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protein, promotes microtubule stability and
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Summary

Microtubules (MTs) are the major constituent of the mitotic apparatus. Deregulation of MT dynamics leads to chromosome missegregation,
cytokinesis failure and improper inheritance of genetic materials. Here, we describe the identification and characterization of KIAA1383/
MTRI120 (microtubule regulator 120 kDa) as a novel MT-associated protein. We found that MTR120 localizes to stabilized MTs during
interphase and to the mitotic apparatus during mitosis. MTR120 overexpression results in MT bundling and acetylation. /n vitro, purified
MTR120 protein binds to and bundles preassembled MTs. Moreover, depletion of MTR120 by RNA interference leads to cytokinesis failure
and polyploidy. These phenotypes can be rescued by wild-type MTR120 but not by the MT non-binding mutant of MTR120. Together, these
data suggest that MTR120 is a novel MT-associated protein that directly stabilizes MTs and hence ensures the fidelity of cell division.
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Introduction

A microtubule (MT) is a polarized cylindrical structure composed
of o/B-tubulin dimers. Its plus ends are dynamic and subjected to
frequent growing and shrinking, whereas its minus ends are inert
and capped by a y-tubulin ring complex that also provides a
template for MT nucleation (Kollman et al., 2011; Liiders and
Stearns, 2007). MTs play a pivotal role in coordinating numerous
biological processes, including chromosome segregation and cell
motility. MT-associated proteins (MAPs) can bind to MTs in
various manners, either on the ends or along the lattice (Jiang and
Akhmanova, 2011). MAPs are believed to play indispensable roles
in modulating many MT-based cellular functions.

MAPs regulate the functions of the MT-based mitotic spindle
structure via several different mechanisms. For example, MT
plus-end-directed motor Eg-5 establishes spindle bipolarity by
crosslinking MTs outward from the spindle poles (Kapitein et al.,
2005). Minus-end-directed motor Dynein transports MTs and
spindle pole components toward the MT minus-end, contributing
to spindle pole organization (Merdes et al., 2000). Non-motor
MAPs such as NuMA are required for spindle pole focusing (Silk
et al.,, 2009). TPX2 activates and mediates Aurora A kinase
localization onto spindle MTs (Kufer et al., 2002). MT plus-end
master EB1 stabilizes the plus ends of spindle MT and therefore
influences chromosome alignment (Green et al., 2005).

Distinct MAPs regulate midzone MT to facilitate cytokinesis. For
instance, PRC1, an evolutionarily conserved MAP, plays an

important role in midzone assembly, an early polarization step
(Mollinari et al., 2002; Mollinari et al., 2005). Kinesin family member
MKLP1, together with CYK4, forms the central spindling complex
that promotes midzone MT bundling and recruits regulators for late
abscission (Pavicic-Kaltenbrunner et al., 2007). In the chromosome
passenger complex, INCENP binds to and activates another
chromosome passenger complex component, Aurora B kinase,
which in turn phosphorylates central spindlin complex, facilitating
midbody formation (Guse et al., 2005; Sessa et al., 2005).

Because MAPs play significant roles in various cellular processes,
including mitosis, a more complete inventory may contribute to a
better understanding of spindle assembly, chromosome segregation,
and more importantly, genome stability maintenance. In a study of
subcellular localization of human ORFs, we found that KIAA1383
had a robust MT localization pattern when overexpressed. In this
study, we found that KIAA1383 is a novel MAP that promotes MT
stability and participates in cytokinesis. Given its major function in
stabilizing MT, we named this protein MTRI120 (microtubule
regulator 120 kDa).

Results

Identification of new MT-associated proteins using
ORFeome screening

To determine the subcellular localization of individual ORFs in
the human ORFeome library, we subcloned human ORFeomes
into a gateway-compatible destination vector that contains a
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HA-FLAG tag (Fig. 1A). Constructs containing these ORFs were
then transfected into HelLa cells and subjected to
immunostaining. The fluorescence images were captured using
an automated imaging system (Fig. 1A), and the subcellular
localization of these ORFs was determined by visual inspection.
During the course of this study, we identified 39 ORFs with an
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MT-like pattern. To validate our results, we performed a
literature search and found that 22 of these 39 ORFs (56.4%)
had been previously reported to localize to MTs (Fig. 1B),
suggesting that our localization screen is capable of identifying
tubulins and MAPs. Several uncharacterized proteins were
discovered that target the MT network (Fig. 1C).
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Fig. 1. High-throughput imaging of human ORFeome to identify

o-tubulin

proteins that localize to MT. (A) Schematic flowchart of construction
of the ORFeome library and large-scale screening for protein
localization. (B) Representative images show several uncharacterized
proteins that target the MT network. Scale bar: 10 um. (C) List of
OREFs scored as potential proteins with MT localization (N, no; Y, yes).
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MTR120 is a cell-cycle-regulated protein with distinct
mitotic localizations

We found that one ORF, MTR120/KIAA1383, robustly localizes
to the MT-like structure. MTR120 is an uncharacterized protein
of 1047 residues with a predicted molecular mass of 120.4 kDa
and a predicted isoelectric point of 8.16. In addition, its orthologs
can be found in many vertebrates (supplementary material Fig.
S1). A DNA topoisomerase I conserved domain with unknown
significance was identified at the carboxyl region of its mouse
homolog. We generated stable clones that expressed SFB (S-
protein tag, FLAG epitope tag, and streptavidin-binding peptide
tag)-tagged MTR120 and found that tagged MTR120 localized to
filamentous structures that partially overlapped with MTs during
interphase. Moreover, the transgene was found to be at spindle
poles in metaphase and spindle midzone during telophase
(Fig. 2A).

