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Summary
Throughout embryonic development, macrophages not only act as the first line of defence against infection but also help to sculpt organs

and tissues of the embryo by removing dead cells and secreting extracellular matrix components. Key to their function is the ability of
embryonic macrophages to migrate and disperse throughout the embryo. Despite these important developmental functions, little is
known about the molecular mechanisms underlying embryonic macrophage migration in vivo. Integrins are key regulators of many of

the adult macrophage responses, but their role in embryonic macrophages remains poorly characterized. Here, we have used Drosophila

macrophages (haemocytes) as a model system to address the role of integrins during embryonic macrophage dispersal in vivo. We show
that the main bPS integrin, myospheroid, affects haemocyte migration in two ways; by shaping the three-dimensional environment in

which haemocytes migrate and by regulating the migration of haemocytes themselves. Live imaging revealed a requirement for
myospheroid within haemocytes to coordinate the microtubule and actin dynamics, and to enable haemocyte developmental dispersal,
contact repulsion and inflammatory migration towards wounds.
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Introduction
Integrins are ab heterodimeric cell-surface receptors that bind

specific extracellular matrix (ECM) proteins or counter receptors

on other cells (Hynes, 2002; Humphries et al., 2006). Besides

their role in regulating cell adhesion, integrins transduce signals

inside the cell that regulate actin cytoskeletal rearrangements,
cell migration, cell shape, gene expression, cell proliferation

and survival (Legate et al., 2009). These signals integrate with

signals transduced from growth factors, cytokines and other

transmembrane receptors to regulate numerous anchorage-

dependent cellular properties (Hood and Cheresh, 2002).

Adult mature macrophages are strategically located throughout

the body tissues where they play a central role in protecting the

host and maintaining tissue homeostasis. Over the last few years,

it has been appreciated that integrins are essential in regulating

many of these macrophage responses, such as transmigration into

the inflammatory site, migration across tissues, cytokine

secretion and phagocytosis (Abram and Lowell., 2009).

However, recent work has revealed strong discrepancies in
the role that integrins play during leukocyte migration in

two-dimensional (2D) versus three-dimensional (3D)

environments. Live imaging of leukocytes migrating in vivo as

well as artificial 3D matrices of fibrin and collagen has shown

that while integrins are essential to overcome tissue barriers, they

are dispensable for interstitial leukocyte migration. These studies

highlight the need to study leukocyte migration in the natural

context of a living organism (Lämmermann et al., 2008).

Embryonic macrophages play important roles throughout

embryonic development, sculpting and promoting organogenesis

by clearing apoptotic cells and depositing ECM molecules. Central

to their role in embryogenesis, embryonic macrophages must

migrate and disseminate throughout the embryo. Yet despite their

pivotal role during embryonic development, little is known about

how embryonic macrophage migration is regulated. Recently the

use of fluorescently labelled transgenic animals and real-time in

vivo confocal microscopy has facilitated the study of embryonic

macrophages in vivo within the complex 3D environment of

embryos (Grabher et al., 2007). In this respect, Drosophila

embryonic macrophages (haemocytes) have emerged as a

powerful system to study embryonic macrophage biology in vivo

(Evans and Wood, 2011). Deriving from the head mesoderm,

haemocytes are highly migratory cells, achieving an even

distribution throughout the embryo by the end of embryogenesis

(Tepass et al., 1994). During their stereotypical migrations

Drosophila embryonic macrophages contact several diverse
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tissues surrounded by components of the ECM. Yet despite the fact
that integrins are key regulators of cell migration over ECM

substrates, and regardless of their central role in adult
macrophages, further characterization of their requirement
during embryonic macrophage migration is needed.

Here, we use Drosophila to analyse the function of integrins in
embryonic macrophages. Eight b- and 18 a-subunits have been
characterized in mammals, while the Drosophila genome

encodes two b-subunits (bPS and bn) and five a-subunits
(aPS1–5). bPS is widely expressed and forms heterodimers with
all a-subunits, while the bn integrin subunit is predominantly

expressed in the midgut endoderm (Brown, 2000). The aPS2
integrin subunit, inflated, is required for the invasive movement
of embryonic macrophages from the head region into the tail
(Siekhaus et al., 2010). In addition, integrins appear to act

downstream of the Rap1 guanine nucleotide exchange factor
(GEF) dizzy during haemocyte migration (Huelsmann et al.,
2006), since removal of bPS integrin function can rescue

haemocyte migration defects due to overexpression of dizzy.
However, while haemocytes from dizzy mutant embryos
displayed migration defects, a clear function for bPS integrins

in this process has not yet been clearly demonstrated.

By using live imaging we have dissected cell autonomous and
non-autonomous roles for integrins during haemocyte dispersal

within the embryo; the bPS integrin myospheroid is required for
correct development of the 3D environment in which the
haemocytes are migrating and also within the haemocytes

themselves for their migration. In addition we show that the
aPS1 and aPS3 subunits act redundantly to mediate myospheroid

function during haemocyte migration. Using high resolution, live
imaging, we discover a requirement for myospheroid in the

coordination of the actin and microtubule dynamics within
migrating haemocytes and that a loss of integrin function results
in defective inflammatory migrations to wounds as well as a

failure in contact repulsion between migratory haemocytes.

