecan-4
for fibrillogenesis in epithelioid ARPE-19A cells, inducing
colocalised microfibrils and FN, which implies induction of FN

dependency. The reason for differences between batches of
ARPE-19 cultures is unclear, but some clonal sublines are known
to be more fibroblast-like (Dunn et al., 1996) and they are

sensitive to EMT (Chen et al., 2012; Huang et al., 2013; Li et al.,
2011; Tamiya et al., 2010; Tian et al., 2005).

We propose a microfibril assembly model (Fig. 8) that is

compatible with pre-chordates, which lack FN (Esko and Lindahl,
2001; Hynes, 2012; Johnson et al., 2009; Ozbek et al., 2010;
Tucker and Chiquet-Ehrismann, 2009). In epithelioid cells with

cell–cell junctions, microfibrils assemble pericellularly and basally
(Fig. 8A), enabled by junction-induced (FN-independent) focal
adhesions comprising HS and/or syndecan, and b1 integrin, linked
to cortical cytoskeleton (Braga et al., 1997; Nakajima and Tanoue,

2011; Smith et al., 2012; Terry et al., 2011; Yamada and Nelson,
2007). In mesenchymal cells, FN induces mobile syndecan-rich
focal assembly sites.

In summary, we have shown that ECM deposition is regulated
by epithelial–mesenchymal status. Dependency on FN might be
an evolutionary acquisition to support the deposition of robust

fibrillar mesenchymal tissues.

MATERIALS AND METHODS
Cell culture
HDFs were purchased from Life Technologies (UK). Three batches of

ARPE-19 cells were independently purchased from the American Tissue

Culture Collection (CRL-2302). Cells designated ARPE-19A were batch

58280268, cells designated ARPE-19B were batch 59270158, and cells

designated ARPE-19C were batch 60279299. These cells were

maintained in Dulbecco’s modified Eagle’s medium (DMEM; Sigma-

Aldrich) supplemented with 10% (v/v) fetal calf serum (FCS; Life

Technologies), 1% L-glutamine, 100 U/ml penicillin-streptomycin at

37 C̊ in 5% CO2, and were routinely passaged at confluency.

Conditionally immortalised human podocytes (Saleem at al., 2002)

were grown on uncoated tissue culture plates. Podocytes between passage

24 and 30 were cultured for 7 days at 33 C̊ in RPMI-1640 medium with

glutamine (R-8758; Sigma, St. Louis, MO, USA) supplemented with

10% (v/v) FCS (Life Technologies), 5% (v/v) ITS (I-1184; Sigma; 1 ml/

100 ml) and 100 U/ml penicillin-streptomycin. In these conditions,

podocytes are proliferating and have a ‘cobblestone’ (epithelial)

phenotype. HaCaT cells were grown in DMEM (Sigma-Aldrich),

supplemented with 10% (v/v) FCS (Life Technologies), 1%

L-glutamine, 100 U/ml penicillin-streptomycin, at 37 C̊ in 5% CO2,

and were passaged at confluency. Mammary epithelial cells (MCF10A)

were cultured as described (Debnath et el., 2003).

Cell lines ARPE-19A and ARPE-19B were confirmed to be ARPE-19

cells, and the identity of mammary epithelial cells MCF10A was also

confirmed using the Promega Powerplex 16 HS system. STR (short

tandem repeats) analysis was carried out using an Applied Biosystems

3730 DNA Analyzer using Applied Biosystems POP-7 polymer. STR

data for HaCaT and podocytes were not available.

Antibodies
Primary antibodies for immunofluorescence microscopy were against

FN (FN-3E2, Sigma-Aldrich; 1:200), fibrillin-1 (HPA021057, Sigma-

Aldrich, 1:200; mAb 11C1.3, Abcam, 1:200), HS (10E4, Seigagaku,

Japan; 1:200), perlecan (A7L6, Millipore; 1:200), b1 integrin (B44,

Millipore; 1:200) and ZO-1 (T11, Millipore; 1:200). Anti-vinculin

antibody (hVin-1, Sigma-Aldrich; 1:400) was used to identify focal

adhesions, and phalloidin conjugated to Rhodamine (Life Technologies;
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1:1000) to stain the actin cytoskeleton. Primary antibodies for integrin

blocking were against b1 integrin (mAb13; from M. J. Humphries,

University of Manchester), a2b1 (JA218 and Gi9; from M. J. Humphries,

Manchester), a5 (mAb16; from M. J. Humphries, University of

Manchester, UK), a8 (T-20; Santa Cruz Biotechnology), av

(Abcam17E6), avb3 (LM609 and 23C6, Millipore) and avb6 (10D5,

Millipore). Anti-b-actin (mAbAC-74, Sigma-Aldrich) was used as a

loading control for western blots. Anti-E-cadherin antibody (rabbit

mAb 24E10), from Cell Signaling, was used at 1:1000 dilution for

western blots. Other cell junction antibodies were against N-cadherin

(Abcam 12221), E-cadherin (BD Biosciences, 610182), b-catenin (BD

Biosciences, 610154), syndecan-4 (Santa Cruz 5G9, sc-12766) and PKCa
(Abcam 57415).

siRNA transfections
Cells were transfected using lipofectamine RNAiMAX reagent (Life

Technologies), according to the manufacturer’s protocol. Briefly, 6 pmol

RNAi duplex was added to 100 ml Optim-MEM medium (Life

Technologies) prior to addition of 1 ml Lipofectamine RNAiMAX in a

single well of a 24-well plate, with Lipofectamine RNAiMAX-only

controls. The resulting solution was allowed to incubate for 15 minutes.

HDFs, ARPE-19 cells or podocytes were trypsinised and counted prior to

being diluted in DMEM (without antibiotics) so that 500 ml contained

either 50,000 cells (HDF) or 75,000 cells (ARPE-19 cells and podocytes).