To confirm our immunostaining results using exogenously
expressed proteins, we generated rabbit polyclonal antibodies,
raised against purified GST-tagged MTR120 carboxyl terminus
(residues 697—-1047). This antibody specifically recognized a
120-kDa band from HeLa cell lysate but not in the cells treated
with MTR120-specific siRNA (see later). Moreover, this antibody
recognized MTR120 protein in different cell lines (Fig. 2B),
indicating that MTR 120 is ubiquitously expressed. Similar to the
results obtained using tagged protein, we observed the
enrichment of MTRI120 at centrosomes when cells were
subjected to cold treatment to remove cytoplasmic MTs
(Fig. 2C, bottom panels), whereas the centrosome signal of
MTR120 was not easily detected without treatment (Fig. 2C,
upper panels). After detergent pre-extraction, MTR120 was
found along a population of MTs (Fig. 2D, upper panels).
Because MTR120 does not co-localize perfectly with a-tubulin,
we speculated that it preferentially localizes to a subset of MTs,
such as stabilized MTs. To test this possibility, we co-stained
endogenous MTR120 with acetylated o-tubulin, which is a
marker for MT stabilization, and observed substantial co-
localization of these proteins (Fig. 2D, bottom panels). We also
noticed distinct localization of MTR120 at various stages of
mitosis (Fig. 2E). During prometaphase and metaphase, MTR 120
accumulated at spindle poles. At late anaphase, MTR120 was
targeted to the center of spindle midzone, as shown by its
co-localization with Polo-like kinase 1 (Fig. 2E). During
cytokinesis, MTR120 localized at the midbody. To validate the
specificity of these immunostaining results, we used MTR120-
specific siRNA to downregulate the expression of endogenous
MTR120. MTR120s fluorescence signals normalized to internal
reference signals (y-tubulin) at various cell cycle stages and were
dramatically reduced in siRNA-treated cells compared with in
control cells (supplementary material Fig. S2), confirming that
MTR120 localizes to MTs and mitotic apparatuses that contain
MTs.

Conserved MTR120 region is required for its MT
localization

We further delineated the MT-targeting domain on MTR120.
Several SFB-tagged MTR120 fragments were generated and
expressed in cells (Fig. 3A). Eighty-five percent of cells (r=100)
that expressed MTR120s middle region (M; residues 347-697)
showed MT localization (Fig. 3B), whereas 95% or 90% of cells
that expressed the NH2-terminal (N) (r=60) or COOH-terminal
(C) fragment (n=70) demonstrated diffuse cytoplasm localization.

To further define the MT-targeting domain, we performed
sequence alignment of MTR120 from various species and found
two highly conserved regions (I: residues 440-448 and II: residues
634-668) in the middle region of MTR120 (Fig. 3C). Moreover,
region II harbors several conserved positive-charge residues,
which is a general feature of known MT-binding domains. The
internal deletion mutants of these conserved regions were
constructed and expressed in cells (Fig. 3D). As expected, the
D2 mutant, which lacks the conserved region II, failed to co-
localize with MTs (94%, n=50), whereas D1 mutant localized
(80%, n=40) in the same manner as full-length protein (Fig. 3E).
These data indicate that MTR120 uses a conserved region to
localize to MTs.

MTR120 promotes MT stability in vivo and binds MT in vitro
Because MTRI120 selectively localizes to stabilized MTs
(Fig. 2D), we determined whether it promoted MT stabilization
in cells. Interestingly, we found that 70% of cells with MTR120
overexpression had perinuclear rings of MT bundles, which was
not observed in control cells (Fig. 4A). Consistent with
MTR120s not co-localizing perfectly with MT network, we
found that the MT bundle induced by MTR120 co-localized well
with acetylated a-tubulin (Fig. 4B, lower panels). The results of a
quantification indicated that the fluorescence intensity of
acetylated o-tubulin in MTR120-overexpressed cells was 4-fold
higher than that in untransfected controls (Fig. 4C). Moreover, a
western blotting analysis revealed that the amount of acetylated-
a-tubulin increased when MTR120 was overexpressed, whereas
the total amount of o-tubulin did not change (Fig. 4D).

To substantiate MTR120s role in promoting MT stability, we
treated MTR120-overexpressing cells with nocodazole, a drug
that induces MT depolymerization. MT bundles persisted in 75%
of cells (Fig. 4E, upper panels). We then determined whether
MT’s association with MTR120 is required for its ability to
promote MT stabilization. For this, we took advantage of the D2
deletion mutant, which lacks the MT-binding domain. Ninety-
five percent of D2-positive cells did not maintain the filamentous
MT network after nocodazole treatment (Fig. 4E, lower panels).
In another experiment, the D2 mutant, but not the D1 mutant, of
MTR120 did not increase the fluorescence intensity of acetylated
o-tubulin, as demonstrated by immunofluorescence staining
(Fig. 4F,G). Similarly, quantification of the western blotting
results revealed that both the full-length and D1 mutant of
MTRI120 significantly increased the level of acetylated MT by 6-
fold compared with the untransfected control or D2-positive cells
(Fig. 4H,I). Together, these results suggest that MTR120
associates with MT and enhances its stability in vivo.