Results
bPS integrins regulate haemocyte migration

In Drosophila embryonic haemocytes, aPS2 is specifically

required for haemocyte movement into the tail (Siekhaus et al.,
2010), indicating that either integrins are not required for other
haemocyte developmental migrations or that other aPS integrins

are involved. We sought to investigate the role of integrins in
haemocyte migrations more broadly by removing the main b-
integrin subunit, encoded by myospheroid (mys). As integrin

subunits must form ab heterodimers in order to be transported to
the cell surface (Leptin et al., 1989), removing the main b-
integrin subunit disrupts most integrin function within the
embryo. As bPS is maternally deposited within the embryo, we

generated maternal zygotic mutants to ensure complete
elimination of integrin function (subsequently referred to as
mysM/Z). Initial dispersal of haemocytes from the head mesoderm,

where they are specified, towards the cypeolabrum, the gnathal
buds and the anterior ventral nerve cord (VNC) were unaffected
by loss of mys (Fig. 1A,E). At this stage, ventrally located

haemocytes undertake pvf-directed migration along the
developing VNC of the embryo to occupy the length of the
midline by stage 13 (Wood et al., 2006) (Fig. 1B). In mysM/Z

mutant embryos haemocyte migration at this stage is severely
disrupted, with haemocytes limited to the anterior and posterior
ends of the VNC (Fig. 1F). This disruption persists through to

stage 15, indicating that haemocyte migration is not slowed but

inhibited (Fig. 1H). Removal of mys also affected haemocyte

migration along the dorsal edge of the epidermis and the visceral

mesoderm (Fig. 1C,G and data not shown), and resulted in

accumulation of haemocytes between the amnioserosa and

yolk regions (Fig. 1F, arrowhead). These haemocyte migration

defects were phenocopied in embryos lacking both maternal and

zygotic Talin, a key component of integrin mediate adhesion

(supplementary material Fig. S1B). In addition, removal of zygotic

and maternal bv integrin function did not enhance the mys

phenotypes, indicating that bv integrin plays no role in haemocyte

dispersal (data not shown).

myospheroid is able to form heterodimers with all five a-

subunits present in Drosophila (Brown, 2000). In order to

identify which a-subunits are involved in regulating haemocyte

migration, we analysed haemocyte migration along the VNC in

embryos lacking the different aPS subunits. Integrin a-subunit

genes show no maternal contribution (Brower et al., 1995; Stark

et al., 1997), therefore zygotic mutants were used. Analysis of

embryos mutant for aPS1 and aPS3 revealed a slight disruption

of haemocyte migration along the VNC, with embryos showing

midline segments devoid of haemocytes (supplementary material

Fig. S2B,C), and in contrast to mys mutant embryos, this

phenotype was not observed in stage 15 embryos (data not

shown). These results show that migration was delayed but not

inhibited in the absence of either of these a subunits. Only with

removal of both aPS1 and aPS3 function did the posterior half of

the VNC remain free of haemocytes until the end of

embryogenesis (supplementary material Fig. S2D), indicating

Fig. 1. Haemocytes in embryos mutant for myospheroid show defects in

developmental dispersal. Lateral view of fixed WT (A–D) and mys maternal

and zygotic (mysM/Z) mutant embryos (E–H). Haemocytes were visualized by

expression of the heterologous cell membrane marker CD2 driven by the

srph-GAL4 driver and detected with an anti-CD2 antibody. (A,E) The initial

phases of haemocyte migration from head mesoderm along the ventral nerve

cord (VNC) are normal in mys mutant embryos (E; compare with A).

(B,F) Mutant haemocytes fail to migrate along the length of the VNC by stage

13 of development (arrows in F). Mutant haemocytes can also be seen

accumulating in the anterior region of the embryo (asterisk) and between the

amnioserosa and yolk (arrowhead). (C,G) Haemocyte migration along the

dorsal edge of the epidermis is also disrupted (arrows). (D,H) The migration

phenotype is also observed at stage 15 (arrows in H).
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that these two a subunits function redundantly to mediate mys

function during haemocyte migration along the VNC in the
developing embryo.

Integrins have been previously shown to regulate cell survival
in different cell types in a variety of species (reviewed in Vachon,

2011). Furthermore loss of trophic support in pvr mutants
contributes to defective developmental dispersal of haemocytes
(Bruckner et al., 2004). To rule out increased haemocyte death in

causing the reduced number of haemocytes found on the midline,
we induced haemocyte-specific expression of the apoptotic
inhibitor p35 in mys mutant embryos. Blocking apoptosis failed

to rescue the strong defect in developmental dispersal of these
embryonic haemocytes (data not shown), indicating that mys

function plays no significant role in regulating the survival of
these cells and that the dispersal defects seen are not the result of

reduced haemocyte numbers.

Non-autonomous and autonomous roles for myospheroid
in haemocyte developmental dispersal

In the Drosophila embryo, mys genetically interacts with the
growth cone repellent Slit to mediate axonal guidance within the
developing CNS (Stevens and Jacobs, 2002). As slit mutant

embryos exhibit disrupted haemocyte migration due to a failure
in separation of the VNC from the overlying epithelium (Evans
et al., 2010), we wondered whether this non-autonomous defect

occurred in and contributed to haemocyte migration defects seen
in mys mutant embryos. To examine this possibility, we used dye
injections to visualise the spatial constraints encountered by

haemocytes on the ventral side of the embryo (Evans et al.,
2010). Dye injections of stage 15 WT embryos indicate
separation of the epithelium from the VNC along the entire
length of the midline (Fig. 2A, n517). In contrast, in mys mutant

embryos the dye fails to permeate along the length of the embryo,
indicating areas where the epithelium has failed to detach from
the VNC (Fig. 2B, n514). In 64% of mys mutant embryos

injected, presence of the dye coincides with areas occupied by
haemocytes (Fig. 2Bi), suggesting that haemocyte migration
defects in these embryos may be the result of spatial constraints

within the embryo. However, in the remaining 36% of mys

mutant embryos, haemocyte progression along the VNC is halted
before the dye becomes more restricted, indicating that in some
embryos, other reasons may underlie haemocyte migration failure

(Fig. 2Bii).