The cells were then added to the transfection mix, giving a final RNAi

duplex concentration of 10 nM. Cells were cultured for a total of up to

8 days (HDF) or 7 days (ARPE-19 and podocytes), with repeated RNAi

duplex transfection taking place at regular intervals (day 2 for 4-day

HDF; days 2, 4 and 7 for 8-day HDF; days 3 and 5 for ARPE-19

and podocytes). Depending on efficiency of knockdown, one or two

RNAi duplexes were used per gene. The RNAi duplexes were: FN

(SI02664004, Qiagen); EXT-1, 59-GGAUCAUCCCAGGACAGGA-39

and 59-GGCUUAUUUUUCUUCAGUU-39 (sense), (Busse et al., 2007);

syndecan-2 (s12635/6, Ambion); syndecan-4 (s12638/9, Ambion); PKCa
(SI00301308, Qiagen); perlecan (59- GUUGGAGCAGCGGACAUAU-39

(sense), (Sakai et al., 2009). DNA and RNA oligonucleotides were purchased

from MWG Operon.

Immunofluorescence microscopy
ECM deposition was analyzed using indirect immunofluorescence

microscopy. Cells cultured on coverslips were fixed using 4% (v/v)

paraformaldehyde (PFA) solution for 20 minutes at room temperature,

followed by washing in phosphate-buffered saline (PBS) and quenching

in 0.2 M glycine for 20 minutes. Following three PBS washes, cells

were permeabilised using 0.5% (v/v) Triton-X in PBS for 10 minutes at

room temperature. Three PBS washes preceded blocking in 2% (w/v)

fish-skin gelatin (Sigma-Aldrich) in PBS for 1 hour at room temperature.

Coverslips were then incubated in primary antibody for 1 hour, before

being washed in PBS and incubated in secondary antibody for 45 minutes

(both incubations at room temperature). Coverslips were washed in

dH2O before being mounted on glass slides with Prolong Gold containing

DAPI (Life Technologies). Primary antibodies (as above) were detected

using Alexa Fluor secondary antibodies (1:400; Life Technologies)

(see figure legends). Some cells were stained with phalloidin (as above).

Images were collected at room temperature on an Olympus BX51

upright microscope using 206 or 606 objectives and captured using a

Coolsnap ES camera (Photometrics) through MetaVue Software

(Molecular Devices). Specific band pass filter sets for DAPI, FITC,

Texas Red, Cy3 and Cy5 were used to prevent bleed through from one

channel to the next. Images were processed and analyzed using ImageJ

(http://rsb.info.nih.gov/ij).

Integrin, actomyosin and cadherin inhibition
ARPE-19 cells were cultured for 7 days in the presence of integrin

blocking antibodies, all at 10 mg/ml, and ECM deposition was analyzed

by indirect immunofluorescence microscopy (as above). ARPE-19 cells

were also cultured in the presence of the myosin II inhibitor blebbistatin

(10 mM), the Rho kinase inhibitor Y27632 (10 mM; Sigma-Aldrich), the

RhoA activator lysophosphatidic acid (LPA) (20 mM), or cadherin

inhibitor peptide (designated A7) (500 mM; Devemy and Blaschuk,

2009). Blebbistatin and Y27632 solutions contained DMSO; an

equivalent concentration of DMSO was added to control cultures for

these assays. All antibodies and inhibitors were added at day 0, and

replenished at days 3 and 5.

Western blotting
Total cell lysates (from cultures up to 8 days) were prepared by

incubation of cell layers in radio-immunoprecipitation assay buffer

(RIPA buffer; 25 mM Tris-HCl pH 7.6, 150 mM NaCl, 1% (v/v) NP-40,

1% (v/v) sodium deoxycholate, 0.1% SDS; Thermo Scientific) for

15 minutes at room temperature, followed by cell scraping. Lysate

concentrations were determined using a bicinchoninic acid (BCA) assay

kit (Thermo Fisher Scientific). For SDS-PAGE separation of lysate

proteins, 10 mg of total cell lysates were reduced with sample reducing

agent (Invitrogen) before loading onto NuPAGEH Novex 3–8% Tris-

acetate gels (Life Technologies). For samples of medium, 20 ml was

reduced and loaded onto 3–8% Tris-acetate gels. For podocytes, soluble

cell lysate was collected by addition of 1% (v/v) NP-40 for 1 minute at

room temperature, before washing in PBS and addition of RIPA buffer,

as above. The RIPA cell layer extract was centrifuged at 16,100 g for

30 minutes at 4 C̊. The supernatant (‘soluble CL’) was removed, and the

pellet resuspended in 8 M urea (‘insoluble CL’). Concentration

determinations and SDS-PAGE analysis were as above. Separated

proteins from gels were transferred onto nitrocellulose membranes

prior to blocking in 5% (v/v) milk in TBST (150 mM NaCl, 10 mM Tris,

0.05% Tween-20). Blots were probed with anti-FN (mouse mAb FN-3E2,

Sigma-Aldrich), anti-fibrillin-1 (HPA021057, Sigma-Aldrich), anti-

PKCa (Abcam 57415) or anti-E-cadherin (rabbit mAb 24E10, Cell

Signaling) antibodies overnight at 4 C̊. Blots were washed extensively in

2% (v/v) milk in TBST, and incubated for 1 hour at room temperature in

goat anti-mouse-Ig or goat anti-rabbit-Ig antibodies conjugated to

horseradish peroxidase (HRP) (Dako). Blots were washed extensively

in TBST, and HRP detection performed using Super Signal Development

Substrate (Pierce). To ensure equal loadings, total cell layer extract blots

were stripped with western blot stripping buffer (Pierce), and re-probed

with anti-b-actin antibody (see above). Band intensities were quantified

using the Gene Tools software (Syngene).

Real-time quantitative PCR
RNA was isolated from ARPE-19, HDF cells and podocytes using an

Absolute RNA Microprep Kit (Agilent Technologies). 500 ng RNA was

used to generate cDNA using a cDNA synthesis kit (Bioline). Real-time

qPCR analysis was carried out using either DNA Engine Opticon 2 (MJ

Research Inc.) or CFX96/384 instruments (Bio-Rad) and the GoTaq

qPCR Mastermix Kit (Promega). Expression analysis was performed in

triplicate using CFX Manager software v3.0 (Bio-Rad), with samples

normalised to a combination of TATA box binding protein (TBP) and

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) expression unless

otherwise stated. Gene expression data (relative to control cell expression)

from across replicate experiments was either entered directly into Prism

software v4.03 (GraphPad Software Inc.) or (when stated in figure legends)

first imported into the ‘Gene Study’ functionality of CFX Manager prior to

transfer of expression, s.e.m., and n-values into Prism. Prism software was

used for analysis via two-way ANOVA with Bonferroni post-tests. The

oligonucleotide primers used for all qPCR reactions are shown in

supplementary material Table S1.

