
INTRODUCTION

Molecular and genetic analysis has elucidated the mechanistic
basis of embryogenesis. In addition to identifying and
characterizing many key molecules and the processes they
control, these analyses have also provided broad insight into
embryogenesis, suggesting parameters to consider when
thinking about global patterns of gene function and regulation.
For example, genetic analysis indicates that most essential
genes are pleiotropic (Perrimon et al., 1989; Thaker and
Kankel, 1992) but that few function ubiquitously (Bucher and
Greenwald, 1991; Ripoll, 1977; Thaker and Kankel, 1992). In
addition, kinetic rehybridization (Cot and Rot) analysis has
demonstrated that the composition of the embryonic
transcriptome changes dramatically as maternal transcripts
degrade and embryonic transcripts are synthesized, but that the
number of unique transcripts (transcriptome complexity)
remains roughly constant during embryogenesis (Davidson,
1986).

However, classic genetic and molecular techniques have
limitations. In genetic screens, mutants with partially penetrant
or variable phenotypes tend to be overlooked, while
functionally redundant genes are missed entirely (Nusslein-
Volhard, 1994). Thus, three to five times more genes are

expressed during early embryogenesis than the estimated
number of embryonic lethal genes (Davidson, 1986). In
addition, because Cot and Rot analysis lack gene-specific and
temporal information, the time-dependent expression of
individual genes has not been characterized in any systematic
way. More comprehensive analyses of gene function and
expression are needed in order to model embryonic
development.

The power of microarrays to quantitatively measure gene
expression for the entire genome in parallel is widely
appreciated and rapidly being applied to developmental
systems. Temporal expression patterns can be resolved by
analyzing staged populations of animals (Driessch et al., 2002;
Hill et al., 2000; Jiang et al., 2001). Such analysis has been
performed in Drosophilawith dense sampling of time points
over the entire life cycle (Arbeitman et al., 2002). In addition,
expression analysis can be performed following experimental
perturbation to identify tissue-, organ- or lineage-specific genes
as well as direct and indirect targets of specific transcription
factors (Arbeitman et al., 2002; Furlong et al., 2001; Gaudet
and Mango, 2002). Furthermore, with sufficient temporal
resolution it should be possible to see developmental processes
unfold in the form of transcriptional cascades (Nasiadka and
Krause, 1999).
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Temporal profiles of transcript abundance during
embryonic development were obtained by whole-genome
expression analysis from precisely staged C. elegans
embryos. The result is a highly resolved time course that
commences with the zygote and extends into mid-
gastrulation, spanning the transition from maternal to
embryonic control of development and including the
presumptive specification of most major cell fates.
Transcripts for nearly half (8890) of the predicted open
reading frames are detected and expression levels for
the majority of them (>70%) change over time. The
transcriptome is stable up to the four-cell stage where it
begins rapidly changing until the rate of change plateaus
before gastrulation. At gastrulation temporal patterns of
maternal degradation and embryonic expression intersect

indicating a mid-blastula transition from maternal to
embryonic control of development. In addition, we find that
embryonic genes tend to be expressed transiently on a time
scale consistent with developmental decisions being made
with each cell cycle. Furthermore, overall rates of synthesis
and degradation are matched such that the transcriptome
maintains a steady-state frequency distribution. Finally, a
versatile analytical platform based on cluster analysis and
developmental classification of genes is provided.

Supplemental data and methods available on-line
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The challenge in such microarray experiments is to translate
large amounts of expression data into a deeper and more
comprehensive understanding of development. High-
throughput reverse genetic techniques will not only aid in this
effort but will partially compensate for the limitations of
forward genetic analysis by identifying co-expressed genes
which may be functionally redundant (Molin et al., 2000). The
C. elegans embryo, because of its rapid and invariant
development (Sulston et al., 1983) and the ease of RNAi (Fire
et al., 1998) and transgenic techniques (Fukushige et al., 1999;
Mello et al., 1991), is an ideal system in which to pursue a
developmental genomic approach. 

After fertilization, the C. elegansembryo undergoes a series
of stereotyped asymmetric cleavages that spatially segregate
maternal factors (e.g. transcription factors, transmembrane
receptors) with lineage specification activity. This maternal
control of lineage identity is thought to result in embryonic
expression of lineage-specific genes (Bowerman, 1998), the
vast majority of which are unknown. In addition to lineage-
based mechanisms, development appears to be controlled
through gastrulation by regionalizing and organ-specific
activities resulting in a larva with an invariant cell lineage but
tissues and organs of polyclonal origin (Labousse and Mango,
1999; Sulston et al., 1983). 

Embryonic transcription is first detected in somatic
blastomeres at the four-cell stage (Edgar et al., 1994; Hope,
1991; Seydoux and Fire, 1994; Seydoux et al., 1996). However,
the first observed developmental phenotype caused by
inhibition of embryonic RNA polymerase II activity by RNAi
is the absence of the initiation of gastrulation at the 26-cell
stage, followed by developmental arrest at about the 100-cell
stage (Nance and Priess, 2002; Powell-Coffman et al., 1996).
Thus, maternal functions, provided in large part by maternal
transcripts, must control much of early embryogenesis. Two
classes of maternal transcripts have been described based on
their localization patterns in early embryos (Seydoux and Fire,
1994). Class I maternal mRNAs are maintained in all
blastomeres, while Class II mRNAs are specifically degraded
in somatic blastomeres as early as the two-cell stage and are
retained in the germ line precursors. Class I messages appear
to encode genes with ubiquitous ‘housekeeping’ functions,
while Class II messages are strongly associated with maternal
functions restricted to the early embryo, including specification
of embryonic transcription patterns.

Little is known about the complexity and dynamics of gene
expression during C. elegansembryogenesis. How complexity
and composition of the transcriptome change after fertilization
and during the transition from maternal to embryonic (lineage-
based) control remains uncharacterized. In the absence of
sensitive techniques to measure global dynamics of gene
expression, no mid-blastula transition has been reported. As
with all other embryonic systems, a relatively small number
and biased selection of embryonic gene expression patterns
have been characterized. Thus, little is known regarding the
temporal and spatial complexities of the expression pattern of
a typical gene, how many patterns exist and the degree to which
expression patterns serve as indicators of function.

In a step towards establishing the C. elegansembryo as a
developmental genomic system, we describe the results and
analysis of a set of wild-type time courses of transcript
abundance profiles covering the first 3.5 hours (~1/4) of

embryogenesis. Embryos were staged at the morphologically
distinct four-cell stage for most of the data reported here. To
observe changes in mRNA abundance before the four-cell
stage, embryos were also staged at pseudocleavage (one-cell
stage). The time course extends into mid-gastrulation ending
at the 190-cell stage with typically two time points per cell
cycle (12 in total). By the 102-cell stage, more than 70% of the
cells in the embryo will contribute exclusively to a single tissue
or organ (Labousse and Mango, 1999; Sulston et al., 1983),
and by the 190-cell stage, more than 85% of the cells will have
all their descendents share the same primary fate (Fig. 1C).
This time course should therefore cover most specification
events involved in embryonic patterning. 

MATERIALS AND METHODS

Methods are briefly described here (see http://dev.biologists.org/
supplemental/ for additional details). The complete dataset and
analyses are available at www.mcb.harvard.edu/hunter. 

Sample preparation
Embryos were collected from cut mothers by mouth pipette and
washed thoroughly before being staged by morphology. See
www.mcb.harvard.edu/hunter for a detailed protocol of the RNA
isolation, amplification and labeling procedures. Briefly, RNA was
isolated with TRIzol reagent (Invitrogen) and amplified by two rounds
of in vitro transcription as described (Baugh et al., 2001). The
estimated 10 million transcripts per embryo is based on bulk
measurement of 200 pg total RNA per embryo (data not shown) and
the assumptions of 1.5 kb average transcript length and 3.3%
polyadenylated mRNA.

Hybridization and data reduction
Microarrays were custom manufactured by Affymetrix (Hill et al.,
2000). Amplified biotinylated RNA (1 µg of) was used in each
hybridization. Data was normalized and converted to average
difference values using the dChip software (β-test version 2001) (Li
and Wong, 2001). Average difference values were converted to
transcript abundance estimates, in units of parts per million (ppm), by
reference to a standard curve of eleven spiked in vitro transcripts as
described elsewhere (Hill et al., 2001). Because probe sets can vary
by two- or threefold in sensitivity (Hill et al., 2000) and because there
may be compositional differences between amplified RNA and in
vitro spike-ins (e.g. transcript lengths), transcript abundances should
be treated as estimates and intergenic comparisons should be made
cautiously. 

Absolute decisions (present/absent/marginal calls) were computed
by GeneChip 3.1. Sensitivity of each array was defined as the
abundance at which each gene on the array had a 70% chance of being
called present according to a logistic regression (Hill et al., 2001). The
frequency of false-positive present calls for bacterial probesets was
0.015. The corresponding cumulative probability of getting two or
more false-positive present calls among three or four replicates was
~10–3 by binomial statistics.

Data analysis
For plotting gene expression profiles, clustering and phasing, the data
were transformed by computing the moving average of means over
two time points. Because the purpose of the moving average was to
reduce systematic gene-specific differences between series 1 and
series 2, PC6 and PC32 (both of which are part of series 2) were not
averaged. Moving average transformed data was not used for statistics
or developmental classification.

A modified Welch F statistic was used for ANOVA (Zar, 1999). For
each gene, regressed error estimates were substituted for observed
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error estimates. The substitution is justified by the lack of consistency
among the most and least variable genes at each time point. Regressed
error estimates were abundance-dependent pooled error estimates
that represented a median error estimate from a window of genes
of similar abundance to the gene of interest (see Fig. A at
http://dev.biologists.org/supplemental/). A randomization test was
used to compute the probability Pg of the observed F statistic for gene
g under the null hypothesis that developmental time had no effect on
expression. P-values were not corrected for multiple testing.

Clusters were generated by the QT clustering algorithm (Heyer et
al., 1999), except that the distance metric used was 1-Ravg, where Ravg
was the average Pearson correlation coefficient between moving
average profiles over 20 realizations of the data plus simulated noise.

Analysis of hypergeometric probability distributions was as
described elsewhere (Tavazoie et al., 1999; Zar, 1999), except that
depletions were also determined by considering P values near 1.
Categories are considered significantly enriched when P<0.001 and at
least two members of the category are in the group (cluster or class).
Depletions are considered significant when P>0.999. Three-letter
abbreviations correspond to RNAi phenotypes downloaded from
WormBase on 5 April 2002 (www.wormbase.org). Chromosomal
annotations are from the AceDB version concurrent with design of
the arrays. All other annotations are from the Worm Proteome
Database and are under one of the designations: ‘functional class’,
‘cellular role’, ‘genetic properties’, or ‘molecular environment’

(www.incyte.com/proteome) (Costanzo et al., 2001). A total of 355
distinct annotations were tested over 106 clusters and 45
developmental classes. 

See http://dev.biologists.org/supplemental/ for details on phasing
and classification of expression patterns.