In order to investigate a cell-autonomous requirement for
integrins within haemocytes we expressed RNAi constructs

specifically within the haemocytes using the srp-HemoGAL4

driver (Bruckner et al., 2004). Expression of RNAi transgenes for
either mys or talin was sufficient to mimic haemocyte migration
defects seen with loss of mys function (Fig. 2D; supplementary

material Fig. S1C), demonstrating an additional requirement for
integrins within the migrating haemocytes. Integrins have roles in
both adhesion and in promoting intracellular signalling in

response to environmental cues (Huttenlocher and Horwitz,
2011). In order to determine the primary requirement for
integrins in migrating haemocytes we utilised the TorD/bcyt

fusion protein. TorD/bcyt, consists of the cytoplasmic tail of mys

fused to the extracellular and transmembrane domains of a
dominant gain-of-function allele of the Torso receptor tyrosine

kinase, and has been shown to block ECM adhesion mediated by
endogenous integrins while activating signalling even in the
absence of adhesion (Martin-Bermudo and Brown, 1999;

Narasimha and Brown, 2004; Tanentzapf et al., 2006). Ectopic
expression of TorD/bcyt within wild-type haemocytes using the

srp-HemoGAL4 driver also phenocopied loss of integrin function
(Fig. 2E). These findings suggest that one of the critical functions
for integrins in haemocyte developmental dispersal appears to be
adhesion. To investigate in more detail the contribution of

integrin requirement in both the haemocytes and the surrounding
tissue during their migration along the ventral midline, we used
the GAL4 system to express the bPS subunit in either

haemocytes, or in their migratory substratum, or both in
embryos that lack mys function. To quantify the rescue effects
we defined four distinct phenotypic classes according to the

number of neuromeres of the VNC devoid of macrophages and
determined for each genotype the distribution among these
classes (Fig. 2F–L). Expression of mys solely in the haemocytes
of mysM/Z mutant embryos resulted in a substantial rescue of the

migration phenotype (Fig. 2L, srp .). Rescue of haemocyte
migration was further improved when mys was coexpressed in the
ventral midline, consistent with a requirement for this integrin

subunit in the tissues surrounding the haemocyte at this stage of
development (Fig. 2L, sim .srp .). In contrast, mutant embryos
expressing mys only in the midline showed a very limited rescue

of macrophage migration (Fig. 2L, sim .). Expression of mys in
the midline glia cells, using slit-GAL4, was unable to rescue the
migration defect (Fig. 2L, slit .) and did not enhance the rescue

effect seen with expression of mys in the haemocytes (Fig. 2L,
slit .srp ., compared to srp .). Taken together these results
demonstrate that the bPS integrin subunit is required for
migration of haemocytes along the ventral midline via a

specific requirement in the haemocytes to regulate their
adhesions as well as a role in the ventral nerve cord in
regulating VNC–epithelial separation.

Haemocytes require myospheroid for both random and
directed migrations

To investigate in more detail the cell autonomous role for
integrins in haemocytes we used live imaging of mys mutant
haemocytes as they undergo their normal developmental
dispersal in the embryo. From stage 13 wild-type haemocytes

undergo a segmented and highly directional lateral migration
away from the ventral midline (Fig. 3A,C) (Wood et al., 2006).
Even using mys zygotic mutants, in which a low level of maternal

protein is present, this developmental migration was almost
completely abolished (Fig. 3B,D). Tracking individual cells
revealed that only a small fraction of haemocytes migrated

laterally in the absence of mys function and the few that did
moved at significantly slower speeds than wild-type cells
(Fig. 3E,F). This is in contrast to slit mutant embryos in which
laterally migrating haemocytes migrated at speeds comparable to

those observed in wild-type embryos (Evans et al., 2010).
Therefore, although environmental constraints may account for
the reduction in numbers migrating laterally, the reduction in

migration speed of those that do is likely due to a haemocyte-
specific requirement for mys. Similarly, mys mutant haemocytes
moved at almost half the speed of wild-type cells when migrating

randomly at stage 15 (Fig. 3G). However, we did not detect
differences in the directionality of migration between wild-type
and mys mutant haemocytes during lateral migration or random

migration, suggesting that the polarity machinery and the ability
to decipher migratory cues remained intact in these cells (data not
shown). To analyse cell migration velocity in mys mutant

Integrins and macrophage migration 3477
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embryos in the absence of spatial constraint, we used laser

ablation to create epithelial wounds in the anterior trunk of the

embryo, in areas populated with haemocytes. In mys mutant

embryos haemocytes were competent to respond to an

inflammatory cue (Fig. 3J,K), but there was a significant

reduction in the number of haemocytes recruited to wounds at

the early stages of this inflammatory migration (Fig. 3L). At later

time points the inflammatory response recovered to that of WT

embryos. This lag in recruitment is likely a reflection of the

significant reduction in migration speed exhibited by mys

embryos (Fig. 3M), as the highly directional routes taken by

haemocytes towards the wound are comparable to those seen in

Fig. 2. Environmental and haemocyte specific requirements for bPS integrin. (A,B) Orthogonal projections of ventrally orientated stage 15 WT and mys

mutant embryos with haemocyte-specific expression of GFP (green), injected with dextran dye (red) to reveal spatial constraints surrounding the haemocytes.

