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A simplified mechanism for anisotropic constriction in Drosophila
mesoderm
Konstantin Doubrovinski1,*, Joel Tchoufag2 and Kranthi Mandadapu2,3

ABSTRACT
Understanding how forces and material properties give rise to tissue
shapes is a fundamental issue in developmental biology. Although
Drosophila gastrulation is a well-used system for investigating tissue
morphogenesis, a consensus mechanical model that explains all the
key features of this process does not exist. One key feature of
Drosophila gastrulation is its anisotropy: the mesoderm constricts
much more along one axis than along the other. Previous
explanations have involved graded stress, anisotropic stresses or
material properties, or mechanosensitive feedback. Here, we show
that these mechanisms are not required to explain the anisotropy of
constriction. Instead, constriction can be anisotropic if only two
conditions are met: the tissue is elastic, as was demonstrated in
our recent study; and the contractile domain is asymmetric. This
conclusion is general and does not depend on the values of model
parameters. Our model can explain results from classical tissue-
grafting experiments and from more-recent laser ablation studies.
Furthermore, our model may provide alternative explanations for
experiments in other developmental systems, including C. elegans
and zebrafish.
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INTRODUCTION
A fundamental process in animal development is gastrulation,
whereby a single epithelial sheet gives rise to a multilayered
structure (Sweeton et al., 1991; Leptin and Grunewald, 1990). In
Drosophila, gastrulation initiates when the prospective mesoderm
cells, which are located in a rectangular domain in the ventral part of
the embryo, constrict apically (i.e. on the outer surface of the
embryo, see schematic in Fig. 1). As the mesodermal cells constrict
across their apical faces, they become wedge shaped and elongate
along the apico-basal axis (Sweeton et al., 1991; Leptin and
Grunewald, 1990). Apical constriction of the mesodermal cells is
widely believed to be driven by myosin-generated active stresses in
the apical domains of those cells (Dawes-Hoang et al., 2005). In
accordance with this, the concentration of apically localized myosin
increases dramatically in the constricting cells concomitantly with
the onset of apical constriction (Martin et al., 2010). Following
apical constriction, the surface of the embryo forms a furrow at the

ventral midline. The furrow deepens and closes off; in this way, the
mesoderm is brought into the interior of the embryo.

The focus of this study is the initial phase of gastrulation when
mesodermal cells constrict apically, before the surface begins to fold
inward. Notably, as mesodermal cells shrink, the rectangular
mesodermal domain contracts strongly along its shorter axis and
much less so along the longer axis. For brevity, the length of the
mesodermal domain along the shorter mediolateral axis will be
referred to as the ‘width’, and the length of its longer anteroposteior
axis will be referred to as the ‘length’. Thus, the length-to-width
ratio increases drastically in the course of the constriction of the
mesoderm, see schematic in Fig. 1. Because mesoderm constriction
in Drosophila melanogaster is not accompanied by appreciable cell
rearrangements, the length-to-width ratio of individual mesodermal
cells must increase in the course of tissue contraction (Martin et al.,
2010; Spahn and Reuter, 2013).

This anisotropic constriction has been the subject of considerable
interest. One key experiment was carried out in a classical paper by
Maria Leptin and Siegfried Roth (Leptin and Roth, 1994), in which
patches of mesodermal tissue (either nuclei or cytoplasm) were
transplanted into mutant embryos that lacked mesoderm. If the
contractile domain were symmetric (e.g. round or square) it would
constrict symmetrically, whereas if the contractile domain were
elongated, it would constrict anisotropically. Furthermore, the
geometry of contraction of mesodermal patches was independent of
the position and orientation of those patches within the embryo and
was dependent only on the geometry of the patch. This showed that
anisotropic constriction is a locally autonomous effect, and is not,
for example, induced by maternal gradients (i.e. factors that localize
in a patterned manner in a freshly laid egg, notably Bicoid,
Nanos, Torsolike and Dorsal). The mechanism driving anistropic
constriction remained unclear, however. Two more recent papers
have proposed graded tension (Spahn and Reuter, 2013) or
mechanosensitivity (in particular, feedback between stress and
nematic order of actin filaments; Chanet et al., 2017) as the source of
anisotropy. Here, we propose a simple mechanistic explanation for
anisotropic constriction of the mesoderm that does not invoke any of
these effects.