RESULTS AND DISCUSSION

An embryonic system for developmental genomics
To generate high-resolution time course data, we amplified
RNA from precisely staged and aged cohorts of 10-15 embryos
(~2-3 ng total RNA) and hybridized it to whole genome, high-
density oligonucleotide arrays (Hill et al., 2000). The arrays
assay transcript levels for ~98% of the predicted C. elegans
ORFs, and have been used previously to demonstrate that the
combined RNA amplification and hybridization procedure is
both sensitive and representative (Baugh et al., 2001). Initially
(series 1) embryos were staged at the morphologically distinct
four-cell stage and five time points were collected, each
approx. one cell-cycle apart (Fig. 1). To enhance temporal
resolution and to verify reproducibility, we assembled an
additional time course (series 2) with staggered time points
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Fig. 1.An embryonic time course
of transcript profiles based on
precise staging of small cohorts of
embryos. (A) Nucleus count
versus minutes after the first
cleavage at 22°C for all of
embryogenesis (adapted, with
permission, from Sulston et al.,
1983). The area in green indicates
the time domain covered by the
time course. (B) The time points
and the estimated average number
of cells per time point in the time
course. Embryos were staged at
pseudocleavage and the four-cell
stage as indicated. Samples for
time points in blue and yellow
were created, processed and
assayed as independent time
courses – series 1 and series 2.
(C) The complete lineage through
the 190-cell stage with the
assayed time points indicated. The
names given to each time point
reflect how the embryos were
staged and how long they were
aged before being frozen (PC6,
pseudocleavage plus 6 minutes; 0
min, four-cell stage plus 0
minutes).
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relative to those in the first. To obtain measurements before the
four-cell stage we also staged embryos at pseudocleavage, a
transient stage immediately preceding pronuclear fusion. In
total, twelve time points (~15-20 min spacing) were collected
(Fig. 1), each in triplicate or quadruplicate.

Eleven in vitro synthesized and labeled transcripts were
spiked at known concentrations into each hybridization
reaction in order to estimate sensitivity and normalize signals
between arrays. In addition, these in vitro transcripts were used
to assemble a standard curve for each hybridization that allows
signal intensity to be converted to transcript abundance
reported in parts per million (ppm) (Hill et al., 2001).
Sensitivity varied between hybridization reactions such that
transcripts present at 5-26 ppm (average=12 ppm) were
reliably detected, exact sensitivity depending on the
hybridization. Given an estimate of 10 million transcripts per
embryo we are able to detect as few as 30 transcripts per
embryo, or ~0.2 transcripts per cell at the last time point.
Because any two probe sets can vary by as much as two- to
threefold in sensitivity (data not shown), transcript abundances
should be treated more like estimates than exact measurements
when making comparisons between genes. A gene is
considered reproducibly detected (RD) when it is called
present (see Materials and Methods) in at least two replicates
of a given time point. 

Given the sensitivity of the assay coupled with the number
of replicates and in consideration of estimates of the
complexity of embryonic gene expression and mean mRNA
concentration (Davidson, 1986), we believe we detected nearly
all polyadenylated transcripts present at each time point. The
total number of RD transcripts (RD at any time point) was 8890
(Fig. 1C), comparable with measurements in other embryos
(Davidson, 1986). However, the number of transcripts
expressed simultaneously during embryogenesis appeared to
be about 6000. Furthermore, only 3412 genes were RD at all
12 time points, suggesting that a majority of the expressed
genes change in abundance during the time course. 

As expected, the dynamics of gene expression cause there
to be a strong dependence of sensitivity on temporal resolution.
One-third of the genes detected in this time course were never
called present in a RNA preparation representing all 12 hours
of embryogenesis (Hill et al., 2000). In addition, 1084 of the
8890 RD genes are RD at only a single time point. As expected,
these transcripts were all very low abundance, even at the time
point where they are RD (average=7 ppm). The strong
dependence of sensitivity on temporal resolution highlights
the value of experimental designs focused on maximizing
spatiotemporal resolution. 

A primary concern of the experimental design was the
possibility that real differences in gene expression would be
obscured by excessive variance among replicates, resulting
from either biological differences between cohorts of only 10-
15 embryos or from staging or other technical issues. Two
observations indicate that the observed variance is within
acceptable limits. First and most important, adjacent time
points are clearly distinct from each other; the average
correlation coefficient among replicates is 0.973 compared
with an average of 0.935 between adjacent time points (P=10–4

by t-test). Second, the median coefficient of variation (CV)
among replicates per time point for the RD genes is 24±3.5%.
Although this CV is roughly twice that of controls where
aliquots of the same RNA sample are independently purified,
amplified, labeled and hybridized (L. R. B., A. A. H., D. K. S.,
E. L. B., C. P. H. and K. Hill-Harfe, data not shown) it allows
for the reliable detection of less than twofold differences in
expression. We do not know whether the additional variance is
caused by variation in staging of pools or stochasticity of
developmental rates or processes.

Unexpectedly, we also found evidence of a systematic gene-
specific effect between the series 1 and series 2 time courses
generated on separate occasions (yellow and blue circles in
Fig. 1). Because the timepoints for each time course are
interspersed, the expression levels of the most severely affected
genes (less than 10%) appeared to oscillate with time. It seems
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Fig. 2.Genes from a known transcriptional cascade and from three previously characterized expression classes are all detected. (A) Published
localization patterns for five transcription factors involved in specification of intestinal fate are depicted on a partial lineage diagram. skn-1, end-1
and end-3expression patterns were determined using in situ hybridization; med-1/2 was determined using a combination of transgenic reporter
and RT-PCR; and elt-2was determined using antibody. The known regulatory interactions among these genes and proteins are shown along with
the moving average time points of gene expression profiles. (B) Gene expression profiles for each of the five genes in A. med-1and med-2are
treated as a single gene as there is only a single probe set on the chip to assay either and it does not distinguish between the two highly similar
sequences. Colors correspond to those in A. (C) Gene expression profiles are shown for representatives of each of three previously characterized
expression classes: vet-4, very early [embryonic] transcripts (vet); pos-1,Class I maternal; and tbb-2, Class II maternal.
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most likely that gene-specific bias was introduced in the
amplification and labeling procedure on one occasion
relative to the other. To eliminate artifactual differences
caused by this bias, all statistical analysis is applied to
the two time courses independently. However, to display
all data for each gene in a single expression profile we
plot the moving average of the data over two adjacent
time points, one from each series. This approach assumes
that measurements made on one occasion are no more
accurate than those made on the other and has the added
benefit of dampening biological and assay noise without
changing the overall profile. Although more sophisticated
time warping algorithms are available (Aach and Church,
2001), given the staggering of the two time courses and
the roughly constant spacing of time points, we believe
this is the most straightforward means of alignment. 

Quantification and temporal resolution of
known expression patterns
One goal of this work is to provide a quantitative baseline
for future experiments intended to identify components
of lineage and cell fate specification pathways. As a
benchmark for this goal we examined five components of
the well-characterized transcriptional cascade that
specifies the E blastomere lineage. In Fig. 2A, we present
expression patterns for five genes in this pathway that are
derived from published data obtained by independent
approaches, including antibody staining, GFP reporters,
RT-PCR and in situ hybridization (Bowerman et al.,
1993; Fukushige et al., 1998; Maduro et al., 2001;
Seydoux and Fire, 1994; Zhu et al., 1997). We detected
all five genes at the expected times (Fig. 2B). skn-1and
med-1/2transcript abundances were too low to quantify,
but were called present at the expected time points. By
contrast, time of induction, rate of increase and maximum
expression levels for end-1, end-3and elt-2 transcripts
were all readily determined. Considering the number of
cells each gene is expressed in and our estimate of 10
million transcripts per embryo, transcripts for these three
genes are present in excess of 100 copies per expressing
cell at or before their time of genetic function. That these
genes are so readily detected encourages us that we will
be able to identify and resolve the expression patterns of
additional genes that specify other lineage-specific cell
fates. 

To further validate the dataset, we examined the
expression profiles of a larger set of genes with known
expression patterns. Fig. 2C shows a representative gene
of each of three previously characterized expression
classes (Schauer and Wood, 1990; Seydoux and Fire,
1994). As expected, vet-4 is induced very early and
increases rapidly. Also as expected, tbb-2 and pos-1are
both supplied maternally, and while tbb-2 remains fairly
flat, pos-1shows a clear pattern of degradation. Overall,
we detected, at the expected times, ten embryonic genes
encoding transcription factors with spatially restricted
expression patterns (Fig. 3A) (Krause et al., 1990;
Ahringer, 1996; Labousse and Mango, 1999; Maduro, 2001;
Molin, 2000). However, vab-7,which is expressed in only ~4%
of embryonic cells, was, like med-1/2, detected at too low an
abundance to quantify. The remaining embryonic genes in

Fig. 3A were all detected at moderate abundance. In addition,
we found that known Class I maternal genes tend to be high
abundance and remain flat (Fig. 3B) and that Class II maternal
genes range from low to high abundance and with the
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Fig. 3.Twenty-five genes with known expression patterns are detected.
(A) Gene expression profiles for 10 embryonic transcription factors
characterized by specific developmental phenotypes resulting from disruption
of their function. Transcript abundance is plotted on a log2 scale. The key
includes in parentheses the approximate number of cells (out of 102) in
which each gene is expressed at 140 minutes. The maternal expression of
lin-26 and early transient induction of hlh-1are both consistent with reported
expression patterns (Krause et al., 1990; Quintin et al., 2001). (B) Gene
expression profiles for seven maternally expressed genes previously
characterized as Class I (stable everywhere) by virtue of their in situ
hybridization patterns (Seydoux and Fire, 1994). (C) Gene expression
profiles for eight maternally expressed genes previously characterized as
Class II (degraded in somatic blastomeres, stable in germline precursors) by
virtue of their in situ hybridization patterns (Seydoux and Fire, 1994).
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exception of skn-1 all are abundant enough to show a
significant decrease over time (Fig. 3C). In summary, all 25
known genes are appropriately detected and with the exception
of three low abundance genes the expected expression pattern
is readily resolved. This high rate of success provides
additional evidence for the comprehensive detection of nearly
all expressed genes. 

Most genes are modulated in the transition from
maternal to embryonic control 
An important aspect of development is the transition from
maternal to embryonic control. In order to identify genes
whose expression is modulated during the transition, we
examined changes in gene expression over the entire time
course (by within-series ANOVA) and between pairs of
time points (by paired-timepoint ANOVA) (see Fig. A at
http://dev.biologists.org/supplemental/). We used both types of
ANOVA so that we could determine exactly when significant
increases and decreases in transcript abundance occurred for
temporally modulated genes. The P-values for all tests
performed can be found at www.mcb.harvard.edu/hunter.

