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Morphometrics of complex cell shapes: lobe contribution elliptic
Fourier analysis (LOCO-EFA)
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ABSTRACT
Quantifying cell morphology is fundamental to the statistical study of
cell populations, and can help unravel mechanisms underlying cell
and tissue morphogenesis. Current methods, however, require
extensive human intervention, are highly parameter sensitive, or
produce metrics that are difficult to interpret biologically. We therefore
developed a method, lobe contribution elliptical Fourier analysis
(LOCO-EFA), which generates from digitalised two-dimensional cell
outlines meaningful descriptors that can be directly matched to
morphological features. This is shown by studying well-defined
geometric shapes as well as actual biological cells from plant and
animal tissues. LOCO-EFA provides a tool to phenotype efficiently
and objectively populations of cells, here demonstrated by applying it
to the complex shaped pavement cells of Arabidopsis thaliana wild-
type and speechless leaves, and Drosophila amnioserosa cells. To
validate our method’s applicability to large populations, we analysed
computer-generated tissues. By controlling in silico cell shape, we
explored the potential impact of cell packing on individual cell shape,
quantifying through LOCO-EFA deviations between the specified
shape of single cells in isolation and the resultant shape when they
interact within a confluent tissue.

KEY WORDS: Cell shape, Cellular Potts model, Image analysis,
Pavement cells, Arabidopsis thaliana, Drosophila

INTRODUCTION
Cell geometry has long fascinated biologists (Thompson, 1917).
This interest is driven by a wide range of underlying scientific
questions. For instance, cell shape changes can be linked to
physiological responses of cells, such as membrane protrusions
during apoptosis and migration (Charras and Paluch, 2008), and can
underlie cell behaviour, such as chemotaxis (Driscoll et al., 2012;
Keren et al., 2008). It plays a key role in tissue morphogenesis
during development (Lecuit and Lenne, 2007; Sherrard et al., 2010)
and in homeostasis (Marinari et al., 2012; Veeman and Smith,
2013). Cell shape influences intracellular processes such as

microtubule organisation (Ambrose et al., 2011; Gomez et al.,
2016) and stress patterns in plant epithelia (Sampathkumar et al.,
2014); it indirectly positions the plane of cell division (Besson and
Dumais, 2011; Minc et al., 2011) and can even determine how a
flower attracts pollinators (Noda et al., 1994). Given the rich
diversity of processes in which cell shape plays a decisive role,
either actively or passively, cell morphometrics, the qualitative and
quantitative study of cell shape characteristics, is becoming very
important for developmental biology. In parallel, advances in
imaging technology and software allow us to collect remarkable
amounts of cell morphological data, which in turn calls for
analytical tools to enable extracting meaningful cell shape
information (Zhong et al., 2012). In stark contrast to the
technological advances in imaging, there are relatively few
automatic and quantitative tools available to analyse complex cell
shapes (Ivakov and Persson, 2013; Ljosa et al., 2012; Rajaram et al.,
2012). This gap reflects the non-trivial nature of this task: cell shape
is often irregular and variable, making it very difficult to establish
universal criteria encompassing cell geometry.

To illustrate the issues involved in quantitatively capturing
complex cell shapes, we consider pavement cells (PCs) in the plant
epidermis (Fig. 1A,B) and amnioserosa cells in the Drosophila
embryo (Fig. 1C). PCs present a striking development, requiring
multiple locally divergent growth fronts within each cell that are
coordinated amongst neighbouring cells. Amnioserosa cells
dynamically change their complex cell shape within a confluent
tissue. Both cell types present challenges for quantifying cell shape:
(1) their complex, non-holomorphic geometries cannot be captured
in a meaningful way with traditional shape metrics; and (2) lack of
recognisable landmarks excludes a myriad of shape analysis
methods, such as Procrustes analysis (Klingenberg, 2010).

Traditional metrics for cell morphology include area, perimeter,
aspect ratio and form factor. Although useful as general descriptors,
they deliver limited shape information. Very different shapes may
yield a similar aspect ratio or form factor (Fig. 1D-H). Besides not
being unique, such descriptors tend to omit information regarding
biologically relevant shape features. Several approaches to quantify
complex cell shapes are summarised in Table 1. Some of these
methods, such as the skeleton method, are highly sensitive to image
noise as well as to the precise choice of parameters (for an example,
see Le et al., 2006). Other metrics, such as lobe length and neck
width (Fu et al., 2005), require humans to judge what a lobe is,
which strongly impacts the quantitative results (Fig. 1, Fig. S1). It
renders these metrics highly variable from cell to cell, from
phenotype to phenotype and from human to human. To avoid such
dependencies, an automatic method, LobeFinder, was developed to
count lobes and indentations (Wu et al., 2016). This method,
however, is less adapted to irregular cell shapes and estimation of
lobe numbers using this method does not closely correspond to
those defined by human inspection (Fig. 1). Moreover, it finds itsReceived 29 June 2017; Accepted 2 February 2018

1Computational and Systems Biology, John Innes Centre, Norwich NR4 7UH, UK.
2Theoretical Biology/Bioinformatics, Dept. of Biology, Utrecht University,
Padualaan 8, 3584 CH Utrecht, The Netherlands.
*Present address: MRC-Laboratory of Molecular Biology, Cambridge Biomedical
Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.

‡

Authors for correspondence (Stan.Maree@jic.ac.uk;
Veronica.Grieneisen@jic.ac.uk)

Y.E.S., 0000-0003-1438-1994; M.H., 0000-0001-6178-2884; J.v.R., 0000-0002-
3531-5833; A.F.M.M., 0000-0003-2689-2484; V.A.G., 0000-0001-6780-8301

This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is properly attributed.

1

© 2018. Published by The Company of Biologists Ltd | Development (2018) 145, dev156778. doi:10.1242/dev.156778

D
E
V
E
LO

P
M

E
N
T

http://dev.biologists.org/lookup/doi/10.1242/dev.156778.supplemental
mailto:Stan.Maree@jic.ac.uk
mailto:Veronica.Grieneisen@jic.ac.uk
http://orcid.org/0000-0003-1438-1994
http://orcid.org/0000-0001-6178-2884
http://orcid.org/0000-0002-3531-5833
http://orcid.org/0000-0002-3531-5833
http://orcid.org/0000-0003-2689-2484
http://orcid.org/0000-0001-6780-8301
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


limitations when the characteristics of a shape reside in the
distribution and amplitude of the lobes, rather than in their
number. For instance, some Arabidopsis mutants present PCs that
are more elongated or have shallower lobes, but which occur at a
similar spatial frequency (Lin et al., 2013). Recognising the need for
automatic and non-biased quantification of PCs, Möller et al. (2017)
developed PaCeQuant, a software to define lobes and necks in a
systematic way based on local curvature. Similarly to LobeFinder, it
is highly sensitive to small variations in the shape contour, with the
sampling density of the contour biasing the local curvature
estimation.
Promising alternatives are methods that consider the full cell

outline, reducing it into a series of coefficients that can be employed
as shape descriptors in a multivariate study (Ivakov and Persson,
2013; Pincus and Theriot, 2007). Elliptical Fourier analysis (EFA)
is such a method, used to quantify two-dimensional complex shapes
(Diaz et al., 1989; Kuhl and Giardina, 1982; Schmittbuhl et al.,
2003). In this method, the contour’s coordinates are decomposed
into a series of related ellipses (described by EFA coefficients),
which can be combined to reconstitute the original shape. Despite
its wide usage in morphometric studies, EFA cannot retrieve
information that directly relates to morphological features of a cell,
obstructing biological interpretation. This is because the same
outline can be represented by infinitely many different sets of EFA

coefficients, depending on how the cell outline is approximated, and
because there is no one-to-one relationship between EFAmodes and
the number of morphological features (see supplementary Materials
and Methods for further details).

Here, we present a new method based on EFA, termed lobe
contribution elliptic Fourier analysis (LOCO-EFA), that overcomes
the common obstacles described above. Our method also uses the
whole two-dimensional cell contour but, unlike EFA, provides a set
of metrics that directly relate to morphological features, permitting
the assessment of cell shape complexity in an objective and
automatic manner. Importantly, it is not sensitive to cell orientation
or imaging resolution, and robustly yields similar coefficients for
similar shapes, allowing shape comparisons to be drawn.

To validate the usage of our method on larger cellular datasets, we
analyse confocal images of Arabidopsis thaliana PCs. We then
complement this study with the analysis of synthetic tissues
generated using the cellular Potts model (Glazier and Graner, 1993;
Graner and Glazier, 1992), in which complex-shaped cells have a
parametrised specified shape, allowing us to ask to what degree the
resultant cell shape within a confluent tissue context is shaped by
cell-to-cell interactions and to what degree it can be explained by
intracellular shape control mechanisms. Applying LOCO-EFA to
these abstract, in silico tissues (which rather mimic animal cells,
with details regarding cell wall mechanics or chemical signalling

Fig. 1. Complex cell shapes and the
shortcomings of traditional shape quantifiers.
(A-C) Complex cell shapes in both plant (A,B) and
animal (C) tissues. (A,B) Pavement cells (PCs) of
wild-type (A) and speechless mutant (B)
Arabidopsis thaliana leaves, characterised by
jigsaw-like shapes. (C) Amnioserosa cells in the
Drosophila embryo present cell shapes with
similar complexity. (D-G) Individual cells from the
imaged tissues (upper panels), and the
corresponding segmented cell outlines (lower
panels). (H) Traditional metrics to quantify cell
shape lead to similar values for very different
shapes and are image-resolution and parameter
sensitive. Here, the cells shown in D-G are
compared. See also Fig. S1. Scale bars: 50 μm
(A,B); 20 μm (C); 10 μm (D-G).
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not being considered), allows us to quantify the divergence of their
specified cell shape when isolated to the shape taken up when
immersed within a tissue. Finally, by applying LOCO-EFA to
Drosophila data, we confirm its applicability to a wide range of
biological systems.

RESULTS
Quantitative characterisation of cell shape using LOCO-EFA
Applying EFA to quantification of cell shapes, we came across a
number of specific shortcomings. We first explain those issues to
highlight our motivation and choices that led to the development of
LOCO-EFA. See supplementary Materials and Methods for further
details, such as mathematical implementation. Here, we focus on
explaining the analysis in terms of its biological relevance, how it
can be applied and interpreted.
The shape analysis proposed here is linked to frequency

decompositions of digitalised two-dimensional shape outlines. We
find it useful to compare the decomposition of a complex cell shape,
such as that of a PC, to the way the sounds of musical instruments
can be decomposed.When listening to amusical note, a quantifiable
observable is the pitch. Within the context of PC shape, this
corresponds to the observed number of lobes or, as we will explain
in detail, to the dominant spatial frequency of the cell’s outline.
Another quantifiable property of a musical note is its volume, or
amplitude. For cell shape, this corresponds to the extent to which
lobes protrude and indentations retract, for which we also apply the
term ‘amplitude’. Finally, the timbre of musical instruments is what
essentially distinguishes, for example, a clarinet from an oboe
playing the same note (pitch) at the same volume/amplitude. An
analogous notion for cell shape studies is the ability to capture
additional aspects of shape morphology that enable differences
between cells to be quantified, even when the number of lobes
(pitch) and their level of protrusion (amplitude) is the same.
As a starting point, EFA (Kuhl and Giardina, 1982) can describe

the contour of any complex two-dimensional shape, including non-
holomorphic shapes such as PCs, which most other methods are
unable to handle (see Fig. S2 and supplementary Materials and
Methods for further details). Using the coordinates of the two-
dimensional outline (Fig. S3A), EFA decomposes the shape into an
infinite series of ellipses (also referred to as ‘modes’ or ‘harmonics’,
Fig. 2A). This series of ellipses, n=1…∞, can then be combined to
retrieve the original shape exactly: each nth elliptic harmonic traces
n revolutions around the first ellipse while orbiting around the

previous (n−1) harmonic ellipse, which in turn orbits around its
previous one (n−2), and so forth (Fig. S3B). This summation results
in an outline being ‘drawn’, shown in Movie 1. A cut-off, N, sets the
number of modes that are actually taken into account. In general, the
value is determined for which the reconstituted cell contour is
sufficiently close to the original outline (see further below).

The fact that each ellipse represents a harmonic suggests that it
captures dominant spatial frequencies within the original shape.
EFA harmonics have therefore been considered to be reasonable
descriptors for shape (Schmittbuhl et al., 2003). However, the pitch,
i.e. the most basic cellular feature to quantify, is actually not directly
retrieved by EFA, even for simple shapes. For instance, a six-sided
shape is expected to present a strong contribution from the sixth
mode. Instead, EFA represents such a shape as a mixed contribution
from the two adjacent modes, the fifth and seventh (Fig. 2E,
Fig. S3C). This mismatch arises from how individual EFA modes
contribute to the outline. When an outline is approximated, each
elliptical mode rotates either clockwise or counterclockwise. The
direction of this rotation with respect to the rotation direction of the
first mode causes either an increase or a decrease in the number of
features drawn, one off from the actual mode (Fig. S3D,E, Movies 2
and 3). As a consequence, the ‘pitch’ obtained using EFA does not
correspond to actual cell features, hindering interpretation.
Moreover, EFA coefficients are redundant, i.e. there are more
parameters than needed to specify the same specific shape (Haines
and Crampton, 2000). Consequently, comparison of cell shapes on
the basis of their EFA coefficients (for example, by means of
principal component analysis) is nonsensical. Together, these traits
make the EFA method unsuitable for cell morphology
quantification and renders meaningful comparisons between
multiple cell shapes problematic.

Diaz et al. (1990) proposed a solution for the mismatch between
actual shape features andEFA’s results, using the fact that the relative
direction of rotation is a main determinant of the reconstructed
dominant harmonic or ‘pitch’ (see supplementary Materials and
Methods for further details). It turns out, however, that each ellipse
simultaneously contributes to two different spatial frequencies,
something their heuristic solution cannot solve (Fig. S3F, Movie 4).
As a consequence, although their method is often (but not always)
able to recapitulate the ‘pitch’ correctly, it is never able to capture the
amplitude or timbre of the cell shape correctly.

To overcome these limitations, we propose a new basis for the
outline reconstruction, which we coined Ln, after lobe number.