RESULTS
The model
We start by describing model assumptions, then present the
corresponding equations below. We model the surface of the
embryo as a flat (two-dimensional) elastic sheet. This elastic sheet
may be pictured as a network of spheres connected by springs as
shown in Fig. 1. The model sheet will contain a rectangular
contractile domain with horizontal and vertical dimensions Lx
(length) and Ly (width), respectively (see Fig. 1). The size of the
contractile domain is taken to be much smaller than the size of the
simulated sheet in order to avoid boundary effects. In order for this
contractile domain to shrink it must carry active contractile stress, orReceived 3 May 2018; Accepted 26 October 2018
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‘tension’, which is measured in units of force per unit length. In
Fig. 1, the presence of active stress in the contractile domain is
illustrated by red arrows, which are directed in parallel with the
springs. It is assumed that the active stress within the contractile
domain is uniform (having the same magnitude everywhere) and
isotropic (same magnitude in every direction). In particular, in
Fig. 1, all motors are the same regardless of the orientation of the
corresponding spring or the position of the spring. Outside of the
contractile domain, the actively generated stress is absent. In the
real embryo, active contractile stress is generated by active
myosin motors. As active contractile stresses do not depend on
instantaneous displacement, there is no feedback to force generation
in this model.
The above assumptions make up a complete description of the

model. Combining these assumptions with standard equations of
linear elasticity, assuming that the elastic sheet is in mechanical
equilibrium [see Landau and Lifshitz (1970), in particular equation
13.4 therein], we have:

E

2ð1þ sÞr
2uþ E

2ð1� sÞrr � uþr � m ¼ 0; ð1Þ

where u is the in-plane deformation of the sheet, E is Young’s
modulus (more accurately, this quantity represents Eh, where E is
the three-dimensional Young’s modulus and h is the thickness of
the sheet), σ is the Poisson’s ratio and μ is the active stress
tensor within the contractile mesodermal domain (and does not, in
general, correspond to a conservative force, e.g. Jülicher et al.,
2007). We take active stress to be isotropic, μ=φI, with I being the
identity matrix, and φ(r)=φ0Π(x/Lx)Π(y/Ly), where Π denotes the
‘top hat’ function that equals identity between−0.5 and 0.5 and zero
otherwise. The magnitude of active stress is constant in the
mesodermal domain and zero outside. (If some uniform active
stress is present outside the contractile domain, φ0 may be
considered the difference between the active stress inside and that
outside. Since Eqn 1 takes a derivative of stress, the solution
depends only on the difference in contractility between the
domains.) We ignore viscous relaxation of stresses, as it was
found experimentally that those stresses persist on a time-scale

comparable with (but not significantly shorter than) the time-scale
of tissue dynamics (Doubrovinski et al., 2017). Finally, we note that
the assumption that the elastic sheet is in mechanical equilibrium is
an idealization: it is not known whether developmental dynamics
proceed adiabatically.

The model is schematically illustrated in Fig. 1. The elastic sheet
is represented by a spring network with nodes illustrated as spherical
beads. For simplicity, the illustration was made somewhat
misleading: a network of squares is not isotropic, whereas Eqn 1
describes an isotropic elastic material. Direct rheological
measurements have demonstrated that the membrane surface of
embryonic tissue is highly elastic and that elasticity persists on a
time-scale that is well comparablewith the time-scale of gastrulation
(Doubrovinski et al., 2017). Myosin-generated tension in the
mesodermal domain is well established (Dawes-Hoang et al., 2005;
Martin et al., 2009, 2010).

Additionally, the proposed model involves only a few
dimensional parameters. The elastic sheet that represents the
epithelium has Young’s modulus E, which determines the force
required to stretch material a given amount and may be thought of as
a multi-dimensional counterpart of a spring constant. An elastic
material is further characterized by its Poisson’s ratio, σ, which
determines how much a material shrinks in one direction when it is
being stretched along a perpendicular direction. Finally, the active
stress (or, equivalently, tension) inside the contractile domain has
magnitude of φ0. As tension is assumed not to vary with either space
or direction within the contractile domain, only one number is
needed to describe this active stress.