The vast majority of genes expressed during early
embryogenesis are temporally modulated. Table 1 shows the
number of RD genes that were modulated across the two time
series, at three levels of statistical confidence. The minimum
of the two series ANOVA P-values is considered most relevant,
because changes in abundance that occur before the four-cell
stage or after the 100-cell stage are not captured in the series
1 analysis. With the most permissive cutoff (P<0.05), the
smallest fold-change considered significant is ~1.7. At this
cutoff, we see that 6963 of 8890 RD genes are significantly
modulated (78%), and with a Bonferroni correction for
multiple testing it drops to 68% of the RD genes. However,
given variable translation rates and protein stabilities, as well
as compartmentalization effects, we cannot conclude that a
statistically significant change in transcript abundance
necessarily correlates with a change in available protein levels.
Nevertheless, it is clear that gene regulation is remarkably
complex during the transition from maternal to embryonic
control. 

The fraction of modulated genes seen here is similar to what
has been reported for Drosophila embryogenesis (Arbeitman
et al., 2002) and the analogous unicellular to multicellular
transition in D. discoideum development (Driessch et al.,
2002). In contrast to what is suggested by genetic analysis of
Drosophilaembryogenesis (Lawrence, 1992), genes that define
the specification state of cells (e.g. signaling pathway
components, transcription factors and co-factors) make up a

minority of the modulated genes, while the majority consists
of genes encoding sundry biochemical activities not usually
thought of as developmentally interesting. This discrepancy
probably reflects bias in phenotypic selection for mutants with
specific alterations (e.g. cuticle patterns), rather than non-
specific lethality and suggests that the importance of
transcriptional control of metabolic processes in the early
embryo is under appreciated. It will be interesting to investigate
the involvement of these genes in developmental processes. 

The four-cell stage marks a dramatic transition in
transcriptome dynamics 
The above analysis indicates that mRNA metabolism in the
embryo is very dynamic. To investigate the initiation and
kinetics of embryonic transcription and depletion of maternal
transcripts, we examined the dynamics of transcript abundance
on a shorter time scale. For this analysis we examined the
difference between adjacent timepoints by ‘paired-timepoint’
ANOVA. Consistent with expectations from previous work
(Edgar et al., 1994; Seydoux and Fire, 1994; Seydoux et al.,
1996), relatively few transcripts changed between the one-cell
and early four-cell stage (PC6×PC32; Fig. 4). To evaluate the
small subset of genes that do show relatively modest increases
or decreases in abundance, we asked how many of these genes
maintain a trajectory after the four-cell stage, consistent with
the change seen up to the four-cell stage. By this criterion
~70% of the 179 decreasing genes (P<0.01) appear to continue
decreasing after the four-cell stage. By contrast, only eight out
of 39 increasing genes (21%) appear to continue increasing
(including ama-1, vet-4, skr-8 and skr-9). Consistent with the
expected number of false positives (~89), there are 80 to 90
genes whose overall expression patterns are not consistent with
their observed increases or decreases up to the four-cell stage. 

The fact that before the four-cell stage more genes decrease
than increase suggests that degradation of maternal mRNAs
may be either continuing or beginning earlier than embryonic
transcription. However, as our measurements rely on the
presence of poly A tails, this discrepancy could result from the
fact that polyadenylation of new transcripts represents the end
of the synthetic process while deadenylation of existing
transcripts represents the beginning of the decay process
(Wang et al., 2002). In addition, the relatively small number of
maternal transcripts that do degrade before the four-cell stage
could indirectly reflect the completion of oogenesis, rather than
regulation during embryogenesis. 

In contrast to transcriptional inhibition in the early embryo,
there is no proposed mechanism for the delayed degradation of
the vast majority of maternal transcripts (Seydoux et al., 1996).
It is possible that early embryonic gene products regulate the
timing of degradation, establishing coordination between
transcription and degradation. Alternatively, coordinated
degradation of maternal transcripts could be an autonomous
process that is mediated by a degradation cascade affecting
both the transcript and its protein product. Time course data
following RNA polymerase II inactivation should distinguish
between these possibilities.

The stability of the transcriptome before the 4-cell stage
suggests that all embryonic processes occurring up until then
are under maternal control. After the four-cell stage, the
number of genes changing in transcript abundance increases
dramatically through the next two cell cycles until just before

L. R. Baugh and others

Table 1. Modulation of RD genes
Series 1 ANOVA Series 2 ANOVA

Cut-off (five timepoints) (seven timepoints) Union

0.05 6040 6384 6963
0.01 4391 4544 5152
0.001 2455 2718 3157

The majority of expressed genes are temporally modulated. ANOVA was
carried out for both experimental series (blue and yellow circles in Fig. 1).
The number of genes with P-value less than each of three cut-offs is shown
with the number of genes in the union of the gene lists from each within-
series ANOVA. The null hypothesis is that expression was unchanged across
the time course.
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the beginning of gastrulation, where it plateaus and
appears to remain roughly constant thereafter, reflecting
the onset of embryonic control (Fig. 4A). Furthermore,
it appears that after the 26-cell stage the number of genes
increasing and decreasing are closely matched (see
below). 

To examine the transition from maternal to embryonic
control of development in detail, we compared an early
time point (the four-cell stage) to the 83 minute
timepoint (~40-cell stage), the first time point after the
initiation of gastrulation (Fig. 4C). In this paired
timepoint comparison, over 40% of the RD genes (3773)
are significantly modulated (P<0.01), again highlighting

the extent and magnitude of
the transition from maternal
to embryonic control of
development. Increases in
excess of 100-fold are common
and many genes go from ‘on’
to ‘off’ or vice versa. The
diagonal edge of the scatter
reflects transcript abundance
measurements of genes that
were at or below the detection
limit in one of the two time
points. Many more such gene
expression transitions occur
among transcripts that increase
rather than decrease in
abundance, consistent with
the embryonic genome
assuming control of spatial
and temporally restricted
developmental processes. That
many maternal transcripts do
not go to zero may reflect the
germline stability of Class II
mRNAs or indicate that
many maternal transcripts are
either stable throughout
embryogenesis or synthesized
anew in the embryo. 
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Fig. 4.The transcriptome is stable up to the four-cell stage and changes
dramatically thereafter. (A) The x-axis shows ten pairs of time points
analyzed by paired-timepoint ANOVA. The y-axis shows the number of RD
genes with P<0.01. The number of genes making the cut-off is also split
according to whether the change in abundance is positive (Up) or negative
(Down). (B) A scatter plot of the 8890 RD genes showing changes in
abundance that occur between the PC6 and PC32 time points (one-cell and
early four-cell stages, respectively). The max of the two mean transcript
abundances is plotted on the x-axis on a log10 scale. Fold-change
(PC32/PC6) is plotted on the y-axis on a log2 scale. The two lines crossing
the y-axis at ±2 mark twofold changes. Each point is color coded according
to whether or not the observed difference is statistically significant (P<0.01)
according to a paired-timepoint ANOVA. The number of genes that are
considered to be significantly different is 217, 38 of which show an increase
and 179 show a decrease. (C) A scatter plot of the 8890 RD genes reflecting
changes in transcript abundance that occur between the PC32 and 83 minute
time points (early four-cell and ~40-cell stages, respectively). The plot is
otherwise identical to B. Of the 3773 genes that are considered significantly
different, 1911 show an increase and 1862 show a decrease.

Fig. 5.A phasegram reveals
symmetry in the dynamics of the
transcriptome, including a wave of
roughly constant length. 3157 RD
genes with P<0.001 in either of the
two within-series ANOVAs were
sorted according to their time of
maximum expression. Columns
correspond to moving average
timepoints and rows to individual
genes. There are roughly two
timepoints per cell cycle. Each
gene was mean normalized and
log2 transformed. Yellow
corresponds to positive values after
log transformation (above the
mean) and blue corresponds to
negative values. Scale bar: 500
genes.
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Widespread transient expression suggests
developmental decisions are made rapidly
In order to present the expression profiles of the most dynamic
genes, in one graph we sorted them by peak expression
timepoint (Spellman et al., 1998). The ‘phasegram’ in Fig. 5
reveals a striking symmetry in the patterns of expression
including a wave of genes induced embryonically but
transiently. The profile of this wave suggests that the time scale
of regulation for the vast majority of dynamic genes is only
one cell cycle (increasing over one cell cycle and decreasing
over one cell cycle), consistent with cluster analysis and

developmental classification of genes (see below, Figs 7, 8).
This observation suggests that developmental decisions are
made rapidly throughout early embryogenesis, consistent with
the observation that there is a narrow temporal window for cell
fate transformation by ectopic expression of transcription
factors (Gilleard and McGhee, 2001; Quintin et al., 2001; Zhu
et al., 1998) and in support of the idea that embryonic regulatory
networks achieve a different steady state with each cell cycle
(Maduro and Rothman, 2002) accomplishing patterning
through a series of binary decisions (Kaletta et al., 1997; Lin et
al., 1998). It remains to be determined if this time scale of

regulation is constant throughout embryogenesis or if it
changes as cell cycles slow down and differentiation
commences. 

The transcriptome maintains a steady-state
frequency distribution
The synthesis, use and turnover of maternal and
embryonic transcripts are very different. Maternal
transcripts are synthesized well in advance of their use
and, at least for Class II transcripts, are rapidly depleted
from the embryo. Furthermore, most maternal messages
are ubiquitously distributed in the embryo. By contrast,
embryonic transcripts are synthesized nearer their time
of use and often in only a subset of cells. Therefore we
wondered whether the frequency distributions of either
maternal or embryonic transcripts would be skewed
towards either abundant or rare transcripts. Despite the
disparate nature of transcription and degradation during
oogenesis and embryogenesis, the distribution of
transcript abundances in the early embryo is roughly
constant (Fig. 6A). 