Table 1. Distinct shape descriptors have been used to quantify pavement cells

Measure Description References

Average lobe length and
neck width

The length of each lobe and the distance between opposite indentations within a cell (called
necks) are shown in Fig. S1. The final measure for a cell is the average of all lobe lengths and
the average of all the neck widths. These measurements depend on human assessment to
identify lobes and necks, and are given in absolute length units (and are, thus, incomparable
throughout growth stages).

(Fu et al., 2005)

Form factor (or
circularity)

Defined as P2/(4πA), where P is the perimeter and A is cell area. A circle corresponds to a
form factor 1, the lowest value possible.

(Andriankaja et al., 2012; Bai et al.,
2010; Russ, 2011)

Skeleton This metric relies on the number of end points of a skeleton representation of the cell shape.
The skeleton is formed by iteratively removing pixels from a grid-based cell shape
representation, such that eventually a branched one-dimensional graph remains. There are
different variants of this algorithm to skeletonise shapes; the resulting branch patterns and
length of branches depends greatly on the parameters used and are very sensitive to the
image resolution.

(Le et al., 2006; Russ, 2011)

Average polarity score Defined as (c+s)/2, where c is the circularity and s the number of skeleton end points. (Sorek et al., 2011)
LobeFinder This method calculates the convex hull or minimal polygon enclosing a cell. After applying

certain thresholds, the number of lobes corresponds to the number of local minima.
(Wu et al., 2016)
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Similar to EFA, modes can be summed to recreate the original
shape, and each mode is represented by a set of four parameters.
There are also two important distinctions. First, a cell outline is now
decomposed into a unique series of Ln coefficients. See
supplementary Materials and Methods for further details
regarding elimination of coefficient redundancy. Second, shape
features, such as the protrusion number (‘pitch’), their amplitude
and the characteristic lobe distributions (‘timbre’), are now directly
mapped to the Ln coefficients. They are obtained by decomposing
each EFA harmonic into its exact, specific contributions to two
separate Ln modes (Fig. 2B-D). In general, EFA modes n−1 and
n+1 both partly contribute to mode Ln, with some specific
exceptions (Fig. S4). The resulting method, which we coin lobe
contribution EFA or LOCO-EFA, thus consists of: eliminating
multiple representations of a given outline; decomposing each nth
EFA mode into two separate lobe contributions; and integrating
those separate modes into single LOCO-EFA modes. Every Ln

mode can be regarded as representing two oppositely rotating
circles, each with its own starting point for the rotation. Each Ln

mode is composed of four coefficients corresponding to the radii
and starting angles of rotation of both circles. We next assign a
scalar Ln value to capture the amplitude of each mode (Fig. 2D,
yellow line). Quantifying the amplitude requires both the radii of
and the angular distance between the starting points of the two
contributing circles, as well as the starting point of the main circle,
L1, to be taken into account (see Fig. 2D and supplementary
Materials and Methods for further details). The Ln spectrum
represents the relative contribution of each individual mode to the

cell shape (Fig. S3C). Indeed, the spectrum of the six-lobed test
shape used for Fig. S3C contains a pronounced peak at mode six, as
well as a peak at mode one that represents the overall circular shape.
To appreciate visually the contribution of specific modes, the
original shape can be reconstructed using consecutive modes up to a
given mode number (compare Fig. 2E with 2F).

To illustrate how LOCO-EFA quantifies different shapes, we first
apply it to geometrical shapes with variable numbers of protrusions
(Fig. 3A-I). LOCO-EFA robustly determines the main LOCO-EFA
mode of each shape, correctly estimating lobe number (Fig. 3J). We
next tested whether LOCO-EFA also correctly captures the
amplitude, by applying the method to shapes of the same ‘pitch’,
but with variable amplitudes (Fig. 3N-Q). Indeed, the Lnmagnitude
changes accordingly (Fig. 3T), its absolute value correctly
measuring the size of the extensions.

Following the analogy of sound decomposition, a more nuanced
quantification is timbre. Timbre resides in the entirety of the
amplitude spectrum. It is determined by which overtones are
emphasised in relation to one another. For cell shape studies, we
consider ‘timbre’ analysis the ability to capture additional aspects of
shape complexity, besides the main number and amplitude of
protrusions/lobes. This additional information should enable
distinction between different cellular phenotypes, such as between
wild type and mutants (Lin et al., 2013). To illustrate, Fig. 3R,S
shows two additional six-sided shapes that differ in ‘timbre’ from
that in Fig. 3Q, with their accompanying Ln spectra (Fig. 3T). For
both shapes, a clear L6 peak reflects their six-lobedness, and an
additional peak at L2, captures the elongated nature of these shapes,

Fig. 2. LOCO-EFA retrieves correctly the cell shape’s
dominant spatial frequency. (A) EFA decomposes a two-
dimensional cell outline into an infinite summation of related
ellipses or modes that can also be used to approximate the
cell outline. (B) Each EFA harmonic is decomposed into two
counter-rotating circles. (C) Mode Ln is composed of the
counter-clockwise rotating n+1th harmonic circle and the
clockwise rotating n−1th circle. (D) The combined amplitude
contribution to Ln (yellow line) of the two counter-rotating
circles with radii lþnþ1

and l�n�1
also depends on the offset in

their starting points and the offset of the overall (mode 1)
starting point, which together determine the initial phase shift
(green dots) in the amplitude contribution of each rotor. (E,F)
Comparison of closed contour reconstruction through either
EFA (E) or LOCO-EFA (F). Although both approximations
converge to the original six-lobed star shape (labelled
‘Original’), the reconstruction using EFA harmonics (E)
generates a spurious shape after addition of the fifth
harmonic and only recovers the original shape after the
seventh harmonic, whereas the LOCO-EFA (F) reconstitutes
the original shape precisely at the sixth mode, matching the
protrusion number. The number of modes used for each
sequential reconstruction is indicated below each shape.
(G) LOCO-EFA reconstruction of a real cell taking the first n
Ln modes into account, as indicated below the panels.
(H) Determination of the level of mismatch between the
original cell shape and the Nth mode truncated LOCO-EFA
approximation, by applying the XOR (exclusive OR) function
(see supplementary Materials and Methods).
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and so forth. Thus, LOCO-EFA retrieves not only the main number
of morphological features of a hypothetical cell, but also important
fine-grained characteristics.
From the set of Ln modes, additional objective metrics can be

derived to help quantify different aspects of ‘cell shape complexity’.
Here, we define four metrics: XOR difference; marginal difference;
cumulative difference; and entropy.
First, cell shape complexity can be estimated from the

approximation of the original shape by the first N LOCO-EFA
modes only. It addresses how relevant each subsequent Ln mode is
for explaining that specific shape. Fig. 2F illustrated the
importance of a specific mode for reconstructing the original
shape (in that case, mode six). One can quantify in a straight-
forward manner the relative contribution of each mode to
explaining the shape by the total areal difference (either in
number of grid points or μm2) between the original and the
reconstructed shape when the first N LOCO-EFA modes are used.
To do so, we take the XOR (exclusive or) between the original and

reconstructed cell shapes (see Fig. 2F-H and supplementary
Materials and Methods for further details). A more ‘complex’
shape requires more LOCO-EFA modes to obtain a good match.
Note that a circular cell can be reconstituted using only the
contribution of the first LOCO-EFA mode (N=1). On the other
hand, cells presenting a high lobe number require a high number of
modes for XOR to approach zero (Fig. 3K,U).

Quantifying cellular complexity can be further compressed by
integrating from n=2 onwards the area under the XOR curve. We
coin the resultant scalar ‘cumulative difference’ (cd), with higher
values corresponding to more complex-shaped cells. Fig. 3M,W
shows the cd values for the series of test shapes, indicating that cd
becomes high when morphological protrusions increase in number
or become larger in amplitude.

XOR profiles are typically not smooth. Instead, some modes peak
as they strongly contribute to capturing the main shape features.
Hence, the marginal decrease in the XOR value when an extra mode
is added, coined ‘marginal difference’, further highlights the

Fig. 3. Interpreting LOCO-EFA-derived measures for geometrical and asymmetric shapes. (A-I) Symmetrical and well-defined geometrical shapes
with normalised area. (J-L) Ln (J), XOR (K) and marginal difference (L) profiles for the shapes shown in A-I. (J,L) For each geometric shape, a clear peak appears
in the profiles, this main contributor to the shape always coinciding with the number of protrusions. (M) Cumulative difference (cd) and entropy for the shapes
shown in A-I. (N-Q) Symmetrical shapes with increasing protrusion amplitude. (R,S) Asymmetrical shapes. (T-V) Ln (T), XOR (U) and marginal difference
(V) profiles for the shapes shown in N-S. Increasing protrusion amplitude leads to increasing peak levels in the profiles. Asymmetric shapes present multiple
peaks, indicating that multiple modes are needed to recapitulate the original shape. (W) Cumulative difference (cd) and entropy for the shapes shown in N-S.
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shape’s dominant modes (Fig. 3L,V). This profile is comparable to
the Ln spectrum, also determining something akin to ‘pitch’ and
‘amplitude’. We found, however, that it bears a higher
discriminatory power for more complex and irregular cell shapes.
Moreover, when a cell’s shape has significant contributions from
multiple modes, then high marginal difference levels can be directly
linked to specific cellular features (see Fig. 2G,H, Fig. 3V). Thus,
marginal difference helps to identify which modes are most relevant
for specific shape aspects.
Finally, shape complexity is not solely about protrusion number

and amplitude, but can also arise from the irregularity of these
protrusions. With the previous measures, a highly regular star-
shaped cell with five outspoken lobes is quantified as being as
complex as a highly distorted cell with different amplitudes and
distributions of five lobes, albeit less pronounced than the star-
shaped case. One might therefore prefer to define cell shape
complexity as a cell’s deviation from well-defined periodic
outlines. A useful measure for this alternative definition of ‘cell
shape complexity’ is the Shannon entropy, E, of the Ln spectrum.
The entropy measure is based upon the information content within
the whole Ln spectrum (Eqn 1). For many shapes, entropy yields
very similar results to cumulative difference. However, they give
distinct results for cell outlines that have a strong contribution
from the lower modes. In such cases, entropy delivers more
meaningful values regarding ‘complexity’. This is due to lower
modes being able to impact cumulative difference strongly. For
example, for a highly elongated cell there will be a high
contribution from L2. Simply being elongated, however, does
not so much represent shape complexity in the way defined above.
For such a simple but elongated shape, the cumulative difference
can be very similar to a shape with contributions distributed
among many modes. The latter outline, however, is typically
considered to be more ‘complex’. Entropy correctly captures this
form of complexity. In summary, we propose LOCO-EFA and
derived metrics as a new method to quantify cell shape
complexity. For fully unsupervised analysis without a priori
knowledge of cell shape features, we recommend employing all
the metrics discussed in this section.
LOCO-EFA generates an infinite series of modes, without a pre-

specified cut-off. Besides the measures discussed above, the XOR
analysis also provides an algorithmic and meaningful cut-off for
LOCO-EFA data analysis. Cell shapes that will be analysed with
this method will in general be derived from segmentation of
microscopy images. The natural choice for the grid on which to
calculate the XOR should therefore be equivalent to the
microscopy image, at its acquired resolution. XOR analysis
(properly performed, see details in supplementary Materials and
Methods) yields values that become zero when a sufficiently large,
but finite, number of modes are taken into account. Additional
terms then only alter the reconstructed outline at a sub-pixel
resolution, i.e. at a higher resolution than the microscopy image
itself. Obviously, the latter cannot be meaningful in any possible
way. The mode at which XOR reaches zero therefore provides a
natural cut-off to truncate the Ln series.

LOCO-EFA applied to plant pavement cells
To validate our method, we analysed Arabidopsis thaliana leaf
epidermal PCs. Actual biological cells, such as PCs, can be highly
asymmetrical, with multiple peaks in their Ln landscape (Fig. 3S,T).
The outline of an asymmetrical cell with a certain number of
protrusions placed quasi-periodically along its edge results in
multiple superimposed protrusion frequencies. In general, the total

number of hand-counted lobes matches to a peak at the
corresponding Ln value (but note that hand-counting is
subjective). For instance, for nine lobes a peak will be observed at
L9. However, if these lobes are clustered in a pentagonal fashion,
an additional peak at L5 appears, and superimposed on a
triangular shaped cell basis an L3 contribution would be found,
and so forth.

PCs acquire their characteristic jigsaw puzzle-like shape through
multipolar growth patterns, such that relative simple shaped PCs
become highly complex during development (Fig. 4A-G). Notably,
the smooth shape changes are clearly reflected in the Ln spectra over
time (Fig. 4I). Its initial squarish shape and later nine- and 13-
lobedness are well captured by LOCO-EFA, through peaks at modes
L4, L9 and L13, and corresponding peaks in the marginal difference
profile. In contrast, when EFA is used, the third and fifth mode are
erroneously indicated to represent shape features, besides a number of
other mismatches (Fig. 4H). Importantly, the smooth cell shape
development over time leads to smooth changes in the LOCO-EFA Ln
profile over the different time points (another example is shown in Fig.
S5), in contrast to highly irregular changes in the EFA profile. This
illustrates that comparably shaped cells can have very different EFA
profiles, making EFA unsuitable for analysing real PC populations.

To visualise the shape characteristics of populations of PCs, we
analysed leaves of the speechless mutant (MacAlister et al., 2007),
which does not generate during the leaf development any other cell
types such as meristemoids or stomata (Fig. 1B, Fig. 5A), as well as
wild-type leaf epidermis, consisting of PCs, stomata and other cells
from the stomatal lineage (Fig. 1A, Fig. 5B).

Using LOCO-EFA, it is straightforward to dissect the precise
contribution of each mode for each cell in the population. Fig. 5A,B
shows the spatial distribution of cells within a tissue that are
predominantly four-, five-, six- or seven-lobed, by colour coding
cells by their Ln values. Very few cells are captured by a single Ln
peak. Instead, the majority of shapes have significant contributions
stemming from multiple modes. Consequently, simply counting the
number of lobes, either manually or through automatic algorithms,
would lead to incomplete information regarding the shape of
such cells, making it, for example, difficult to compare mutant
phenotypes. Moreover, our data shows that PCs lack a population-
wide preferential Ln (Fig. 5A,B).