Analysis of the model: constriction geometry
To analyze the behavior of the minimal model (Eqn 1) we
performed numerical simulations; implementation details are given
in the Materials and Methods. If the contractile domain is chosen to
be asymmetric (i.e. Lx>> Ly, or length is larger than width),
simulations reveal constriction to be greater along the shorter axis of
the domain, see Fig. 2A-C and Fig. S1. In contrast, when the
contractile domain is chosen to be symmetric (i.e. Lx=Ly),
constriction is equal along both axes, Fig. 2F. Thus, this simple
model, which involves only elastic material and an isotropic

Fig. 1. Model for gastrulation. Schematic of tissue dynamics with illustrations of the model underneath. Left: cross-section through Drosophila embryo.
The embryo consists of a single layer of epithelial cells surrounding a central unstructured yolk sack. Apical surfaces face outward, basal surfaces face
inward. Middle: the contractile domain (mesoderm) comprises a rectangular patch of cells some 20 cells wide and 80 cells long. Elastic elements are
illustrated as springs and active forces are represented by ‘motors’ (M). Both are attached to the two adjacent ‘beads’ in parallel. Beads are assumed to feel
viscous drag from the ambient environment when moving. It is assumed that forces exerted by motors are constant in time and space. Right: the contractile
region shrinks anisotropically, contracting much more strongly along the width than along the length.
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contractile force, replicates the key experimental finding that the
anisotropy versus isotropy of constriction is dependent on geometry
(Leptin and Roth, 1994).
To examine the influence of model parameters on these

predictions, we performed a parameter sweep (Fig. 2D,E). The
non-dimensionalized version of Eqn 1 has the following
dimensionless parameters: the ratio of Young’s modulus to active
stress magnitude E/φ0, Poisson’s ratio σ and the length-to-width
ratio of the contractile domain Lx/Ly. The value of Poisson’s ratio σ
was varied over the whole physically relevant range, which is
between 0 and 1/2 (Greaves et al., 2011). It is seen that the
qualitative nature of the solution does not vary appreciably with the
value of the Poisson’s ratio. Simulation results for three different
choices of the active stress-to-stiffness ratio φ0/E are given in
Fig. 2D. Since Eqn 1 is linear, the displacement is proportional to
active stress and therefore the solutions (i.e. the ux and uy
components of the displacement, shown for one particular choice
of parameters in Fig. 2C) for different φ0/E are related by simple
scaling. From this, it easily follows that anisotropy is zero in the
limit of zero force and increases arbitrarily for sufficiently high
values of φ0/E. Additionally, we systematically examined the

influence of the initial aspect ratio of the contractile domain on the
final equilibrium geometry (Fig. 2E); to achieve this, we used
analytical expressions in the Materials and Methods. It was found
that contraction is always asymmetric, although the degree of the
asymmetry may vary. Symmetric domains contract symmetrically
(Fig. 2E). In summary, our results are not sensitive to the choice of
the elasticity parameters.

To examine the influence of the domain in which the contractile
domain is embedded, we performed additional simulations. To
achieve this, we simulated square as well as rectangular contractile
domains embedded in either square or rectangular stress-free
domains. The deformation of the contractile domain becomes
essentially independent of the geometry of the embedding domain,
provided the embedding domain was chosen to be sufficiently large
(Fig. S2C). To further formally examine the influence of the
geometry of the embedding domain, we systematically determined
the final equilibrium aspect ratio of the contractile domain as a
function of model parameters and the size of the embedding
domain. Fig. S3 shows that for a fixed geometry of the contractile
domain and fixed model parameters, the equilibrium ratio
converges to a limit as the embedding domain is made larger and

Fig. 2. Simulations of the model. (A) Schematic showing
the geometry of the problem and the quantities describing
the resulting deformation. After the deformation sets in, a
point located at spatial position r displaces to a new spatial
position r+u(r), where u has components ux and uy. (B) An
example of a final mechanical equilibrium state. Parameters
are E=1, σ=0.2 and φ0=0.5 (see main text for notation);
entire domain size is 50×50; contractile domain is 10×2. For
readability, only the noticeably deformed middle portion of
the domain is shown. Simulation was carried out using finite
differences. (C) Same simulation as in B showing the
distribution of the deformation as a field of displacement
vectors. (D) Asymptotic (equilibrium) aspect ratio of the
contractile domain as a function of Poisson’s ratio (x-axis)
and contractile active stress (three different curves). All
parameters (except the ones that are varied) are as in B,C.
Black, red and green curves correspond to φ0=0.5, φ0=0.75
and φ0=1, respectively. (E) Equilibrium length-to-width ratio
(Lx/Ly) of the contractile domain as a function of the initial
ratio at time zero for three values of active contractile stress.
All parameters, except those being varied are as in B.
(F) Symmetric domains contract isotropically. All
parameters except domain size are as in B. Contractile
domain size is 4×4.
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larger. Finally, to further study the influence of the boundary
conditions, we compared simulations with both free and fixed
boundaries using finite element simulations (Fig. S2B). Our results
also indicate close quantitative agreement in this case, again
confirming that the boundary effects are irrelevant as long as
the embedding domain is chosen to be sufficiently large. As
convergence with respect to the size of the embedding domain is
reached for very modest sizes of the embedding domain (for the
relevant aspect ratio of the contractile domain, see Fig. S3), we
believe that our results are fully relevant to the biological situation.
Importantly, if the contractile domain is not embedded in an elastic