As the embryo does not grow and the total mRNA
content is maintained at an estimated ten million
transcripts per embryo, global rates of transcription and
degradation must be matched over this time course. We
determined the rates of increase or decrease in transcript
abundance for statistically significant changes in
abundance over short time intervals (~one cell cycle).
The number of transcripts increasing or decreasing in
abundance at each estimated rate is nearly the same in
each time window, with the exception of the earliest
window, as expected (see Fig. 4 and accompanying
discussion). This asymmetry appears to persist in that
there are relatively few high velocity increases over the
early time windows until about 66 minutes (26-cell
stage). As expected given a constant frequency
distribution (Fig. 6A), the distributions of rates are
otherwise essentially symmetric (Fig. 6B). Were the rates
not matched, then the frequency distribution of the
transcripts would change with developmental time,
indicating that one of the two processes may be rate
limiting. The fact that the rates are matched suggests that
the two processes may be functionally coupled, begging
the question of whether such a steady state is a universal
property of developmental systems or if it is a peculiarity
of assaying whole embryos or embryos that do not grow.
Similar analyses in other systems with embryos that
either do (e.g. vertebrates) or do not (e.g. flies) grow, or
that follow defined cell lineages (e.g. hematopoiesis) will
help to distinguish between these possibilities. 
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Fig. 6.The transcriptome maintains a steady-state distribution of transcript
abundances during early embryogenesis. (A) A histogram plotting the
distribution of transcript abundances among the RD genes for each of
twelve time points assayed. Binned units along the x-axis are transcripts per
embryo and the y-axis relates how many of the genes RD in that time point
are in each bin. (B) A histogram plotting the distribution of rates of change
in transcript abundance for each of ten time intervals. Binned units along the
x-axis are transcripts per minute per embryo and the y-axis relates how
many genes fall into each bin (note log scale). Time intervals are equivalent
to those in Fig. 4A. Rates were calculated by dividing the difference in
abundance between timepoints by the corresponding time interval, and
converting to transcripts min–1 embryo–1, assuming 107 transcripts per
embryo. Only those RD genes with P<0.05 in the paired-time point ANOVA
corresponding to each time interval are included. 
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Cluster analysis reveals common patterns of co-
regulation
Embryos that develop rapidly from fertilization are expected
to be near maximally dependent on maternal control of early
events. Therefore, transcripts first expressed in the early
embryo are expected to be enriched for spatially and
temporally restricted functions (Wieschaus, 1996). Conversely,
maternal transcripts that are rapidly cleared from the embryo
may encode functions that would interfere with later
embryonic processes. These two patterns are readily apparent
among clustered expression patterns (Fig. 7A): clusters that
contain maternal transcripts that rapidly decay (e.g. clusters 1,
3 and 6) and clusters of genes induced in the embryo (e.g.
clusters 2, 4 and 5). These are distinct clusters because of
differences in timing rather than gross differences in pattern.
Unexpectedly, many genes were found in complex clusters.
Transcripts that are detected only transiently are common
(clusters 7, 8, 10, 11, 13, 17, 18 and 19). This is an intriguing
expression pattern that suggests many embryonic genes
perform temporally restricted functions, although the protein
products may be substantially more stable than their messages.
Multi-component expression patterns are also present; in
particular, maternal expression followed by degradation and
then embryonic induction (clusters 14 and 15). The distinct
components of these expression patterns may reflect distinct
functions in maternal and embryonic processes or may reflect
the relative stability of the proteins translated from maternal
RNA. The full set of 106 clusters includes many smaller

clusters representing a variety of very complex expression
patterns (see Fig. B at http://dev.biologists.org/supplemental/). 

Many of the clusters are enriched and depleted for specific
functional classes, indicating that temporal expression patterns
can correlate with function (Fig. 7B, see Table A at
http://dev.biologists.org/supplemental/). For example, cluster 1
is enriched with genes that function in the earliest
developmental processes following fertilization. In addition,
genes expressed in the germline tend to be excluded from the
X chromosome (Reinke et al., 2000), and we see that X-linked
genes are depleted from the maternal clusters 1, 3, 6 and 8. By
contrast, clusters with relatively late increases in expression are
enriched for X-linked genes (clusters 5, 12 and 13) and some
of these same clusters are enriched for genes involved in
embryonic patterning and morphogenesis (clusters 12 and 13).
This analysis is extended for all 106 clusters in Table A. The
power of this analysis is limited by the small fraction of
annotated C. elegansgenes, but will improve as more genes
are characterized. However, this limitation does not apply to
the identification of common regulatory motifs among co-
expressed genes. Preliminary analysis indicates that clustered
genes are enriched for putative regulatory motifs in 5′ non-
coding regions (A. A. H. and D. K. S., unpublished). 

Developmental classification of genes identifies a
mid-blastula transition
As a complement to cluster analysis, we have used
developmental genetic concepts, such as maternal, embryonic
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and strictly embryonic to classify genes by expression pattern.
For this, we took advantage of the present calls and paired-
timepoint ANOVAs to consider when a gene is detected (e.g.
PC6 implies maternal expression) and when it shows
significant increases and decreases in abundance. The
intersections and subdivisions of these basis classes describe
overlapping classes with independent descriptors that allow
more refined correlations between gene expression patterns
and gene annotation to be discerned. 

The composition of the transcriptome in terms of the four
basis classes is presented in Fig. 8A and Table B (see
http://dev.biologists.org/supplemental/). Almost 70% of the
RD genes are Maternal (M, 6062), consistent with most
embryonic lethal mutations showing maternal effects
(Perrimon et al., 1989). Thirty percent of M genes are degraded
[maternal degradation (MD); 1764], as are Class II maternal
genes, and are likely to be enriched for genes that function to
pattern the early embryo. Forty percent of all detected
transcripts increase in abundance at some point during
embryogenesis [embryonic (E), 3678], indicating zygotic
expression. Overlap between M and E is extensive [maternal-
embryonic (ME); 2705], indicating the requirement of many
genes continuously during the transition from maternal to
embryonic control. As a result, strictly embryonic (SE) genes,
detected only after the four-cell stage, make up only 11% (973)
of the RD genes, consistent with the frequency of ‘late’ genes
in other embryos (Davidson, 1986). In addition, almost 40%
of E genes are transient [embryonic transient (ET), 1356],
again suggesting that transient gene function is common. As
seen in Fig. 5, most of the E genes that are not transient are
induced late. Intersections of these classes give smaller classes
with multiple descriptors. For example, maternal degradation-
embryonic (MDE) has 643 members, suggesting that many
genes may have distinct maternal and embryonic functions.

The average expression profile of the 12 expression classes
reveals the fundamental expression pattern of each class
(Fig. 8B). M genes show a slight decrease over time, even
though a decrease is not required in its definition. Interestingly,
the class averages intersect 50-60 minutes after the four-cell
stage, which coincides with the initiation of gastrulation
(~66 minutes). Although embryonic transcription commences
earlier, this inflection point in the dynamics of the
transcriptome is reminiscent of a mid-blastula transition as it
marks a transition between maternal and embryonic control of
development. This observation suggests that our understanding
of other fundamental embryonic stages that may otherwise
be difficult to detect could be improved by analysis of
transcriptome dynamics (e.g. phylotypic stage) (Gerhart and
Kirschner, 1997).

Classification of genes by time of increase or decrease in
abundance is expected to be relevant to their regulation and
function. The three dynamic expression classes (MD, E
and ET) were therefore subdivided by timing of defining
features of the expression profile of each (Fig. C at
http://dev.biologists.org/supplemental/). MD subclasses are
based on the time of the first significant decrease in abundance,
E subclasses are based on time of the first significant increase
and ET subclasses are based on time of max abundance.
Sizes of each of the 33 subclasses are in Table B (at
http://dev.biologists.org/supplemental/). 

Enrichments and depletions of gene annotations among the
members of all 45 classes and subclasses (see Table C at
http://dev.biologists.org/supplemental/) support conclusions
from cluster analysis and reveal novel insights. The SE class
is enriched for X-linked genes, consistent with the deficiency
of X-linked germline genes (Reinke et al., 2000) and cluster
analysis (Fig. 7; see above). Furthermore, as expected from the
observation that dosage compensation is inactive in the early
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embryo (Meyer, 2000), these X-linked SE genes are
under represented prior to the 40-cell stage (Table C,
http://dev.biologists.org/supplemental/). The subclasses ought
to be useful in ongoing informatic analysis: the search for 3′
UTR sequences responsible for different degradation kinetics,
hypothesis testing regarding early versus late genes, predicting
order of gene function, etc. 

We thank Kate Hill-Harfe for helping with a control experiment
assessing the reproducibility of the combined RNA isolation and
amplification procedure. This work was supported in part by a
Beckman Young Investigator Award to C. P. H.
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Supplemental data

Embryo staging and collection

Bristol N2 worms were grown on E. coli strain OP50 at 25°C. For the
dissection, staging and aging that follow, everything was performed in a
climate-controlled room at 22°C. Young gravid hermaphrodites were cut in
100 µl water in a depression well slide. Bleach solution (10 µl) [4:1 NaOCl
(6% available chlorine), 0.5 M KOH] was added and worms were triturated
by pipet for ~10 seconds before adding 10 µl 20% BSA and triturating for an
additional ~10 seconds. For staging embryos at the four-cell stage, one- and
two-cell embryos were collected and washed by serial transfer via mouth
pipet through a series of five 100 µl drops of water in 1 cm2 hydrophobic
barrier wells on the surface of a microscope slide previously treated with
Sigmacote (Sigma). Four-cell and older embryos were set aside, and two-
cell embryos were pooled. Embryos were pulled from the pool and put into a
new pool as they reached the four-cell stage. The pool of four-cell embryos
was expanded in this way for approximately 5 minutes or until any of the
oldest members of the pool reached the six-cell stage. The pool was then
double-checked and six-cell or abnormal-looking embryos were eliminated.
The pool was then transferred to another 100 µl drop of water on a separate
slide and a stopwatch was started so that time zero is relatively late in the
four-cell stage. After the appropriate amount of time aging, embryos were
examined and any that did not appear to have developed normally were
eliminated and all others were transferred to the lid of a 0.6 ml eppendorf
tube (in 1-3 µl) and frozen in liquid nitrogen. Nuclei counts were made in
controls that were staged and aged as above but frozen on poly-L-lysine
treated slides then fixed and stained with DAPI, in order to calibrate aging
time with the published lineage and to measure temporal dispersion (data not
shown).

For staging embryos at pseudocleavage (PC), mothers were cut as above,
except only those embryos with a single partial cleavage furrow were
collected and for a period of exactly 3 minutes. A stopwatch was started at
the end of the 3 minute collection (PC plus 0 minutes), and the embryos
were transferred to the first wash of five serial washes. By the fifth wash (PC
plus ~4 minutes) true cleavages had resulted in two-cell embryos, while PC



furrows had relaxed resulting in one-cell embryos. One-cell embryos were
collected and either frozen at PC plus 6 minutes or aged until PC plus 32
minutes, by which time they had all made it to the early four-cell stage.
Because PC is more transient than the four-cell stage, such staging results in
smaller cohorts of embryos with less temporal dispersion.

RNA isolation and amplification

For a detailed protocol of the RNA isolation, amplification and labeling
procedures please see http://www.mcb.harvard.edu/hunter/. Briefly, RNA
was isolated by adding 100 µl TRIzol reagent (Invitrogen), vortexing briefly,
pipetting up and down eight to ten times, adding 7 µl water and 1 µl linear
polyacrylamide (5 µg/µl; GenElute LPA, Sigma), vortexing for 10 seconds,
adding 20 µl CHCl3, vortexing for 30 seconds, spinning at 13,000 for 5
minutes, transferring the aqueous phase, adding 60 µl isopropanol and
incubating overnight at –20°C. RNA was pelleted by spinning at 16,000 g
for 25 minutes, washed once with 75% ethanol and resuspended in 4 µl
DEPC-treated dH2O (including 20 ng of the (dT)-T7 primer). In some cases
embryo collections were pooled at the TRIzol step in order to obtain either
10 embryos per RNA prep (PC6, PC32, 0 minutes) or 15 (all other samples)
in a final volume of 100 µl TRIzol.

mRNA was amplified and labeled as described elsewhere (Baugh, 2001),
with the notable exception that 20 ng (dT)-T7 primer was used in a 2 µl
reverse transcription reaction in the first round of amplification (as opposed
to 10 ng and 1 µl). Amplified RNA was quantified by UV absorbance at 260
nm and analyzed by electrophoresis. Yields for the samples used ranged
between 1.7 and 18.7 µg.