To provide biochemical evidence of the MT-stabilizing
activity of MTR120, we expressed and purified recombinant
MBP-tagged MTR120-M that harbors its MT-targeting domain
and MBP-tagged MTR120-M-D2 in which the conserved region
(residues 634—668) was deleted in Escherichia coli (Fig. 5A). In
an MT co-sedimentation assay, MTRI120-M-WT, but not
MTR120-M-D2, bound directly to polymerized MTs. A
quantification revealed that the dissociation constant (Ky)
(concentration of tubulin needed to pellet 50% of MTR120-M)
was ~0.8+0.24 uM (Fig. 5C). The co-pelleted MTR120-M was
not simply precipitated due to protein aggregation because the
protein stayed in supernatant when polymerized MT was not
added (Fig. 5B).
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Fig. 2. MTR120 is targeted to MTs and centrosomes. (A) Cells that stably express MTR120-SFB were fixed and immunostained for MTR120-SFB (anti-
FLAG), MTs (anti-o-tubulin antibodies) and DNA (DAPI). (B) Various mammalian cell extracts were subjected to western blot analysis using anti-MTR120 and
anti-o-tubulin antibodies. (C) Cells on the coverslip were untreated (upper row) or placed in ice water for 1 hour (lower row) before being fixed and
immunostained for endogenous MTR 120 and centrosomes (anti-y-tubulin). Arrows and arrowheads indicate the centrosomes. (D) Cells on the coverslip were pre-
extracted with 0.5% Triton X-100 before being fixed and immunostained for endogenous MTR120 and MTs (a-tubulin) (upper row) or acetylated MTs (anti-
acetylated-o-tubulin) (lower row). (E) Mitotic cells were co-stained with anti-MTR120 and anti-a-tubulin antibodies (a marker for spindle MTs). Anti-Polo-like
kinase 1 was used to stain the spindle midzone at telophase. DAPI staining was used to stain the congressed chromosomes. Scale bars: 10 um.




MTR120 stabilizes MTs 829

A - a-tubulin

1 347
L
347 697
M I
697 1083
C
MTR120-M a-tubulin
MTR120-SFB: N M C
75KDa = (/
Antl Flag
50KDa =
MTR120-C
37KDa ==
SNBSS Anti-a-tubulin
50KDa =
C 380
Hum an : vs| '-QEERQQLQ GELEIPEAQ -l:.u-EMVKSKH':-CD NGKTNSWTCSGAGN SE:‘EE 440
Chimpanzee : VS| QIERQQLQ GELEIPEAQK) P EMVKEK cm\m SNGKTNS VVTCSGAGN, OE, 298
Bovine i VS| -ENQQLQ",PD P PG VKISRAGKD PGRAFHSK DSDYTDMNGKTNS DMCSKGSSE—I <s PPN"E 304
Mouse : SK QKGISARCL ARmEGSEhCAKDmSWSAGIISDASWQKSWWEAV" KASSGDMASAP CSPAPS sTs._ 268
Frog : NP PIPQFPPSALPLR SSEMTSE [SCHIRMKVA TEETSAT [FSSYKEVV [6/EC M) VRD[EHVOMSVATQTEQK sxesmm PKCM 301
5
o Human PEKK AHRSC1 IPSSF‘AHI.JHPE INI 'r ITCQTEﬁﬁﬁEN'R: 530
Chimpanzee PEKK PP RSCI IPSS AH|ZHPP ﬂPL'H 0 -TCQ‘IE———:‘NR: 388
O Bovine »GTFLKEN THTNPPE 'TNSHTGIESCS WPAS ID O/ TTDHPPTE ENR : 397
c Mouse 5 TFPETKLYS|24 LR -- P TRAﬁVQmspp P\ L QT-GP.;E APCPPQIE [§SP : 359
) Frog IPVVKQOMKASNNNMCN \FIQSQOLPDNVS s L-_,L'INALFLELSVLNN QSTISRN : 394
O
(@p) 640 *
Human SLEYIAAQIENYKEDKY : 620
— Chimpanzee 5 QIENYKEDKY : 478
) Bovine WQTENLKKGKY : 487
(@) A 11/ NI RO BT LNE A BT, TELS L LSNOP VX By (e vH BHLAN L ¥R(e F DRIREBINZ SpvK S T3 S B KN KIS VIAIE KL JOCTKRI) 2 (R— K : 442
Frog : 473
y—
o %60 * 740
=) Human : S EZSSEALH Pid 688
g Chimpanzee : SE&SS HE 4/ Pid 546
— Bovine i F ENKG, Q < : 555
S Mouse : HP |{IGESPPP|iY KGRLL¥GC LTN‘T‘LF‘TRITHFNHLV ERREONRR T80 WIGK VSSSAAESOMSPOLPADTPTDSNG  [$P : 535
o Frog R —— TTGSKISINH EFIR Iy SIIR0) aNPELEv_EuF_.Fl\ [KWOSRC H: 528
)
D 440 448
D1
634 668
D2