The heterogeneity in modes that composes real populations of
PCs suggests that their resultant cell shapes cannot be easily
explained solely by intracellular molecular mechanisms underlying
lobe and indentation patterning. Currently proposed mechanisms,
based on two counteracting pathways (one for lobe formation and
another for indentation formation; see details in Xu et al., 2010) give
rise to Turing-like instabilities, which tend to generate symmetrical
shapes (Vanag and Epstein, 2009). Moreover, these patterning
models would predict that equally sized cells exhibit equal lobe
numbers. However, the cell shape patterning takes place within a
confluent tissue, which complicates how individual cells generate
their shape. In the experimental setting, it is very hard to distinguish
between the preferred shape of a cell due to its intracellular
patterning, and the acquired shape due to constraints imposed by the
tissue. It is well-known that if cells prefer to be round, they will take
up a hexagonal shape within a tissue context (Thompson, 1917), but
it is unclear what to expect for multilobed shapes. Therefore, to
explore what shapes arise when a population of cells with complex
shape preferences form in a confluent tissue, and to further validate
LOCO-EFA on cell populations, we simulated interacting cells with
pre-specified shape preferences, and employed LOCO-EFA on the
resulting in silico tissue.

6

TECHNIQUES AND RESOURCES Development (2018) 145, dev156778. doi:10.1242/dev.156778

D
E
V
E
LO

P
M

E
N
T

http://dev.biologists.org/lookup/doi/10.1242/dev.156778.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.156778.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.156778.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.156778.supplemental


Applying LOCO-EFA to in silico populations and the effect of
interactions between preferred cell shapes
We create in silico cells using the cellular Potts model (CPM), an
energy-based framework that describes cells and their dynamics
through small membrane extensions and retractions (see Materials
and Methods). In its basic form, CPM cell shapes emerge as a result
of the interaction between interfacial tension, internal cellular
pressure and cortical tension (Magno et al., 2015). Here, we used an
extension of the CPM that predefines intrinsic forces causing
elongation and lobedness, resulting in more complex cell shapes.
This extension consists of applying additional, cell-specific forces
to subcellular update events, resulting in elongated and/or
multilobed preferred cell shapes (Eqn 4). Three additional forces
are used that capture (1) an intrinsic tendency to elongate; (2) a
tendency to form a specified number of lobes; and (3) an additional
force for the cell to round up (Fig. 5E-G; J.v.R., R. Magno, V.A.G.
and A.F.M.M., unpublished; Movie 5). The latter term robustly
prevents cells from falling apart, which becomes important within a
confluent tissue with conflicting preferred cell shapes. In the
simulations, a population of cells, individually having the same
preferred shape, interact with each other to form a tissue. In this way,
we can compare the shape of a single cell in isolation with the shape
cells attain within a tissue.
We here present the analysis for two distinct specified shapes

(Fig. 5C,D; see Table S1 for the specific parameters used). Both
preferred shapes have six lobes, but the cells shown in Fig. 5D also
tend to be elongated. Although the same cell shape is specified for

all cells within the population (above the panels, we show the
acquired cell shape in isolation), local interactions within the tissue
both change and diversify the cell shapes. We quantified this
divergence using LOCO-EFA. For both specified shapes, the
amplitudes of the main specified modes (L6 in Fig. 5C and L2, L4, L6
in Fig. 5D) strongly decrease within the population, whereas other
modes that were not prominent in isolated in silico cells became
relevant within the multicellular context (Fig. 5H,I). Marginal
difference portrays a comparable picture, through a broadening of
the set of modes involved. XOR analysis presents a more nuanced
picture: for the elongated cells depicted in Fig. 5D a structural
reduction in shape complexity is observed, i.e. the tissue context
prevents cells from taking up their preferred shape complexity
(Fig. 5I). For the rounded cells in Fig. 5C, however, the relative XOR
level is smaller than that for n≥6, indicating additional high-mode
shape complexity triggered by the cell-cell interactions. All
measures indicate large cell-to-cell variations, reflecting a high
shape diversity within the tissue. We further illustrate the changes in
contributions and their spatial heterogeneity by colour coding L4-L7
(as indicated for each panel), for both the isolated cells and the
resultant shapes of all cells within the simulated tissues. The isolated
cells present a very high contribution from L6, with marginal
contributions from the other modes. In contrast, owing to cellular
interactions, other modes become prominent within the tissue, and
vary greatly from cell to cell, even though all cells have identical
specified shapes. Thus, although a cell in isolation would generate
regular protrusions with specific amplitudes, periodical lobe

Fig. 4. LOCO-EFA metrics on a cell changing its shape over time. (A-G) Sequence of a tracked PC growing over time with normalised area. (H) Pn and
marginal difference profiles using EFA. Applying EFA modes to approximate the cell shapes leads to erratic profiles that fail to recover the biological sequence of
development, observed in the Pn profile and as spurious peaks at the third and fifth harmonics in the marginal difference profile. (I) Ln and marginal difference
profiles using LOCO-EFA. The LOCO-EFAmeasurements recover the smooth transitions during the cell morphogenesis. The overall square symmetry of the cell
is captured by a peak at L4, the formation of lobes by a smooth increase in L9, and later L13.
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formation becomes inhibited and gets modified within a packed
tissue, with symmetry and shape distortions being directly linked to
tissue packing (Fig. 5C,D,H,I). Such dynamics were observed

irrespective of the specified cell shape, i.e. irrespective of the
number of lobes, their amplitude, and the level of overall cell
elongation, and were robust over a wide CPM parameter range

Fig. 5. LOCO-EFA analysis on in vivo and in silico pavement cells. (A,B) LOCO-EFA applied to speechless mutant (A) and wild-type (B) leaf tissue. Colour
coding depicts the Ln values for four different LOCO-EFA modes, as indicated above each panel, with the scale shown below. Very few cell shapes can be
reasonably captured through a single Ln value, revealing cell shape complexity. (C,D) LOCO-EFA applied to in silico PCs reveals the degree of divergence from
their specified shape that interacting cells within a tissue experience. Two different specified cell shape populations are shown (SCS1 and SCS3, each with six
lobes, see Table S1). The specified shapes are depicted above each panel. Colour coding within the panels and of the specified shapes above each panel again
depicts the Ln values, with the scale shown below. Within the tissue, strong deviations in Ln contributions are observed. (E-G) Modelling framework used to
generate the in silico tissues. (E) Standard CPM is modified to allow for a specified number of lobes (here, n=5) to form at regular radial spacings (α). (F) This gives
rise to a symmetric, multilobed specified cell shape, shown in red. (G)Within the tissue, however, cells with the same specified shape deformwhile interacting with
neighbouring cells. (H,I) Distribution of the ratios, for three different LOCO-EFA metrics, between the cell in isolation and each of the cells within the tissue
population, for SCS1 (H) and SCS3 (I), respectively. The central mark of the box plots indicates the median and the edges refer to the 25th and 75th percentiles.
n=66 (H) and 44 (I) in silico cells. The red lines highlight where the ratio is unity. Ln and XOR are plotted on a log scale.
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(Figs S6, S7). Given that radially symmetric, periodically spaced
lobed cell shapes are highly unlikely to be space filling, resolving
conflict between preferred shape and confluency could be a relevant
driving force for complex cell shape morphogenesis.

LOCO-EFA applied to Drosophila amnioserosa cells
To demonstrate LOCO-EFA’s applicability to other (non-plant)
developing tissues in which cells present a high level of shape
complexity, we analysed Drosophila during dorsal closure (Knust,
1997). Amnioserosa, the squamous epithelial that covers the dorsal
side of the embryo, undergoes dramatic cell shape changes during this
morphodynamic event. Simple cuboidal to columnar epithelium
covers the remainder of the embryo, with both captured in our image
(Fig. 6A,B). At the imaged interface, cells present a broad distribution
in size (Fig. 6C) and shape complexity. Analysing the spatial
distribution in the magnitude of the different LOCO-EFA modes
(Fig. 6D-F) reveals how the surrounding epidermis can be described
by cell elongation alone (very high and dominant L2 values), whereas
the amnioserosa cells are characterised by higher LOCO-EFA modes
(with Fig. 6E and 6F showing L5 and L8, respectively). Differences in
their patterning represent cell-to-cell variations in lobe numbers.
These shape characteristics are consistent with classical studies
(Young et al., 1993), which proposed that observed elongation of
epidermal cells perpendicular to the long axis of the embryo could
explain the change in surface area required to cover the amnioserosa.
The cell shapes can be analysed further by depicting the mode
corresponding to themaximummarginal difference for each cell. This
indicates the dominant number of extensions best describing that
shape, ‘counting’ their major morphological feature (Fig. 6G), and
shows how elongation dominates in the epidermis whereas higher

modes dominate in the amnioserosa. The cumulative difference is a
measure of lobe richness, its value increasing as number and
amplitude of lobes increases. The cumulative difference yields
highest values for the multilobed cells within the amnioserosa, and
presents low levels for the epidermal cells (Fig. 6H). Entropy provides
an alternative quantification of shape complexity, bymeasuring shape
irregularity.Highlyasymmetric cells require a broad rangeofmodes to
capture their shape, leading to high entropy values. The spatial
distribution of entropy (Fig. 6I) is similar to the spatial distribution of
cumulative difference, with differences between the two being
particularly interesting, entropy directly highlighting the most
irregular cells. In short, LOCO-EFA and its derived quantifications
retrieve both the level and type of shape complexity of both
Arabidopsis PCs and Drosophila amnioserosa.

DISCUSSION
Recent progress in microscopy and imaging techniques generates a
need for adequate analytical tools to capture relevant information
efficiently and objectively (Zhong et al., 2012). Image acquisition
through high-throughput microscopy generates large datasets
beyond the human ability (or patience) to be analysed manually,
demanding computational tools. We have developed a new
analytical tool that takes as the input the contour of a two-
dimensional cell projection, extracting from it, in an efficient and
parameter-independent manner, quantitative meaningful shape
information. Importantly, the pipeline can be integrated within
segmentation procedures (Fernandez et al., 2010; J.v.R.,
J. A. Fozard, R. Carter, M.H., Y.E.S.-C., R. Sablowski, V.A.G.
and A.F.M.M., unpublished), to fully automate shape analysis of a
series of images.

Fig. 6. Cell shape analysis during dorsal closure of the
Drosophila embryo. (A) Confocal image of amnioserosa
cells. (B) Segmentation identifies each cellular domain by a
unique ID, represented by a distinct colour. (C-I) Several
cell shape characteristics, quantified and depicted by the
heat map shown below C. (C) Cell area. Amnioserosa cells
are larger (red) than surrounding epithelia (blue and purple
cells). (D) L2 for each cell. Levels are high in surrounding
epithelia, corresponding to predominant cell elongation.
(E) L5 for each cell. Amnioserosa cell shapes carry larger
representations of higher mode numbers. The cell with the
highest L5 contribution does indeed display five distinct
protrusions. (F) L8 for each cell. Higher modes substantially
contribute to the amnioserosa cells, with L8 strikingly high
for the cell with eight visibly prominent protrusions, and high
for other multilobed shapes. (G) Mode at which the highest
marginal difference occurs, depicted for each cell. Colours
represent mode numbers, as indicated. For example, many
cells can be described as having a predominantly
elongated axis (purple cells, with highest mode 2), whereas
one cell is best described as being triangular (blue cell, with
highest mode 3), etc. (H) Cumulative difference for each
cell, a measure of lobe richness (both number and
amplitude). (I) Entropy for each cell, a measure of shape
irregularity. Colour scale is between 0 and maximum for
D-F and between minimum and maximum for C,H,I.
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Our method can be intuitively grasped through the analogy of
music perception. To quantify an instrument playing a certain note,
say a violin playing the note A, one first needs to have a device that
determines the note played. We have shown here that LOCO-EFA,
unlike EFA, correctly determines the analogous feature for shapes,
which is the number of protrusions. Moreover, LOCO-EFA, in
contrast to EFA, quantitatively measures the amplitude of that
particular feature; this is similar to determining the volume of a
given note, when multiple notes are played concomitantly. In all
examples presented here we have normalised to cell area. Hence an
L-value of 0.15 indicates a peak-to-trough distance of 15% of the
cell diameter (amplitude equal to 15% of the cell radius).
LobeFinder, the recent method developed byWu et al. (2016) can

also be employed to assess protrusion number. When the biological
question asked requires not only the ‘pitch’ to be measured, but also
the ‘volume’ and ‘timbre’, corresponding to lobe amplitude and other
irregularities, such alternative methods are insufficient. Indeed,
LOCO-EFA provides a holistic set of measurements that allows
complex morphologies to be quantified in a reproducible manner.
We illustrate how the measurements obtained via LOCO-EFA can

be interpreted, first using simple shapes (geometrical or symmetrical
forms), followed by using confocal images of Arabidopsis PCs and
Drosophila amnioserosa, to assess the performance of our method
on actual, highly complex and asymmetric biological shapes. When
analysing complex shapes through the Ln spectrum only, it is non-
trivial to ‘visualise’ the corresponding shape in the same manner as
can be done for geometric shapes. In such cases, it is useful to plot the
XOR and marginal difference profiles, to gain a better notion of the
major shape properties. PC shape analysis is directly biologically
relevant, because many of the players accounting for the lobe and
indentation patterning are known (Jones et al., 2002; Xu et al., 2010),
enabling one to extend the study of cell shape control to mutants and
experimental interferences. We found that few cells have a
symmetrical shape, i.e. most cannot be represented well by a
single high Ln value. It is unlikely that such composition of real cell
shapes in several Ln values can be fully explained by the existence of
two counteracting pathways specifying lobe and indentation
identity. Our in silico approach rather suggests that the interactions
between space-filling shapes can dramatically increase the overall
irregularity: even when the CPM cells are specifically programmed
to develop well-defined regular shapes, the interactions between
them trigger dramatic cell shape deviations and variations. Within
the tissue the main, specified mode decreases in strength and the
other modes become relevant. Thus, tissue confluency leads to
asymmetric and variable resultant shapes.
Although our synthetic data is but a phenomenological

description of real shapes, our results suggest that the local
influence of neighbours during PC development could be important
for shape acquisition. To assess this hypothesis further, it will
be crucial to perform quantitative shape analysis on in vivo
cell populations over time, combined with growth tensor analysis
(i.e. anisotropy and spatial patterning in the growth rate). Such
studies, combined with genetic or physical perturbations in cell
growth and deformation and in silico cell growth models, could help
untangle how cell shape specified at the cellular level is linked to the
resultant shape arising at the tissue level.
Applying LOCO-EFA to cell-tracking data, we observed that the

LOCO-EFA profiles of those changing cells varied smoothly over
time.Such trajectories are cell specific andprovideunique fingerprints
of each individual developing cell. This opens the possibility of using
the Ln spectrum as cell identifiers within a temporal sequence of
images, to help track populations of cells automatically.