continuum, the equilibrium configuration will not be anisotropic, as
may be seen by directly solving Eqn 1 analytically. In this simpler
case, a solution can be found by assuming that the solution is linear,
i.e. ux=bxx, uy=byy (with bx,y being constants), and using the boundary
conditions. Thus, the conclusion that the deformation remains
anisotropic at long times appears to be a consequence of the particular
geometry in our problem. The main effect described in our model is a
special case of a more-general phenomenon when an (elastic) solid
body is subjected to uniform isotropic active stress: when mechanical
equilibrium sets in, total stress needs not remain either isotropic or
uniform. A further discussion of a similar effect in the context of a
different developmental model, C. elegans, may be found in Vuong-
Brender et al. (2017). In addition, related effects for the case of a
viscous model have been previously discussed by Salbreux et al.
(2009).

Analysis of the model: laser ablations
Next, we tested whether the model correctly predicts the outcome of
laser ablation experiments. Specifically, it has been shown that

when the surface of the mesoderm is laser ablated to create an
initially round hole, the hole will expand predominantly along the
longer axis of the embryo. This anisotropy of the response to
ablation appears to increase as gastrulation proceeds: immediately
after the onset of gastrulation the response to ablation is
approximately isotropic; later ablations become gradually more
anisotropic with time (Martin et al., 2010).

To simulate these experiments, we implement the model with a
rectangular contractile domain as before, but after the deformation
field has evolved to mechanical equilibrium edges within a circular
region are removed, to mimic a laser ablation (Fig. 3A). The initially
round hole expands anisotropically, with its long axis alignedwith the
long axis of the contractile domain. This result qualitatively agrees
well with the experiments.

To see this intuitively, let us again consider themodel in Fig. 2B,C.
After the onset of contraction, the domain will shrink more along the
shorter vertical direction and less along the perpendicular horizontal
direction. Now, consider what would happen if one were to remove
a single vertical spring-edge in the interior of the contractile domain
after contraction sets in (Fig. 3B). This vertical spring-edge has two
adjacent vertical edges, colored blue in Fig. 3B. If the contractile
domain had already undergone some contraction, those adjacent
vertical neighbors would have shrunk to become shorter than their
preferred rest length. Spring forces in those adjacent spring edges
would tend to expand those adjacent springs, thus counteracting the
expansion of the ‘hole’ along the vertical direction. Now, instead,
consider what would happen if a horizontal spring-edge is removed.
The adjacent horizontal spring-edges (colored green in Fig. 3B) are
under relatively less compression (i.e. deviate less from their rest
length). Thus, elastic forces in those springs will counteract the

Fig. 3. Simulation of an ablation experiment.
(A) Final state following a simulated laser ablation.
A set of vertices in the center of the contractile
domain are removed (‘ablated’) after a finite
deformation sets in. Parameters and the details of
implementation are given in the Materials and
Methods. (B) Schematic intuitively explaining the
outcome of the simulation in A (see main text for
the details).
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expansion of the ‘hole’ to a lesser extent than was the case with the
vertical spring-edge. In this argument, it has been assumed that
active forces on every spring in the interior of the contractile domain
are the same on every edge of the network. In order to correctly
interpret the outcome of the ablation experiments, it is absolutely
necessary to distinguish between ‘total stress’, ‘elastic stress’ and
‘active stress’: elastic stress is due to the springs; active stress is
due to the motors (myosin); and total stress is the sum of the two.
Ablation experiments measure total stress, which becomes
increasingly anisotropic over the course of the contraction. Active
stress, however, remains isotropic throughout the course of the
dynamics. Previously, the anisotropy in response to ablation was
interpreted as evidence for anisotropy of the active stress (Martin
et al., 2010). The present model provides a significantly simpler
interpretation: total stress must become anisotropic if the domain is
asymmetric (and if the tissue is elastic), whereas active stress need
not be anisotropic. In addition, in the present model, the asymmetry
of contraction is the cause, not a consequence, of anisotropic total
stress as measured by laser ablation.