Array hybridizations

Hybridizations were performed essentially as described in the Affymetrix
Expression Analysis Technical Manual, except 1 µg amplified RNA was
used per hybridization. Arrays were stained using the Affymetrix
recommended antibody amplification method, and scanned with the
Affymetrix GeneChip scanner. Four replicate scans were averaged for each
array; this averaging improved the signal-to-noise ratio for the arrays,
compared with an average of two scans.



Data reduction
Array images were reduced to probe intensity values and stored in .cel file
format using Affymetrix GeneChip 3.1. Data in .cel files were normalized
and converted to average difference values using the dChip software (β-test
version 2001) (Li and Wong, 2001). Average difference values were
converted to transcript abundance estimates, in units of ppm, by reference to
a standard curve of 11 spiked in vitro transcripts as described elsewhere
(Hill, 2001).

Absolute decisions (present/absent/marginal calls) were computed by
GeneChip 3.1. The absolute decision is based on the magnitude of the
difference between hybridization intensity and array background and on the
fraction of probe pairs with fluorescence above background and noise (see
the Affymetrix GeneChip analysis suite user guide for details).

Moving average
For the purposes of plotting gene expression profiles, clustering and phasing,
the data were transformed by computing the moving average of means over
two time points. Ten averages of adjacent timepoints that were part of
distinct series were computed, starting with PC32 (about 4 minutes younger
than 0 minutes) and 0 minutes. As a result, the first moving average time
point is –2 minutes relative to the four-cell stage and the last time point is
165 minutes (the average of 122 minutes and 186 minutes). The purpose of
the moving average was to reduce systematic gene-specific differences
between series 1 and series 2. Hence, PC6 and PC32, both part of series 2,
were not averaged. Moving average transformed data was not used for
statistics or developmental classification.

ANOVA
A modified Welch F statistic (Zar, 1999) was used for all hypothesis testing.
Individual replicate data was loge transformed as the first step of all
statistical analyses. The calculation of the modified Welch F statistic for
each gene was as described [see Eqns 10.22-10.27 by Zar (Zar, 1999)],
except that ‘regressed’ error estimates r2 were substituted for the s2 error
terms in the equations. For each gene, these regressed error estimates were
abundance-dependent pooled error estimates that represented a median error



estimate from a window of genes of similar abundance to the gene of
interest.

Regressed error estimates were computed as follows. Replicate data
(containing K timepoints and G genes) was log-transformed, and the (KG)
means ukg and variances skg

2 (k=1..K, g=1..G) were computed for all genes
on a given array design (A, B or C). Regressed error estimates rkg

2 were
windowed medians of the observed variances skg

2, using a window size of
W=0.01KG. To reduce computation time, we applied a ‘jumping’, not a
‘running’ median. That is, all rij

2 within the first window were assigned the
median of that window, the window was shifted by W and the process
repeated. Based on empirical testing of windowed medians to improve the
median fit to skg

2, we applied two constraints to the windowed median
estimates to make the fit robust and consistent with a simple two component
(additive background + multiplicative sampling error) noise model: (1) rij

2

was constrained to be a decreasing function of the mean frequency in log
space, i.e rij

2≤rkl
2, for uij>ukl; (2) as the windowed median simply assigned

the median of a window of sij
2 values to each uij, a strict functional

relationship was not guaranteed by this fit alone. Therefore, in rare cases
when the median windows assigned multiple rij

2 values to a single uij value,
we re-assigned to that mean uij the largest regressed error rij

2 that was
associated with that mean in the dataset.

A randomization test was used to compute the probability Pg of the
observed F statistic for gene g under the null hypothesis that developmental
time had no effect on expression. As the number of experimental replicates
was different at some timepoints on some array designs, each array design
(A, B or C) was randomized independently.

The randomization test was carried out as follows. For each array design,
the log-transformed (G×N) data matrix was assembled, where G was the
number of genes on the array, and N the total number of observations (for
example, for the A array design, G=6617 and N=50). For each of the G
genes the F statistic was computed, within series 1 (K=5 timepoints), within
series 2 (K=7 timepoints), and for each paired-timepoint contrast of interest
(K=2 for each contrast). The N timepoint labels were then randomly
shuffled, and all F statistics recomputed. The random permutation was
repeated NP=200 times to generate one G×NP matrix containing the null
distribution of F for each of the two within-series ANOVAs, and equivalent



G×NP matrices for each paired-timepoint contrast. Each of the G gene-
specific F statistics from the observed data were referred to their
corresponding null distribution, and the p-value for each gene g was
computed as:

Pg=(count of Fnull≥Fobs)/GNP

In the null distribution we included all genes, as opposed to referring each
gene to the null distribution arising from random shuffling of the
observations of that gene only. Thus, each null distribution contained
G×NP~6×105 observations of F. To validate this approach, we examined the
null distribution of the F statistic for 22 probesets corresponding to 11
cRNAs spiked into the A array hybridizations at levels from ~3-1000
transcripts per million.  The null distribution of F was not correlated with
expression level for these spiked messages, i.e. F was pivotal in the sense of
Westfall and Young (Westfall and Young, 1993).

Phasing
Moving average transformed data of the 3157 RD genes with P<0.001 in
either within-series ANOVA was used for phasing. Each gene was
normalized by its mean over all ten moving average time points. Normalized
abundances were log2 transformed. The ten moving average time points
were subdivided into four time windows: –2 minutes; 12 minutes, 32
minutes and 47 minutes; 60 minutes, 75 minutes and 92 minutes; and 112
minutes, 133 minutes and 165 minutes. A mean value was calculated for
each of the four windows and the values were ranked 1-4 for each gene. The
genes were then sorted in an iterative, nested fashion. First, they were sorted
according to earliest window rank. Genes ranking highest in the earliest
window were set aside and the remaining genes were sorted according to
second window rank. Again, genes ranking highest in the second window
were set aside and the remaining genes were sorted according to third
window rank. The process was repeated until four groups of genes had been
defined. Each group was sorted again, independent of the other three groups,
according to the mean value for the time window preceding the highest rank
of the group. For the earliest time window the latest time window was used
as the preceding window. This second sort, performed four independent
times, makes transitions between and down each of the four groups of genes
smooth. Breakpoints marking the boundaries of the four groups are



nevertheless apparent and should not be misinterpreted. The phasegram was
plotted using TreeView (Eisen, 1998).

Cluster analysis
We desired a clustering algorithm that is insensitive to experimental noise,
does not force all input genes into a cluster, and does not require an a priori
determination of the number of output clusters. Clusters were generated by
the QT clustering algorithm (Heyer, 1999). The algorithm assembles a series
of clusters ordered by size, largest first, with no limit on the number of
clusters other than the coherence (cluster diameter) defined a priori (0.7 in
our clusters). To ensure robust clusters the distance metric used for
clustering was 1-Ravg, where Ravg was the average Pearson correlation
coefficient between moving average profiles over 20 realizations of the data
plus simulated noise. Noise was generated by a two-component model
consisting of an additive Gaussian background with standard deviation 2
ppm, and a multiplicative Gaussian sampling error with s.d.=0.1. Simulated
data were floored at 1 ppm.

Expression pattern classification
Paired timepoint ANOVA tests serve as the primary basis for classification,
though within-series ANOVA tests as well as present calls in the first time
point (PC6) are also considered. A cutoff of P<0.01 was used with all
statistical tests unless otherwise noted. Paired timepoint tests used include
ten spanning roughly one cell cycle (PC6×PC32, PC32×23 minutes, 0×41
minutes, 23×53 minutes, 41×66 minutes, 53×83 minutes, 66×101 minutes,
83×122 minutes, 101×143 minutes, 122×186 minutes) as well as eight more
spanning roughly two cell cycles (PC6×23 minutes, PC32×53 minutes, 0×66
minutes, 23×83 minutes, 41×101 minutes, 53×122 minutes, 66×143 minutes,
83×186 minutes). All of these tests are within only one of the two time
series, the former consisting of adjacent timepoints within a series and the
latter consisting of alternate timepoints within a series. Significant increases
and decreases in abundance observed within defined time domains were
used to classify genes (see below). Time domains were selected following
visual inspection of the clustered data and were defined as follows:
‘maternal degradation’ domain equals PC6 to 83 minutes; ‘embryonic’



domain equals PC6 to 186 minutes, ‘induction following degradation’
domain equals 53-186 minutes.

The definition of each class is as follows: ‘maternal’ genes are called
present in at least one of the three PC6 replicates; ‘embryonic’ genes
increase significantly during either time course. Specifically, among the
genes flagged as dynamic in either of the two within-series ANOVAs,
embryonic genes are the subset that also significantly increase in at least two
of the eighteen total paired timepoint tests or significantly increase in either
the 122×186 minutes or 83×186 minutes comparison. ‘Maternal
degradation’ (MD) genes are the subset of maternal genes that decrease
without first increasing in abundance. Specifically, among the genes flagged
as dynamic in either of the two within-series ANOVAs, MD genes decrease
significantly in at least two of the ten total paired timepoint tests, but do not
significantly increase (P<0.05) in any paired timepoint test before the
earliest significant decrease (P<0.01). ‘Embryonic transient’ genes are the
subset of embryonic genes in which the latest significant increase is earlier
than their latest significant decrease. ‘Maternal-embryonic’ genes are in the
intersection of the maternal and embryonic classes. ‘Maternal degradation-
embryonic’ genes are the subset of maternal degradation genes that
significantly increase in at least two of the eight total paired timepoint tests
in the ‘induction following degradation’ time domain. ‘Maternal-embryonic
transient’ genes are in the intersection of the maternal and embryonic
transient classes. ‘Maternal degradation-embryonic transient’ genes are in
the intersection of the Maternal degradation-embryonic and embryonic
transient classes. ‘Strictly maternal’ genes are the subset of maternal genes
that are not also classified as embryonic. ‘Strictly embryonic’ genes are the
subset of embryonic genes that are not also classified as maternal. ‘Strictly
maternal degradation’ genes are the subset of maternal degradation genes
that are not also classified as embryonic. ‘Strictly embryonic transient’ genes
are the subset of embryonic transient genes that are not also classified as
maternal.