To illustrate how this powerful tool can be used to measure
complex undulating cells, we have here applied LOCO-EFA to
Arabidopsis PCs and Drosophila amnioserosa. Although we
focussed on discussing overall shape distributions throughout the
tissue, LOCO-EFA shape descriptors could also be used to
investigate correlations in shape between neighbouring cells, in a
similar manner to investigations of topological traits in the same
tissue (Carter et al., 2017). Moreover, LOCO-EFA analysis on shape
dynamics and shape correlations between neighbouring cells can be
easily extended to other cell types and other species, including less
complex shapes. Furthermore, LOCO-EFA could also be relevant for
understanding phenotypic morphology of subcellular structures,
such as mitochondria, which can present different levels of shape
complexity (Dimmer et al., 2002), and sperm cell nuclei, which have
already been analysed using EFA (Mashiko et al., 2017). Ourmethod
is also well-suited for studying organ shape development,
specifically when landmarks are difficult to assign. It could,
therefore, be used to improve quantification and biological
meaningfulness of previous EFA-based studies that, for example,
decomposed entire leaf shapes (Liao et al., 2017), insect wings (Yang
et al., 2015), jaw shape and sizes (Rose et al., 2015) and pinniped
whisker morphologies (Ginter et al., 2012). LOCO-EFA can even be
employed at different levelswithin the same organism, for example to
quantify leaf shape and serrations as well as root morphology (Li
et al., 2017 preprint). Lastly, LOCO-EFA could constitute a powerful
tool for whole organism analysis, especially within paleobiology,
where it could enrich current elegant studies initiated using EFA, to,
for example, analyse bivalves (Crampton, 1995), trilobite-like
arthropod evolution (Jackson and Budd, 2017) and Triatominae
eggs (Santillán-Guayasamín et al., 2017). For all such studies, when
possible, we recommend that our method be integrated with recent
image analysis pipelines, allowing extraction and analysis of shape
information in a high-throughput manner (Heller et al., 2016;
Stegmaier et al., 2016).

In short, LOCO-EFA can be used to quantify morphologies
described as closed two-dimensional contours, across scales, from
the subcellular level to organs and beyond.

MATERIALS AND METHODS
Confocal images and image processing
Columbia wild-type or speechless mutant (MacAlister et al., 2007) leaves
expressing pmCherry-Aquaporin (Nelson et al., 2007) were imaged using a
confocal microscope Leica SP5 at comparable stages and in comparable
regions. Cells changing over time were imaged using a custom-made
perfusion chamber (Kuchen et al., 2012; Robinson et al., 2011; Sauret-
Güeto et al., 2012). Further image processing to flatten the images was
performed using ImageJ. Drosophila melanogaster embryos expressing
ubi-DE-Cadherin-GFP (Oda and Tsukita, 2001) were dechorionated in
bleach, rinsed in water and attached to a coverslip with the dorsal side up
using heptane glue and covered with Halocarbon Oil 27 for live imaging on
a Zeiss 780 confocal. Both the Arabidopsis and Drosophila images were
segmented using in-house software (segmentation Potts model; J.v.R.,
J. A. Fozard, R. Carter, M.H., Y.E.S.-C., R. Sablowski, V.A.G. and
A.F.M.M., unpublished). In this study, we present a single, typical example
of a wild-type and of a spch leaf, as well as five typical examples of static PC
outlines and two typical examples of developing PCs, all within a spch leaf.
These images were selected from a study in which one wild-type and seven
spch leaves were imaged at in total 15 time points for the wild-type leaf and
121 time points for the spch leaf (Carter et al., 2017). The amnioserosa
image represents a typical example selected from four live-imaged embryos.

Shape descriptors
Average lobe lengths and neck widths were calculated using ImageJ
(Analyse→Measure). The skeleton was calculated using ‘Better
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Skeletonization’ by Nicholas Howe, available through MATLAB File
Exchange (https://uk.mathworks.com/matlabcentral/fileexchange/11123-
better-skeletonization?focused=5073847&tab=function).

Geometric shapes
All geometric shapes were generated by the ‘superformula’ described by
Gielis (2003), and were analysed in the samemanner as the confocal images.

XOR
All the grid points belonging to each individual real or synthetic PC were
compared with all the grid points captured by the subsequent series of
LOCO-EFA reconstructions. A reconstruction of level N takes into account
the first N Ln modes. The in silico cells were generated using the cellular
Potts model, which is a grid-based formalism, whereas for the experimental
data the grid points were directly defined by the imaging resolution. The
scripts used to calculate the XOR and to colour code the real and synthetic
cells were written in the coding language C. See supplementary Materials
and Methods for further details.

Entropy and other measurements
The entropy measure is defined as:

E ¼ �
XL
l¼1

fl lnfl; ð1Þ

where fl refers to the relative proportion of each Ll for a given L number of

modes analysed, i.e. fl ¼ Ll=
PL

l¼1 Ll
� �

.
Shape approximations, cumulative difference and entropy were

calculated using the first 50 Ln modes. To capture cell shape complexity
linked to protrusions rather than mere anisotropy, cumulative difference is
calculated from the second Ln mode onwards. This value turned out to be
more than sufficient to capture any cell shape given the grid point resolution
used for all cases here. Note, however, that very high-resolution images
might require additional modes to fully capture the shape.

Cellular Potts model generating complex cell shapes
The cellular Potts model (CPM) is an energy-based model formalism used
to model cellular dynamics in terms of cell surface mechanics (Magno et al.,
2015). Individual cells are described by a set of grid points on a lattice. In
this article, we used the CPM to generate in silico cells with relatively
complex shape preferences that are allowed to interact within a confluent
setting. During each simulation step, a grid point is chosen in a random
fashion to evaluate whether its state changes into one of its neighbouring
states, effectively corresponding to a small cell shape modification at that
point. To evaluate whether such state change will occur, the energy change
is calculated that such a copy would cause. This is done by calculating the
change in the configurational energy as defined by the following
Hamiltonian, which sums up the energy contribution of each pixel within
the entire field as well as of all cells:

H ¼ P
ij

P
i0 j0

Jð1� dci;jci0; j0 Þ þ
P
c
laðac � AÞ2 þP

c
lpð pc � PÞ2: ð2Þ

J refers to the coupling energy, summed over all grid points (i, j ) and their
eight (second order) neighbours (i′, j′). The Kronecker delta term
ð1� dci;j ;ci0 ; j0 Þ simply assures that neighbouring lattice sites of the same
state (i.e. belonging to the same cell) do not contribute to the total energy of
the system. The variables ac and pc denote, respectively, the actual cell area
and the actual cell perimeter for each cell (c); the parameters A and P denote
the target cell area and perimeter. The parameters λa and λp describe the
resistance to deviation from the target area and perimeter, respectively. The
probability a copying event is accepted depends on the change in the
Hamiltonian, DH ¼ Hafter �Hbefore, in the following way:

P ¼
1 if DH , �Y ;

e
�
DHþ Y

T

� �
if DH � �Y ;

8><
>: ð3Þ

where Y corresponds to the yield or ability of a membrane to resist a force
and T (simulation temperature) captures additional stochastic fluctuations.
Copying events that decrease H by at least Y will always be accepted,
otherwise acceptance follows a Boltzmann probability distribution (Eqn 3).

To generate cells with a particular number of preferred protrusions, we
modify the change in the Hamiltonian as calculated for every evaluated
copying event, effectively shortcutting intracellular biochemistry and
biophysics, in the following way. Simulated cells are attributed with a
specified preferred number of lobes, amplitude of lobes, overall elongation
and roundness, implemented by modifying the change in the Hamiltonian
for every evaluated copy event as follows (J.v.R., R. Magno, V.A.G. and
A.F.M.M., unpublished):

DH0 ¼ DH� n cosðnuÞ � x cosð2aÞ � m
ffiffiffiffiffiffiffiffiffi
A=p

p � r
� �

: ð4Þ

Those three additional terms are evaluated for both cells involved in the
copying event, so there are effectively six additional terms. The first term
captures the tendency to form n lobes, with ν capturing the propensity to
extend to form a lobe or to retract to form an indentation, thus giving rise to
the amplitude or pointedness of the lobes. θ describes the angle between any
of the n equally spread out target directions for outgrowth and the vector
determined by the coordinates of the grid point under evaluation and the
centre of mass of the cell (hereafter called the copy vector) (Fig. 5E). To
clarify, when a cell extension is considered right on top of one of the target
directions, then nθ=0, cos(nθ)=1, and tendency to extend is maximally
increased, whereas halfway between two target directions, nθ=π, cos(nθ)=
−1, and the tendency to extend is maximally suppressed.

The second term in Eqn 4 captures an overall elongation, implemented in
a similar fashion. The parameter χ corresponds to the propensity to elongate
and α is the angle between the elongation vector and the copy vector.

If only these two terms are used, cells within tissue simulations can easily
lose coherence, i.e. fall apart. Therefore, a third term was added, capturing a
propensity to roundness. The parameter μ captures the resistance of a cell to
deviate from a circle, with r being the length of the copy vector, and

ffiffiffiffiffiffiffiffiffi
A=p

p
being the preferred radius of cell, given its target area.

Importantly, the target lobe and elongation vectors are not fixed during
the simulation. At intervals of 100 simulation time steps they are
dynamically updated, in order to attain the most favourable position,
effectively ‘accommodating’ its lobe positions with respect to its
neighbours. During a vector update step, the preferred directions of
extension are matched to the set of directions for which the current shape of
cells presents the strongest level of extension.

The initial cell positions within the field were randomly chosen.
Simulations were run for 10,000 time steps (see an example in Movie 5.
Parameters used for each used specified cell shape are given in Table S1.
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Nelson, B. K., Cai, X. and Nebenführ, A. (2007). A multicolored set of in vivo
organelle markers for co-localization studies in Arabidopsis and other plants.
Plant J. 51, 1126-1136.

Noda, K., Glover, B. J., Linstead, P. and Martin, C. (1994). Flower colour intensity
depends on specialized cell shape controlled by a Myb-related transcription
factor. Nature 369, 661-664.

Oda, H. and Tsukita, S. (2001). Real-time imaging of cell-cell adherens junctions
reveals that Drosophila mesoderm invagination begins with two phases of apical
constriction of cells. J. Cell Sci. 114, 493-501.

Pincus, Z. and Theriot, J. A. (2007). Comparison of quantitative methods for cell-
shape analysis. J. Microsc. 227, 140-156.

Rajaram, S., Pavie, B., Wu, L. F. and Altschuler, S. J. (2012). PhenoRipper:
software for rapidly profiling microscopy images. Nat. Methods 9, 635-637.

Robinson, S., Barbier de Reuille, P., Chan, J., Bergmann, D., Prusinkiewicz, P.
andCoen, E. (2011). Generation of spatial patterns through cell polarity switching.
Science 333, 1436-1440.

Rose, C. S., Murawinski, D. and Horne, V. (2015). Deconstructing cartilage shape
and size into contributions from embryogenesis, metamorphosis, and tadpole and
frog growth. J. Anat. 226, 575-595.

Russ, J. C. (2011). The Image Processing Handbook, 6th edn. Boca Raton: CRC
Press.

Sampathkumar, A., Krupinski, P., Wightman, R., Milani, P., Berquand, A.,
Boudaoud, A., Hamant, O., Jönsson, H. and Meyerowitz, E. M. (2014).
Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior
in Arabidopsis cotyledon pavement cells. eLife 3, e01967.
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Supplementary Materials and Methods

Decomposing shape: Lobe Contribution Elliptical Fourier Ana-
lysis (LOCO-EFA)

In this section, we first summarise previous efforts to make EFA coefficients interpretable
within a morphometrics perspective and explain why matching EFA coefficients with
shape features generally does not hold. We describe in detail our new method, Lobe
Contribution Elliptical Fourier Analysis (LOCO-EFA). We show how it provides quant-
itative and biologically interpretable measurements that are unique for a given shape,
overcoming the shortfalls of the previous methods.

Standard Fourier Analysis cannot be used to quantify complex cell shapes

Standard Fourier Analysis has been widely used to analyse cell morphology. It can,
however, only be applied when cells present simple holomorphic shapes, i.e., when the
radii emanating from the centroid of a cell intersect its outline only once (Figure S2A and
Pincus and Theriot (2007)). When the geometry of a cell is more complex, as in the case
of pavement cells, and radii emanating from the centroid can intersect the outline more
than once, the shape cannot be decomposed using a Fourier expansion based on polar
coordinates (Figure S2B and Schmittbuhl et al. (2003)).

Elliptical Fourier Analysis fails to align mode frequency with morphological
features

In 1982 Kuhl and Giardina proposed the Elliptical Fourier Analysis (EFA) to describe the
contour of any two-dimensional shape (both holomorphic and non-holomorphic), derived
from the coordinates of all the points along its outline.

