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Myc is dispensable for cardiomyocyte development but rescues
Mycn-deficient hearts through functional replacement and cell

competition
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ABSTRACT

Myc is considered an essential transcription factor for heart
development, but cardiac defects have only been studied in global
Myc loss-of-function models. Here, we eliminated Myc by recombining
a Myc floxed allele with the Nkx2.5Cre driver. We observed no
anatomical, cellular or functional alterations in either fetuses or adult
cardiac Myc-deficient mice. We re-examined Myc expression during
development and found no expression in developing cardiomyocytes.
In contrast, we confirmed that Mycn is essential for cardiomyocyte
proliferation and cardiogenesis. Mosaic Myc overexpression in a Mycn-
deficient background shows that Myc can replace Mycn function,
recovering heart development. We further show that this recovery
involves the elimination of Mycn-deficient cells by cell competition.
Our results indicate that Myc is dispensable in cardiomyocytes both
during cardiogenesis and for adult heart homeostasis, and that Mycn is
exclusively responsible for cardiomyocyte proliferation during heart
development. Nonetheless, our results show that Myc can functionally
replace Mycn. We also show that cardiomyocytes compete according
to their combined Myc and Mycn levels and that cell competition
eliminates flawed cardiomyocytes, suggesting its relevance as a
quality control mechanism in cardiac development.
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INTRODUCTION
Myc transcription factors promote cell growth and division, being
essential for proliferation in healthy tissues and tumours. Myc
proteins belong to the basic helix-loop-helix-domain family and
exert their functions mainly by regulating transcription. There are
three members of the Myc family of transcription factors in
mammals: Myc, Mycn and Mycl. All three transcripts show
spatially restricted patterns during post-implantation embryonic
development (Zimmerman et al., 1986). Deregulation of these
genes has been linked with tumour formation and cell growth.
Myc expression is required for normal embryonic development
in mammals, displaying widespread expression from early stages
of development, and becoming regionally restricted starting at
embryonic day (E) 7.5. Global Myc knockout embryos die between
E9.5 and E10.5, showing defects in heart, pericardium and neural
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tube, and delay or failure of embryo turning (Davis et al., 1993).
Strong Myc overexpression in transgenic mice enhances myocyte
proliferation during heart development, promoting cardiac
hyperplasia, which suggested the idea of an essential role of Myc
in cardiomyocyte growth and proliferation during development
(Jackson et al., 1990). In contrast, strong Myc overexpression during
postnatal life leads to premature cardiomyocyte hypertrophy
(Machida et al., 1997; Xiao et al., 2001) and heart-specific deletion
of Myc prevents hypertrophic growth in response to hemodynamic,
pharmacological (Zhong et al., 2006) and cold-induced (Bello Roufai
etal., 2007) hypertrophy. Myc mRNA levels in whole hearts decrease
in correlation with the transition from hyperplastic to hypertrophic
growth (Schneider et al., 1986) and Myc is not expressed in adult
cardiomyocytes under normal conditions but becomes strongly
activated following hypertrophic stimuli (Izumo et al., 1988; Pollack
etal., 1994), which suggests that the physiological function of Myc in
postnatal cardiomyocytes is restricted to the hypertrophic response to
a challenge. In agreement with this idea, Myc deletion in
cardiomyocytes of unchallenged adult mouse hearts does not lead
to cardiac function alterations (Zhong et al., 2006).

Further experiments in a model of moderate overexpression of Myc
produced a very different set of results. Mild Myc overexpression in
a cellular mosaic fashion does not produce overt phenotypical
alterations during embryonic development or adult life, but induces
the phenomenon of cell competition, by which cells with enhanced
anabolism eliminate and replace neighbours without altering tissue
homeostasis (Claveria et al., 2013; Claveria and Torres, 2016). In
cardiac-specific models of Myc mosaic overexpression at moderate
levels, Myc-enhanced cardiomyocytes trigger the elimination of
neighbouring wild-type cardiomyocytes both during development
and in the adult heart (Villa del Campo et al., 2014, 2016).