TGFb1 and cellular fibronectin incubations
ARPE-19 cells and podocytes were prepared for siRNA transfections as

described above, and allowed to adhere for 4 hours prior to addition of

human TGFb1 (240-B-002, R&D Systems) to a final concentration of

160 pM. Cells were subject to repeat RNAi duplex transfections, together

with addition of 160 pM TGFb1, at days 3 and 5, and were cultured for

7 days in total. Immunofluorescence, RNA purification and real-time

qPCR were performed as above. Similarly, siRNA knockdown ARPE-

19B cells were allowed to adhere before addition of 10 mg/ml cellular
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fibronectin (cFN; Sigma-Aldrich). Cells were cultured for 12 days, with

repeat RNAi duplex transfection, together with cFN addition at days 3, 5,

7 and 10. Immunofluorescence was performed as above.

Electron microscopy of cell layers
ARPE-19 cells and podocytes were grown on Aclar film for 12 days

(with repeated RNAi duplex transfection at day 0, 3, 5, 7 and 10,

as above) prior to fixation with 2.5% glutaraldehyde and 4%

paraformaldehyde in 0.1 M cacodylate buffer, postfixation with 1%

osmium tetroxide for 1 hour, and treatement with 1% tannic acid for

1 hour and with 1% uranyl acetate for 1 hour. Samples were dehydrated

with an alcohol series and embedded in TAAB LV resin. Ultrathin

en face sections were cut at a Reichert Ultracut S Ultramicrotome and

contrasted with lead citrate. Sections were observed with an FEI Tecnai

Biotwin 12 microscope at 100 kV accelerating velocity.

Flow cytometry
Flow cytometry samples were prepared as described previously

(Veevers-Lowe et al., 2011). Briefly, ARPE-19 cells were transfected

with RNAi duplexes (see above), and cultured for 24 hours. Cells were

trypsinised, and resuspended in medium prior to incubation at 37 C̊/5%

CO2 for 30 minutes to allow recovery of cell surface proteins. Following

blocking with BSA (Sigma-Aldrich), phycoerythrin (PE)-conjugated anti-

human CD29 (b1 integrin) antibody (MAR4; BD Biosciences), or

syndecan-4 (Santa Cruz 5G9, sc-12766), was added to cells for 1 hour.

Cells were extensively washed with PBS prior to incubation for 1 hour with

10 mg/ml Alexa-Fluor-488-cojugated anti-mouse-Ig antibody (syndecan-4

sample only; Life Technologies) followed by further extensive PBS

washing and analysis on a Beckman Coulter Cyan ADP Analyzer.
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Hopf, M., Göhring, W., Mann, K. and Timpl, R. (2001). Mapping of binding sites
for nidogens, fibulin-2, fibronectin and heparin to different IG modules of
perlecan. J. Mol. Biol. 311, 529-541.

Huang, X. G., Chen, Y. Z., Zhang, Z. T., Wei, Y. T., Ma, H. Z., Zhang, T. and
Zhang, S. C. (2013). Rac1 modulates the vitreous-induced plasticity of
mesenchymal movement in retinal pigment epithelial cells. Clin. Experiment.
Ophthalmol. 41, 779-787.

Hubmacher, D., Sabatier, L., Annis, D. S., Mosher, D. F. and Reinhardt, D. P.
(2011). Homocysteine modifies structural and functional properties of fibronectin
and interfereswith the fibronectin-fibrillin-1 interaction.Biochemistry 50, 5322-5332.

RESEARCH ARTICLE Journal of Cell Science (2014) 127, 158–171 doi:10.1242/jcs.134270