Scale bars: 20 mm (ventral view); 5 mm (orthogonal projections). (A) Within injected WT embryos the dye permeates along the length of the embryo, indicating

VNC–epithelial separation. (B) Within mys mutant embryos spreading of the dye becomes restricted, indicating incomplete VNC–epithelial separation (white

arrowheads indicate restricted area of ventral midline). (i) In some embryos the absence of dye coincides with the distance reached by the lead haemocyte

migrating from the anterior of the embryo along the ventral midline, whereas in others (ii) the lead haemocyte fails to reach the area where the dye becomes

restricted (distance between lead haemocyte and spatial restriction indicated by line and asterisk), suggesting that spatial constraint is not the sole cause of

disruption to haemocyte migration along the ventral midline. (C–E) Lateral view of fixed stage 13 embryos. Haemocyte myospheroid requirements were assessed

by coexpressing UAS-CD2 (C) and either UAS-mysRNAi (D) or a dominant-negative version of the mys subunit, UAS-TorsoD/bcyt (E), under the control of the

srph-GAL4 driver, and staining with an anti-CD2 antibody. Expression of either UAS-mysRNAi or UAS-TorsoD/bcyt phenocopies the haemocyte migration

defects observed in mys mutant embryos. (F–K) Lateral views of fixed and stained stage 13 embryos. (F) mysM/Z embryo; (G–J) grading of embryos into ‘classes’

based on level of haemocyte migration rescue; and (K) WT embryo. (L) Quantification of haemocyte migration rescue at stage 13 when UAS-mys is expressed in

the midline under the control of the sim and slit GAL4 drivers, and/or in the haemocytes under the control of srph-GAL4.

Journal of Cell Science 126 (15)3478
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wild type (data not shown), again highlighting a role in providing

a driving force for haemocyte migration rather than a pathfinding

role for integrins.

Together these results indicate a haemocyte-specific

requirement for integrins in both directed and random

migrations. In all types of migration analysed the migration

speed but not the directionality of haemocytes was affected by

loss of mys function. Consistent with the above data this suggests

that integrin-mediated adhesion, rather than signalling, is the

predominant functional requirement during haemocyte migration.

Fig. 3. myospheroid is important for lateral migration, random migration and inflammatory migration. (A,B) Single projection of live imaging of

haemocytes expressing the nuclear marker red stinger under the control of the srp-GAL4 promoter during lateral migration from the ventral midline at stage 13/14.

(A) In WT embryos haemocytes migrate from the midline laterally along highly organised, segmental paths. (B) In the mys mutant these stereotyped lateral

migrations are almost completely abolished. Scale bars: 25 mm. (C,D) Still images taken from live-cell imaging of haemocytes expressing mCherry–Moesin (to

label F-actin) undergoing lateral migration. (C) In WT embryos haemocytes polarise, before rapidly migrating laterally (blue asterisk). (D) In mys integrin mutant

embryos haemocytes often polarise but fail to migrate laterally (orange asterisk). Scale bars: 10 mm. (E) Tracking haemocytes undergoing lateral migration

reveals that in mys mutant embryos a lower percentage of the haemocytes present on the midline at the start of imaging migrate laterally than in WT embryos

(average decrease from 85.2% and 30.9%, P,0.05, n55 embryos per genotype). (F) The velocity of the laterally migrating haemocytes was significantly lower in

the mutant embryos (average velocity of WT and mys haemocytes were 2.2160.11 mm/minute and 1.1960.13 mm/minute, respectively; P,0.0001. Median and

interquartile range (IQR) plotted for n549 (WT) and n518 (mys) haemocytes. (G–I) Tracking of haemocytes expressing red stinger undergoing random migration

at stage 15 (G,H) reveals (I) slower random migration velocity of mys mutant haemocytes at this stage (WT and mys haemocytes migrated at 1.860.57 mm/minute

and 2.760.45 mm/minute, respectively). P,0.05; values are means 6 s.e.m. for n569 (WT) and n585 (mys) haemocytes. Scale bars: 25 mm. (J,K). Stills taken

from movies of haemocytes in a WT and mys mutant embryo, respectively, migrating to an epithelial wound (asterisk). Scale bars: 10 mm. (L) Monitoring the

number of haemocytes at the wound every 5 minutes post wounding over a 60 minute time period indicates a small but significant reduction in the number of mys

haemocytes present at early time points following wounding (P,0.05 at 10 and 15 minutes post wounding). (M) Tracking reveals a reduction in the velocity of

haemocytes in mys mutant embryos compared with WT when migrating towards a wound (1.860.6 mm/minute and 3.060.3 mm/minute, respectively). P,0.01;

median and IQR plotted for n531 (WT) and n520 (mys) haemocytes.

Integrins and macrophage migration 3479
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A role for myospheroid in enabling contact repulsion

Recent studies have shown that microtubule-mediated contact
repulsion acts as a major driving force behind lateral migration of
haemocytes from the midline and the subsequent maintenance of

their even distribution (Stramer et al., 2010). In order to address
whether integrins may play a role in this important process we
used time-lapse imaging of haemocytes expressing cytoplasmic

GFP to analyse the ability of mys mutant haemocytes to undergo
contact repulsion. In wild-type embryos haemocyte cell–cell
contact arrested migration and stimulated mutual repulsion

(Fig. 4A) (see also Stramer et al., 2010). In contrast, mys

mutant haemocytes remained in contact for prolonged periods; on
average haemocytes spent six times longer in contact than wild-
type equivalents (Fig. 4B,C). These results demonstrate a role for

integrins in enabling haemocyte contact repulsion. Previous
studies have shown that contact repulsion is driven by
realignment of the polarized microtubule cytoskeleton in

contacting cells. We therefore analysed microtubule dynamics
in mys mutant haemocytes.