In short, EFA takes the x and y coordinates of a closed contour and decomposes it
into an infinite summation of related ellipses:

x(t) =α0 +
∞∑
n=1

(
αn cos

(
2nπt

T

)
+ βn sin

(
2nπt

T

))
, (5a)

y(t) =γ0 +
∞∑
n=1

(
γn cos

(
2nπt

T

)
+ δn sin

(
2nπt

T

))
, (5b)

where αn, βn, γn and δn are the so-called EFA coefficients and α0 and γ0 are the x- and
y-offset of the initial contour. The detailed derivation of the formulae for α0, γ0, αn, βn,
γn and δn can be found in Kuhl and Giardina (1982). They are calculated from a discrete
chain of contour points (xi, yi) with i = 1, . . . , K (see Figure S3A), K being the total
number of points along the closed contour. We define (x0, y0) ≡ (xK , yK), given that
cell contours are closed. Now imagine drawing the contour of the cell, then 4ti is the
time spent drawing the line segment of the contour that links (xi−1, yi−1) to (xi, yi), i.e.,

4ti =
√

(xi − xi−1)2 + (yi − yi−1)2 =
√
4x2i +4y2i . Note that 4ti is not fixed but can

vary for each interval. Define T as the total time spent to draw the whole contour, i.e.,
T=
∑K

i=14ti. The “time” passed while drawing the contour, starting from contour point
(x0, y0), or, equivalently, the distance passed along the contour to reach each contour
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point (xi, yi), is referred to as ti, i.e., ti =
∑i

p=14tp, with t0 = 0, and tK = T , the “total
drawing time” or total perimeter length (see Figure 1 in the main text). Given that no
equal spacing between the points is required, it is straightforward to define K observation
points from any kind of cell contour. The only requirements are that the contour is closed
and the coordinates form an ordered list that follows the contour. The EFA coefficients
are then given by:

αn =
T

2n2π2

K∑
i=1

4xi
4ti

(
cos

2nπti
T
− cos

2nπti−1
T

)
, (6a)

βn =
T

2n2π2

K∑
i=1

4xi
4ti

(
sin

2nπti
T
− sin

2nπti−1
T

)
, (6b)

γn =
T

2n2π2

K∑
i=1

4yi
4ti

(
cos

2nπti
T
− cos

2nπti−1
T

)
, (6c)

δn =
T

2n2π2

K∑
i=1

4yi
4ti

(
sin

2nπti
T
− sin

2nπti−1
T

)
. (6d)

The offset to the contour is given by:

α0 =
1

T

K∑
i=1

(
4xi
24ti

(
t2i − t2i−1

)
+ ξi(ti − ti−1)

)
+ x0 , (7a)

γ0 =
1

T

K∑
i=1

(
4yi
24ti

(
t2i − t2i−1

)
+ εi(ti − ti−1)

)
+ y0 . (7b)

where ξi =
∑i−1

j=14xj −
4xi
4ti

∑i−1
j=14tj, εi =

∑i−1
j=14yj −

4yi
4ti

∑i−1
j=14tj, and ξ1 = ε1 = 0.

Further details and full derivation can be found in Kuhl and Giardina (1982).
Each set of four coefficients yields an ellipse (also referred to as the“nth mode”or“nth

elliptic harmonic”), with a certain orientation and a certain starting point. The original
cell outline can thus be expressed as an infinite summation of ellipses. Note that x(t) and
y(t) are periodic functions with period equal to T .

A visual way to understand how the set of ellipses gives rise to the final shape is as
follows: the second elliptic harmonic traces two clockwise or counter-clockwise revolutions
around the first harmonic; the third harmonic traces three revolutions around the path
drawn by the second harmonic; and the nth harmonic traces n revolutions around the
path drawn by the previous harmonic (see Figure S3 and Movie 1).

Diaz et al. (1990) proposed a heuristic measure regarding the contribution of each har-
monic to the shape through an approximation of the perimeter of each ellipse multiplied
by its harmonic number n:

(8)Pn = 2πn

√
λ21n + λ22n

2
,

where λ1n and λ2n are the major and minor axis of the nth ellipse. Moreover, Diaz et al.
(1990) introduced an additional correction to capture the complex relationship between
EFA modes and shape feature periodicity.
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The direction of rotation of the nth harmonic ellipse is given by the determinant of

the EFA coefficients matrix, det

[
αn βn
γn δn

]
, i.e., the direction of rotation is given by the

sign of

(9)rn = αnδn − βnγn .

If rn < 0, the elliptic harmonic is rotating clockwise; if rn > 0 the elliptic harmonic
is rotating counter-clockwise. When EFA is used for shape approximation, mode n con-
tributes to shape features with an n + 1 or n − 1 periodicity. This is in contrast to
standard Fourier Analysis, in which mode n contributes to shape features with an n peri-
odicity. Standard Fourier Analysis, however, is only possible for holomorphic shapes, and
hence cannot be applied to, for example, pavement cells. Diaz et al. (1990) observed that
whether mode n predominantly contributes to shape features with an n + 1 or with an
n − 1 periodicity strongly depends on whether the nth harmonic rotates together with
or against the direction of the first harmonic (see Movie 2 and Movie 3). This effect of
presenting contributions to the n + 1’th and n − 1’th mode depending on the rotation
direction of the first and nth harmonic is a common phenomenon observed for objects or-
biting around others (hereafter referred to as the relative direction effect). A well-known
example of the relative direction effect is the rotation of the Earth and its movement
around the sun. The actual number of rotations our planet makes per year (as observed
from “star-rise to star-rise”, the so-called sidereal days) is one off from the number of
days we perceive in a year (from “sunrise to sunrise”, the so-called solar days). Because
our planet rotates around its axis in the same direction as it moves around the Sun, the
number of solar days per year is 365, one less than the number of sidereal days per year,
which is 366. If the rotation of Earth would have been in the opposite direction as its
movement around the sun, the number of solar days per year would instead have been
367. In light of exactly the same principle, Diaz et al. (1990) introduced that when the
nth elliptic harmonic is moving in the same direction as the first harmonic, its shape
contribution Pn should be assigned to n−1; inversely, when the direction of a given mode
is opposite to the first harmonic, its shape contribution Pn should be assigned to n+ 1.

We will show below that this simple heuristic is reasonable as long as the ellipse
marginally deviates from a circle, but is is not valid in general. When the aspect ratio of
the ellipse (λ1n/λ2n) is large (i.e., the elliptical harmonic is very flat, deviating significantly
from a circular shape), the proposed rule fails to apply. Figure S3F illustrates a situation
when the rotation direction of the first and third harmonic are opposite (and no other
modes are used), yet instead of generating a contour with n − 1 = 2 protrusions, as
expected from the heuristic rule, a four-sided outline is generated, clearly illustrating that
this method of Pn shifting does not work in general (see also Movie 4). Moreover, it is not
possible to reconstruct the original shape using the Pn values, and therefore cannot be
used for additional analysis based on shape reconstruction as presented in the main paper.
This strongly limits usage of EFA for biological shape interpretations and statistical
population analysis. Surprisingly, although EFA has been used to quantify morphology
at the organ level, relative direction effect has typically been ignored altogether (Chitwood
et al., 2013; Frieß and Baylac, 2003; Iwata et al., 2010, 1998; Neto et al., 2006; Yoshioka
et al., 2005).

Realising that the source of the problem is linked to the eccentricity of the ellipses,
it became clear to us that we could overcome this issue by essentially decomposing each
ellipse into two counter-rotating circles. All circles can then be redistributed, forming a
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new base. The details of how to do so are discussed below. We call the new base Ln,
which, when summed up, can also reconstitute the original shape.

Contouring the limitations: Lobe Contribution Elliptical Fourier Analysis
(LOCO-EFA)

To capture the biologically relevant cell shape features, overcoming the limitations of using
Pn and rotation-dependent n + 1, n − 1 adjustments, we have developed an alternative
method coined Lobe Contribution Elliptical Fourier Analysis (LOCO-EFA). As the name
indicates, it correctly maps the contribution of each mode/harmonic to the corresponding
morphological features. This is done by separating each elliptic harmonic into two circular
harmonics, each rotating in an opposite direction.

First we rewrite the EFA (Equation 5) in matrix form:

(10)

[
x(t)
y(t)

]
=

[
α0

γ0

]
+

N∑
n=1

[
αn βn
γn δn

] [
cos
(
2nπt
T

)
sin
(
2nπt
T

) ] ,
with the infinite sum being truncated at the Nth order harmonic.
Equation 10 can concisely be expressed as

(11)[X(t)] = [A0] +
N∑
n=1

[An] [Mn(t)] ,

in which [X(t)] corresponds to the drawn cell outline

[
x(t)
y(t)

]
; [A0] represents the

spatial offset

[
α0

γ0

]
; [An] corresponds to the EFA coefficients matrix

[
αn βn
γn δn

]
; and

[Mn(t)] refers to the rotor

[
cos
(
2nπt
T

)
sin
(
2nπt
T

) ]. (For clarity, we will use the notation [..] through-

out to emphasise we are dealing with matrices; not to be confused with |..| that represents
determinant, which we here only refer to as det [..].)

The LOCO-EFA method consists of three steps: 1) eliminate multiple representations
of the same outline; 2) decompose each nth elliptic harmonic into two circular harmonics,
each rotating in an opposite direction; and 3) determine Ln and Ln for all N modes.
Below we describe these steps in detail.

(1) Eliminate multiple representations of the same outline

It had already been noted that EFA coefficients are redundant and therefore compromise
statistical analysis and shape comparisons (Haines and Crampton, 2000). We found that
there are three sources of degeneracy in the EFA coefficients that therefore have to be
eliminated. First, a contour can be drawn starting from any arbitrary initial point along
the contour. While exactly the same outline is drawn, each starting point is represented
by a completely different set of EFA coefficients for all modes [An]. Basically, whenever
the starting point is changed, all elliptic harmonics take a different orientation (Kuhl and
Giardina, 1982). The first step is therefore to transform the EFA coefficients such that
the starting point of the first harmonic is always positioned at, for standardisation, the
extreme of the semi-major axis (see further below). The second source of degeneracy,
however, is that such a normalisation still allows for two possible representations of the
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outline, since each of the two extremes along the semi-major axis can be chosen as the
starting point. Moreover, a third source of degeneracy is due to the fact that the outline
can be drawn clockwise or counter-clockwise. Clearly, all three sources of degeneracy
have to be removed to make any comparison between cells sensible.

The first step is to determine where the new starting point should be positioned, as
well as the scaled amount of time or temporal angle

(
τ 1 = 2πt1

T

)
required to reach the

starting point (see Kuhl and Giardina, 1982). As stated above, we wish the starting
point to coincide with one of the extremes of the semi-major axis of the first harmonic.
Points along the first harmonic (x1, y1) can be described as :

x1(τ) =α1 cos τ + β1 sin τ , (12a)

y1(τ) =γ1 cos τ + δ1 sin τ , (12b)

with τ = 2πt
T

being the scaled time or temporal angle. By differentiating the magnitude

of the first harmonic ellipse E(τ)=
√
x1(τ)2 + y1(τ)2 and setting its derivative to zero(

dE(τ)
dτ

= 0
)

, the temporal angles can be found at which the extremes along the semi-

major and semi-minor axes of the first harmonic are reached (Kuhl and Giardina, 1982):

(13)τ1(ν) =
1

2
arctan

(
2(α1β1 + γ1δ1)

α2
1 + γ21 − β2

1 − δ21

)
+
ν

2
π .

The values ν = 0, 1, 2, 3 give the four possible solutions along both the axes, after
which the same points get repeated. For LOCO-EFA, it is required (see further below)
to limit the starting point to the semi-major axis only. To satisfy this condition, the
second derivative of E(τ), evaluated at the temporal angle, should be negative, i.e.,
d2E(τ)
dτ2

∣∣∣
τ1
< 0. Substituting the found solutions into the second derivative results in ν = 0

and ν = 2 belonging to the points along the semi-major axis whenever the denominator
of the arctan term is positive, and the solutions ν = 1 and ν = 3 belonging to the points
along the semi-major axis whenever the denominator of the arctan term is negative.
A very straightforward computational implementation of this result is to make use of
the four-quadrant inverse tangent function (atan2) as provided by most programming
languages (i.e., such that atan2(1, 1) = π/4 is different from atan2(−1,−1) = −3π/4).
Then, using

(14)τ1 = 0.5atan2
(
2(α1β1 + γ1δ1), α

2
1 + γ21 − β2

1 − δ21
)

automatically and unambiguously ensures that the temporal angle τ1 is located at one of
the extremes of the semi-major axis.

This still leaves two ways to position the starting point (one for each of the extremes
of the semi-major axis) and thereby two distinct representations of a same outline. We
therefore further restrict τ1 to always lie within the first or second quadrant (I or II in
Figure S8A). This is achieved by testing if the obtained τ1 that shifts the starting point
of the first harmonic to the semi-major axis indeed positions it within quadrant I or II.
To shift the starting point, we first introduce a time shift τ ′ = τ − τ1 such that at τ ′ = 0
the first harmonic is positioned along its semi-major axis:

5
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[A1] [M1(t)] = [A1] [M1 (τ ′ + τ1)] , (15a)

= [A1]

[
cos (τ ′ + τ1)
sin (τ ′ + τ1)

]
, (15b)

= [A1]

[
cos (τ1) cos (τ ′)− sin (τ1) sin (τ ′)
sin (τ1) cos (τ ′) + cos (τ1) sin (τ ′)

]
, (15c)

= [A1]

[
cos (τ1)− sin (τ1)
sin (τ1) + cos (τ1)

] [
cos (τ ′)
sin (τ ′)

]
, (15d)

= [A1] [ψτ1 ] [M1(τ
′)] , (15e)

= [A′1] [M1(τ
′)] , (15f)

were [ψτ1 ] is the rotation operator, rotating by an angle τ1 and [A′1] = [A1] [ψτ1 ]. The
spatial angle at the shifted starting point % is given by

(16)%(ν) = arctan

(
γ′1
α′1

)
+ νπ .

Again, a single, unique and correct solution for % can be obtained by using % =
atan2(γ′1, α

′
1) instead. The starting point lies in quadrant III or IV when % < 0. In that

case, τ1 is modified as follows:

(17)τ ?1 = (τ1 + π) .

Otherwise (when the starting point is already in quadrant I or II), τ ?1 = τ1.
The new EFA coefficients corrected for the starting point then become:

(18)

[
α?n β?n
γ?n δ?n

]
=

[
αn βn
γn δn

] [
cos (nτ ?1 ) − sin (nτ ?1 )
sin (nτ ?1 ) cos (nτ ?1 )

]
.