The changes induced by moderate Myc overexpression in
cardiomyocytes remain within homeostatic limits both during
development and in the adult heart (Villa del Campo et al., 2014).
Notably, in these experiments, Myc-enhanced adult hearts are not
prone to hypertrophy but display a mild hyperplasic phenotype
(Villa del Campo et al., 2014). The contrast of these results with
those obtained by strong overexpression of Myc in transgenic mice
(Machida et al., 1997; Xiao et al., 2001) suggests that the effects of
Myc overexpression depend on the levels induced.

Although the results obtained in overexpression experiments
suggest a role for Myc during cardiomyocyte development, there are
no studies reporting developmental cardiac-specific deletion of
Mpyc. Furthermore, the conditional deletion of Myc in the blood/
endothelial lineage produces heart defects similar to those observed
in complete Myc elimination (He et al., 2008), raising the possibility
that the cardiac defects observed in the global mutant do not result
from a primary function in cardiomyocytes. In contrast, Mycn is
essential for cardiomyocyte development in conditional deletion
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models (Harmelink et al., 2013) whereas Mycl expression and
mutant phenotypes do not affect the heart (Hatton et al., 1996). Myc
and Mycn show high sequence and structure homology and this
translates into a highly conserved function, as exemplified by full
rescue by Mycn of the Myc global knockout in a knock-in
replacement mouse model (Malynn et al., 2000).

Mycn global mutants die in utero between E10.5 and E11.5,
displaying smaller size and hypoplastic heart (Charron et al., 1992;
Moens et al., 1993; Sawai et al., 1993; Stanton et al., 1992), a
phenotype that is reproduced in a cardiomyocyte-specific deletion
of Mycn using a cTnT-Cre driver (Harmelink et al., 2013). Mycn is
required for ventricular wall morphogenesis through its role in
regulating compact layer cardiomyocyte growth, proliferation and
maturation. The defects in heart growth were attributed exclusively
to the reduction in proliferation and not to increased cell death
(Harmelink et al., 2013).

Here, we studied the role of Myc during heart development, the
ability of Myc to rescue Mycn deficiency during cardiogenesis and
the involvement of cell competition and cardiomyocyte replacement
in this rescue. We report the absence of Myc expression or function
in developing cardiomyocytes and the ability of Myc-expressing
cardiomyocyte populations to repopulate Mycn-deficient hearts and
rescue Mycn function. Our results indicate that Mycn is essential for
cardiomyocyte development, but Myc is not involved in this
process. Nonetheless, Myc is able to mimic Mycn function, rescue
Mpycn-deficient cells and promote the elimination of Mycn-deficient
cells to restore a viable heart.

RESULTS AND DISCUSSION

Myc is dispensable for heart development and adult heart
homeostasis

To study the role of Myc during heart development, we
conditionally deleted Myc in mice using the Nkx2.5-Cre strain,
which drives widespread Cre-mediated recombination in cardiac
precursors from around ES8.0 (Stanley et al., 2002). Nkx2.5-Cre-
mediated recombination is complete in cardiomyocytes and affects
a large part of endocardial (Stanley et al., 2002) and epicardial
(Zhou et al., 2008) precursors. Embryos resulting from elimination
of Myc function in cardiac progenitors (cKO-Myc) (Myc™¥/ox;
Nkx2.5-Cre’®") were viable and did not display any phenotypic
abnormality (Fig. 1A). cKO-Myc mice reached adulthood in the
expected proportions (Table S1) and presented normal cardiac
morphology (Fig. 1A).

Measurements of heart weight revealed no significant differences
in size between cKO-Myc homozygous, heterozygous and wild-
type hearts (Fig. 1B). The density of cardiomyocyte nuclei was
similar between cKO-Myc homozygous, heterozygous and wild-
type hearts (Fig. 1C,D), indicating no alterations in cardiomyocyte
size or number.

To assess the function of cKO-Myc hearts, we performed
echocardiographic assays on 10-week-old adult mice. No significant
differences were found between groups in ejection fraction and
fractional shortening parameters, indicating that the function of
cKO-Myc hearts is not affected by the loss of Myc (Fig. 1E). Overall,
cKO-Myc hearts display normal morphology and function and,
therefore, our data indicate that Myc function in the Nkx2.5-Cre*
lineages is dispensable for heart formation and adult heart
homeostasis.