Loss of myospheroid in haemocytes results in disruption
of the actin and microtubule cytoskeleton

In Drosophila the use of fluorescent probes to label actin
(mCherry–Moesin) and microtubules (GFP–CLIP170), has
shown that embryonic haemocytes assemble a polarised array of
microtubules that extend into lamellipodia during migration.

Coalescence of stabilized microtubules drives the formation of a
‘microtubule arm’ that orients the cell in the direction of migration
(Stramer et al., 2010). Formation of the microtubule arm is pivotal

in polarizing haemocytes in response to external cues that drive
their developmental migrations and migration towards wounds as
well as enabling haemocytes to undergo contact repulsion (Stramer

et al., 2010). Interestingly, in vitro experiments have revealed a
role for integrins in microtubule stabilisation downstream of the
small GTPase Rho (Palazzo et al., 2004). To investigate the

microtubule dynamics in mys mutant haemocytes we timelapse-
imaged haemocytes expressing GFP–CLIP170. Visualization of
wild-type haemocytes at stage 15 reveals bundling of microtubules
into an arm and close co-ordination of microtubule arm

disassembly and lamellipodial retraction (Fig. 5A;
supplementary material Movie 1) (Stramer et al., 2010).
Analysis of mys mutant haemocytes revealed that while

microtubules polarised and initially formed an arm, this structure

was not maintained and rapidly collapsed within persisting
lamellipodia, indicating that a loss of integrins reduces the
stability of microtubule arms (Fig. 5B; supplementary material

Movie 2). Despite this apparent instability there were a comparable
number of microtubule arms formed by wild-type and mys mutant
haemocytes (Fig. 5C), consistent with a role for integrin in
maintaining a polarized microtubule arm. Closer analysis of

microtubule dynamics revealed that, whereas in wild-type
haemocytes microtubule arm disassembly was almost always
triggered by contact with another haemocyte, in mys mutant

embryos microtubule arm loss predominantly occurred
independently of cell-cell contact (Fig. 5D). Microtubule arm
alignment is essential for contact repulsion (Stramer et al., 2010).

Therefore, this microtubule arm loss phenotype, coupled with the
more general deficits in cell translocation, which would perturb
movement of colliding haemocytes away from each other post-
contact, presumably underlies the failures in contact inhibition also

seen in mys mutant embryos.

Analysis of individual microtubule dynamics by high-speed
microscopy and subsequent tracking of mCherry–CLIP to show
movement of microtubule + tips towards the cell periphery

showed that microtubules in mys mutant haemocytes protruded at
slower speeds than in the wild type (Fig. 5E–G). In keratinocytes
loss of integrin-linked kinase (ILK), a signalling protein that

associates with the intracellular domain of integrins, results in a
failure of peripheral microtubule to reach the cell cortex
(Wickström et al., 2010). However, in haemocytes, loss of mys

did not result in a significant reduction in the final distance
microtubules polymerised into the lamellipodia (Fig. 5H),
indicating that although slowed, individual polymerizing

microtubules are as stable as in WT cells. Together this
indicates a specific requirement for integrins in the stabilization
of microtubules that are captured and bundled into the
microtubule arm structure.

Cell migration is a highly orchestrated process, which requires
co-ordination between the actin and microtubule cytoskeleton.
Integrin engagement with the ECM recruits and activates
numerous signalling molecules, which in turn can activate the

actin polymerisation machinery, shown to be important in driving
haemocyte migration (DeMali et al., 2003). To determine
whether alterations in microtubule dynamics observed in mys

Fig. 4. myospheroid plays a role in contact repulsion. (A,B) Stills taken from live-cell imaging of GFP-expressing haemocytes in WT and mys mutant embryos

undergoing random migration at stage 15. (A) In WT embryos contacting haemocytes (blue asterisk) demonstrate contact repulsion, rapidly repolarising and

migrating away from one another. (B) In mys mutant embryos haemocytes remain in contact, unable to undergo contact repulsion (orange asterisks). Scale bars:

10 mm. (C) Quantification of the time the lamellipodia of two haemocytes remain in contact. There is a dramatic increase in this time interval in mys mutant embryos

(average time in contact for WT and mys haemocytes was 5.6 and 27.1 minutes, respectively), P.0.01, n589 (WT) and n543 (mys) contact events.

Journal of Cell Science 126 (15)3480
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mutant haemocytes could be the result of disruption to the actin

cytoskeleton, time-lapse imaging of haemocytes expressing

GFP–Moesin was conducted. Analysis of lamellipodia area

over time revealed that mys mutant haemocytes form dynamic

actin-rich lamellipodial protrusions comparable to those observed

in the wild type (Fig. 6A–C). Cell culture experiments have

shown that integrin-dependent attachment to the ECM can

control transition from a spheroid to a flattened morphology,

which underlies cell-spreading events that occur during cell

migration (reviewed in Holly et al., 2000). The fact that mys

haemocytes are able to make lamellipodial protrusions as

dynamic and of the same size (Fig. 6F) as wild-type cells

demonstrates that a loss of bPS does not affect the ability of

haemocytes to spread in vivo. However, closer analysis of these

protrusions revealed that the organization of the actin
cytoskeleton within the mys haemocytes is altered with an
increase in the number of microspikes (F-actin struts within

lamellipodia) and filopodia (microspikes that extend beyond the
lamellipodial leading edge) with respect to wild-type cells
(Fig. 6D,E). Interestingly, this is in contrast to in vitro

fibroblast experiments in which integrin binding triggers the
formation of microspikes (Levy et al., 2003).