Finally, we ensure that the direction of contour approximation of the first harmonic is
always counter-clockwise (i.e., that r1 ≥ 0, Equation 9). Besides removing redundancy by
restricting the freedom of choice regarding the overall direction of contour approximation,
this transformation also guarantees a unique correspondence between the properties of
each subsequent harmonic and its contribution to the morphological features. When the
direction of the first harmonic is clockwise (r1 < 0), we therefore invert the direction of
motion of all ellipses, maintaining thereby their inter-relationships. This can be done by
running “time” backwards:

(19)

[
x(−t)
y(−t)

]
=

[
α?n β?n
γ?n δ?n

] cos
(

2nπ(−t)
T

)
sin
(

2nπ(−t)
T

) 
=

[
α?n β?n
γ?n δ?n

] [
cos
(
2nπt
T

)
− sin

(
2nπt
T

) ]
=

[
α?n −β?n
γ?n −δ?n

] [
cos
(
2nπt
T

)
sin
(
2nπt
T

) ] .
In short, whenever r1 < 0, all indices β?n and δ?n should be negated. After these

steps, each unique cell contour is represented by a unique set of EFA coefficients. Note
that the steps above do not alter the layout, nor do they rotate the shape. In certain
study contexts, however, it might be desirable to rotate the contour itself, positioning

6
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the semi-major axis, for example, to be parallel to the x-axis (or in any other preferred
orientation). The details on how to perform those rotations can be found in Kuhl and
Giardina (1982). Please note that unlike in their study, our subsequent analysis does not
require such a cell contour realignment.

For simplicity of notation in the rest of the Supplementary Materials and Methods
we refer to the [An] matrix, which elements have been normalised regarding the starting
point and direction of reconstruction of the first harmonic:

(20)[An] ≡
[
an bn
cn dn

]
≡
[
α?n β?n
γ?n δ?n

]
.

After all possible sources of redundancy have been removed, the next step of the
LOCO-EFA method is to split each elliptic harmonic into two counter-rotating circles.

(2) Decompose each nth elliptic harmonic into two circles with opposite dir-
ection of rotation

In order to find the contribution of nth harmonic to a given morphological feature, we
rewrite the [An] matrices in Equation 10 such as to explicitly introduce the length of the
semi-major and semi-minor axis of the nth ellipse (λ1n and λ2n).

For this purpose, it is necessary to introduce both the temporal and the spatial rotation
operator of each elliptic harmonic, given by [ψTn ] and [ψSn ], respectively. The temporal
operator is defined as

(21)[ψTn ] =

[
cosφn − sinφn
sinφn cosφn

]
,

and the spatial operator is defined as

(22)[ψSn ] =

[
cos θn − sin θn
sin θn cos θn

]
,

where φn is the temporal angle (i.e., the time τn required to rotate to the semi-major
axis) and θn the spatial angle (i.e., the angle of this position along the semi-major axis
with the positive x-axis) (Figure S8A).

Equation 11 can be written as:

(23)[X(t)] = [A0] +
N∑
n=1

[ψSn ] [ψSn ]−1 [An] [ψTn ] [ψTn ]−1 [Mn(t)] ,

given that [ψSn ][ψSn ]−1and [ψTn ] [ψTn ]−1 correspond to the identity matrix [I].
Equation 11 can also be written in a form which directly highlights the contribution

of the semi-major and semi-minor axis:

(24)[X(t)] = [A0] +
N∑
n=1

[ψSn ] [Λn] [ψTn ]−1 [Mn(t)] .

This equation can be understood as follows: for each mode, correctly position the
starting point relative to the semi-major axis, transform the original circle into an ellipse,
its semi-major axis along the x-axis and semi-minor axis along the y-axis, and finally ro-
tate the ellipse to its correct position (see Figure S8B–D). Since both descriptions should

7
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be equivalent, by combining Equation 23 and Equation 24, the [Λn] matrix can be iden-
tified, with λ1n corresponding to the length of the semi-major axis, and the modulus of
λ2n to the length of the semi-minor axis of the nth ellipse:

(25)[Λn] = [ψSn ]−1 [An] [ψTn ] =

[
λ1n 0
0 λ2n

]
.

Note that this process is similar to a singular value decomposition of [An], with the
difference that here λ2n (but not λ1n) can be negative. The temporal angle φn corresponds,
for each elliptic harmonic, to the scaled time τn to reach an extreme along the semi-major
axis (Figure S8). Similarly to Equation 13, this corresponds to

(26)φn(ν) =
1

2
arctan

(
2(anbn + cndn)

a2n + c2n − b2n − d2n

)
+
ν

2
π .

Once again, using atan2 ensures that φn corresponds to the semi-major axis (see above).
For the next steps of the analysis (see below) it is essential that φn corresponds to the
temporal angle to reach the semi-major axis, not the semi-minor axis, hence usage of
atan2 or any equivalent function which determines the quadrant of the return value is
essential.

The spatial angle θn (see Figure S8) can be calculated after applying the temporal
modification:

(27)θn(ν) = arctan
c
′
n

a′n
+ νπ ,

where c
′
n and a

′
n, are the new coefficients after the temporal transformation (i.e., after

applying [An] [ψTn ]). Again, it is essential to use atan2 to ensure that φn and θn are both
relative to the same extreme of the semi-major axis. It does not matter, however, which
of the two extremes is being used, hence for this step no check is required regarding the
quadrants. Applying Equation 25 then provides λ1n and λ2n. Deriving a temporal and
spatial angle relative to the semi-major axis and both being related to the same extreme
guarantees that λ1n ≥ 0 (while λ2n can be positive or negative, depending on the rotation
direction of the rotor) and |λ1n| ≥ |λ2n|.

Using the above, the EFA (Equation 11) can be rewritten as:[
x(t)
y(t)

]
= [A0] +

N∑
n=1

[
cos θn − sin θn
sin θn cos θn

] [
λ1n 0
0 λ2n

] [
cosφn sinφn
− sinφn cosφn

] [
cos
(
2nπt
T

)
sin
(
2nπτt
T

) ] .
(28)

Written in this form, the contribution of each harmonic can easily be separated to
correctly map to morphological feature number. The diagonal matrix containing the
length of the semi-major and semi-minor axis of each nth mode can be decomposed into
two diagonal matrices, each corresponding to circular orbits moving in opposite directions:

(29)

[
x(t)
y(t)

]
= [A0] +

N∑
n=1

[
cos θn − sin θn
sin θn cos θn

]([
λ+n

0
0 λ+n

]
+

[
λ−n

0
0 −λ−n

])[
cosφn sinφn
− sinφn cosφn

] [
cos
(
2nπt
T

)
sin
(
2nπt
T

) ] ,
8
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where λ+n and λ−n are the radii of those circles (Figure 2).
Summing up the diagonal matrices in Equation 29 yields[
x(t)
y(t)

]
= [A0] +

N∑
n=1

[
cos θn − sin θn
sin θn cos θn

] [
λ+n + λ−n 0

0 λ+n
− λ−n

] [
cosφn sinφn
− sinφn cosφn

] [
cos
(
2nπt
T

)
sin
(
2nπt
T

) ] ,
(30)

in which the major and minor axes of each elliptic harmonic are

λ1n =λ+n + λ−n , (31a)

λ2n =λ+n − λ−n , (31b)

and hence the radii of each oppositely-rotating circle is given by

λ+n =(λ1n + λ2n)/2 , (32a)

λ−n =(λ1n − λ2n)/2 . (32b)

Given that λ1n ≥ 0 and |λ1n| ≥ |λ2n|, λ+n and λ−n are always positive. To approx-
imate the cell contour (x(t), y(t)) using the circles λ+n and λ−n requires completing the
transformations using the spatial (θn) and temporal angle (φn) as calculated before, most
clearly seen through the expression

(33)[X(t)] = [A0] +
N∑
n=1

[ψSn ] [Λ+n + Λ−n ] [ψTn ]−1 [Mn(t)] .

The term Λ+n presents the subset of the nth elliptic harmonic which is moving in the
same direction as the first harmonic, therefore purely contributing to n − 1 “lobes”, i.e.,
shape features with periodicity n − 1. In contrast, Λ−n presents the subset moving in
the opposite direction, purely contributing to n + 1 “lobes” (shape features) only. Their
contributions can be separated by writing:

(34)[X(t)] = [A0] +
N∑
n=1

[A+n ] [Mn(t)] +
N∑
n=1

[A−n ] [Mn(t)] ,

where
(35)[Ajn ] = [ψSn ] [Λjn ] [ψTn ]−1 , for j = +, − .

This can be further simplified. Straightforwardly, [ψSn ] [Λ+n ] = [ψSn ]λ+n [I] = [Λ+n ] [ψSn ].
Regarding [Λ+n ],

[ψSn ] [Λ−n ] =

[
cos θn − sin θn
sin θn cos θn

] [
λ−n 0

0 −λ−n

]
, (36a)

=

[
λ−n cos θn +λ−n sin θn
λ−n sin θn −λ−n cos θn

]
, (36b)

=

[
λ−n 0

0 −λ−n

] [
cos θn sin θn
− sin θn cos θn

]
, (36c)

=

[
λ−n 0

0 −λ−n

] [
cos (−θn) − sin (−θn)
sin (−θn) cos (−θn)

]
, (36d)

= [Λ−n ] [ψSn ]−1 . (36e)

9
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Thus,

[A+n ] = [Λ+n ] [ψSn ] [ψTn ]−1 , (37a)

[A−n ] = [Λ−n ] [ψSn ]−1 [ψTn ]−1 . (37b)

Hence, introducing ζ+n
= θn−φn and ζ−n

= −θn−φn, Equation 35 can be written as

(38)[Ajn ] = [Λjn ]
[
ψζjn

]
, for j = +, − ,

which corresponds to

(39)
[Ajn ] =

[
ajn bjn
cjn djn

]
=

[
λjn 0
0 jλjn

] [
cos ζjn − sin ζjn
sin ζjn cos ζjn

]
, for j = +, − .

We next label those matrices with respect to their lobe contribution instead of their
EFA mode. To make the distinction, we here use subscript n to indicate the EFA mode,
and subscript l to indicate the LOCO-EFA mode. In general, [A+l

] =
[
A+n+1

]
and

[A−l
] =

[
A−n−1

]
. There are, however, a few exceptions, see Figure S4:

1) The overall offset of the contour is not solely given by [A0]. An additional contri-
bution to the offset is coming from [A+n=2 ]. Note, however, that the contribution from
[A+n=2 ] is in fact not a perfect offset to the contour, but also causes a kidney bean-shaped
distortion to the contour, its deviation from a pure offset becoming more pronounced
when the contribution of this mode relative to the overall contour size is larger (see
Figure S4B).

2) The overall circular shape of the contour (i.e., LOCO-mode 1) receives solely a
contribution from [A+n=1 ] itself, i.e., [A+l=1

] = [A+n=1 ].
3) When N EFA modes are taken into account, then LOCO-mode N only receives a

contribution from
[
A−n=N−1

]
.

4) Likewise, when taking N EFA modes into account, there is still a contribution to
LOCO-mode L = N + 1, solely coming from [A−n=N

].
Defining [M+l

] = [Mn+1] and [M−l
] = [Mn−1], with the exceptions [M+l=0

] = [Mn=2]
and [M+l=1

] = [Mn=1], then the same shape approximation can be achieved through
LOCO-EFA as through EFA:

(40)

[X(t)] = [A0] + [A+l=0
] [M+l=0

(t)] + [A+l=1
] [M+l=1

(t)]

+
L−2∑
l=2

[A+l
] [M+l

(t)] +
L∑
l=2

[A−l
] [M−l

(t)] .

Equation 40 can be used to reconstruct the shape up to a certain L number, requiring
EFA coefficients up to mode L+ 1:

[XL=1(t)] = [A0] + [A+l=0
] [M+l=0

(t)] + [A+l=1
] [M+l=1

(t)] , (41a)

[XL≥2(t)] = [A0] + [A+l=0
] [M+l=0

(t)] + [A+l=1
] [M+l=1

(t)] +
L∑
l=2

[A+l
] [M+l

(t)] +
L∑
l=2

[A−l
] [M−l

(t)] .

(41b)
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Each LOCO-EFA mode can be fully described by the combination of the radii and the
starting positions of both circles. The radii are, as previously defined, λ+l

= λ+n+1 and
λ−l

= λ−n−1 , with the exceptions λ+l=0
= λ+n=2 and λ−l=0

= 0, and λ+l=1
= λ+n=1 and

λ−l=1
= 0. The starting points of both circles are defined as ζ+l

= ζ+n+1 and ζ−l
= ζ−n−1 ,

again with the exceptions ζ+l=0
= ζ+n=2 and ζ+l=0

= ζ+n=2 . Together this gives a set of
four coefficients Ll = (λ+l

, λ−l
, ζ+l

, ζ−l
) that fully capture each LOCO-EFA mode and

allow for a full reconstitution of the original shape:

(42)

[X(t)] = [A0] + [Λ+l=0
]
[
ψζ+l=0

]
[M+l=0

(t)] + [Λ+l=1
]
[
ψζ+l=1

]
[M+l=1

(t)]

+
L−2∑
l=2

[Λ+l
]
[
ψζ+l

]
[M+l

(t)] +
L∑
l=2

[Λ−l
]
[
ψζ−l

]
[M−l

(t)] .

The exceptions for the lowest modes, as depicted in Figure S4A might appear coun-
terintuitive. Their particular repairing is however a direct consequence of how we have
chosen to define mode 0 and mode 1. Our choice was driven by seeking to stay more in
line with classical EFA. As in EFA, we have defined mode 0 as the offset of the contour
with respect to the underlying coordinate system, and therefore mode 1 as the radius of
the circle, the most basic capturing of the shape itself. LOCO-EFA modes, in contrast,
should be viewed as corresponding to a specific number of perturbations along that circle
(for its mathematical derivation see further details in the next session). Hence, an altern-
ative choice of definitions could have been to denominate the radius of the circle mode 0.
The unidirectional perturbation of the circle as provided by EFA modes 0 and 2 could be
interpreted as a ‘single lobe’, and could therefore be denominated mode 1, etc. Although
such a defendable renaming of LOCO-EFA modes would make Figure S4A free of any ap-
parent exceptions in mode reassignment, we preferred to maintain the definitions as here
presented, for sake of clarity. The reason being that, although it introduces exceptions
that carefully have to be taken care of, the chosen denomination captures, alike EFA,
within mode 0 the non-oscillatory “DC” contour offset. Renaming that to mode 1 would
in our eyes be more unnatural than to simply reassign modes as is currently done.

In the next section we derive how from those values a single amplitude value can be
found, the Ll contribution.