Select classes were subclassed by the defining timepoint in the expression
profile of each gene; there is no overlap between the subclasses of a
particular class. Maternal degradation subclasses are based on the earliest
significant decrease (abbreviated ‘pd’ for primary decrease). Embryonic and
strictly embryonic subclasses are based on the earliest significant increase



(abbreviated ‘pi’ for primary increase). Embryonic transient subclasses are
based on the time of max expression (abbreviated ‘max’).
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Enrichments
Cluster 1 Cytokinesis 2 568 2 5.56 0.0E+00
Cluster 1 Meiosis 10 568 20 2.78 2.0E-04
Cluster 1 Nuclear cytoplasmic transport 4 568 5 4.45 1.9E-04
Cluster 1 Protein degradation 15 568 37 2.25 3.0E-04
Cluster 1 Proteasome subunit 13 568 21 3.44 1.1E-06
Cluster 1 Embryonic partitioning is defective 3 568 3 5.56 0.0E+00
Cluster 1 Nuclear pore 5 568 6 4.63 3.3E-05
Cluster 1 Chromosome IV 115 568 497 1.29 6.0E-04
Cluster 3 Mei 2 87 3 8.54 4.6E-04
Cluster 5 Plasma membrane 5 153 25 4.13 9.7E-04
Cluster 5 Chromosome X 35 153 335 2.16 1.8E-06
Cluster 7 Protein conjugation factor 3 113 8 10.48 9.8E-05
Cluster 8 Chromosome III 31 108 542 1.67 7.9E-04
Cluster 9 Protein phosphatase 3 88 9 11.96 6.4E-05
Cluster 10 Methylation 2 76 8 10.38 6.9E-04
Cluster 10 Led 2 21 8 13.27 3.0E-04
Cluster 10 Chromosome II 26 76 623 1.73 8.3E-04
Cluster 12 Unknown 11 46 186 4.06 8.2E-06
Cluster 12 Unknown 9 46 185 3.34 2.4E-04
Cluster 12 Actin cytoskeleton associated 2 46 10 13.73 3.2E-04
Cluster 12 Chromosome X 14 46 335 2.87 4.2E-05
Cluster 13 Abnormal male specific structure s 2 41 13 11.85 5.3E-04
Cluster 13 Cell fate lineage defects 3 41 26 8.88 3.0E-04
Cluster 13 Bmd 3 15 12 18.58 9.9E-06
Cluster 13 Chromosome X 11 41 335 2.53 7.6E-04
Cluster 14 9 introns 2 38 13 12.78 4.2E-04
Cluster 15 RNA processing modification 2 35 17 10.61 7.6E-04
Cluster 17 Protein modification 3 30 42 7.52 5.8E-04
Cluster 17 Protein conjugation factor 2 30 8 26.31 4.2E-05
Cluster 19 Cell structure 2 28 19 11.87 5.5E-04
Cluster 19 Abnormal vulva 2 28 22 10.25 8.6E-04
Cluster 21 Led 2 9 8 30.97 2.0E-05
Cluster 22 Etv 2 16 8 17.42 1.3E-04
Cluster 23 Plasma membrane 2 25 25 10.10 9.0E-04
Cluster 24 2 introns 2 19 24 13.85 3.5E-04
Cluster 24 7 introns 2 19 23 14.45 3.0E-04
Cluster 28 WT 6 6 798 1.40 1.0E-12
Cluster 37 WT 2 2 798 1.40 5.4E-13
Cluster 41 Lethal larval 2 9 34 20.63 9.2E-05
Cluster 49 WT 3 3 798 1.40 1.4E-12
Cluster 49 Chromosome I 5 6 646 4.07 7.2E-05
Cluster 50 Emb 2 2 256 4.36 3.5E-14
Cluster 52 1 intron 2 6 14 75.17 1.4E-06
Cluster 52 Chromosome V 4 6 510 4.13 5.6E-04
Cluster 53 WT 3 3 798 1.40 1.4E-12
Cluster 55 WT 2 2 798 1.40 5.4E-13
Cluster 60 Protein modification 2 5 42 30.07 2.2E-05
Cluster 62 Signal transduction 2 5 50 25.26 3.7E-05
Cluster 69 WT 3 3 798 1.40 1.4E-12
Cluster 72 WT 2 2 798 1.40 5.4E-13
Cluster 74 Emb 2 2 256 4.36 3.5E-14
Cluster 76 WT 3 3 798 1.40 1.4E-12
Cluster 76 Chromosome I 3 3 646 4.89 0.0E+00
Cluster 81 Chromosome III 3 3 542 5.82 0.0E+00
Cluster 86 WT 2 2 798 1.40 5.4E-13
Cluster 91 Chromosome I 2 2 646 4.89 0.0E+00
Cluster 102 WT 2 2 798 1.40 5.4E-13
Cluster 102 Chromosome I 2 2 646 4.89 0.0E+00

Depletions
Cluster 1 Chromosome X 23 568 335 0.38 1.00000
Cluster 3 Chromosome X 5 244 335 0.19 1.00000
Cluster 6 Chromosome X 3 141 335 0.20 0.99990
Cluster 8 Chromosome X 1 108 335 0.09 0.99994

Enrichments and depletions of gene annotations in all 106 expression clusters. Enrichments and depletions are determined by a
hypergeometric probability analysis and are shown where significant (P<0.001). Functional categories are from Worm Proteome
Database (www.incyte.com/proteome) (Costanzo, 2001) and three-letter abbreviations correspond to RNAi phenotypes from
WormBase. Mei, defective meiosis; Led, late embryo defect; Bmd, body morphology defective; Etv, embryonic terminal arrest variable;
Emb, embryonic lethal. For RNAi phenotypes ‘Total in group’ does not correspond to the cluster size but rather the number of genes in
the cluster for which an RNAi assay has been published; for all other annotations ‘Total in group’ is equivalent to cluster size.

Table A. Gene annotations of expression clusters
Expression Class in Total in Class in Fold 
group Gene class group group background enrichment P



Table B. The number of genes in each
developmental class and subclass

Number 
Expression class of genes

RD 8890
Maternal 6062
Embryonic 3678
Maternal-embryonic 2705
Strictly maternal 3357
Strictly embryonic 973
Maternal degradation 1764
Embryonic transient 1356
Strictly maternal degradation 953
Strictly embryonic transient 441
Maternal degradation-embryonic 643
Maternal-embryonic transient 915
Maternal degradation-embryonic transient 44
RD not classified 1855

MD pd(PC32) 155
MD pd(23 minutes) 551
MD pd(41 minutes) 367
MD pd(53 minutes) 733
MD pd(66 minutes) 159
E pi(PC32) 31
E pi(23 minutes) 925
E pi(41 minutes) 361
E pi(53 minutes) 888
E pi(66 minutes) 284
E pi(83 minutes) 425
E pi(101 minutes) 335
E pi(122 minutes) 370
E pi(143 minutes) 229
E pi(186 minutes) 277
SE pi(PC32) 8
SE pi(23 minutes) 170
SE pi(41 minutes) 61
SE pi(53 minutes) 342
SE pi(66 minutes) 55
SE pi(83 minutes) 123
SE pi(101 minutes) 97
SE pi(122 minutes) 93
SE pi(143 minutes) 67
SE pi(186 minutes) 53
ET max(23 minutes) 69
ET max(41 minutes) 59
ET max(53 minutes) 260
ET max(66 minutes) 181
ET max(83 minutes) 278
ET max(101 minutes) 216
ET max(122 minutes) 118
ET max(143 minutes) 125

The sizes of 45 developmental classes and subclasses
defined by expression pattern. Only RD genes are
classified.