Discussion
Embryonic macrophages play essential roles throughout embryonic
development, clearing apoptotic corpses and secreting ECM

Fig. 5. myospheroid is important in maintaining haemocyte microtubule dynamics. (A–F) Stills taken from live-cell imaging of haemocytes expressing

Clip170–GFP, to label microtubules (MTs), and mCherry–Moesin, to label F-actin, migrating randomly at stage 15. The imaging reveals disruption of MT

dynamics in haemocytes lacking functional myospheroid. (A) In WT haemocytes, loss of the MT arm coincides with repolarisation of the actin cytoskeleton.

(B) In mys mutant haemocytes the MT arm often collapses within the actin protrusions. (C) Quantification of the number of MT arms formed in a haemocyte per

hour reveals no significant difference between WT and mys mutant haemocytes. Values are means 6 s.e.m. for n530 (WT) and n524 (mys) haemocytes.

(D) Quantification of the interactions triggering MT arm loss upon cell–cell contact with MT arm alignment or with no MT arm alignment, or MT arm loss

independent of cell-cell contact, in WT and mys haemocytes. Values are means 6 s.e.m. for n530 (WT) and n524 (mys) total MT arm loss events. (E,F) Stills

taken from rapid live-cell imaging of haemocytes expressing mCherry–Clip and Moesin–GFP under the control of a single copy of the srp-GAL4 driver to label

only the MT + ends. (G) Tracking the MT tips revealed that in the absence of myospheroid, the MT protrusion rate was decreased (WT and mys protrusion rates

were 0.17 and 0.15 mm/second, respectively, P,0.05. Values are means 6 s.e.m. for n59 haemocytes for each genotype. (H) The distance to the leading edge

reached by the MT tips in mys mutant haemocytes was not significantly different from that in WT (mean distance was 2.1 mm and 1.7 mm, respectively). Values

are means 6 s.e.m. for n59 haemocytes per genotype. Scale bars: 10 mm (A, B), 10 mm (E, F), 10 mm (D).
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components. In order to carry out these important functions,

embryonic macrophages must disseminate throughout the embryo.

As of yet very little is known about the molecular mechanisms

governing these early macrophage migrations within the developing

embryo. Utilising Drosophila haemocytes as a model system to

study the role of integrins in mediating embryonic macrophage

migration, we show a role for this family of transmembrane

receptors in regulating several responses in embryonic

macrophages: developmental dispersal, contact repulsion and

chemotactic inflammatory migration towards wounds.

Integrins have always been proposed to play an essential role in

the recruitment of macrophages to sights of infection or injury.

However, recent work has shown that, although there is an absolute

requirement for integrins in leukocyte migration in vitro, in vivo

they are only required for crossing tissue barriers and are

dispensable for interstitial migration within the lymph node

(Lämmermann et al., 2008). Authors show that leukocyte

migration is driven solely by expansion of the actin network,

which drives protrusion of the leading edge independently of

adhesion, allowing leukocytes to migrate autonomously in the wide

variety of tissue environments encountered in vivo. These results

challenge the classical view about the role of integrins, and cell

adhesion in general, during cell migration within the context of a

living organism. Our results show that, although integrins are not

essential for the initial movements of haemocytes away from their

point of origin and along the anterior ventral nerve cord, they are

required for all subsequent developmental migrations within the

embryo. It is likely therefore that the requirement for integrins in

cell migration is cell type as well as environment specific. Whereas

leukocytes show stochastic, swarming migration across a wide

variety of extra cellular environments, Drosophila haemocytes

undertake highly orchestrated migrations over tissues with a

basement membrane. Therefore although performing common

functions in vivo, environmental interactions may have forced these

cell types to adapt different modes of migration. For example

although leukocytes are able to switch to contraction-driven

‘squeezing’ through a confined 3D environment, fibroblasts rely

solely on integrin-dependant anchorage to track along components

of the extracellular matrix (Renkawitz and Sixt, 2010). This

linkage-based guidance of migration could aid in the control of

haemocyte developmental migration along pre-determined

pathways. Interestingly, the ability of integrin mutant haemocytes

to undergo very early dispersal from the head mesoderm to occupy

the anterior region of the ventral midline indicates that during

embryonic development haemocytes are also able to switch from an

integrin-independent to an integrin-dependant mode of migration.

By analysing cell migration within the developing embryo, we

have shown a dual requirement for integrins in both the migrating

haemocytes and the surrounding tissues. Haemocyte migration

along the ventral midline is dependent upon correct development

of the VNC. In slit and robo1, 2 mutant embryos, haemocytes fail

to progress along the midline due to a failure in the separation of

the VNC and epidermis (Evans et al., 2010). Authors propose that

this failed separation event may result from disruptions in axonal

path finding and glial positioning within the VNC, leading to a

failure of these structures to separate from the epidermis. We

show here that mys mutant embryos also display a failure in the

separation of the VNC and given that mys mutant embryos

display axonal pathfinding defects (Stevens and Jacobs, 2002),

the separation defect observed in mys mutants may be a

consequence of this disrupted axonal wiring. Alternatively,

integrin-dependant assembly of ECM components, as in several

cellular contexts (Narasimha and Brown, 2004; Tanentzapf et al.,

2007), may be required for correct separation of the VNC.

Consistent with this, haemocytes fail to migrate along the VNC in

laminin mutant embryos (Urbano et al., 2009). It would be

interesting to see whether this migration defect may also be due

to a failure in VNC separation.