Myc is not expressed in developing cardiomyocytes
The results obtained could be explained by lack of Myc function
during cardiomyocyte development or by compensation of a
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Fig. 1. Myc deletion in the Nkx2.5 lineage. (A) Left: Whole-mount E10.5 wild-
type (Wt) and Mycn¥/flox:Nkx2.5-Cre!?’* (cKO-Myc) embryos. Right: Whole-
mount Wt and cKO-Myc adult hearts. (B) Heart/body weight (HW/BW) and
heart weight/tibia length (HW/TL) ratios in 10-week-old animals. (C) Confocal
images from sections of adult hearts stained with anti-PCM1 (red) and anti-TnT
(green). Insets show magnification of cardiomyocyte (white arrow) and non-
cardiomyocyte (black arrow) nuclei in heart sections, as detected with PCM-1
antibody. (D) Quantification of cardiomyocyte nuclei per area in three different
regions of the left ventricle. Location of the regions within the left ventricle is
identified in the schematic as LV1, LV2 and LV3. (E) Ejection fraction (EF) and
fractional shortening (FS) measured by echocardiography in adult mice. Data
in C,E,F are meants.e.m.; ns, not significant (P>0.05). n=3-8 mice/condition.
Scale bars: 500 um (A); 100 pm (C).

putative Myc function by Mycn. Myc RNA expression has been
reported by northern blot in mid-gestation samples from whole
myocardium (Jackson et al., 1990; Schneider et al., 1986) and Myc
protein expression has been reported by western blot from whole
adult myocardium (Zhong et al., 2006). Here, we performed in situ
hybridization (ISH) to determine which cells express Myc during
myocardial development. In agreement with previous reports (Uslu
et al., 2014), Myc mRNA was expressed at E9.5 in the neural tube,
branchial arches, cephalic regions and other non-cardiac tissues
(Fig. 2A). At this stage, Myc mRNA was not detected in the heart
tube, but within the cardiogenic region, expression was seen in the
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Fig. 2. Myc is not detected in cardiomyocytes during heart development.
(A,A’) Whole-mount Myc ISH of an E9.5 wild-type embryo, with detail of the
heartin A’ (magnification of the boxed area in A). (B) Whole-mount Myc ISH of
an E12.5 wild-type embryonic heart. (C) Confocal section of a whole-mount
E9.5 GFP-Myc embryo showing GFP-Myc expression and oa-SMA
immunostaining. (D) Confocal section of an E12.5 GFP-Myc heart showing
GFP-Myc expression and isolectin GS-IB4 (IB4) as an endothelial marker.
Middle and right panels show magnification of the boxed areas of the left panel.
Arrowheads point to endothelial cells expressing GFP-Myc. (E) Violin plots
showing Myc and MycN mRNA expression in different cardiac cell types at
E10.5. The data are a re-analysis of original data by Li et al., 2016. Violin plots
show relative cell abundance (x-axis) versus log2 of normalized reads (y-axis)
for Myc or Mycn mRNAs. (F,G) Confocal sections of whole E10.5 wild-type
(Wt; F) and cKO-Myc (G) hearts showing staining for DAPI and Myc. BA,
branchial arches; CM, cardiomyocytes; End, endocardium (endocardium/
endothelium in E); Epi, epicardium; LA, left atria; LV, left ventricle; Mes,
mesenchymal cells; OFT, outflow tract; PE, proepicardium; RA, right atria; RV,
right ventricle. Scale bars: 70 ym (C); 100 um (D, left); 50 um (D, middle and
right, and F,G).

proepicardium (Fig. 2A"). Analysis at later stages showed weak
Myc mRNA detection in the distal outflow tract (OFT) and
subepicardium at E12.5 (Fig. 2B). To confirm Myc expression in
the developing heart, we took advantage of a GFP-Myc knock-in
reporter line in which endogenous Myc protein expression is
reported by green fluorescent protein (GFP) fused to the
endogenous Myc mRNA open reading frame (Huang et al., 2008).