MTR120-SFB: D1 D2
WB:

150KDa w— i
T —— /0ti-Flag MTR120-D2 8l a-tubulin Merge
100KDa ==
75KDa = L
s s Anti-a-tubulin e
S0KDg m—

Fig. 3. A conserved MT-targeting domain is present in the central region of MTR120. (A) Schematic representation and expression of MTR120 fragments.
(B) HeLa cells were stained for ectopically expressed MTR120 fragments and MTs using anti-FLAG and anti-a-tubulin antibodies, respectively. (C) Sequence
alignment of MTR120 homologs identified in different species. The GenBank accession numbers are as follows: human, NP_061963.2; chimpanzee, XP_525093.2;
bovine, NP_001091617.1; mouse, NP_083184.1; and frog, XP_002935866.1. The red and green lines indicate the first and second conserved regions, respectively.
(D) Schematic representation and expression of internal deletion mutants of MTR120. (E) HeLa cells were transiently transfected with constructs encoding the
indicated MTR120 mutants and stained with anti-FLAG and anti-a-tubulin antibodies to detect MTR120 proteins and MTs, respectively. Scale bars: 10 um.

To determine whether full-length MTR120 is capable of sulfate-PAGE (SDS-PAGE) (supplementary material Fig. S3). WT
binding to MTs in vitro, we expressed and affinity-purified SFB- MTR120 co-pelleted with polymerized MTs, whereas the D2
tagged, wild-type (WT) and D2 mutant MTRI120 from mutant of MTR120 was barely detectable in the pellet (data not
mammalian cells. After extensive washing using 1 M NaCl and shown). We determined whether MTR120 can bundle paclitaxel-
12 mM deoxycholate, we eluted the fusion proteins from preassembled MTs. The addition of full-length, wild-type
streptavidin beads and subjected the eluates to sodium dodecyl MTR120 protein bundled the preassembled MTs into long, thick
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fibers (Fig. 5D). In contrast, the MTs remained short and thin in
samples containing the D2 mutant of MTR120 or BSA, which
served as a negative control in this experiment (Fig. SD).
Together, these findings indicate that MTR120 is a MT-binding
protein that can promote MT stabilization in vitro.
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MTR120 expression resulted in a reduction (~40%) of acetylated
a-tubulin (Fig. 6B), indicating that MTR120 is required for MT
stabilization in vivo. In addition, the number of multinucleated
cells increased significantly (~23%) compared with those
observed in cells transfected with control siRNA (~6%)
(Fig. 6C,D). We also found centrosome clusters (indicated by
bright y-tubulin staining) in multinucleated cells, indicating that
polyploidy progenies inherit multiple centrosomes and that some
fuse and display bright y-tubulin staining. This phenotype was
reproducible when a second siRNA was used to downregulate
MTR120 expression (supplementary material Fig. S4).
Consistent with results from immunofluorescence staining, a
fluorescence-activated cell sorting analysis also revealed a
significant increase in the >4N population in MTRI120
knockdown cells (Fig. 6E; supplementary material Fig. S5),
indicating that MTR120 downregulation causes defects in cell
division, preventing cells fail from maintaining normal ploidy.

Because MTR120 is a MAP, we determined whether MT is
required for MTR120s function. We first generated cell lines that
stably expressed the siRNA-resistant form of wild-type or D2
mutant MTR120. The expression of exogenous proteins was
slightly higher than that of endogenous MTR120 (Fig. 6F). Next,
we depleted endogenous MTR120 using siRNA in these cell
lines; thus, these cells only expressed wild-type or D2 mutant
MTR120 (Fig. 6G). The expression of wild-type MTR120, but
not D2 mutant, rescued the polyploidy phenotype in cells
transfected with MTR120 siRNA (Fig. 6D,H). The introduction
of exogenous wild-type MTR120 led to the formation of
perinuclear rings, suggesting that at least some MTs are
bundled in these cells. Nonetheless, these cells proliferated
normally as parental cells (data not shown), indicating that the
expression level of these exogenous proteins is relatively low and
thus does not severely disturb cell cycle progression.

To better describe MTR120s involvement in mitosis and
cytokinesis, we used time-lapse microscopy to image M-phase
events in HeLa cells that stably expressed GFP-H2B. In the
control population, more than 90% of cells underwent mitosis

Fig. 4. MTR120 promotes MT stability in vivo. (A) HeLa cells were
untransfected or transfected with construct encoding SFB-tagged, full-length
MTR120. Immunostaining was conducted with anti-FLAG antibody and anti-
a-tubulin antibodies. (B) HeLa cells were untreated or transfected with SFB-
tagged, full-length MTR120. Immunostaining was conducted using anti-
FLAG antibody and anti-acetylated o-tubulin antibodies. (C) Quantification
revealed the fluorescence intensities of anti-FLAG and anti-acetylated o-
tubulin in untreated or MTR120-overexpressing cells; 50 cells were surveyed
in three independent experiments. (D) HEK293T cells were transfected with
increasing amounts of plasmids that encode MTR120-SFB (0-2 pg). Whole-
cell extracts were prepared and analyzed by western blotting using the
indicated antibodies. (E) At 24 hours after transfection, cells that expressed
full-length MTR120 or D2 mutant were treated with 5 UM nocodazole for