Fig. 6. Haemocytes lacking myospheroid show altered

actin dynamics. (A,B) Stills taken from live-cell imaging of

haemocytes expressing LifeAct under the control of srp-GAL4

in WT and mys mutant embryos. Scale bars: 10 mm. The

graphs beneath show the lamellipodial area of five

haemocytes measured at 30 second intervals over a 30 minute

time period. The large fluctuations in WT and mys mutant

haemocytes indicate that the overall lamellipodial dynamics

remain unchanged in the absence of integrin bPS. (C) This

was confirmed when the average lamellipodial area change

per haemocyte is compared with that in WT (n55 haemocytes

per genotype). (D,E) Other actin-dependent structures within

the haemocytes are affected in the mys mutant, with (D) an

increase in the number of microspikes compared to WT

(average 4.8 and 6.6, respectively, P,0.05) and (E) the

number of filopodia per haemocyte (average 9.6 and 14.4,

respectively, P,0.05). (F) Quantification reveals no

difference in the lamellipodial area of WT and mys mutant

haemocytes (n547 haemocytes for both genotypes).
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Integrins allow traction in migrating cells by acting as a
molecular clutch that links the actin cytoskeleton to the ECM,

allowing the transmission of acto-myosin contraction to the
substratum (Alexandrova et al., 2008). Consistent with this role
for integrins, we find that removal of functional integrins from
haemocytes results in a severe reduction in migratory velocity

during both random and directional migration. In migrating
leukocytes and fibroblasts, loss of integrins results in increased
actin retrograde flow as a consequence of the integrin ‘clutch’

(Renkawitz and Sixt, 2010). Within 3D environments, integrin
mutant leukocytes are able to overcome this loss of traction by
increasing the polymerisation of actin, reaching migration

velocities indistinguishable to WT. Although haemocyte
spreading is not affected by integrin loss in vivo, perhaps
attributable to the close confinement of haemocytes within the
3D context of the embryo (Tucker et al., 2011), we do however

see subtle changes in the structure of the actin cytoskeleton.
Surprisingly, the increase in the number of microspikes, actin
bundles within the lamellipodia, seen in mys mutant haemocytes

usually correlates with increased migration speed (P. K. Tucker,
I. E. and W. W., unpublished data). If the compensatory
mechanism observed in integrin mutant leukocytes is conserved

in haemocytes, the increase in microspikes within lamellipodia
could reflect an attempt to overcome slippage due to loss of the
integrin ‘clutch’. It would therefore be interesting to compare

retrograde flow in mys mutant haemocytes to determine whether
the function of integrins between mammalian and Drosophila

blood cells is conserved.

Applying this clutch theory could also aid in explaining the

microtubule phenotype observed in mys mutant haemocytes. It is
appreciated that migration requires close co-ordination between the
actin and microtubule network, however the nature of these

interactions during cell migration remains poorly understood. We
have previously shown that microtubules are closely associated
with actin microspikes as they extend and probe the lamellipodia of

an advancing haemocyte (Stramer et al., 2010). An increase in actin
retrograde flow within the lamellipodia could lead to the rapid and
repeated collapse of the microtubule arm as seen in integrin
mutants. Alternatively, these microtubule defects could reflect a

direct requirement for integrins in regulating microtubule dynamics,
via previously identified downstream targets such as ILK, FAK and
diaphanous (Palazzo et al., 2004; Wickström et al., 2010).

In summary, our results highlight an essential role for integrins
in mediating many embryonic macrophage functions, including
developmental migration, inflammatory migration towards

wounds and contact repulsion. The possibility of examining
these processes in vivo in a genetically tractable organism such as
Drosophila will significantly assist in the dissection of the
molecular mechanisms by which integrins exert these different

functions in this prominent cell type so important in many
biological processes. Furthermore, in addition to their role in the
clearance of apoptotic cells, macrophages are being increasingly

recognised for their role in providing trophic support in many
tissues, their contribution to tissue regeneration and their pivotal
role in tumour angiogenesis and metastasis. Pro-metastatic roles

have even been demonstrated by haemocytes in Drosophila

cancer models (Cordero et al., 2010). Recent expression profiling
of embryonic macrophages revealed similarities with tumour

associated macrophages (TAM), independent of their tissue of
origin (Rae et al., 2007). Hence, a better characterization of the
biology of embryonic macrophages may also provide clues to

TAM function in cancer and may lead to the identification of new

molecular targets to inhibit their proangiogenic and protumoral

activities in neoplasia and other diseases.

Materials and Methods
Drosophila strains and techniques

Flies were raised at room temperature. Embryos were collected from laying cages
kept overnight at 25 C̊. For RNAi experiments laying cages were kept overnight at
29 C̊. The following stocks were used for fixing and staining to analyse defects in
haemocyte developmental dispersal: mysXG43 FRT101 (Bunch and Brower, 1992),
rhea79 FRT 2A (Prout et al., 1997), if B4 (Brown, 1994), scabIIG (Stark et al., 1997),
mewm6 (Brower et al., 1995), bn (Yee and Hynes, 1993), UAS-mys (Martin-Bermudo
and Brown, 1996), UAS-TorsoD/bcyt (Martin-Bermudo and Brown, 1999), UAS-p35

(Hay et al., 1994), srph-GAL4 (Huelsmann et al., 2006), srp-HemoGAL4 (Bruckner
et al., 2004), sim-gal4 and slit-gal4 (Scholz et al., 1997), UAS-gfpS65T, ovoD1FRT101

(Bloomington). For the RNAi knockdown experiments, we used the following UAS-
RNAi lines; UAS-RNAi mys and UAS-RNAi talin (VDRC).