In agreement with our ISH results, GFP-Myc expression at E9.5 was
strongly detected in the branchial arches and in the proepicardium
(Fig. 2C). In the heart tube, no GFP-Myc expression was detected in
the myocardium, whereas the endocardium displayed a positive
signal. Sectioning of GFP-Myc E12.5 hearts showed no GFP-Myc
expression in cardiomyocytes. It was detected in endothelial cells
within the myocardium and subepicardium, with endocardial
expression mostly absent (Fig. 2D). In addition, we analysed
previous data of single cell RNA-seq from developing mouse hearts
at stage E10.5 (Li et al., 2016). Myc and Mycn mRNAs show
complementary patterns in the endothelial and cardiomyocyte
populations of E10.5 hearts. Myc mRNA is strongly present in
endothelial cells, but it is not detected in cardiomyocytes, whereas
Mycn mRNA shows the opposite expression pattern (Fig. 2E). In
addition, the mRNAs of both genes are detected in epicardial,
mesenchymal and other mixed cell populations (Fig. 2E).

These results contradict our previous characterization of
Myc protein distribution using an anti-Myc antibody in
immunofluorescence, in which a clear signal was detected in
cardiomyocytes at E10.5 (Villa del Campo et al., 2014). To resolve
this contradiction, we repeated the immunofluorescence comparing
wild-type and cKO-Myc hearts at E10.5 (Fig. 2F,G). Detection of Myc
expression in wild-type embryos clearly identified a nuclear signal in
cardiomyocytes (Fig. 2F). This signal remained unchanged in cKO-
Myc hearts (Fig. 2G). This result contrasts with the observation that
this antibody has been validated for endogenous Myc detection in the
E6.5 mouse epiblast (Claveria et al., 2013). Although the most
plausible explanation for this result is cross-reaction with Mycn, which
is expressed in developing cardiomyocytes but not in the E6.5 epiblast
(Harmelink et al., 2013; Moens et al., 1993), in Mycn/*/x:Nkx2. 5-
Cre'®”T embryos, the signal persisted (Fig. S1), indicating non-
specificity of unknown origin.

We conclude that Myc does not play a role in cardiomyocyte
development because it is not expressed in this lineage and, thus, it
does not act redundantly with Mycn.

Forced Myc expression in a mosaic fashion is sufficient

to rescue cKO-Mycn cardiac defects

A relevant question is whether the different effects reported for Myc
overexpression in cardiomyocytes result from Myc mimicking
Mycn function. As mentioned above, Mycn can replace Myc
functions when knocked in to the Myc locus (Malynn et al., 2000).
Here, we investigated whether Myc could replace Mycn function in
the developing heart. To test this, we used Myc overexpression from
the Cre-inducible Rosa26R-iMOS mosaic system (Claveria et al.,
2013). The iMOST'M< allele allows the induction of mild
overexpression of Myc in a cellular mosaic fashion (Claveria
et al., 2013) (Fig. S2A). In this mosaic model, 75% of recombined
cells overexpress Myc and are reported by EYFP expression,
whereas 25% of recombined cells do not overexpress Myc and
are reported by ECFP expression (Fig. S2). Mycn//"0%: Njx2.5-
Cre'®’* embryos in which Mycn has been conditionally deleted in
heart precursors (cKO-Mycn) are not viable past E10.5-E11.5
(Fig. 3A, middle), in accordance with the phenotype previously
reported for Mycn deletion in cardiomyocytes (Harmelink et al.,
2013). In contrast, cardiac Mycn-deficient littermates in which the
iMOS"™ mosaic has been activated (Mycn/™/10% iMOSTIMye/*
Nkx2.5-Cre’®") were viable and indistinguishable from iMOS™*¢
activation on wild-type (Myen™";iMOST™* :Nkx2.5-Cre'®™)
or Mycn-heterozygous — (Mycn™* ;iMOST™v"* : Nkx2.5-Cre'®™)
backgrounds (Fig. 3A, right); both genotypes being phenotypically
normal (Villa del Campo et al., 2014; this study). Histological
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Fig. 3. Myc mosaic overexpression
rescues cardiac Mycn deficiency.