1 hour and then fixed and immunostained using the indicated antibodies.
(F) HeLa cells expressing internal deletion mutants of MTR120 were stained
using anti-FLAG antibody and anti-acetylated o-tubulin.(G) Quantification
revealed the fluorescence intensities of anti-FLAG and anti-acetylated o-
tubulin in D1- or D2-positive cells; 50 cells were surveyed in three
independent experiments. (H) HeLa cells were mock treated (—) or
transfected with constructs that encoded full-length (FL), D1 or D2 mutant
MTR120; they were then harvested and subjected to western blot analysis
using the indicated antibodies. (I) Bar graphs show the ratio of acetylated o-
tubulin levels in treated cells relative to those in mock-treated cells (n=3
independent experiments). Error bars represent s.d. Scale bars: 10 um.

with aligned chromosomes, and the cleavage furrow successfully
ingressed so that the cells eventually separated from each other
(Fig. 7A,C; supplementary material Movie 1). On the contrary,
we observed a cytokinesis defect in MTR120-depleted cells.
Although the cells underwent chromosome segregation after
anaphase onset and the segregated chromosomes migrated to the
daughter cells, the furrow failed to ingress completely. As a
result, cytokinesis failed to complete, and bi-nucleated cells
formed (~30%) (Fig. 7B,C; supplementary material Movie 2).
Together, these results suggest that MTR120 depletion leads to a
cytokinesis defect.

The central spindle or spindle midzone is a highly ordered MT
structure and is enriched with bundled MTs. Sequential
recruitment of factors to this structure is essential for central
spindle build-up and signaling for cell cleavage (Glotzer, 2009;
Wheatley and Wang, 1996). We determined the organization of
the spindle midzone in MTR120-knockdown cells by
determining the localization pattern of central spindle proteins
such as PRC1 and Aurora B kinase. We observed a compact,
organized, MT structure marked by PRCI and o-tubulin
(Fig. 7D) or Aurora B kinase staining (Fig. 7E) in normal
telophase cells. In MTR120 knockdown cells, PRC1 and Aurora
B kinase failed to localize to the midzone MTs (Fig. 7D,E). The
quantification indicated that ~35% and 45% of MTR120-silenced
cells had distorted PRC1 and Aurora B kinase patterns,
respectively (Fig. 7F). We also observed that the o-tubulin and
acetylated o-tubulin labeling in the midzone region was less
robust: the intensity decreased by ~24% and 30%, respectively
(Fig. 7G,H). These data indicate that as a regulator of MT
stability, MTR120 participates in the organization of the spindle
midzone.

Discussion

In this study, we identified MTR120 as a novel MAP in a high-
throughput proteomic screen and demonstrated that it promotes
MT stability. Moreover, we found that the MT-binding ability is
essential for MTR120s function in stabilizing MTs, which is
critical for its roles in mitotic progression and cytokinesis.

To fully understand MAPs’ roles in mitosis, several research
groups have used various approaches to identify MAPs, mainly
based on biochemical purification (Sauer et al., 2005; Torres et al.,
2011). Here, we carried out a large-scale analysis of the subcellular
localization of all 15,483 ORFs in the human ORFeome v5.1
collection, which is complementary to previous approaches. We
identified tubulins, previously characterized MAPs, and putative
new MAPs, including several uncharacterized proteins, such as
C90RF9, C160RF48, ODF3L, TMEM214, C170RF28 and
KIAA1383/MTR120 (Fig. 1B,C). These putative MAPs provide
an opportunity to understand how MAPs participate in diverse
cellular processes. Our study only focuses on one, KIAA1383/
MTR120.

The middle region (residues 347-697) of MTR120, which
contains the MT-binding domain, is rich in basic residues,
reminiscent of the MT-binding sequences of conventional
MAPs. However, scanning this region yielded no recognizable
MT-binding motif, suggesting that MTR120 contains a novel MT-
binding domain. Unlike other general MAPs, MTR120 is enriched
at a subset of MTs (i.e. acetylated MTs) during interphase, which is
reminiscent of other MAPs, such as CAP350 and centrobin/NIP2.
In particular, MT-binding of CAP350 is required for modulating
MT dynamics around Golgi (Hoppeler-Lebel et al., 2007).
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Centrobin/NIP2-tubulin interaction is involved in centriole
elongation and mitotic spindle assembly (Gudi et al., 2011; Lee
et al., 2010). These MAPs and MTR120 may represent a subgroup
of MAPs that has a preference for stabilized MT and participates in
cellular events that are highly dependent on these MTs.