Enrichments
Class E pi(PC32) Methylation 2 31 10 45.39 9.1E-06
Class E pi(23 minutes) Protein conjugation factor 7 925 12 4.44 2.6E-05
Class E pi(23 minutes) Protein phosphatase 6 925 13 3.51 5.5E-04
Class E pi(23 minutes) Germline maintenance is defective 4 925 6 5.07 2.1E-04
Class E pi(23 minutes) Lethal embryonic 37 925 171 1.65 6.5E-04
Class E pi(23 minutes) Pvl 11 347 27 2.74 2.0E-04
Class E pi(41 minutes) Helicase 4 361 16 4.87 9.4E-04
Class E pi(41 minutes) Abnormal vulva 7 361 36 3.79 3.8E-04
Class E pi(41 minutes) Oogenesis is defective 6 361 32 3.65 9.8E-04
Class E pi(41 minutes) Emb 42 133 476 1.55 5.9E-04
Class E pi(41 minutes) Mul 2 133 4 8.77 7.0E-04
Class E pi(53 minutes) Chromatin chromosome structure 21 888 47 3.54 8.6E-09
Class E pi(53 minutes) Nucleotide metabolism 4 888 7 4.53 5.3E-04
Class E pi(53 minutes) DNA binding protein 23 888 90 2.02 2.3E-04
Class E pi(53 minutes) Dosage compensation defects 5 888 9 4.40 2.4E-04
Class E pi(53 minutes) Lethal 4 888 6 5.28 1.7E-04
Class E pi(53 minutes) DNA associated direct or indirect 40 888 168 1.89 1.7E-05
Class E pi(53 minutes) Ribosome associated 8 888 20 3.17 3.6E-04
Class E pi(53 minutes) Glycosylation unknown type 2 888 2 7.92 3.0E-12
Class E pi(53 minutes) Methylation 6 888 10 4.75 4.2E-05
Class E pi(53 minutes) Nuclear 51 888 244 1.66 7.6E-05
Class E pi(53 minutes) Chromosome X 138 888 865 1.26 9.0E-04
Class E pi(66 minutes) Protein synthesis 7 284 39 4.45 1.3E-04
Class E pi(66 minutes) RNA splicing 4 284 15 6.61 2.2E-04
Class E pi(66 minutes) RNA binding protein 10 284 56 4.42 1.1E-05
Class E pi(66 minutes) Cell death is defective 3 284 12 6.19 1.0E-03
Class E pi(66 minutes) Ribosome associated 7 284 20 8.67 5.3E-07
Class E pi(66 minutes) Emb 37 102 476 1.78 4.4E-05
Class E pi(66 minutes) Etv 4 102 13 7.04 1.4E-04
Class E pi(66 minutes) Gro 12 102 100 2.74 2.9E-04
Class E pi(66 minutes) Oth 2 102 5 9.15 7.6E-04
Class E pi(66 minutes) Ste 14 102 123 2.60 2.0E-04
Class E pi(83 minutes) Transcription factor 14 425 99 2.34 8.1E-04
Class E pi(83 minutes) Muscle fibers are abnormal 4 425 12 5.52 4.4E-04
Class E pi(83 minutes) Paralyzed 4 425 13 5.09 6.7E-04
Class E pi(83 minutes) Lva 17 137 117 2.47 1.0E-04
Class E pi(101 minutes) 11 introns 5 335 18 5.83 1.3E-04
Class E pi(101 minutes) Cell fate lineage defects 11 335 44 5.25 5.9E-07
Class E pi(101 minutes) Spn 2 125 4 9.33 5.8E-04
Class E pi(186 minutes) Lva 15 101 117 2.96 2.5E-05
Class E Chromatin chromosome structure 35 3678 47 1.42 5.2E-04
Class E Pol II transcription 64 3678 92 1.33 2.3E-04
Class E DNA binding protein 63 3678 90 1.34 1.9E-04
Class E Guanine nucleotide exchange factor 2 3678 2 1.91 0.0E+00
Class E Transcription factor 77 3678 99 1.49 3.6E-08
Class E Cell migration defects 23 3678 26 1.69 1.4E-05
Class E Dark intestine 2 3678 2 1.91 0.0E+00
Class E Defective dye filling of amphid phasmid sensory neurons 4 3678 4 1.91 0.0E+00
Class E Extra cell deaths occur 4 3678 4 1.91 0.0E+00
Class E Germline maintenance is defective 6 3678 6 1.91 0.0E+00
Class E Hatching is defective 2 3678 2 1.91 0.0E+00
Class E Lethal larval 43 3678 55 1.50 1.8E-05
Class E Pharynx development is defective 2 3678 2 1.91 0.0E+00
Class E Touch sensation is defective 5 3678 5 1.91 3.3E-13
Class E XO animals are hermaphrodites 2 3678 2 1.91 0.0E+00
Class E DNA associated direct or indirect 115 3678 168 1.31 5.8E-06
Class E Ribosome associated 17 3678 20 1.63 4.1E-04
Class E C terminal geranylgeranylation 2 3678 2 1.91 0.0E+00
Class E Glycosyl phosphatidylinositol anchor 4 3678 4 1.91 0.0E+00
Class E Glycosylation unknown type 2 3678 2 1.91 0.0E+00
Class E N terminus unmodified 3 3678 3 1.91 0.0E+00
Class E Basolateral plasma membrane 2 3678 2 1.91 0.0E+00
Class E Mitochondrial matrix 3 3678 3 1.91 0.0E+00
Class E Nuclear 160 3678 244 1.25 7.2E-06
Class E Peroxisome 4 3678 4 1.91 0.0E+00
Class E Emb 291 1268 476 1.12 3.4E-04
Class E Lva 81 1268 117 1.27 2.7E-04
Class E Muv 3 1268 3 1.84 0.0E+00
Class E Prl 2 1268 2 1.84 0.0E+00
Class E Pvl 22 1268 27 1.50 7.2E-04
Class E Chromosome X 499 3678 865 1.10 2.9E-04
Class ET max(41 minutes) Helicase 2 59 16 14.90 2.9E-04
Class ET max(41 minutes) Other kinase 2 59 5 47.69 5.5E-06
Class ET max(41 minutes) Altered fertility 2 59 20 11.92 5.8E-04
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Class ET max(41 minutes) Oogenesis is defective 3 59 32 11.18 1.3E-04
Class ET max(53 minutes) Regulatory subunit 2 260 5 10.82 4.7E-04
Class ET max(53 minutes) Spd 2 87 4 13.41 2.0E-04
Class ET max(83 minutes) Chromatin chromosome structure 10 278 47 5.38 1.5E-06
Class ET max(83 minutes) DNA binding protein 14 278 90 3.94 1.9E-06
Class ET max(83 minutes) Transcription factor 12 278 99 3.07 1.3E-04
Class ET max(83 minutes) DNA associated direct or indirect 19 278 168 2.86 9.0E-06
Class ET max(83 minutes) Methylation 4 278 10 10.12 2.0E-05
Class ET max(83 minutes) Nuclear 27 278 244 2.80 2.9E-07
Class ET max(101 minutes) Protein conjugation factor 3 216 12 8.14 3.5E-04
Class ET max(101 minutes) Defective neuronal development 3 216 15 6.51 9.0E-04
Class ET max(101 minutes) Touch sensation is defective 2 216 5 13.03 2.7E-04
Class ET max(101 minutes) Pvl 4 64 27 5.40 6.7E-04
Class ET max(122 minutes) Abnormal alae 2 118 6 19.87 8.9E-05
Class ET max(122 minutes) Abnormal vulva 4 118 36 6.62 3.0E-04
Class ET max(122 minutes) Chromosome X 26 118 865 1.79 8.9E-04
Class ET max(143 minutes) Transcription factor 7 125 99 3.98 3.5E-04
Class ET max(143 minutes) Multiple vulva like structures 3 125 12 14.07 4.2E-05
Class ET max(143 minutes) DNA associated direct or indirect 9 125 168 3.02 7.7E-04
Class ET max(143 minutes) Spn 2 46 4 25.36 2.8E-05
Class M Energy generation 15 6062 15 1.16 3.3E-12
Class M Nuclear cytoplasmic transport 9 6062 9 1.16 5.1E-12
Class M Other metabolism 4 6062 4 1.16 1.1E-11
Class M Pol III transcription 2 6062 2 1.16 8.1E-12
Class M Protein folding 16 6062 16 1.16 4.0E-12
Class M Protein synthesis 39 6062 39 1.16 9.1E-12
Class M RNA turnover 7 6062 7 1.16 8.8E-12
Class M Recombination 7 6062 7 1.16 8.8E-12
Class M Active transporter secondary 8 6062 8 1.16 6.4E-12
Class M Chaperones 15 6062 15 1.16 3.3E-12
Class M Complex assembly protein 9 6062 9 1.16 5.1E-12
Class M Conserved ATPase domain 4 6062 4 1.16 1.1E-11
Class M Cyclin 2 6062 2 1.16 8.1E-12
Class M GTPase activating protein 3 6062 3 1.16 7.0E-12
Class M Helicase 16 6062 16 1.16 4.0E-12
Class M Ligase 13 6062 13 1.16 5.8E-12
Class M Major Facilitator Superfamily 2 6062 2 1.16 8.1E-12
Class M Other kinase 5 6062 5 1.16 8.1E-12
Class M Other phosphatase 2 6062 2 1.16 8.1E-12
Class M Proteasome subunit 25 6062 25 1.16 1.0E-11
Class M RNA polymerase subunit 4 6062 4 1.16 1.1E-11
Class M Ribosomal subunit 2 6062 2 1.16 8.1E-12
Class M Spliceosomal subunit 6 6062 6 1.16 0.0E+00
Class M Topoisomerase 2 6062 2 1.16 8.1E-12
Class M Translation factor 13 6062 13 1.16 5.8E-12
Class M tRNA synthetase 3 6062 3 1.16 7.0E-12
Class M 13 introns 7 6062 7 1.16 8.8E-12
Class M 16 introns 5 6062 5 1.16 8.1E-12
Class M 17 introns 6 6062 6 1.16 0.0E+00
Class M 20 introns 2 6062 2 1.16 8.1E-12
Class M 22 introns 2 6062 2 1.16 8.1E-12
Class M Abnormal alae 6 6062 6 1.16 0.0E+00
Class M Abnormal rhythms 7 6062 7 1.16 8.8E-12
Class M Abnormal rolling 3 6062 3 1.16 7.0E-12
Class M Constipated 5 6062 5 1.16 8.1E-12
Class M Constitutive dauer formation 10 6062 10 1.16 0.0E+00
Class M Dark intestine 2 6062 2 1.16 8.1E-12
Class M Defective dauer formation 5 6062 5 1.16 8.1E-12
Class M Defects in neurotransmitter metabolism 2 6062 2 1.16 8.1E-12
Class M Embryonic partitioning is defective 5 6062 5 1.16 8.1E-12
Class M Extracellular matrix defects cuticle 3 6062 3 1.16 7.0E-12
Class M Germline maintenance is defective 6 6062 6 1.16 0.0E+00
Class M Hermaphrodite germline is feminized 3 6062 3 1.16 7.0E-12
Class M High incidence of males 9 6062 9 1.16 5.1E-12
Class M Increased frequency of chromosome nondisjunction 9 6062 9 1.16 5.1E-12
Class M Increased thermotolerance 2 6062 2 1.16 8.1E-12
Class M Lethargic 10 6062 10 1.16 0.0E+00
Class M Long 2 6062 2 1.16 8.1E-12
Class M Meiosis is defective 21 6062 21 1.16 2.7E-12
Class M Short 9 6062 9 1.16 5.1E-12
Class M Protein synthesis factor 11 6062 11 1.16 1.1E-11
Class M Ribosome associated 20 6062 20 1.16 4.1E-12
Class M Diphthamide formation 2 6062 2 1.16 8.1E-12
Class M Glycosylation unknown type 2 6062 2 1.16 8.1E-12
Class M Lysine methylation 2 6062 2 1.16 8.1E-12
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Class M N terminal myristylation 2 6062 2 1.16 8.1E-12
Class M N terminus unmodified 3 6062 3 1.16 7.0E-12
Class M O linked glycosylation 2 6062 2 1.16 8.1E-12
Class M Apical plasma membrane 2 6062 2 1.16 8.1E-12
Class M Basolateral plasma membrane 2 6062 2 1.16 8.1E-12
Class M Cell body soma 5 6062 5 1.16 8.1E-12
Class M Centrosome spindle pole body 15 6062 15 1.16 3.3E-12
Class M Extracellular matrix cuticle and basement membrane 2 6062 2 1.16 8.1E-12
Class M Mitochondrial inner membrane 3 6062 3 1.16 7.0E-12
Class M Mitochondrial matrix 3 6062 3 1.16 7.0E-12
Class M Nuclear matrix 2 6062 2 1.16 8.1E-12
Class M Nuclear nucleolus 2 6062 2 1.16 8.1E-12
Class M Nuclear transport factor 3 6062 3 1.16 7.0E-12
Class M Abs 3 2090 3 1.12 0.0E+00
Class M Bmd 25 2090 25 1.12 0.0E+00
Class M Clr 7 2090 7 1.12 0.0E+00
Class M Cyk 2 2090 2 1.12 0.0E+00
Class M Dpy 20 2090 20 1.12 0.0E+00
Class M Emb 459 2090 476 1.08 3.3E-10
Class M Etv 13 2090 13 1.12 0.0E+00
Class M Gro 98 2090 100 1.09 1.7E-04
Class M Lon 3 2090 3 1.12 0.0E+00
Class M Mei 5 2090 5 1.12 0.0E+00
Class M Mul 4 2090 4 1.12 0.0E+00
Class M Nmo 6 2090 6 1.12 0.0E+00
Class M Ocs 8 2090 8 1.12 0.0E+00
Class M Pna 4 2090 4 1.12 0.0E+00
Class M Pnm 2 2090 2 1.12 0.0E+00
Class M Sle 4 2090 4 1.12 0.0E+00
Class M Spd 4 2090 4 1.12 0.0E+00
Class M Spn 4 2090 4 1.12 0.0E+00
Class M Chromosome I 1139 6062 1275 1.04 8.5E-05
Class M Chromosome III 1128 6062 1261 1.04 5.3E-05
Class MD pd(PC32) Protein translocation 2 155 8 11.35 5.4E-04
Class MD pd(PC32) Receptor protein translocation 2 155 4 22.69 4.1E-05
Class MD pd(23 minutes) Lva 24 230 117 2.08 1.0E-04
Class MD pd(23 minutes) Chromosome III 126 551 1261 1.28 8.9E-04
Class MD pd(41 minutes) Proteasome subunit 6 367 25 4.60 2.1E-04
Class MD pd(53 minutes) Proteasome subunit 8 733 25 3.07 6.0E-04
Class MD pd(53 minutes) Topoisomerase 2 733 2 9.60 0.0E+00
Class MD pd(53 minutes) Chromosome I 169 733 1275 1.27 1.5E-04
Class MD pd(66 minutes) Cell stress 4 159 20 8.85 6.5E-05
Class MD pd(66 minutes) Heat shock protein 2 159 9 9.83 8.6E-04
Class MD pd(66 minutes) Cytoplasmic 10 159 142 3.12 3.5E-04
Class MD Isomerase 11 1764 19 2.31 4.9E-04
Class MD Proteasome subunit 16 1764 25 2.55 7.4E-06
Class MD Topoisomerase 2 1764 2 3.99 3.7E-12
Class MD Lva 52 700 117 1.48 2.4E-04
Class MD Chromosome I 387 1764 1275 1.21 9.4E-07
Class MDE Carbohydrate metabolism 7 643 16 4.79 3.1E-05
Class MDE Isomerase 6 643 19 3.46 9.8E-04
Class MDE Lva 27 254 117 2.12 2.8E-05
Class MDE Chromosome III 147 643 1261 1.28 3.5E-04
Class ME Carbohydrate metabolism 12 2705 16 1.95 5.9E-04
Class ME Chromatin chromosome structure 29 2705 47 1.60 3.6E-04
Class ME Mitosis 24 2705 37 1.69 3.1E-04
Class ME Protein synthesis 26 2705 39 1.73 9.3E-05
Class ME Isomerase 14 2705 19 1.92 3.8E-04
Class ME Translation factor 10 2705 13 2.00 8.8E-04
Class ME Abnormal vulva 23 2705 36 1.66 5.5E-04
Class ME Dark intestine 2 2705 2 2.60 0.0E+00
Class ME Germline maintenance is defective 6 2705 6 2.60 0.0E+00
Class ME Lethal larval 37 2705 55 1.75 3.7E-06
Class ME Ribosome associated 17 2705 20 2.21 2.5E-06
Class ME Glycosylation unknown type 2 2705 2 2.60 0.0E+00
Class ME N terminus unmodified 3 2705 3 2.60 0.0E+00
Class ME Basolateral plasma membrane 2 2705 2 2.60 0.0E+00
Class ME Mitochondrial matrix 3 2705 3 2.60 0.0E+00
Class ME Nuclear 118 2705 244 1.26 5.4E-04
Class ME Emb 274 1025 476 1.31 6.1E-12
Class ME Lva 76 1025 117 1.48 8.4E-07
Class ME Lvl 26 1025 38 1.56 6.1E-04
Class ME Pvl 20 1025 27 1.69 3.4E-04
Class ME Chromosome I 558 2705 1275 1.14 7.9E-06
Class ME Chromosome III 543 2705 1261 1.12 9.6E-05
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Class MET Protein conjugation factor 6 915 12 3.84 2.7E-04
Class MET Abnormal alae 4 915 6 5.13 2.0E-04
Class MET Dark intestine 2 915 2 7.69 0.0E+00
Class MET Methylation 6 915 10 4.61 5.2E-05
Class MET Emb 100 353 476 1.39 3.8E-05
Class MET Pvl 12 353 27 2.94 4.7E-05
Class MET Chromosome I 212 915 1275 1.28 1.4E-05
Class SE pi(41 minutes) Chromosome II 25 61 1300 2.22 1.0E-05
Class SE pi(53 minutes) N linked glycosylation 4 342 16 5.14 7.4E-04
Class SE pi(53 minutes) WT 68 75 1739 1.22 9.2E-05
Class SE pi(53 minutes) Chromosome II 87 342 1300 1.38 4.1E-04
Class SE pi(53 minutes) Chromosome V 87 342 1212 1.48 3.2E-05
Class SE pi(66 minutes) Pol II transcription 4 55 92 5.56 7.1E-04
Class SE pi(66 minutes) Transcription factor 5 55 99 6.46 1.1E-04
Class SE pi(83 minutes) ATP binding cassette 2 123 6 19.07 1.0E-04
Class SE pi(83 minutes) Chromosome X 30 123 865 1.98 5.7E-05
Class SE pi(101 minutes) Pol II transcription 6 97 92 4.73 2.6E-04
Class SE pi(101 minutes) Transcription factor 6 97 99 4.40 4.0E-04
Class SE pi(101 minutes) Cell fate lineage defects 5 97 44 8.24 2.7E-05
Class SE pi(122 minutes) Chromosome X 23 93 865 2.01 2.6E-04
Class SE pi(143 minutes) 8 introns 4 67 30 14.00 8.0E-06
Class SE pi(186 minutes) Oxidoreductase 2 53 23 11.54 6.4E-04
Class SE pi(186 minutes) Cell migration defects 2 53 26 10.21 9.3E-04
Class SE pi(186 minutes) Chromosome X 21 53 865 3.22 7.9E-08
Class SE Pol II transcription 24 973 92 1.89 5.2E-04
Class SE Transcription factor 30 973 99 2.19 5.4E-06
Class SE Cell migration defects 10 973 26 2.78 3.5E-04
Class SE Touch sensation is defective 4 973 5 5.78 5.0E-05
Class SE N linked glycosylation 7 973 16 3.16 6.0E-04
Class SE Prl 2 243 2 9.60 0.0E+00
Class SE WT 213 243 1739 1.18 3.7E-08
Class SE Chromosome X 170 973 865 1.42 1.5E-07
Class SET 18 introns 2 441 4 7.98 9.3E-04
Class SET WT 95 109 1739 1.17 3.0E-04
Class SET Chromosome II 114 441 1300 1.40 2.9E-05
Class SM Pol III transcription 2 3357 2 2.10 0.0E+00
Class SM Cyclin 2 3357 2 2.10 0.0E+00
Class SM GTPase activating protein 3 3357 3 2.10 0.0E+00
Class SM Major Facilitator Superfamily 2 3357 2 2.10 0.0E+00
Class SM Proteasome subunit 23 3357 25 1.93 2.5E-07
Class SM Topoisomerase 2 3357 2 2.10 0.0E+00
Class SM tRNA synthetase 3 3357 3 2.10 0.0E+00
Class SM 20 introns 2 3357 2 2.10 0.0E+00
Class SM 22 introns 2 3357 2 2.10 0.0E+00
Class SM Defects in neurotransmitter metabolism 2 3357 2 2.10 0.0E+00
Class SM Hermaphrodite germline is feminized 3 3357 3 2.10 0.0E+00
Class SM Lysine methylation 2 3357 2 2.10 0.0E+00
Class SM O linked glycosylation 2 3357 2 2.10 0.0E+00
Class SM WT 844 1065 1739 1.06 5.9E-07
Class SMD Protein degradation 18 953 49 2.71 9.1E-06
Class SMD Recombination 4 953 7 4.22 7.5E-04
Class SMD Conserved ATPase domain 3 953 4 5.54 3.3E-04
Class SMD Proteasome subunit 16 953 25 4.72 5.7E-10
Class SMD Topoisomerase 2 953 2 7.38 0.0E+00
Class SMD Cytoplasmic 34 953 142 1.77 2.4E-04
Class SMD Endoplasmic reticulum 11 953 32 2.54 5.9E-04
Class SMD Ocs 6 384 8 4.56 2.1E-05
Class SMD Chromosome I 215 953 1275 1.24 7.8E-05