170

http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.134270/-/DC1
http://dx.doi.org/10.1017/erm.2013.9
http://dx.doi.org/10.1017/erm.2013.9
http://dx.doi.org/10.1083/jcb.200711129
http://dx.doi.org/10.1083/jcb.200711129
http://dx.doi.org/10.1083/jcb.200711129
http://dx.doi.org/10.1016/j.devcel.2011.08.007
http://dx.doi.org/10.1016/j.devcel.2011.08.007
http://dx.doi.org/10.1016/j.devcel.2011.08.007
http://dx.doi.org/10.1016/j.devcel.2011.08.007
http://dx.doi.org/10.1074/jbc.M303159200
http://dx.doi.org/10.1074/jbc.M303159200
http://dx.doi.org/10.1074/jbc.M303159200
http://dx.doi.org/10.1074/jbc.M303159200
http://dx.doi.org/10.1083/jcb.200401150
http://dx.doi.org/10.1083/jcb.200401150
http://dx.doi.org/10.1083/jcb.200401150
http://dx.doi.org/10.1083/jcb.200401150
http://dx.doi.org/10.1007/s11010-012-1383-y
http://dx.doi.org/10.1007/s11010-012-1383-y
http://dx.doi.org/10.1007/s11010-012-1383-y
http://dx.doi.org/10.1083/jcb.137.6.1421
http://dx.doi.org/10.1083/jcb.137.6.1421
http://dx.doi.org/10.1083/jcb.137.6.1421
http://dx.doi.org/10.1074/jbc.M703560200
http://dx.doi.org/10.1074/jbc.M703560200
http://dx.doi.org/10.1074/jbc.M703560200
http://dx.doi.org/10.1002/pmic.200401340
http://dx.doi.org/10.1002/pmic.200401340
http://dx.doi.org/10.1074/jbc.M803373200
http://dx.doi.org/10.1074/jbc.M803373200
http://dx.doi.org/10.1074/jbc.M803373200
http://dx.doi.org/10.1074/jbc.M803373200
http://dx.doi.org/10.1074/mcp.M900008-MCP200
http://dx.doi.org/10.1074/mcp.M900008-MCP200
http://dx.doi.org/10.1074/mcp.M900008-MCP200
http://dx.doi.org/10.1074/mcp.M900008-MCP200
http://dx.doi.org/10.1038/labinvest.2011.201
http://dx.doi.org/10.1038/labinvest.2011.201
http://dx.doi.org/10.1038/labinvest.2011.201
http://dx.doi.org/10.1146/annurev-cellbio-100109-104126
http://dx.doi.org/10.1146/annurev-cellbio-100109-104126
http://dx.doi.org/10.1074/jbc.M410762200
http://dx.doi.org/10.1074/jbc.M410762200
http://dx.doi.org/10.1074/jbc.M410762200
http://dx.doi.org/10.1074/jbc.M410762200
http://dx.doi.org/10.1016/S1046-2023(03)00032-X
http://dx.doi.org/10.1016/S1046-2023(03)00032-X
http://dx.doi.org/10.1016/S1046-2023(03)00032-X
http://dx.doi.org/10.1016/j.peptides.2009.05.010
http://dx.doi.org/10.1016/j.peptides.2009.05.010
http://dx.doi.org/10.1242/jcs.03020
http://dx.doi.org/10.1242/jcs.03020
http://dx.doi.org/10.1242/jcs.03020
http://dx.doi.org/10.1006/exer.1996.0020
http://dx.doi.org/10.1006/exer.1996.0020
http://dx.doi.org/10.1006/exer.1996.0020
http://dx.doi.org/10.1046/j.0022-202x.2001.01588.x
http://dx.doi.org/10.1046/j.0022-202x.2001.01588.x
http://dx.doi.org/10.1046/j.0022-202x.2001.01588.x
http://dx.doi.org/10.1016/j.devcel.2009.01.008
http://dx.doi.org/10.1016/j.devcel.2009.01.008
http://dx.doi.org/10.1016/j.devcel.2009.01.008
http://dx.doi.org/10.1136/jmg.40.1.34
http://dx.doi.org/10.1136/jmg.40.1.34
http://dx.doi.org/10.1136/jmg.40.1.34
http://dx.doi.org/10.1136/jmg.40.1.34
http://dx.doi.org/10.1083/jcb.200707150
http://dx.doi.org/10.1083/jcb.200707150
http://dx.doi.org/10.1083/jcb.200707150
http://dx.doi.org/10.1074/jbc.M109.056945
http://dx.doi.org/10.1074/jbc.M109.056945
http://dx.doi.org/10.1074/jbc.M109.056945
http://dx.doi.org/10.1371/journal.pone.0048362
http://dx.doi.org/10.1371/journal.pone.0048362
http://dx.doi.org/10.1371/journal.pone.0048362
http://dx.doi.org/10.1371/journal.pone.0048362
http://dx.doi.org/10.1111/j.1365-2133.1997.tb03695.x
http://dx.doi.org/10.1111/j.1365-2133.1997.tb03695.x
http://dx.doi.org/10.1111/j.1365-2133.1997.tb03695.x
http://dx.doi.org/10.1006/jmbi.2001.4878
http://dx.doi.org/10.1006/jmbi.2001.4878
http://dx.doi.org/10.1006/jmbi.2001.4878
http://dx.doi.org/10.1111/ceo.12070
http://dx.doi.org/10.1111/ceo.12070
http://dx.doi.org/10.1111/ceo.12070
http://dx.doi.org/10.1111/ceo.12070
http://dx.doi.org/10.1021/bi200183z
http://dx.doi.org/10.1021/bi200183z
http://dx.doi.org/10.1021/bi200183z


Jo
ur

na
l o

f C
el

l S
ci

en
ce

Hynes, R. O. (2012). The evolution of metazoan extracellular matrix. J. Cell Biol.
196, 671-679.

Johnson, M. S., Lu, N., Denessiouk, K., Heino, J. and Gullberg, D. (2009).
Integrins during evolution: evolutionary trees and model organisms. Biochim.
Biophys. Acta 1788, 779-789.

Jovanovic, J., Takagi, J., Choulier, L., Abrescia, N. G., Stuart, D. I., van der Merwe,
P. A., Mardon, H. J. and Handford, P. A. (2007). alphaVbeta6 is a novel receptor for
human fibrillin-1. Comparative studies of molecular determinants underlying
integrin-rgd affinity and specificity. J. Biol. Chem. 282, 6743-6751.

Kalluri, R. and Weinberg, R. A. (2009). The basics of epithelial-mesenchymal
transition. J. Clin. Invest. 119, 1420-1428.

Kinsey, R., Williamson, M. R., Chaudhry, S., Mellody, K. T., McGovern, A.,
Takahashi, S., Shuttleworth, C. A. and Kielty, C. M. (2008). Fibrillin-1 microfibril
deposition is dependent on fibronectin assembly. J. Cell Sci. 121, 2696-2704.

Klass, C. M., Couchman, J. R. and Woods, A. (2000). Control of extracellular
matrix assembly by syndecan-2 proteoglycan. J. Cell Sci. 113, 493-506.

Lennon, R., Byron, A., Humphries, J. D., Randles, M. R., Carisey, A., Murphy,
S., Knight, D., Brenchley, P. E. and Zent, T. and Humphries, M. J. (2013).
Global analysis reveals the complexity of the human glomerular extracellular
matrix. J. Am. Soc. Nephrol. doi: 10.1681/ASN.2013030233.

Li, H., Wang, H., Wang, F., Gu, Q. and Xu, X. (2011). Snail involves in the
transforming growth factor b1-mediated epithelial-mesenchymal transition of
retinal pigment epithelial cells. PLoS ONE 6, e23322.

Loeys, B. L., Gerber, E. E., Riegert-Johnson, D., Iqbal, S., Whiteman, P.,
McConnell, V., Chillakuri, C. R., Macaya, D., Coucke, P. J., De Paepe, A.
et al. (2010). Mutations in fibrillin-1 cause congenital scleroderma: stiff skin
syndrome. Sci. Transl. Med. 2, 23ra20.

Lomas, A. C., Mellody, K. T., Freeman, L. J., Bax, D. V., Shuttleworth, C. A. and
Kielty, C. M. (2007). Fibulin-5 binds human smooth-muscle cells through
alpha5beta1 and alpha4beta1 integrins, but does not support receptor
activation. Biochem. J. 405, 417-428.