Cytokinesis failure may result from centrosome malfunction
because a population of MTR120 always adheres to centrosomes.
In fact, surgical removal of centrosomes abolishes cell abscission
and arrests cell in G; phase (Hinchcliffe et al., 2001; Khodjakov
and Rieder, 2001). Furthermore, several centrosomal proteins,
such as centrin, centrolin, CEP55, and CP110, are required for
proper cytokinesis, and prolong silencing of these proteins leads to
the formation of multicellular syncytia or multinucleated progenies
(Gromley et al., 2003; Gromley et al., 2005; Salisbury et al., 2002;
Tsang et al., 2006; Zhao et al., 2006). These proteins likely act in
distinct manners, but how they cooperate in cytokinesis is still
unclear. We evaluated the potential centrosome-specific defects in
MTR120 knockdown cells. However, we found no weakening or
fragmentation of Aurora A kinase labeling in mitotic centrosomes,
indicating no significant abnormality of centrosome maturation
(unpublished observation). Loss of MTR120 also had no apparent
effect on centrosomal MT nucleation (supplementary material Fig.
S6), indicating that MTR120 is dispensable for centrosomes to
act as MT’s organization center. To determine when mitotic
progression is disturbed in MTRI120-depleted cells, we
monitored M-phase using live-cell imaging. In the absence of
MTR120, cells underwent chromosome segregation, indicating
that spindle-MTs can attach to the kinetochore. However,
the furrow failed to ingress completely during late mitosis
(telophase), leading to a cytokinesis failure. As shown here,
MTRI120s major function is binding and stabilizing MT. Thus,
we suspect that in the absence of MTR120, MT becomes less
stable (as indicated by reduced tubulin acetylation), which is at
least one of the mechanisms that leads to the cytokinesis defect
observed in MTR120-depleted cells.

Because MT stabilization is involved in multiple steps during
mitosis, we also evaluated the central spindle organization.
Although PRCI1, Aurora B kinase, and Polo-like kinase 1 targeted
the spindle midzone in MTRI20-silenced cells, they had a
distorted or discontinued pattern (Fig. 7D,E). Of note, such
mislocalization of PRC1 is distinct from what has been observed
in Kif-4 knockdown cells. Kif-4 is a binding partner of PRCI.
Kif-4 downregulation causes dispersed or diffuse patterns of
PRC1 and other midzone proteins, including Aurora B kinase
(Hu et al., 2011; Kurasawa et al., 2004; Zhu and Jiang, 2005). We
speculate that MTR120 is not essential for loading midzone
proteins onto the central spindle. Instead, its involvement is likely
to be indirect and structural. Indeed, MTR120 exhibited a robust
MT-bundling effect, which is reminiscent of the MT structure
induced by the central spindle protein, PRC1 (Mollinari et al.,
2002). Overexpressed PRC1 was co-localized with MTR120 in
vivo (unpublished observation). PRC1 and other proteins may
play an initial role in crosslinking MTs to form a central spindle,
whereas MTR120 may play a regulatory role in preventing these
MT bundles from collapsing. Alternatively, these MAPs may act
synergistically during cytokinesis.

MTRI120 orthologs are present in several vertebrates
(supplementary material Fig. S1). In addition, MTRI120
expression can be detected in a wide range of cell lines (Fig. 2B),
indicating that it plays a fundamental role in coordinating cell
division. In fact, when we searched the NCBI EST profile, we found

that its transcript is present in both the fetus and adult, again
suggesting that MTR120 has a general function in cell cycle
regulation.

Tetraploidy cells that stem from cytokinesis failure may give
rise to more chromosome aberration, which promotes further
aneuploidy and genomic instability and eventually leads to
tumorigenesis (Holland and Cleveland, 2009). For example,
overexpression of oncogene Aurora A kinase causes cytokinesis
failure (Meraldi et al., 2002), which may contribute to its
oncogenic effect. By searching the public resource in Oncomine
(Compendia Bioscience, Ann Arbor, MI), we found that MTR120
mRNA levels in various colorectal cancer tissues are low,
ranging from a —2.386-fold (P=7.05x10"*) to a —3.162-fold
(P=3.12x10"®) change compared with normal tissues using the
TCGA colorectal dataset (n=237). These data raise the
possibility that MTR120 downregulation is associated with
tumorigenesis. Of course, future studies are needed to test this
possibility.

Materials and Methods
Construction of the ORFeome library and large-scale screening
We transferred 15,483 human ORFs (human ORFeome v5.1) in pDONR223
vectors into gateway-compatible destination vectors that contained HA-FLAG tag
by LR reaction, according to the manufacturer’s protocol (Invitrogen). The
products were transformed into DH5c, and the transformants were positively
selected using LB medium containing ampicillin (100 pg/ml). The plasmid DNAs
were purified using the Purelink HQ 96-plasmid DNA purification kit (Invitrogen).
The day before transfection, 6x10° HeLa cells were seeded on 96-well optical
bottom plates (Nunc). Plasmid transfection was performed with Lipofectamine
2000 (Invitrogen). Twenty-four hours after transfection, cells were fixed with 3%
paraformaldehyde, permeabilized with solution containing 0.5% Triton X-100, and
blocked with 3% BSA. Cells were subjected to incubation with anti-FLAG
antibodies (1:5000 dilution) for 2 hours. They were then washed extensively with
phosphate-buffered saline (PBS) and incubated with rhodamine-conjugated
secondary antibodies (Jackson ImmunoResearch Laboratories) at ambient
temperature for 1 hour. Nuclei were counterstained with 4, 6-diamidino-2-
phenylindole (DAPI). Finally, cells were subjected to automated imaging using
ImageXpress Micro (Molecular Devices), and the captured images were analyzed
by MetaMorph software (Molecular Devices).