Depletions
Class E pi(66 minutes) WT 55 102 1739 0.72 1.00000
Class E pi(83 minutes) WT 85 137 1739 0.83 0.99941
Class E pi(101 minutes) Chromosome II 39 335 1300 0.63 0.99965
Class E Proteasome subunit 2 3678 25 0.15 1.00000
Class E WT 895 1268 1739 0.95 1.00000
Class ET max(66 minutes) Chromosome X 8 181 865 0.36 0.99978
Class M Transcription factor 69 6062 99 0.81 0.99998
Class M WT 1526 2090 1739 0.98 1.00000
Class M Chromosome X 695 6062 865 0.93 1.00000
Class MD pd(23 minutes) Chromosome X 24 551 865 0.35 1.00000
Class MD pd(53 minutes) Chromosome X 38 733 865 0.42 1.00000
Class MD pd(66 minutes) Chromosome X 7 159 865 0.36 0.99946
Class MD Pol II transcription 6 1764 92 0.26 1.00000
Class MD Signal transduction 18 1764 152 0.47 0.99997
Class MD DNA binding protein 9 1764 90 0.40 0.99974
Class MD Receptor signalling 3 1764 73 0.16 1.00000
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Class MD Transcription factor 5 1764 99 0.20 1.00000
Class MD DNA associated direct or indirect 19 1764 168 0.45 0.99999
Class MD Nuclear 40 1764 244 0.65 0.99939
Class MD Chromosome X 96 1764 865 0.44 1.00000
Class MDE Receptor signalling 0 643 73 0.00 0.99912
Class MDE Nuclear 9 643 244 0.40 0.99929
Class MDE Chromosome X 44 643 865 0.56 1.00000
Class ME Proteasome subunit 2 2705 25 0.21 0.99929
Class ME WT 682 1025 1739 0.89 1.00000
Class ME Chromosome V 403 2705 1212 0.86 0.99998
Class SE pi(53 minutes) Emb 4 75 476 0.26 0.99980
Class SE pi(53 minutes) Chromosome III 39 342 1261 0.64 0.99952
Class SE pi(83 minutes) Chromosome III 9 123 1261 0.41 0.99942
Class SE Emb 17 243 476 0.34 1.00000
Class SE Chromosome I 136 973 1275 0.77 0.99988
Class SE Chromosome III 133 973 1261 0.76 0.99992
Class SET Emb 8 109 476 0.36 0.99988
Class SET Chromosome III 50 441 1261 0.63 0.99994
Class SM Pol II transcription 28 3357 92 0.64 0.99948
Class SM DNA binding protein 27 3357 90 0.63 0.99956
Class SM Transcription factor 22 3357 99 0.47 1.00000
Class SM Cell migration defects 3 3357 26 0.24 0.99990
Class SM Lethal larval 12 3357 55 0.46 0.99994
Class SM DNA associated direct or indirect 53 3357 168 0.66 0.99999
Class SM Nuclear 84 3357 244 0.72 0.99999
Class SM Emb 185 1065 476 0.85 0.99950
Class SM Lva 36 1065 117 0.67 0.99945
Class SM Chromosome X 366 3357 865 0.89 0.99962
Class SMD Pol II transcription 3 953 92 0.24 0.99913
Class SMD Transcription factor 1 953 99 0.07 0.99999
Class SMD Lethal larval 0 953 55 0.00 0.99968
Class SMD Chromosome X 45 953 865 0.38 1.00000

Enrichments and depletions of gene annotations in all 45 expression classes and subclasses. Enrichments are shown first in alphabetical order by class name,
followed by depletions in alphabetical order. See Fig. 10 and Materials and Methods for class names and definitions. Enrichments and depletions are determined
by a hypergeometric probablility analysis and are shown where significant (P<0.001). Functional categories are from Worm Proteome Database and three-letter
abbreviations correspond to RNAi phenotypes from WormBase. For RNAi phenotypes ‘Total in group’ does not correspond to the class size but rather the
number of genes in the class for which an RNAi assay has been published.
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