Mahalingam, Y., Gallagher, J. T. and Couchman, J. R. (2007). Cellular adhesion
responses to the heparin-binding (HepII) domain of fibronectin require heparan
sulfate with specific properties. J. Biol. Chem. 282, 3221-3230.

Masola, V., Gambaro, G., Tibaldi, E., Brunati, A. M., Gastaldello, A., D’Angelo,
A., Onisto, M. and Lupo, A. (2012). Heparanase and syndecan-1 interplay
orchestrates fibroblast growth factor-2-induced epithelial-mesenchymal transition
in renal tubular cells. J. Biol. Chem. 287, 1478-1488.

Massam-Wu, T., Chiu, M., Choudhury, R., Chaudhry, S. S., Baldwin, A. K.,
McGovern, A., Baldock, C., Shuttleworth, C. A. and Kielty, C. M. (2010).
Assembly of fibrillin microfibrils governs extracellular deposition of latent TGF
beta. J. Cell Sci. 123, 3006-3018.

Melrose, J., Hayes, A. J., Whitelock, J. M. and Little, C. B. (2008). Perlecan, the
‘‘jack of all trades’’ proteoglycan of cartilaginous weight-bearing connective
tissues. Bioessays 30, 457-469.

Morgan, M. R., Hamidi, H., Bass, M. D., Warwood, S., Ballestrem, C. and
Humphries, M. J. (2013). Syndecan-4 phosphorylation is a control point for
integrin recycling. Dev. Cell 24, 472-485.

Müller, U.,Wang, D., Denda, S., Meneses, J. J., Pedersen, R. A. andReichardt, L. F.
(1997). Integrin alpha8beta1 is critically important for epithelial-mesenchymal
interactions during kidney morphogenesis. Cell 88, 603-613.

Nakajima, H. and Tanoue, T. (2011). Lulu2 regulates the circumferential actomyosin
tensile system in epithelial cells through p114RhoGEF. J. Cell Biol. 195, 245-261.

Nonaka, R., Onoue, S., Wachi, H., Sato, F., Urban, Z., Starcher, B. C. and
Seyama, Y. (2009). DANCE/fibulin-5 promotes elastic fiber formation in a
tropoelastin isoform-dependent manner. Clin. Biochem. 42, 713-721.

Osterholm, C., Barczyk, M. M., Busse, M., Grønning, M., Reed, R. K. and
Kusche-Gullberg, M. (2009). Mutation in the heparan sulfate biosynthesis
enzyme EXT1 influences growth factor signaling and fibroblast interactions with
the extracellular matrix. J. Biol. Chem. 284, 34935-34943.

Ozbek, S., Balasubramanian, P. G., Chiquet-Ehrismann, R., Tucker, R. P. and
Adams, J. C. (2010). The evolution of extracellular matrix. Mol. Biol. Cell 21, 4300-
4305.

Piha-Gossack, A., Sossin, W. and Reinhardt, D. P. (2012). The evolution of
extracellular fibrillins and their functional domains. PLoS ONE 7, e33560.

Ramirez, F. and Dietz, H. C. (2009). Extracellular microfibrils in vertebrate
development and disease processes. J. Biol. Chem. 284, 14677-14681.

Ramirez, F. and Sakai, L. Y. (2010). Biogenesis and function of fibrillin
assemblies. Cell Tissue Res. 339, 71-82.

Ritty, T. M., Broekelmann, T. J., Werneck, C. C. and Mecham, R. P. (2003).
Fibrillin-1 and -2 contain heparin-binding sites important for matrix deposition
and that support cell attachment. Biochem. J. 375, 425-432.

Sabatier, L., Chen, D., Fagotto-Kaufmann, C., Hubmacher, D., McKee, M. D.,
Annis, D. S., Mosher, D. F. and Reinhardt, D. P. (2009). Fibrillin assembly
requires fibronectin. Mol. Biol. Cell 20, 846-858.

Sakai, K., Nakamura, T., Matsumoto, K. and Nakamura, T. (2009). Angioinhibitory
action of NK4 involves impaired extracellular assembly of fibronectin mediated by
perlecan-NK4 association. J. Biol. Chem. 284, 22491-22499.

Saleem, M. A., O’Hare, M. J., Reiser, J., Coward, R. J., Inward, C. D., Farren, T.,
Xing, C. Y., Ni, L., Mathieson, P. W. and Mundel, P. (2002). A conditionally
immortalized human podocyte cell line demonstrating nephrin and podocin
expression. J. Am. Soc. Nephrol. 13, 630-638.

Sato, Y., Shimono, C., Li, S., Nakano, I., Norioka, N., Sugiura, N., Kimata, K.,
Yamada, M. and Sekiguchi, K. (2013). Nephronectin binds to heparan sulfate
proteoglycans via its MAM domain. Matrix Biol. 32, 188-195.

Singh, P., Carraher, C. and Schwarzbauer, J. E. (2010). Assembly of fibronectin
extracellular matrix. Annu. Rev. Cell Dev. Biol. 26, 397-419.

Smith, A. L., Dohn, M. R., Brown, M. V. and Reynolds, A. B. (2012). Association
of Rho-associated protein kinase 1 with E-cadherin complexes is mediated by
p120-catenin. Mol. Biol. Cell 23, 99-110.

Sottile, J. and Hocking, D. C. (2002). Fibronectin polymerization regulates the
composition and stability of extracellular matrix fibrils and cell-matrix adhesions.
Mol. Biol. Cell 13, 3546-3559.

Stepp, M. A., Liu, Y., Pal-Ghosh, S., Jurjus, R. A., Tadvalkar, G., Sekaran, A.,
Losicco, K., Jiang, L., Larsen, M., Li, L. et al. (2007). Reduced migration,
altered matrix and enhanced TGFbeta1 signaling are signatures of mouse
keratinocytes lacking Sdc1. J. Cell Sci. 120, 2851-2863.

Takahashi, S., Leiss, M., Moser, M., Ohashi, T., Kitao, T., Heckmann, D.,
Pfeifer, A., Kessler, H., Takagi, J., Erickson, H. P. et al. (2007). The RGD motif
in fibronectin is essential for development but dispensable for fibril assembly. J.
Cell Biol. 178, 167-178.