(A) Whole-mounts of E13.5 embryos of the
following genotypes: Mycn*'*;iMOSTMyel+,
Nkx2.5-Cre'?'* (iMOS-Myc; left), Mycn™
floXNkx2.5-Cre'9™* (cKO-Mycn; middle) and
Myen**;iMOST"™y*:Nkx2.5-Cre'9"* (cKO-
Mycn;iMOS-Myc; right). (B) Confocal section
of E13.5 iIMOS-Myc and cKO-Mycn hearts,
showing EYFP-Myc (yellow) and ECFP-WT
(red) cell populations. Arrowheads point to
ECFP-positive cells, also displayed in the
magnification of boxed areas.

(C-F) Confocal sections of E10.5 iMOS-Wt
(Mycn**;iMOSWT'*:Nkx2.5-Cre'9'*; C),
iMOS-Myc (D), MycnHet;iMOS-Myc
(Mycn™X/*:iMOSTMye!*:Nkx2.5-Cre'9'*; E)
and cKO-Mycn;iMOS-Myc (F) whole-mount
hearts showing endogenous fluorescence
from the EYFP (green) and ECFP (blue) cell
populations. (G) Percentage of ECFP cells in
hearts of IMOS-WT and iMOS-Myc mosaics
in the three different Mycn backgrounds. The
number of Myc and Mycn combined alleles
in each cell population of the different
mosaics is shown below the graph. LA, left
atria; LV, left ventricle; RA, right atria; RV,
right ventricle. n=3 cKO-Mycn;iMOS-Myc,
n=3 cKO-Mycn, n=3 iIMOS-Myc in Mycn
heterozygous or wild-type backgrounds.
Data in G are meants.e.m.; *P<0.05;
**P<0.01. Scale bars: 100 um.
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analysis and study of the contribution of the cells recombined by
Nkx2.5-Cre at E13.5 showed normal contribution of cardiac
progenitors to the heart and no morphological alterations were
observed in iMOST"_rescued Mycn-deficient hearts compared with
iMOST'™¥¢ hearts (Fig. 3B). These results indicate that mosaic
overexpression of Myc, driven by the endogenous Rosa26 promoter,
is enough to functionally replace the loss of Mycn expression during
heart development.

Cell competition contributes to the rescue of Mycn-deficient
hearts by stimulating the replacement of deficient cells

The complete phenotypic rescue of cKO-Mycn hearts suggested that,
in addition to cell-autonomous replacement of Mycn function by
Myc, some non-cell-autonomous mechanism would operate to either
eliminate or rescue the 25% of cells that do not activate Myc.
To understand which of these mechanisms is at work, we determined

the proportion of ECFP and EYFP cardiomyocyte populations in
different genetic configurations. Control iMOS"” T mosaics expressing
only the fluorescent proteins over a wild-type background produce a
25-75% distribution of ECFP and EYFP cardiomyocytes when
activated by the Nkx2.5-Cre driver (iMOS"7*;Nkx2.5-Cre’®’™")
(Fig. 3C,G; Fig. S2). The same experiment performed with the
iMOST!™¥¢ mosaic reduces the wild-type (ECFP) cell population that
does not overexpress Myc to 15% from the original 25% (Fig. 3D,G),
as aresult of cell competition (Fig. 3G) (Villa del Campo etal., 2014).
When the iMOST'™* mosaic was induced over a cardiac Mycn-
heterozygous background (Mycn™* ;iMOST ™M+ : Nkx2.5-Cre’®™),
the proportion of Mycn”~ (ECFP) cardiomyocytes observed in
E10.5 hearts was about 12.5% (Fig. 3E,G) whereas when the
iMOST'™ mosaic was induced over a cardiac Mycn homozygous
deletion (Mycn™/oxiMOSTIMYe* :Nix2.5-Cre'®’"), the proportion
of Mycn-KO (ECFP) cells dropped to 3.7% at E10.5 and to 1% at
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E13.5 (Fig. 3B,F,G). These results suggest not only the cell-
autonomous replacement of Mycn by Myc, but also that a
replacement of Mycn-KO cardiomyocytes by Myc-overexpressing
cardiomyocytes contributes to the rescue of cardiac Mycn deficiency.