DISCUSSION
This paper introduces a simple model that can explain the asymmetry
of contraction of the mesoderm in Drosophila melanogaster. In the
proposed model, the asymmetry of contraction is a consequence of
the asymmetry of the geometry of the contractile domain and not
because of, for example, anisotropies in active stresses or graded
distribution of those stresses within the contractile domain.
Importantly, in our model, anisotropy arises from interactions of
the mesoderm with the ambient tissue and is not an inherent property
of themesoderm itself. Let us now compare and contrast the proposed
mechanism with a number of alternative models.
One alternative possibility is that active stresses in the contractile

domain are anisotropic, i.e. the cells have a preferred axis along
which to exert active stress. We believe that this scenario is unlikely.
First, there is no evidence of planar cell polarity in prospective
mesodermal cells of the ventral furrow.Moreover, this interpretation
is at odds with the observations by Leptin and Roth (Leptin
and Roth, 1994), where it was shown that contractile grafts of
mesodermal tissue contract along their shorter dimension regardless
of their position or orientation within the embryo. If active stresses
in those contractile patches were anisotropic, a mechanism has to
exist to align those active stresses with the shorter axis of the domain
through some self-organized process. This general idea has been
proposed, but a concrete mechanism has not been demonstrated
(Chanet et al., 2017). Although not impossible, this appears a
much more complicated explanation than the one we propose.
Additionally, if active stresses were anisotropic at the onset of
contraction, the anisotropy as measured by laser ablation
experiments would be present immediately after the onset of
contraction, rather than building up gradually, as has been shown
experimentally (Martin et al., 2010).
A second model could propose that material properties of the

contractile domain are anisotropic. For example, one can imagine
that the cells of the contractile domain are easier to contract along
the mediolateral axis than along the anteroposterior direction. This
possibility may be refuted on the same basis as the possibility of
anisotropic active stresses.
Other possible explanations include spatial nonuniformity

of active stresses within the contractile domain, or spatial
nonuniformity of material properties. For example, much like in
the model proposed by Mayer et al. (2010) and Behrndt et al.
(2012), one could imagine that active stresses are isotropic but form

a gradient that peaks at the center of the contractile domain and
decays gradually along the mediolateral direction. In this case, it can
be shown that contraction would be directed along the mediolateral
axis of the embryo (Spahn and Reuter, 2013). In fact, there are
gradients of gene expression for two regulators of myosin, t48 and
fog (Lim et al., 2017), and there may be a gradient of myosin density
along the mediolateral axis of the embryo (Lim et al., 2017; Spahn
and Reuter, 2013), although it is unclear from published data
whether the myosin gradient appears early enough to be the cause
rather than the consequence of anisotropic constriction. Although
these data suggest that graded tension might contribute to
anisotropic constriction, this potential mechanism is not sufficient
to explain all experimental data. In particular, Leptin and Roth
demonstrated that a patch of transplanted mesodermal cells will
consistently constrict along its shorter axis (Leptin and Roth, 1994).
In these experiments, the patch of transplanted mesodermal cells
descended from a small number of transplanted nuclei and it seems
highly unlikely that any gradient would be preserved in this process.
Therefore, some alternative mechanism must drive anisotropic
constriction in this case.

Anisotropy of mesoderm contraction has been the focus of a
recent experimental paper (Chanet et al., 2017). Chanet et al.
modified the geometry of the contractile domain by genetic means.
The observations obtained (Chanet et al., 2017) are fully consistent
with and complementary to the results from Leptin and Roth (1994):
more symmetric domains constrict less anisotropically. According
to Chanet et al. (2017), the anisotropy of constriction was attributed
to a mechanosensitive response of mesodermal cells leading to re-
orientation of actin filaments perpendicularly to the axis of
contraction. Although our work does not rule out this possibility,
it shows that such effects are not necessary to explain the key aspects
of tissue dynamics.