Tamiya, S., Liu, L. and Kaplan, H. J. (2010). Epithelial-mesenchymal transition
and proliferation of retinal pigment epithelial cells initiated upon loss of cell-cell
contact. Invest. Ophthalmol. Vis. Sci. 51, 2755-2763.

Terry, S. J., Zihni, C., Elbediwy, A., Vitiello, E., Leefa Chong San, I. V., Balda,
M. S. and Matter, K. (2011). Spatially restricted activation of RhoA signalling at
epithelial junctions by p114RhoGEF drives junction formation andmorphogenesis.
Nat. Cell Biol. 13, 159-166.

Thiery, J. P. and Sleeman, J. P. (2006). Complex networks orchestrate epithelial-
mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7, 131-142.

Tian, J., Ishibashi, K., Honda, S., Boylan, S. A., Hjelmeland, L. M. and Handa,
J. T. (2005). The expression of native and cultured human retinal pigment
epithelial cells grown in different culture conditions. Br. J. Ophthalmol. 89, 1510-
1517.

Tiedemann, K., Bätge, B., Müller, P. K. and Reinhardt, D. P. (2001). Interactions
of fibrillin-1 with heparin/heparan sulfate, implications for microfibrillar assembly.
J. Biol. Chem. 276, 36035-36042.

Tiedemann, K., Sasaki, T., Gustafsson, E., Göhring, W., Bätge, B., Notbohm,
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Fig. S1. Microfibrils are not deposited by HDF cultures when FN is depleted. (A) Immunofluorescence microscopy of HDF 
cultures (8 days), showing deposition of fibrillin-1 (Fibr-1; B/W, red) and FN (B/W, green), with nuclei stained with DAPI (blue). 
Images were taken using a 20× objective. Specific band-pass filter sets for DAPI, FITC, and Cy3 or Cy5 were used to prevent bleed-
through. Control cultures (Con) showed partial colocalisation of fibrillin-1 and FN (yellow). FN knockdown (kd) HDF cultures had 
no detectable microfibrils. EXT1 knockdown (kd) HDFs had disordered microfibrils but no apparent FN changes. Scale bars = 100 
μm. n = 2 (B) Fibrillin-1 deposition was quantified using ImageJ. The percentage area was calculated by applying an equal threshold 
value over all the images and measuring the area of the brightest pixels corresponding to fibrillin fibrils. For each cell type, at least 3 
images were used and the graph shows the mean percentage area and SEM. Statistical significance for deviation from the control cell-
line values was calculated using a 2-way ANOVA with a Bonferroni’s multiple comparisons test using GraphPad Prism V6.  Asterisk 
indicate P values where *** = P ≤ 0.001. (C) Medium and cell layer extracts from HDF cells in control (Con) and knockdown (kd) 
experiments (perlecan, EXT1, PKCα, FN, syndecan-2 or syndecan-4) were separated on 3-8% Tris-acetate gels in reducing conditions, 
and analyzed by western blotting for fibrillin-1 (antibody HPA021057) or FN (antibody FN-3E2), or β-actin (mAbAC-74) as loading 
control for cell layer extracts.  Molecular weight markers are indicated. Quantification of band intensity is shown as a percentage of 
control band intensity (where Con = 100%). Data shown are from a single representative experiment, with biological and technical 
repeats exhibiting the same trends (n = 3). 

Fig. S2. Relative expression levels in ARPE-19A and B cells, podocytes, and human dermal fibroblasts (HDFs). (A) Real-
time quantitative PCR (qPCR) analysis of gene expression of fibrillin-1 (Fibr-1), fibronectin (FN), EXT1, perlecan (Perl), PKCα 
and syndecans (Syn) 1-4 in (i) ARPE-19A, (ii) ARPE-19B, (iii) podocyte (all 7 days) and (iv) HDF cultures (4 days). (B) Real-time 
qPCR analysis of gene expression of E-cadherin (E-cad), N-cadherin (N-cad), PDGF receptor-β (PDGFRβ), smooth muscle α-actin 
(SMA), SNAI1, SNAI2 and TWIST 1 in (i) ARPE-19A, (ii) ARPE-19B, and (iii) podocyte cultures (all 7 days). For both (A) and (B), 
expression is reported relative to TATA box binding protein (TBP), where TBP expression is equal to 1. Data are represented as the 
mean ± s.e.m. See Table S1 for details of n values for ARPE-19A and B cultures; for podocytes, n = 3; for HDF in (A) (iii), n = 6-12, 
depending on gene.

Fig. S3. Real-time quantitative PCR analysis of expression levels following knockdown of EXT1, perlecan, or fibronectin, 
and  syndecan-2, syndecan-4 or PKCα. (A-D) qPCR analysis of expression levels of fibrillin-1 (Fibr-1), fibronectin (FN), EXT1, 
Perlecan (Perl), PKCα (PKCα) and syndecans (Syn) 1-4, following knockdown of EXT1, perlecan, or FN in (A) ARPE-19A, 
(B) ARPE-19B cells (both 7 days) and (C) HDF cultures (4 days). (D) qPCR analysis of expression levels of fibrillin-1 (Fibr-1), 
fibronectin (FN), syndecans (Syn) 1-4, E-cadherin (E-cad), N-cadherin (N-cad), PDGF receptor-β (PDGFRβ), smooth muscle α-actin 
(SMA), SNAI1, SNAI2 and TWIST 1 following knockdown of FN in podocyte cultures (7 days). Samples were either normalised 
to a combination of GAPDH/TBP expression (A, B and D), or to TBP expression (C) prior to being reported as fold changes relative 
to lipofectamine-treated control cell expression of either ARPE-19A, ARPE-19B, HDF or podocyte accordingly (where Con = 1). 
All data are represented as the mean ± s.e.m. and analyzed by 2-way ANOVA, with *P<0.05; **P<0.01; ***P<0.001. See Table S1 
for details of n values for ARPE-19A and B cultures; for HDF, n = 3-16, depending on gene and knockdown condition. (E-H) qPCR 
analysis of expression levels of fibrillin-1 (Fibr-1), fibronectin (FN), EXT1, Perlecan (Perl), PKCα (PKCα) and syndecans (Syn) 
1-4, following knockdown of syndecan-2, syndecan-4 or PKCα  in (E) ARPE-19A, (F) ARPE-19B cells (both 7 days) and (G) HDF 
cultures (4 days). Samples were either normalised to a combination of GAPDH/TBP expression (E and F), or to TBP expression (G) 
prior to being reported as fold changes relative to lipofectamine-treated control cell expression of either ARPE-19A, ARPE-19B, 
or HDF accordingly (where Con = 1). All data are represented as mean ± s.e.m. and analyzed by 2-way ANOVA, with *P<0.05; 
**P<0.01; ***P<0.001. See Table S1 for details of n values for ARPE-19A and B cultures; for HDF, n = 3-16, depending on gene and 
knockdown condition. (H) Cell lysate samples of ARPE-19A and B cells (control and PKCα knockdown) were separated on 4-12% 
Bis-Tris gels in reducing conditions, and analyzed by western blotting for PKCα or β-actin (mAbAC-74) as loading control for cell 
layer extracts.  Molecular weight markers are indicated. Verification of PKCα kd was achieved via quantification of band intensity 
(“Expression”), shown as a percentage of control band intensity (where Con = 100%).