DNA constructs

Full-length MTR120 was obtained from human ORFeome as pDONR223 entry
clone and transferred to a gateway-compatible destination vector for protein
expression. SFB-tag is a triple-epitope tag (S-protein, FLAG and streptavidin-
binding peptide) that allows efficient detection and purification of exogenously
expressed proteins. Fragments of MTR120 were constructed by polymerase chain
reaction. The MTR120 mutants were generated using the QuickChange site-
directed mutagenesis kit (Stratagene) and verified by sequencing.

Antibodies

To generate antibodies that specifically recognize MTR 120 and MBP, we used GST-
fused MTR120 fragment (residues 697-1047) and full-length MBP, expressed and
purified from E. coli BL21 (DE3), as an antigen to immunize rabbits. Anti-serum
was affinity-purified using the AminoLink Plus immobilization kit and purification
kit (Pierce Biotechnology). The following antibodies were purchased from
commercial sources: anti-o. and anti-y, acetylated o-tubulin, B-actin and FLAG
(M2) antibodies from Sigma, anti-PRC1 (H-70) and anti-cyclin A (C19) antibody
from Santa Cruz Biotechnology, anti-Aurora B kinase antibody from BD
Bioscience, and anti-PLK1 from Zymed; anti-Aurora A kinase was used as
described previously (Yu et al., 2005).

Cell culture, transfection and RNA interference

HeLa and HEK293T (American Type Culture Collection, Manassas, VA) cells
were maintained in DMEM supplemented with 10% fetal bovine serum and 1%
penicillin and streptomycin. Plasmid transfection was performed using
polyethylenimine reagent. To generate a stable cell line that expressed
MTR120-SFB, we selected HeLa cells with 2 mg/ml puromycin 24 hours after
transfection. Resistant clones were picked, and the expression of the tagged
proteins was confirmed by western blotting analysis and immunofluorescence
microscopy. Two siRNA duplexes (ThermoScientific) against MTRI20 were
synthesized: siMTRI120: CAATATACAAGCAAGTCTA and siMTRI120-2:
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GAATATAGGAGCAACTAAT. The siRNA duplexes were delivered into cells by
transfection using oligofectamine (Invitrogen).

Immunofluorescence staining and time-lapse microscopy

Cells grown on coverslips were fixed in methanol (—20°C for 10 minutes) or 4%
paraformaldehyde in PBS (ambient temperature for 15 minutes). They were then
subjected to immunostaining using the same protocol as in large-scale screening.
The images were captured using a Nikon ECLIPSE E800 fluorescence microscope
equipped with a Nikon Plan Fluor 40x oil objective lens (NA 1.30) and a SPOT
camera (Diagnostic Instruments, Inc.) or Olympus IX-81 microscope with a disc-
spinning confocal attachment. Images were captured with a Hamamatsu Orca II
ER camera using a water immersion 60x 1.2 NA objective. Slidebook software
from 31 was used to capture and analyze images. Deconvolved images were
analyzed with Adobe Photoshop CS4. For time-lapse microscopy, 1x10* GFP-
H2B-expressing cells grown on a 24-well sensor plate (VWR International) were
transfected with the indicated siRNAs. Seventy-two hours after transfection,
fluorescent and brightfield images of various time series were obtained using an
Olympus IX-81 confocal microscope equipped with a Wafergen Smartslide Micro-
Incubation System, which maintains the environment at 37°C and 5% CO,. Z-
stacks of images were obtained every 10 minutes. After the time-lapse experiment,
images were exported into Slidebook software from 31 to generate the projective
images and time series movies.

Quantification analysis

To quantify the effect of MTR120 overexpression on acetylated a-tubulin from
immunofluorescence images, we used NIS-Elements Basic Research software
(Nikon). In brief, we chose an area that covered the entire cell image and acquired
the fluorescence signals for anti-FLAG or acetylated o-tubulin. The fluorescence
intensities were presented (* s.d.) after subtracting the same-sized background
intensities. To quantify the midzone MTs or acetylated MT intensities from
immunofluorescence images, we chose a rectangular region covering the spindle
midzone between two daughter cells during telophase and acquired the
fluorescence signals for o-tubulin or acetylated o-tubulin. After subtracting the
same-sized background intensities, we normalized the florescence intensities to
those of control cells and presented (* s.d.). To quantify the extent of MTR120
knockdown from immunofluorescence images, we chose an area that covered the
entire cell image and acquired the fluorescence signals for anti-MTR120 or v-
tubulin. After subtracting the same-sized background intensities, we normalized
the florescence intensities of MTR120 to y-tubulin signals (* s.d.).

Fluorescence-activated cell sorter analysis

Ninety-six hours after transfection, control or siRNA-treated cells were rinsed
twice with PBS and fixed by 70% ethanol at 4°C overnight. Cells were then
washed twice with PBS, treated with RNase, subjected to propidium iodide (PI)
staining, and finally analyzed by flow cytometry analysis (Accutech).