We next explored the possibility that the elimination of this cell
population takes place by cell competition. Elimination of Mycn-KO
cardiomyocytes when confronted with Myc-overexpressing
cardiomyocytes was much more efficient than elimination of wild-
type or Mycn-heterozygous cells, which would fit a scenario in which
both Myc and Mycn act additively to determine cardiomyocyte
competition ability. An alternative view would be that Mycn-KO cells
are not actively eliminated but just diluted out because of their limited
ability to proliferate (Fig. 4A,B). To discriminate between these
possibilities, we determined the frequency of apoptosis in Mycn-KO
cardiomyocytes both when in a homotypic environment in Mycr/o’
fox . Nkx2.5-Cre’®* hearts, and when confronted with a Myc-
overexpressing  cardiomyocyte  population in  Mycnfox;
iMOST™Mye/* :Njx2.5-Cre'®’* hearts. We found that the apoptotic
rate in Mycn-KO cardiomyocytes is very low and similar to that found

cKO-Mycn;iMOS-Myc

PH3 DAPI

o-SMA TUNEL DAPI

cKO-Mycn; iMOS Myc

Fig. 4. Mycn-deficient cardiomyocytes are eliminated by apoptosis when confronted with Myc-overexpressing neighbours. (A) Confocal sections of wild-
type (Wt), cKO-Mycn;iMOS-Myc and cKO-Mycn E10.5 hearts (from left to right) showing PH3 staining in red. Arrowheads point to PH3-positive cardiomyocytes.
(B) Percentage of PH3-positive cardiomyocytes at E10.5 from the different groups in A. (C) Confocal sections of Wt and cKO-Mycn E10.5 hearts stained by
TUNEL and a-SMA immunolabelling. Arrowhead points to TUNEL-positive cardiomyocytes. (D) Percentage of TUNEL-positive cardiomyocytes from the
hearts in C. (E) Confocal sections of cKO-Mycn;iMOS-Myc hearts at E10.5 showing EYFP and ECFP populations in the myocardium. Filled arrowheads and top
insets (magnifications of the boxed areas) show TUNEL* ECFP* cells. Empty arrowheads and bottom insets show TUNEL* EYFP* cells. (F) Percentage of
EYFP- and ECFP-positive cardiomyocytes also positive for TUNEL staining in E10.5 cKO-Mycn;iMOS-Myc hearts. LA, left atria LV, left ventricle; RA, right
atria; RV, right ventricle. n=3 cKO-Mycn;iMOS-Myc, n=4 cKO-Mycn, n=3 iMOS-Myc. Data in B,D,F are meants.e.m.; *P<0.05; **P<0.01; ns, not significant Scale

bars: 100 um (A,C,E, main panels); 20 ym (insets in E).
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in wild-type hearts (Fig. 4C,D), which agrees with previous reports
(Harmelink et al., 2013). In contrast, Mycn-KO cardiomyocytes
exposed in mosaic hearts to Myc-overexpressing cardiomyocytes,
display a strong increase in the frequency of apoptosis (Fig. 4E,F).
These results indicate that confrontation with Myc-overexpressing
rescued cells produces a strong selective apoptotic elimination of
Mycn-KO cells, which are otherwise viable in a homotypic
environment.

Taken together, our results show that Myc is not required for heart
development in the Nkx2.5-Cre" lineage and is not detectably
expressed in developing cardiomyocytes. Although this excludes a
function of Myc in cardiomyocytes, the study is not conclusive
regarding Myc functions in endothelial or epicardial lineages that are
not completely affected by Nkx2.5-Cre recombination. In the context
of previous evidence from endogenous Myc expression and function
analyses in the adult heart (Jackson et al., 1990; Schneider et al., 1986;
Zhong et al., 20006), it is concluded that Myc expression and its role in
heart physiology are restricted to stress responses during adult life,
whereas Mycn fully assumes the constitutive roles of the family during
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cardiogenesis. In addition, we show that Myc can replace Mycn
functionally during cardiomyocyte development and that cell
competition contributes to rescuing heart function by stimulating the
elimination of defective cells. This demonstration adds to previous
evidence indicating that the developing heart can adapt to the
progressive loss of up to 50% of its cardiomyocyte population by
compensatory proliferation of the healthy population (Drenckhahn
etal., 2008). In contrast to this previously reported model, in which the
unhealthy cardiomyocyte population is not eliminated by cell death
but just diluted out (Drenckhahn et al., 2008), in the model presented
here the unhealthy cell population is not prone to cell death when in
isolation but undergoes massive cell death when confronted with a
Myc-rescued cardiomyocyte population. These results suggest an
endogenous role for cell competition in the correction of contingent
defects that may appear in cardiomyocytes during development.