Fig. S4. Effects of adding cellular fibronectin on microfibril and FN deposition by ARPE-19B cultures. Immunofluorescence 
microscopy of ARPE-19B cells (control and FN kd, 12 days), showing deposition of fibrillin-1 (Fibr-1; B/W, red) and FN (B/W, 
green), with nuclei stained with DAPI (blue), in the presence or absence of cellular FN (cFN; 10 µg/ml) . Addition of cFN to FN kd 
ARPE-19B cells failed to rescue deposition of fibrillin-1. Images were taken using a 20× objective. Specific band-pass filter sets for 
DAPI, FITC and Cy3 or Cy5 were used to prevent bleed-through. Scale bars = 100 μm.

Fig. S5. Effects on microfibrils of knocking down perlecan, or syndecans-2 or -4, or PKCα, in ARPE-19A, ARPE-19B and 
HDF cultures. Immunofluorescence microscopy of (A) ARPE-19A cells and (B) ARPE-19B cells (both 7 days), showing deposition 
of perlecan (B/W, red) and FN (B/W, green), with nuclei stained with DAPI (blue). Images were using a 20× objective. Boxed areas 
are shown as zoomed images on right. Control cultures (Con) showed partial colocalisation of fibronectin and perlecan (yellow). 
FN knockdown (kd) ARPE-19A cultures exhibited prominent perlecan staining, but FN knockdown ARPE-19B cultures had no 
detectable perlecan. Perlecan knockdown in both ARPE-19A and B cultures had no effect on FN deposition, and loss of perlecan was 
shown. Scale bars for first three lanes = 100 μm; scale bar for perlecan zoom = 25 μm; for A and B n = 3. (C) Immunofluorescence 
microscopy of HDF cultures (8 days), showing deposition of fibrillin-1 (Fibr-1; B/W, red) and perlecan (B/W, green), with nuclei 
stained with DAPI (blue). Boxed areas are shown as zoomed images on right. Control cultures (Con) showed partial colocalisation of 
fibrillin-1 and perlecan (yellow). FN knockdown (kd) HDFs had no detectable perlecan or microfibrils. Perlecan knockdown HDFs 
had some microfibrils. (D) Immunofluorescence microscopy of HDF cultures (8 days), showing deposition of fibrillin-1 (Fibr-1; 
B/W, red) and FN (B/W, green), with nuclei stained with DAPI (blue). Boxed areas are shown as zoomed images on right. PKCα, 
syndecan-2 and syndecan-4 knockdown (kd) HDFs had few microfibrils but abundant FN. For both (A) and (B), images were taken 
using a 20× objective. Scale bars = 100 μm, n = 3. For all microscopy, specific band-pass filter sets for DAPI, FITC, and Cy3 or Cy5 
were used to prevent bleed-through.



Fig. S6. Real-time quantitative PCR analysis of syndecan and E-cadherin expression levels following siRNA treatments. 
qPCR analysis of expression levels of (A) syndecans 1-4 and (B) E-cadherin, following knockdown of EXT1, FN, perlecan, PKCα, 
syndecan-2 or syndecan-4 in ARPE-19A cells (black bars) and ARPE-19B cells (white bars; both 7 days). Samples were normalised 
to a combination of GAPDH/TBP expression prior to being reported as fold changes relative to ARPE-19A lipofectamine-treated 
control cell expression (where ARPE-19A Con = 1). E-cadherin expression is lower in control ARPE-19B cultures compared to 
control ARPE-19A cultures (see also Fig. 2). In both ARPE-19A and B cells, knockdown of EXT1 results in an increase in E-cadherin 
expression. None of the other gene knockdowns tested changed E-cadherin expression in ARPE-19B cells, whereas knockdown of 
perlecan and PKCα had consequences for E-cadherin expression in ARPE-19A cells. (C) Real-time quantitative PCR (qPCR) analysis 
of gene expression of syndecans 1-4 in control (Con) and FN kd ARPE-19A and B cells. For (A), (B) and (C), the “Gene Study” 
functionality of CFX Manager was utilised. In order to use the “Gene Study” software throughout the experiment, datasets were 
generated for ARPE-19A and B cells (for (A) and (C), n = 3-5, and for (B) n = 3-9, depending on the knockdown condition). All data 
are represented as the mean ± s.e.m. and analyzed by 2-way ANOVA, with *P<0.05; **P<0.01; ***P<0.001.