(3) Ll amplitude contributions

In this section, we first show that the contribution to the shape of the two counter-
rotating circles of a specific LOCO-EFA mode is not simply determined by the radii
of those circles, but also depends on the relative position of the starting points. We
then derive a heuristic which optimally captures its contribution, determining as well the
limits of this approximation. To illustrate how a difference between the starting points
ζ+l

and ζ−l
of mode l can affect the generated amplitude, we first plot the contribution of

L3 = (λ+3 , λ−3 , ζ+3 , ζ−3) superimposed on L1 = (1, 0, 0, 0), i.e., superimposed on the unit
circle starting at zero degrees. As long as λ+3 , λ−3 are not too large, a single amplitude
value a (which is the amplitude of deviation from the unit circle) can be observed for any
phase ω; peak amplitude values A occur for specific phases Ω (as illustrated in Figure S9I).
Figure S9A–C depict the shape contribution of the negative rotor (green), positive rotor
(red) and their summed contribution (orange), as a function of the phase ω, for L3 =
(0.15, 0.15, 0, 0). This scenario illustrates that even though the negative rotor makes two
sidereal rotations while the positive rotor makes four sidereal rotations, the amplitude
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pattern that they generate not only has a period three in both cases, as argued throughout
the paper, but also perfectly match one another regarding the phases at which the peaks
and troughs in the amplitude pattern are reached. The summed contribution (Figure S9C)
therefore indeed yields a peak amplitude exactly equal to λ+3 + λ−3 . In contrast, when
both rotors are exactly out-of-phase (L3 = (0.15, 0.15, 0, π), Figure S9D–F), the peaks
and troughs are exactly out-of-phase as well, and the patterns almost (but not totally)
cancel each other out (Figure S9F). To determine the effective contribution of a LOCO-
EFA mode we therefore have to determine the phase at which each rotor reaches its peak
amplitude.

The angles Ω+, Ω− at which the positive and negative rotor reach their peak amplitude
can be calculated straightforwardly. They occur when the phase of the rotor itself is
equivalent to the overall phase generated by L1 (as illustrated in Figure S9G). The phase
of L1 starts at ζ+1 , while the phase of the positive rotor starts at ζ+l

(illustrated in
Figure S9K). When the pattern is laid down, the phase of the positive rotor changes
(l + 1) times faster than the phase of L1 (Equation 42). Thus, regarding the phase at
peak amplitude it holds that

Ω+l
= (l + 1) (Ω+l

− ζ+1) + ζ+l
+ 2πν , (43a)

−lΩ+l
= ζ+l

− (l + 1)ζ+1 + 2πν , (43b)

Ω+l
= ζ+1 +

ζ+1 − ζ+l

l
+

2π

l
ν . (43c)

where ν is any integer, and the values ν = 0, 1, . . . , l − 1 provide the complete set of
phases at which peak amplitude is reached. Likewise, the negative rotor rotates (l − 1)
times faster than L1 and in the opposite direction, hence starting at −ζ−l

(see Figure S9J).
Regarding the phase at peak amplitude it therefore holds that

Ω−l
= −(l − 1) (Ω+l

− ζ+1)− ζ−l
+ 2πν , (44a)

lΩ−l
= −ζ−l

+ (l − 1)ζ+1 + 2πν , (44b)

Ω−l
= ζ+1 −

ζ+1 + ζ−l

l
+

2π

l
ν . (44c)

To assess the summed amplitude contribution, we next fit the amplitude pattern laid
down by each rotor to a sine wave, exactly matching both the peak amplitude and the
phase at which the peak amplitude is reached, and then sum those two contributions:

a+l
= λ+l

cos (lω + ζ+1 − (l + 1)ζ+1) , (45a)

a−l
= λ−l

cos (lω + ζ−l
− (l − 1)ζ+1) , (45b)

a+l
+ a−l

= λ+l
cos (lω + ζ+l

− (l + 1)ζ+1) + λ−l
cos (lω + ζ−l

− (l − 1)ζ+1) . (45c)

Equation 45a exactly matches the peak amplitude and its phase of the positive rotor, as
derived in Equation 43, while Equation 45b exactly matches the peak amplitude and its
phase of the negative rotor, as derived in Equation 44. While peak amplitude and phase
match perfectly, Figure S9G, H illustrate that for not too large values of λ+l

, λ−l
also the

rest of the pattern presents a close match.
Using standard trigonometry, the summed amplitude can be written as

12

Development 145: doi:10.1242/dev.156778: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



a+l
+ a−l

= al =
√
λ2+l

+ λ2−l
+ 2λ+l

λ−l
cos (ζ+l

− ζ−l
− 2ζ+1) cos (lω + ζl) , (46a)

where

ζl = atan2 (λ+l
sin (ζ+1 − (l+ 1)ζ+1) + λ−l

sin (ζ−l
− (l− 1)ζ+1) , λ+l

cos (ζ+1 − (l+ 1)ζ+1)

+ λ−l
cos (ζ−l

− (l − 1)ζ+1)) .

(46b)

Figure S9I illustrates that for not too large values of λ+l
, λ−l

this expression provides
a close match to the pattern generated by the Ll mode, here illustrated using both a
different phase and a different amplitude for both rotors. Using the equation above, the
amplitude or contribution of mode l can hence be defined as

(47)Ll =
√
λ2+l

+ λ2−l
+ 2λ+l

λ−l
cos (ζ+l

− ζ−l
− 2ζ+1) .

While above we have performed a more formal derivation, a more intuitive way to
understand the amplitude contribution of the positive and negative rotor combined, is
in terms of how much the amplitude contributions of both rotors are out-of-phase with
each other. The most straightforward moment to determine their phase shift is at the
initial point of drawing the cell’s outline. As illustrated in Figure S9J, K, the phase shift
regarding the amplitude contribution of the negative rotor is given by ζ+1 +ζ−l

, and of the
positive rotor by ζ+l

− ζ+1 . To understand the graphical argument for the negative rotor
case, one has to realise that the negative rotor rotates clockwise, and hence its starting
angle is −ζ−l

(for the positive rotor it is simply ζ+l
), while for the same reason the phase

shift between initial amplitude and maximum amplitude has to be calculated clockwise
(instead of standard counterclockwise, as done for the positive rotor), again as shown in
Figure S9J, K. Plotting the phase shift and strength of both amplitude contributions as
vectors and then adding them up then provides the above equation for Ll (as is depicted
in Figure 2C).

Note that the pattern can never be perfectly described by a sine wave, which is
why four parameters are needed to describe each mode, rather than the two required
by Equation 46. Even when following Equation 46 the two waves cancel each other out,
this is not exactly the case, as seen in Figure S9F. There is therefore no additional level
of redundancy, as the usage of the Ll numbers might suggest, even when the value of
Ll = 0. When the amplitude of a rotor becomes larger, the generated pattern starts to
deviate from a sine wave (Figure S9J, K), and their summed pattern from Equation 46
(Figure S9L). For simple closed contours (which cell outlines should always be), the devi-
ations cannot be very large, since otherwise the contour becomes non-simple (i.e., crosses
itself). This confinement in deviations for cell outlines allows us to base a significant part
of our analysis on Ll values.

Moreover, we observe that the positive rotor generates protrusions that are flatter
than a sine wave (Figure S9B, J), whereas the negative rotor generates lobes that are
pointier (Figure S9A, K). The extent of “flatness” or “pointedness” of each mode can be
determined by the proportion w+l

= λ+l
/(λ+l

+ λ−l
) and w−l

= 1− w+l
, respectively; a

useful additional measure if needed.
The method presented here cannot be straightforwardly extended to 3D. The essential

issue is that this whole analysis hinges on a parametrisation which moves along a directed
curve. As no directed curve can be constructed to represent a cell outline in 3D, there is
no simple extension from our 2D LOCO-EFA to 3D.
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XOR measurement

LOCO-EFA can be applied to any closed-curve cell outline defined by a series of connected
points. There are no requirements regarding the number of points or the distance between
them, nor do their positions have to be integer or positive values. Nevertheless, the cell
outlines that will be analysed with our method are generally derived from segmentation
of microscopy images. Many segmentation methods are available, with most of them
assigning each pixel within a microscopy image to a specific cell domain.

In the paper we show that, besides directly looking at the Ln values, a highly inform-
ative analysis is to capture the quality of cell shape reconstruction when only a certain
number of modes are taken into account. This is done by applying an EXCLUSIVE OR
(XOR) between the segmented cell and reconstructed cell. The natural choice for the
grid on which the XOR is performed is therefore equivalent to the microscopy image
itself, at the resolution the image has been acquired and segmentation performed, as is
done for all the experimental images analysed in this study. In such a case, the cell con-
tour, i.e., the edge of the segmented cell, takes up integer values (when expressed in grid
points), with the distance between points being either 1 (when the cell edge moves hori-
zontally or vertically) or

√
2 (when the cell edge moves diagonally). While the input of the

LOCO-EFA analysis is a set of discrete points, the output that it provides is a continuous
curve. The LOCO-EFA provides an infinite series of modes, passing increasingly closer
to the original set of discrete points (xi, yi) at parametrised time ti when more modes
are taken into account. (For a derivation of the predicted bound on error as a function
of mode number for the classical EFA, see (Kuhl and Giardina, 1982).) To reconstruct
from that curve a cell shape on a grid therefore requires two steps: 1) Determine the grid
points at which the curve passes at each time ti. Please note that the time series ti has
to correspond to the “time” passed while drawing the discrete chain of original contour
points, as discussed below Equation 5, and hence will be a time series containing irregular
intervals (of either 1 or

√
2). The reason is that by only evaluating the continuous curve

at those time points, for sufficiently many modes the curve is guaranteed to lie within
the grid point defining the original cell outline. In between those time points, however,
the curve could very well cross through grid points that do not belong to the cell outline,
especially when the cell outline involves a diagonal step. 2) Only in the case that the
next reconstructed contour point lies beyond the Moore neighbourhood of the previous
contour point, iteratively reduce the time steps between these two reconstructions (devi-
ating from the specific time points as defined above), in order to acquire on the grid a
contiguous chain of pixels defining the cell outline. Doing so allows for flood filling at the
end to obtain the complete cell shape rather than just the cell outline, and to then apply
an XOR with the original segmented image.

LOCO-EFA provides infinitely many modes, for which it is at forehand not defined
where a required cut-off should be placed, since the approximation becomes asymptot-
ically more precise. The XOR analysis, however, provides an algorithmic and objective
cut-off for any LOCO-EFA data analysis, not only the XOR analysis. When the recon-
struction is performed as explained above, then for a sufficiently large, but finite number
of modes each individual contour grid point will be correctly reconstructed, which leads
to the XOR value becoming zero. Adding additional terms will only change the recon-
structed outline at a sub-pixel resolution, i.e., at a resolution that is higher than the
original microscopy image. Obviously, the latter cannot be meaningful in any possible
way. Using the XOR reaching zero therefore provides a natural cut-off to truncate the
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series, as higher-mode contributions can only be informative provided the XOR is still
non-zero, but cannot be informative beyond that point. In our experience, this point
is usually reached between 20 and 200 modes, but will be cell-complexity and image-
resolution dependent. Note that additional information acquired outside of the method
could justify earlier cut-offs, for example when there is information available regarding
the quality of segmentation.

Final remarks

To summarise, the LOCO-EFA method consists in: 1) eliminating degeneracies in the
EFA coefficients; 2) decomposing each elliptic harmonic into two circles rotating in op-
posite directions (λ+n and λ−n) and therefore contributing to n − 1 and n + 1 number
of lobes (more generally, morphological features); and 3) calculating the offset between
starting points of these two circles derived from each ellipse to estimate the amplitude of
the Llth lobe contribution.

To eliminate cell area effects (for example, when looking at shape diversity within a
cell populations), it might also be desirable to normalise for cell size by dividing each Ln
value by the square root of the cell area. This then provides a complete description of
the number of lobes and their amplitude, which can be used to characterise and quantify
intrinsic cell shape properties, irrespective of cell area, spacing between sampling points,
and rotations or inversions of the cell (Figure S10A, B). Changes in the image resolu-
tion, however can of course affect the fine-grained information retrieval, but only if the
resolution becomes very low (Figure S10C, D).
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Supporting Figures

A

B

Lobe length Neck width

p=45 p=65 p=85

Figure S1: Subjective choices involved in neck width and lobe length determin-
ation and Skeletonisation. (A) Neck width and lobe length depend on human criteria
for both identifying and quantifying such structures, as indicated by the question-marks.
(B) Both the number of skeleton end-points and the length of the branches strongly de-
pend on the parameter settings used for the skeletonisation algorithm. Here, parameter
p (see material and Methods) was set to 45 (left), 65 (middle), or 85 (right). For those
values, the number of predicted lobes varies between 6 and 8.
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A B

Figure S2: Holomorphic and non-holomorphic shapes. (A) In holomorphic shapes,
all radii starting from the centroid intersect the outline only once. (B) In non-holomorphic
shapes, some radii intersect more than once. Very few pavement cells have a holomorphic
shape, the majority presenting highly complex non-holomorphic outlines. The outline of
non-holomorphic shapes cannot be represented as a function of the angle, precluding, for
example, standard Fourier analysis.
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Figure S3: Cell outline reconstruction using EFA and LOCO-EFA. (A) Calculat-
ing the EFA coefficients from a cell outline. The discrete chain of contour points can be
positioned arbitrarily (for example, the points do not have to be associated to an under-
lying grid). Also, the distances between points can be arbitrarily long. (B) Sequential
approximation of the cell’s contour. The first harmonic forms an elliptic shape (1, blue).
The second harmonic describes an elliptic orbit (2–6, red), orbiting twice while moving
around the first harmonic (2, 3). Their summed trajectories are shown in green. The third
elliptic harmonic (4–6, orange) orbits thrice while moving around this summed trajectory
(4–6). The summation of the first three elliptic harmonics is shown in blue. See Movie 1
for this dynamical reconstitution of the cell contour. (C) The EFA coefficients cannot
be directly linked to shape features, here shown through the power contribution of each
harmonic (Pn) (upper panel): the main Pn contributions of a six-pointed star-like shape
(shown as an inset) come from the 5th and 7th harmonic. To align the coefficients to ac-
tual shape features, Diaz et al. (1990) proposed to shift the contribution of each harmonic
to either n+ 1 or n− 1, depending on the rotation direction of each individual harmonic
(middle panel). This brings the main shape contributor and the actual number of shape
features in alignment to each other. This method, however, does not always hold (see
F), and moreover generates a range of spurious contributions from a large set of different
modes, which is a notorious issue that hampers analysis of complex shapes using standard
EFA (Haines and Crampton, 2000). The LOCO-EFA method correctly aligns the shape
assessment and the real shape features (lower panel), without generating any additional
spurious contributions. Moreover, unlike the other methods, the values correctly repres-
ent the amplitude of the shape features. (D–F) Contours (shown in blue), generated from
the first (green) and third EFA harmonic (orange) only. The number of morphological
protrusions (lobes) specified by the nth EFA mode is affected, but not fully determined,
by its rotation direction. The heuristic rule proposed by Diaz et al. (1990) states that
if the first harmonic and the nth harmonic rotate in the same direction, a contour is
generated with n−1 protrusions, while if their rotation direction is opposite, the contour
will contain n + 1 lobes. This rule, however, is only correct when the elliptic harmonic
has a circular shape (D, E), in which case indeed overall shapes are generated with either
2 (D) or 4 lobes (E), simply dependent on the rotation direction with respect to the first
mode. When, however, the elliptic harmonic has a higher eccentricity (F), the final shape
can have n + 1 protrusions (4 lobes) even though the rotation direction of the first and
third harmonic are the same. In D–F the determinant of the first harmonic is -1.0002
(i.e., rotating clockwise), while the determinants of the third harmonics are -6.554·10−2