MATERIALS AND METHODS

Mouse strains

iMOS mouse lines have been previously described (Claveria et al., 2013).
Homozygous iMOS females were mated with males carrying Nkx2.5-Cre
(Stanley et al., 2002) to generate embryos. The Mycn floxed allele has been
previously described (Knoepfler et al., 2002), as has been the Myc-GFP
reporter (Huang et al., 2008). Mice were genotyped by PCR. All animal
procedures were conducted in accordance with applicable institutional
guidelines.

ISH
Whole-mount ISH was performed on E9.5 embryos and E12.5 hearts as
described previously, using a Myc probe (Claveria et al., 2013)

Confocal microscopy

Histological sections and whole-mount embryos were imaged with a
Nikon A1R confocal microscope using 405, 458, 488, 568 and 633 nm
wavelengths and 20x/0.75 dry and 40/1.30 oil objectives. Cardiomyocyte
nuclei were counted using the ImageJ (NIH; http:/rsb.info.nih.gov/ij) cell
counter. To estimate cardiomyocyte size, the number of nuclei was divided
by the myocardial area calculated using ImageJ threshold detection. Areas
occupied by EYFP and ECFP cells and EYFP and ECFP cell number were
quantified using ImageJ threshold detection and particle analysis tools.
ECFP was scored either by direct detection of ECFP or by subtracting the
EYFP" area from the anti-GFP" area, when immunostaining was performed.

Measurements in adults

After sacrifice, mice were weighed and hearts were extracted and rinsed in
PBS. Hearts were weighed and tibia length of the posterior left leg was
measured with a caliper.

Immunofluorescence

Embryos were fixed overnight at 4°C in 2% paraformaldehyde (PFA) in PBS
and whole-mount stained or embedded in gelatin and cryosectioned.
Embryonic hearts were fixed in 2% PFA overnight at 4°C and stained as
whole-mounts. Adult hearts were perfused and fixed in 2% PFA in PBS 24 h at
4°C and paraffin-embedded for sectioning. Primary antibodies used were
PCM1 (1:100; Sigma, HPA023370), a-SMA (1:500; Sigma, C-6198), Myc
(1:300; Millipore, D84C12), goat-anti GFP antibody (1:100; Aacris, R1091P),
c-TnT (1:200; Thermo Scientific, Ms-295-P0), 1B4-647 (1:500; Thermo
Scientific, 132450). Immunofluorescence was performed following standard
procedures. Briefly, cryosections were permeabilized with PBT (PBS with
0.5% Triton X-100) and blocked with 10% goat serum, except for anti-GFP, for
which 10% donkey serum was used. Primary antibodies were incubated at 4°C
overnight and secondaries for 1 h at room temperature. Secondary antibodies
used were donkey anti-goat 488 (Invitrogen, A11055), goat anti-rabbit 594
(Invitrogen, A11012), goat anti-mouse 488 (Invitrogen, A11029), goat anti-
mouse 594 (Invitrogen, A11005), donkey anti-goat 647 (Invitrogen, A21447),
Streptavidin-647 (Invitrogen, A32728). Sections were mounted using
Vectashield (Vector Laboratories, H-1000). Terminal deoxynucleotidyl

transferase dUTP nick end labelling (TUNEL) was performed on heart
sections using terminal deoxynucleotidyl transferase (TdT) and biotin-16-2-
deoxyuridine-5-triphosphate (1:500; Biotin-16-dUTP) (both from Roche),
and developed with 647-conjugated streptavidin  (1:500; Jackson
ImmunoResearch). E9.5 embryos were cleared before whole-mount confocal
acquisition using ethyl cinnamate as described by Klingberg et al. (2017).