Fig. S7. Effects of actomyosin inhibitors and EXT1 knockdown on microfibril and FN deposition by ARPE-19A and B cultures. 
(A) Immunofluorescence microscopy of ARPE-19A and ARPE-19B cells (both cultured for 7 days), showing deposition of fibrillin-1 
(Fibr-1; B/W, red) and FN (B/W, green), with nuclei stained with DAPI (blue). Images were taken using a 20× objective. ARPE-19A 
and B cells were incubated for 7 days in the presence of the myosin II inhibitor blebbistatin (10 µM), or the Rho kinase inhibitor 
Y27632 (10 µM), or the RhoA activator lysophosphatidic acid (LPA) (20 µM), with DMSO control cultures (DMSO). Microfibrils and 
FN were greatly reduced in both ARPE-19A and B cells by blebbistatin or Y27632, with only faint fine microfibril arrays observed. 
Scale bars for first three lanes = 100 μm; scale bar for Fibr-1 zoom = 25 μm. (B) Immunofluorescence microscopy of (i) ARPE-19A 
and (ii) ARPE-19B cells (both cultured for 7 days), showing deposition of fibrillin-1 (Fibr-1; B/W, red) and FN (B/W, green) after 
EXT1 knockdown (kd), with nuclei stained with DAPI (blue). Images were taken using a 20× objective. Control cultures (Con) 
showed partial colocalisation of fibrillin-1 and FN (yellow). EXT1 kd in both ARPE-19A and B cultures ablated microfibrils, with 
only cellular fibrillin-1 staining detected, and dense punctuate pericellular FN. Scale bars = 100 μm. For A, n = 2, and B, n = 4. For 
all microscopy, specific band-pass filter sets for DAPI, FITC, and Cy 3 or Cy5 were used to prevent bleed-through. Boxed areas are 
shown as zoomed images on right.  
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Fig. S5
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Fig. S7
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Table S1. Oligonucleotide primers used for qPCR analyses. 

  Forward Primer (5′ – 3′) Reverse Primer (5′ – 3′) 

EXT1 GCTCTTGTCTCGCCCTTTTGT TGGTGCAAGCCATTCCTACC 

FN CTGCGAGAGCAAACCTGAAG TTTAGGACGCTCATAAGTGTCAC 

TBP TCGTGCCCGAAACGCCGAAT CAGTGCCGTGGTTCGTGGCT 

GAPDH AAGGGCATCCTGGGCTAC GTGGAGGAGTGGGTGTCG 

PKCα TGACGTGGAGTGCACCAT GAGTGCAGCTGCGTCAAG 

Fibrillin-1 GGGCATTTGCCAGAACAC CGCTGAGGCATTCGTTTT 

Syndecan-1 CCAGCCAAGCTGACCTTC GAGGCTCCATCCTCAGCA 

Syndecan-2 CCTGCTGTTGGTGTATCG GCAGCACTGGATGGTTTG 

Syndecan-3 GGAGCCTGACATCCCTGA GGGGTCTGAGCCACCTCT 

Syndecan-4 ACTGTGCAGGGCAGCAAC AAGAGGATGCCCACGATG 

Perlecan TGCGCTGGACACATTCGTACCT CCACTGCCCAGGTCGTCTCCT 

E-cadherin CATGAGCCACTGCACCTG GCGATGGAGCGAAACTGT 

N-cadherin AATGACCCCACAGCTCCA GAGCTCAAGGACCCAGCA 

SMA CATCACCAACTGGGACGA GGTGGGATGCTCTTCAGG 

PDGFRβ CTCGGGGACCTACACCTG ACGTAGCCGCTCTCAACC 

SNAIL 1 TCCCATGGCCATTTCTGT GACAGGCCAGCTCAGGAA 

SNAIL 2 ACCCAATGGCCTCTCTCC AGCCACTGTGGTCCTTGG 

TWIST 1 ACCCAGTCGCTGAACGAG GCCAGCTTGAGGGTCTGA 
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Table S2. Total number of replicates for ARPE-19A and B qPCR studies. Table displaying the number of replicate 
experiments (n) performed in triplicate with ARPE-19A and B cells (7 days) to compile real-time quantitative PCR data. 
Values consist of a combination of technical and biological repeats. NA - not included in this study. 

 

Con EXT1 kd Perl kd FN kd Syn-2 kd Syn-4 kd PKCα kd Con EXT1 kd Perl kd FN kd Syn-2 kd Syn-4 kd PKCα kd
Gene
Fibr-1 10 5 4 5 7 7 4 11 3 3 10 3 3 3

FN 10 5 4 5 7 7 4 11 3 3 10 3 3 3
EXT1 6 6 4 6 5 6 3 4 3 3 3 3 3 3

Perlecan 5 4 5 4 4 4 4 4 3 3 3 3 3 3
PKCα 5 4 5 4 5 4 5 3 3 3 3 3 3 3
Syn-1 6 4 4 6 4 3 3 4 3 3 4 3 3 3
Syn-2 8 5 5 6 7 8 6 5 4 4 4 4 4 4
Syn-3 6 4 4 6 4 4 4 4 3 3 4 3 3 3
Syn-4 9 5 4 7 9 9 3 5 4 4 4 4 4 4
E-cad 12 3 3 9 3 3 3 11 3 3 8 3 3 3
N-cad 10 NA NA NA NA NA NA 10 NA NA NA NA NA NA

PDGFRβ 9 NA NA NA NA NA NA 8 NA NA NA NA NA NA

SMA 10 NA NA NA NA NA NA 10 NA NA NA NA NA NA

SNAI1 8 NA NA NA NA NA NA 8 NA NA NA NA NA NA

SNAI2 8 NA NA NA NA NA NA 8 NA NA NA NA NA NA

TWIST 1 7 NA NA NA NA NA NA 7 NA NA NA NA NA NA

ARPE-19A ARPE-19B
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PKCα 5 4 5 4 5 4 5 3 3 3 3 3 3 3
Syn-1 6 4 4 6 4 3 3 4 3 3 4 3 3 3
Syn-2 8 5 5 6 7 8 6 5 4 4 4 4 4 4
Syn-3 6 4 4 6 4 4 4 4 3 3 4 3 3 3
Syn-4 9 5 4 7 9 9 3 5 4 4 4 4 4 4
E-cad 12 3 3 9 3 3 3 11 3 3 8 3 3 3
N-cad 10 NA NA NA NA NA NA 10 NA NA NA NA NA NA

PDGFRβ 9 NA NA NA NA NA NA 8 NA NA NA NA NA NA

SMA 10 NA NA NA NA NA NA 10 NA NA NA NA NA NA

SNAI1 8 NA NA NA NA NA NA 8 NA NA NA NA NA NA

SNAI2 8 NA NA NA NA NA NA 8 NA NA NA NA NA NA

TWIST 1 7 NA NA NA NA NA NA 7 NA NA NA NA NA NA

ARPE-19A ARPE-19B
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