(clockwise), 6.446·10−2 (counter-clockwise), and -1.19·10−4 (clockwise), respectively. The
heuristic fails as a consequence of each single EFA mode actually contributing to two
different spatial modes. See also Movie 2–4.
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Figure S4: Schematic mapping between EFA modes and LOCO-EFA modes.
(A) Each nth EFA mode contributes to both n+ 1 and n− 1 morphological periodicities.
The red arrows represent the contributions of the nth EFA mode to n+1 protrusions, due
to the clockwise rotations of the circular harmonics λ−n+1 . The blue arrows indicate the
contributions to n− 1 protrusions, due to the counter-clockwise rotations of the circular
harmonics λ+n−1 . A few exceptions apply: The second EFA mode contributes to a shift
in the positioning of the layout, i.e., to LOCO-EFA mode 0 (λ+0 , blue and dashed line),
rather than to the overall size of the layout, as might have been expected. The first
EFA mode contributes to the overall circular size of the layout (λ+1 , blue and dashed
line), rather than to a shift in the positioning of the layout, as might have been expected.
The zeroth EFA mode only contributes to a shift in the positioning of the layout (yellow
line). Finally, the two highest LOCO-EFA modes have incomplete contributions, given
any cutoff in the number of EFA modes. (B–E) The contribution λ+0 is not simply an
offset of the contour, but also involves a kidney bean-shaped distortion, more pronounced
for larger contributions. Mode λ+1 (the circular mode) is shown in blue; mode λ+0 in
red; their summation in green; and the predicted shape if the contribution were purely an
offset in magenta. (B) λ+0 being 10% of λ+1 , effectively resulting in just an offset to the
shape outline (C). (D, E) λ+0 being 30% of λ+1 , resulting in a clear kidney bean-shaped
distortion of the shape.
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Figure S5: Additional example of LOCO-EFA metrics on a cell changing its
shape over time. (A–G) Sequence of a tracked pavement cell growing over time with
normalised area. (H) Pn, XOR difference and marginal difference profiles, cumulative
difference and entropy using EFA. (I) Ln, XOR difference and marginal difference profiles,
cumulative difference and entropy using LOCO-EFA. See also the first example presented
in Figure 4 in the main text.
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Figure S6: Confluent in silico cell populations, simulated with three types of
specified cell shapes (SCSs) and different number of specified lobes. Paramet-
ers for the different specified cell shapes are given in Table S1. (A–H) Cells with large
protrusions (Specified Cell Shapes 1, SCS1), with specified lobe number increasing from
3 (A) to 10 (H); (I–P) Cells with small protrusions (SCS2), with specified lobe number
increasing from 3 (I) to 10 (P); (Q–X) Elongated cells (SCS3), with specified lobe num-
ber increasing from 3 (Q) to 10 (X). Specified cell shapes, as resulting from single-cell
simulations, are shown above each panel. Cells are randomly coloured. See also Figure 5
and Figure S7.
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Figure S7: Divergence between specified cell shapes and resultant population-
level cell shape diversity within confluent in silico cell populations. The mis-
match is visualised as the difference in LOCO-EFA-derived measures between the average
for confluent population simulations and its value for single cell simulations. Three types
of specified cell shapes (SCSs) were simulated, as indicated for each column, and paramet-
rised in Table S1. Lobe numbers vary from 3 to 10, as indicated for each row and depicted
in Figure S6. (A–C) Difference between the average Ln (〈Ln〉) values of the cells of the
simulated populations and that of a single simulated cell. (D–F) Difference between aver-
age XOR (〈XOR〉) of the cells of the simulated population and that of a single simulated
cell. (G–I) Same as in (A–C, D–F), but now for marginal difference (Md). In all cases
the specified cell shape becomes less pronounced in the confluent population simulations
(indicated by negative values that all measures yield at the given specified lobe number),
while the cells present an increased shape diversity and complexity (seen by the broad
flanking regions with positive values in the profiles, indicating a large range of modes that
contribute to the shapes). These effects are present regardless of the number of specified
lobes or the combination of parameters used, but becomes less pronounced at higher lobe
numbers. See also Figure 5. Each depicted line is based upon averaging all cells within
three independent tissue simulations using the same shape descriptors; each simulated
tissue contains in between 42 and 70 in silico cells.
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Figure S8: Temporal and spatial transformations required to calculate the pre-
cise contribution of each EFA mode. (A) The blue ellipse depicts an elliptic har-
monic, given by [X(t)] = [A] [M(t)], while the grey circle depicts the unit circle, given
by [X(t)] = [M(t)]. The temporal angle φ is the scaled time required to move along an
elliptic harmonic from the starting point at τ = 0 to one extreme along the semi-major
axis (green filled circles). The angle φ cannot be trivially derived from the spatial po-
sition at τ = 0, requiring first an effective projection upon the unit circle (green open
circles). The spatial angle θ is the inclination of the elliptic harmonic. After apply-
ing the appropriate spatial and temporal transformations to the EFA coefficients using
this geometrical interpretation, the semi-major and semi-minor axis, λ1 and λ2, can be
straightforwardly obtained. To eliminate multiple representations of the same outline,
the starting point of the first harmonic is specifically positioned at the extreme along
the semi-major axis which lies in either quadrant I or II, given by temporal angle τ ?1
(Equation 18). In contrast, all other temporal angles φn used, while also positioned along
the semi-major axis, are not confined to quadrant I or II. (B–E) Visual interpretation
of Equation 24 as a step-wise construction of the elliptic harmonic. The matrix [M(t)]
corresponds to the unit circle (B). For each mode, first the starting point relative to the
semi-major axis is correctly positioned (C); then the original circle is transformed into
an ellipse, its semi-major axis along the x-axis and semi-minor axis along the y-axis (D);
and finally, the ellipse is rotated to its correct position (E). See further details in the
Supplementary Materials and Methods.
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Figure S9: Impact of LOCO-EFA starting points ζ+l
and ζ−l

on the amp-
litude of the reconstructed shape. All panels show L3 = (λ+3 , λ−3 , ζ+3 , ζ−3) su-
perimposed on L1 = (1, 0, ζ+1 , 0), i.e., the unit circle. In (A–F), L1 = (1, 0, 0, 0).
(A) Amplitude a as a function of phase ω (as depicted in I) for the negative rotor
only (L3 = (0, 0.15, 0, 0)), shown in green. For several phases also the rotor (light
blue) itself is drawn. Note that by plotting the rotor in the (ω, a) plane, the circles
are slightly deformed. (B) Same for the positive rotor only (L3 = (0.15, 0, 0, 0)),
in red. (C) Same for both rotors superimposed (L3 = (0.15, 0.15, 0, 0)), in orange.
(D–F) Alike (A–C), but for an out-of-phase starting angle of the negative rotor. (D)
L3 = (0, 0.15, 0, π), in green; (E) L3 = (0.15, 0, 0, 0), in red; (F) L3 = (0.15, 0.15, 0, π),
in orange. In (G–L), L1 =

(
1, 0, 2

3
π, 0
)
. (G) Pattern generated by the negative ro-

tor only (L3 =
(
0, 0.1, 0,− 5

12
π
)
), shown in green, compared to the equation a−l

=
λ−l

cos (lω + ζ−l
− (l − 1)ζ+1) (Equation 45b), in dark blue. They present a close match.

(H) Same for the positive rotor only (L3 =
(
0.075, 0, 3

4
π, 0
)
), shown in red, compared to

a+l
= λ+l

cos (lω + ζ+l
− (l + 1)ζ+1) (Equation 45a), show in dark blue, again presenting

a close match. (I) Same for both rotors superimposed (L3 =
(
0.075, 0.1, 3

4
π,− 5

12
π
)
),

shown in orange, and al =
√
λ2+l

+ λ2−l
+ 2λ+l

λ−l
cos (ζ+l

− ζ−l
− 2ζ+1) cos (lω + ζl)

(Equation 46), show in dark blue, again presenting a close match. Panel (G) also illus-
trates that at peak amplitude the phase of the main and subrotor are equal; panel (I) also
illustrates the concepts amplitude (a); peak amplitude (A); phase (ω); and phase at peak
amplitude (Ω). (J–L) Alike (G–I), but for larger amplitude. (J) L3 =

(
0, 0.2, 0,− 5

12
π
)
,

in green; (K) (L3 =
(
0.15, 0, 3

4
π, 0
)
, in red; (L) L3 =

(
0.15, 0.2, 3

4
π,− 5

12
π
)
, in orange.

Panel (J) and (K) also illustrate how the initial phase shifts with respect to the amp-
litude contribution of the negative and positive rotor depend on ζ+1 , and on ζ−l

and ζ+l
,

respectively. They are given by ζ+1 + ζ−l
for the negative rotor and by ζ+l

− ζ+1 for the
positive rotor.

28

Development 145: doi:10.1242/dev.156778: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



0 1 2 3 4 5 6 7 8 9 101112131415
0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

1.5

2

X
O

R
 D

if
fe

re
n

c
e

1 2 3 4 5 6 7 8 9 101112131415

0

0.2

0.4

M
a

rg
in

a
l 
D

if
fe

re
n

c
e

0 1 2 3 4 5 6 7 8 9 101112131415
0

0.2

0.4

0.6

0.8

L n

LOCO-EFA mode

LOCO-EFA mode LOCO-EFA modeLOCO-EFA mode

LOCO-EFA modeLOCO-EFA mode

L n

1 2 3 4 5 6 7 8 9 101112131415
0

0.5

1

1.5

X
O

R
 D

if
fe

re
n

c
e

1 2 3 4 5 6 7 8 9 101112131415
0

0.1

0.2

0.3

0.4

M
a

rg
in

a
l 
D

if
fe

re
n

c
e

A

B

C

D

Same image with different rotations and inversion

Same image with different resolution

0 1 2 3
0

1

2

3

0 1 2 3
0

1

2

3

0 1 2 3
0

1

2

3

0 1 2 3
0

1

2

3

0 1 2 3
0

1

2

3

0 1 2 3
0

1

2

3

0 1 2 3
0

1

2

3

0 1 2 3
0

1

2

3

Figure S10: LOCO-EFA is invariant to image rotation or mirroring, nor sens-
itive to image resolution. (A) The cell outline of an experimentally observed cell was
mirrored along the y-axis and/or rotated over different angles, after which LOCO-EFA
was applied to each image separately. (B) The Ln values and other derived metrics were
invariant to those transformations. (C) The resolution of the original image was reduced,
such that the number of contour points decreased from 1104 to 253, 108 and 27 (from
left to right, respectively). (D) The Ln numbers and the associated metrics only deviated
from the high-resolution values when the resolution was very low and the cell outline
was clearly deviating from original cell outline. This in contrast to the skeletonisation
method, for which even marginal resolution reductions can cause large deviations in the
outcome.
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Supporting Table

Table S1: Three types of specified cell shapes (SCS) as used in Figure S6 and Figure S7.

SCS1 SCS2 SCS3

Target Area 858 1167 1197

Pointedness 6912 5328 5207

Number of lobes 3–10 3–10 3–10

Roundness 382 518 434

Elongation 4 28 5927

C code of LOCO-EFA method

Code written in C which applies the full procedure to calculate the Ll and Ll values to any
file containing contour coordinates. For each computational step, it is indicated where the
relevant mathematical details can be found in the Supplementary Materials and Methods.
We have intentionally kept the code as bare as possible, without for example any graphical
interface, to allow it to be trivially compiled and run on any platform. Details regarding
compilation and execution can be found in the header of the file.

Outline example for code

Contour data of the cell presented in Figure 3S, Figure S3A and Figure S10. This file, or
any other file containing contour data, can be used as an input for the program.
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Click here to Download C code of LOCO-EFA method

Click here to Download Outline example for code

http://www.biologists.com/DEV_Movies/DEV156778/code.c
http://www.biologists.com/DEV_Movies/DEV156778/celloutline.csv


Supporting Movies

Movie 1: Approximation of a closed contour using Elliptic Fourier Analysis.
A given two-dimensional shape can be approximated using EFA by summing n elliptic
harmonics as follows: each nth elliptic harmonic traces n clockwise or counter-clockwise
revolutions while moving around the previous elliptic harmonic.

Movie 2: Direction of rotation opposite to the first harmonic ellipse. EFA mode 3
generating a shape with 4 features, its rotation direction opposite to the rotation direction
of the first harmonic.
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http://movie.biologists.com/video/10.1242/dev.156778/video-1
http://movie.biologists.com/video/10.1242/dev.156778/video-2


Movie 3: Direction of rotation same as the first elliptic harmonic. EFA mode 3
generating a shape with 2 features, its rotation direction the same as the rotation direction
of the first harmonic.

Movie 4: Exception of the rule regarding rotation direction. If the eccentricity
of an elliptical harmonic is very high, the number of generated lobes does not follow the
rule-of-thumb proposed by Diaz et al. (1990). Here, EFA mode 3 generates a shape with
4 features, although its rotation direction is the same as the rotation direction of the first
harmonic.
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Movie 5: Example of an in silico simulation of a population of cells with more
complex specified shapes. CPM simulation of multi-lobed cells take up pavement-like
cell shapes when they are allowed to interact with their neighbours within a confluent
tissue.
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