Echocardiography study

Transthoracic echocardiography was performed blind by an expert operator
using a high-frequency ultrasound system (Vevo 2100, Visualsonics, Canada)
with a 40-MHz linear probe on a heating platform. Mice were lightly
anaesthetized with 0.5-2% isoflurane in oxygen, adjusting the isoflurane to
maintain heart rate at 450+£50 bpm. A base-apex electrocardiogram was
continuously monitored. Images were analysed using Vevo 2100 Workstation
software. Parasternal standard, 2D and MM, long and short axis views at the
level of the papillary muscles (LAX and SAX view, respectively) were
acquired.

Statistical analysis
Expected versus observed frequencies were compared using the ¥ method.
Adult heart parameters were analysed with unpaired #-tests comparing
wild type versus Myc-KO and wild type versus heterozygotes separately.
Nuclei/myocardium area data were analysed by two-way ANOVA. To
compare average percentages of ECFP cells between more than two groups,
the Kruskal-Wallis test was used (assuming non-normal distributions). For
comparisons of two groups, the Mann—Whitney test was used. All
comparisons were made using Prism statistical software.

Single cell RNA-seq analysis

Single cell transcriptome data were downloaded from Gene Expression
Omnibus (GSE76118; Li et al., 2016). Cells were classified into Epicardium,
Endocardium, Mesenchymal and Cardiomyocytes, as in Li et al., 2016. Myc
and Mycn mRNA expression was analysed for each population and is
represented in violin plots.
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Mycn-cKO

Myc DAPI

Myc DAPI

Figure S1. Myc antibody staining in Mycn-deficient hearts. A. Confocal images
showing Myc antibody staining in sections of a E10.5 WT heart (left) and Mycn-cKO
(right). B. Magnification of boxed areas in A. WT heart is shown on left panels and
Mycn-cKO on right panels. Greyscale images of antibody staining are shown in both
cases. Bar 100 um in A and 50 um in B. LV: Left ventricle, RV: Right ventricle, RA:
Right atria, LA: Left atria,
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Figure S2. Summary of the iMOS-mosaic system and the different genetic
combinations used in this work. A. Schematic of the iMOS™'™* allele. The system
consists of three cassettes knocked-in to the Rosa26 locus that can be excised by Cre
recombination at random due to two pairs of LoxP sites. When the TO cassette is
excised, T1 is expressed and the cell and its progeny will be labelled in EYFP and
overexpress Myc (EYFP-Myc). When T2 recombination takes place both TO and T1 are
excised leading to the expression of T2 (ECFP-WT) in the resulting cell and its progeny.
Due to the distances between the lox sites and the Cre efficiency, the proportions of each
cell type upon recombination is 75:25 (EYFP:ECFP), as determined experimentally in
several tissues. Upon Cre-recombinase exposure, the system thus generates two

labelled cell populations at random but reproducible frequencies. B. Schematics of E10.5
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LV showing the two labelled cell populations in iIMOS-WT, iMOS-Myc, MycnHet;iMOS-
Myc and MycncKO;iMOS-Myc embryos. Below the images, the proportions and

corresponding allele ratio for Myc and Mycn of each cell type is shown. At initial
timepoints the relative proportion of EYFP and ECFP proportions is 75:25. In iMOS-Wt
this is maintained because no cell population has a competitive advantage over the

other. When an imbalance in Myc and Mycn alleles between neighbouring cells is

implemented due to the iIMOS system and the conditional deletion of Mycn, these

proportions vary with developmental progression. Green and blue colours represent the

EYFP and ECFP cell populations, respectively.

Table S1. Observed and expected frequencies of adult mice of the different genotypes

Genotype Adult mice Observed frequency Expected frequency
WT 20 0.266 0.25

cHet-Myc 38 0.506 0.50

cKO-Myc 18 0.240 0.25
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