For time-lapse imaging SerpentHemoGAL4 (srp-GAL4) (Bruckner et al., 2004),
croquemort-GAL4 (crq-GAL4) (Stramer et al., 2005) and singed-GAL4 (sn-GAL4)
(Zanet et al., 2012) were used to drive haemocyte-specific expression of the
following UAS constructs (obtained from Bloomington Stock Center unless
otherwise stated): UAS-GFP, UAS-GFP-Moesin (Dutta et al., 2002), UAS-

mCherry-Moesin (a gift from Paul Martin, University of Bristol), UAS-mCherry-

CLIP170 and UAS-GFP-CLIP170 (Stramer et al., 2010) and UAS-redstinger (Barolo
et al., 2004). The constructs and drivers were used to produce the following
genotypes; srp-GAL4,UAS-GFP-Moesin;UAScherryClip, srp-GAL4,UAS-GFP;crq-

GAL4,UAS-GFP, srp-GAL4,UAS-mCherry-Moesin;crq-GAL4,UAS-GFP-CLIP170,
srp-GAL4,UAS-mCherry-Moesin;crq-GAL4,UAS-mCherry-Moesin, sn-GAL4,UAS-

LifeActGFP and srp-GAL4,UAS-redstinger;crq-GAL4,UAS-redstinger.

Histochemistry

Antibody staining of embryos was performed using standard procedures. We used
the following primary antibodies: Rb-GFP 1/100 (Molecular Probes), rabbit anti-b-
Gal (1:6000; Cappel), rabbit anti-Srp (1:1000; (Riechmann et al., 1998), rabbit
anti-Crq (1:1000; (Franc et al., 1996), mouse anti-bPS (1:300; DSHB, Iowa).
Alexa-conjugated secondary antibodies used were Alexa Fluor 488 (green), Alexa
Fluor 568 (red) (Molecular ProbesTM). For non-fluorescent staining, embryos were
incubated in biotinylated secondary antibodies followed by incubation with Elite
ABC complex (Vector Laboratories) and revealed with DAB (Gibco-BRL).
Images were collected with a Zeiss Axioplan 2 microscope or a Leica TCS-SP2
confocal microscope.

Time-lapse recording

Embryos were prepared and mounted as previously described (Wood and Jacinto,
2005). To analyse random migration stage 15 red stinger-labelled haemocytes were
imaged on Zeiss Axioplan 2 wide-field imaging system. Contact repulsion of stage
15 haemocytes expressing GFP was captured using a Zeiss 510 confocal laser-
scanning microscope with a plan apochromat 636/1.4 oil objective. All other
imaging was conducted on a spinning disc confocal microscope (Ultraview;
PerkinElmer).

Wounding

Due to anterior localization of mys mutant haemocytes, stage 15 WT and mysXG43

mutant embryos were wounded in the anterior half of the embryo between the
ventral midline and lateral lines of haemocytes by laser ablation (Wood et al.,
2002).

Dextran injections

Stage 15 embryos were prepared and mounted ventral side up as per live imaging
before 2.5 mg/ml 70 kDa Rhodamine–dextran (Molecular Probes/Invitrogen,
Carlsbad, CA, USA) was injected between the epidermis and VNC as
previously described (Evans et al., 2010). Embryos were then imaged live as
described above.

Image processing and analysis

Cell tracking and cell area measurements were performed using image J (NIH).
Graphs and statistical analysis was carried out using Prism for Mac (Graph Pad).
Unless otherwise stated, haemocyte migratory behaviour was analysed using
images acquired from five embryos of each genotype.
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Fig. S1. Talin is required for proper haemocyte migration. (A-C) Lateral view of stage 13 embryos stained with an anti-Srp 
antibody to label the haemocytes. (A) Wild-type embryo. (B,C) Elimination of both maternal and zygotic Talin (B) or expression of 
UAS-talin RNAi in haemocytes (C) phenocopy the haemocyte migration defects observed in mys mutant embryos.

Fig. S2. PS1 and PS3 integrins act redundantly to regulate haemocyte migration. (A-D) Lateral view of stage 13 embryos 
carrying the combination UAS-CD2/srph-GAL4 and stained with an anti-CD2 antibody. (A) Wild-type embryo. (B,C) Elimination of 
either aPS1 (B) or aPS3 (C) causes a small delay in haemocyte migration. (D) However, elimination of both phenocopies loss of bPS 
function.



Movie 1. Actin and microtubule dynamics in WT haemocytes. Live imaging of WT haemocytes expressing Clip170-GFP, to 
label microtubules (MTs), and mCherry-Moesin, to label F-actin, migrating randomly in stage 15 embryos. In WT haemocytes, 
microtubules bundle into an arm and there is a close co-ordination of MT arm disassembly and lamellipodial retraction. Confocal stills 
were acquired at 30 second time intervals and the movie displayed at 7 frames/second for 30 minutes. Scale bar: 10 mm.

Movie 2. Disrupted migration and microtubule dynamics in stage 15 mys mutant haemocytes. mys mutant haemocytes expressing 
Clip170-GFP and mCherry-Moesin. In mys mutant haemocytes, microtubules polarised and initially formed an arm, but this structure 
was not maintained and rapidly collapsed within persisting lamellipodia. In addition, mys mutant haemocytes exhibit little migration 
and remain in close contact throughout imaging. Confocal stills were acquired at 30 second time intervals and the movie displayed at 7 
frames/second for 30 minutes. Scale bar: 10 mm.

http://www.biologists.com/JCS_Movies/JCS129700/Movie1.mov
http://www.biologists.com/JCS_Movies/JCS129700/Movie2.mov
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