Protein purification

MBP-tagged MTR-M or MTR-M-D2 was induced and expressed in E. coli BL21
(DE3). The bacterial pellets were lysed with binding buffer (25 nM Tris pH 7.5,
100 mM NacCl, 0.5% NP-40, 1 mM EDTA, 1 mM DTT, and protease inhibitors)
and clarified by centrifugation (14,000 r.p.m. at 4°C for 15 minutes). Clarified
lysates were incubated with amylose resin (New England Biolabs) at 4°C for
2 hours. After extensive washing by binding buffer, the MBP-tagged proteins were
eluted with 10 mM maltose. The purified proteins were separated by SDS-PAGE
and verified by Coomassie Blue staining.

To purify the full-length MTR120 proteins, we lysed HEK293T cells that
expressed WT or D2 mutant MTR120-SFB with binding buffer (25 nM Tris
pH 7.5, 100 mM NaCl, 0.5% NP-40, 1| mM EDTA, 1 mM DTT, and protease
inhibitors) and clarified them by centrifugation (14,000 r.p.m. at 4°C for
15 minutes). Clarified lysates were incubated with streptavidin Sepharose beads
(GE Healthcare) at 4°C for 2 hours. After being extensively washed with binding
buffer containing 1 M NaCl and 12 mM deoxycholate, the SFB-tagged proteins
were eluted twice with buffer that contained 2 mg/ml biotin. The purified proteins
were separated by SDS-PAGE and verified by Coomassie Blue staining.

MT co-sedimentation and bundling assay

Porcine brain tubulin and rhodamine-labeled tubulin were purchased from
Cytoskeleton. An MT co-sedimentation assay was performed as described
previously (Fong et al., 2008; Fong et al., 2009). In brief, MTs were
preassembled at 37°C for 30 minutes in PEM buffer (80 mM PIPES, pH 6.8,
1 mM MgCl,, and 1 mM EGTA) supplemented with 40 uM paclitaxel and 1 mM
guanosine triphosphate. Purified proteins were incubated with the indicated doses
of MTs in paclitaxel-containing buffer at ambient temperature for 1 hour. The
samples were centrifuged at 100,000 g for 15 minutes on a sucrose cushion (25%
w/v) in PEM buffer. The resulting pellets and supernatants were run on 10%
polyacrylamide gel and stained with Coomassie Blue. To measure the binding
affinity, we used Quantity One basic (Bio-Rad) to quantify the intensities of the

protein bands from Coomassie gel. The percentages of bound protein were plotted
against tubulin concentrations. The dissociation constant (K4) was determined
from the best-fit curve. The data were collected from three independent
experiments. To perform the MT bundling assay, we incubated 0.1 uM
MTR120-WT, MTR120-D2, or BSA with 4 uM paclitaxel-stabilized rhodamine-
labeled MTs at ambient temperature for 20 minutes. The reaction was fixed with
1% glutaraldehyde, and the MTs were sedimented on the coverslip. The MTs’
morphological characteristics were evaluated by fluorescence microscopy.
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Fig. S1. Comparison of MTR120 amino acid sequences from various species.
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Fig. S2. HeLa cells were transfected with siCTL or siMTR 120 and immunostained for MTR120 and a-tubulin at different cell cycle
stages. Bar graph showed the florescence intensities (£SD) of MTR120 were normalized to y-tubulin signals. 50 cells were surveyed in
3 independent experiments. Error bars represent +SD.
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Fig. S4. Cells transfected with control siRNA (siCTL) or a second siRNA targeting MTR120 (siMTR120-2) were subjected to Western
blotting for MTR 120 and a-tubulin (upper panel). Immunofluorescence images of cells transfected with siCTL or siMTR120-2. Anti-
y-tubulin and anti-a-tubulin antibodies were used to detect centrosomes and MTs (lower panel). DAPI was used to stain DNA. Bar
graph showed the average percentages (£SD) of multinucleated cells subjected to siRNA treatment. 100 cells from each group were
counted from three independent experiments. Error bars represent £SD. Bars, 10 pm.
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Fig. SS5. Primary FACS data showed cell cycle distribution of HeLa cells after siRNA treatment.
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Fig. S6. Cells treated with control and siMTR 20 were placed onto ice water to depolymerize MTs for 1 h, and then the cold medium
was replaced with medium prewarmed to 37°C in order to allow the MTs regrow from centrosomes. Cells were then fixed at different
timepoints as indicated, followed by immunostaining with anti-a-tubulin antibody. Bars, 10 pm.
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Movie 1. HeLa cells stably expressing GFP-H2B were treated with control siRNA. 72 hours after transfection, cells were video-
imaged for brightfield and GFP at 15 minutes interval for 20 hours. The playback rate of the time-series movie is 4 frames per second.

Movie 2. HeLa cells stably expressing GFP-H2B were treated with MTR120 siRNA. 72 hours after transfection, cells were video-
imaged for brightfield and GFP at 15 minutes interval for 20 hours. The playback rate of the time-series movie is 4 frames per second.


http://www.biologists.com/JCS_Movies/JCS116137/Movie1.mov
http://www.biologists.com/JCS_Movies/JCS116137/Movie2.mov
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