Crucially, the phenomenology presented here may apply widely
to other developmental systems. In a number of recent publications
(Mayer et al., 2010; Behrndt et al., 2012), the response of embryonic
tissue to laser ablation was examined in zebrafish or C. elegans. In
these studies, the initially round hole generated through ablation
expanded asymmetrically to become elliptical; as mentioned, the
same results have been reported in gastrulating Drosophila tissue
(Martin et al., 2010). In particular, the hole expands more in the
direction perpendicular to the axis of tissue contraction. In the
former papers, the observation was interpreted as an effect of
anisotropic viscous shear (Mayer et al., 2010; Behrndt et al., 2012).
In Chanet et al.’s study, this result was interpreted to mean that
actively generated tension was anisotropic (Chanet et al., 2017). In
the present study, it is shown that neither anisotropic viscous shear
nor anisotropic active tension is required for an anisotropic response
to laser ablation. Furthermore, it is shown that an anisotropic
response to ablation is an inevitable consequence of tissue elasticity.
In this way, the present study provides a simple parsimonious
explanation of a series of important observations that we believe
may have previously been interpreted incorrectly.

An earlier theoretical work by Spahn and Reuter (Spahn and
Reuter, 2013) used a vertex model to study the mechanisms
that underlie anisotropic tissue constriction during Drosophila
gastrulation. Based on this modeling, the authors proposed two
potential mechanisms to generate anisotropic constriction. One of
these models relied on a gradient of contractility along the dorso-
ventral axis; as discussed in the previous paragraph, work from
Leptin and Roth (Leptin and Roth, 1994) indicates that such a
gradient is dispensable for anisotropic constriction. In the second
model proposed by Spahn and Reuter anisotropic constriction could
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be due to the contractile domain being rigidly anchored at the
anterior and posterior domain boundaries (i.e. anisotropy being
essentially a boundary effect). This solution seems biologically
irrelevant:Drosophilamesoderm does not appear to be flanked by a
row of cells that are being artificially held fixed at one end.
Furthermore, our model explains anisotropic constriction without
invoking such effects.
The model presented here qualitatively agrees with the available

experimental data. In the future, this model could be tested more
rigorously by systematically mapping the distribution of material
properties of the tissue [similar to the approach used by
Doubrovinski et al. (2017)] and the distribution of total stress
(using, for example, laser ablation). With these data, the pattern of
deformation can be determined uniquely without fitting.

MATERIALS AND METHODS
Analytical treatment
In this section we solve Eqn 1 using the Fourier transform. We will be
considering Eqn 1 on a rectangular domain with side lengths Λx and Λy.
Rectangular contractile region x0<x<Lx−x0, y0<y<Ly−y0 is assumed to be
under constant isotropic active stress of magnitude φ. We Fourier-expand
u=[ux(x, y), uy(x, y)] as:

ux ¼
P1
n¼0

P1
m¼0

Bnm sin
pnx

Lx

� �
cos

pmy

Ly

� �
;

uy ¼
P1
n¼0

P1
m¼0

Anm cos
pnx

Lx

� �
sin

pmy

Ly

� �
:

A.1

It is useful to introduce simplified notation α≡E/(2(1+σ)), β≡E/(2(1−σ)).
Substituting (Eqn A.1) into Eqn 1 and collecting coefficients corresponding
to the same modes we obtain:

�a
pn

Lx

� �2

þ pm

Ly

� �2
" #

�b
pn

Lx

� �2
( )

Bnm�b
p2

LxLy

� �
nmAnmþfb

nm¼0;

�a
pn

Lx

� �2

þ pm

Ly

� �2
" #

�b
pm

Lx

� �2
( )

Anm�b
p2

LxLy

� �
nmBnmþfa

nm¼0;

A.2

where the constant coefficients fb
nm, f

a
nm are given by:

fb
n0 ¼

2f0

LxLy
sin

pnx0
Lx

� sin
pnðLx � x0Þ

Lx

� �
ðLy � 2y0Þ;

fb
nm ¼ 4f0

LxLy
sin

pnx0
Lx

� sin
pnðLx � x0Þ

Lx

� � ðLy�y0

y0

cos
pmy

Ly
dy;

fa
0m ¼ 2f0

LxLy
sin

pmy0
Ly

� sin
pmðLy � y0Þ

Ly

� �
ðLx � 2x0Þ;

fa
nm ¼ 4f0

LxLy
sin

pmy0
Ly

� sin
pmðLy � y0Þ

Ly

� � ðLx�x0

x0

cos
pnx

Lx
dx:

A.3

With the obvious identifications, Eqn A.2 have the form:

�gaþ dbþ fa ¼ 0;
�gbþ daþ fb ¼ 0;

A.4

which is readily solved as:

a ¼ 1

2

fa þ fb

g� d
þ fa � fb

gþ d

� �
;

b ¼ 1

2

fa þ fb

g� d
� fa � fb

gþ d

� �
:

A.5

Combining Eqn A.1-A.5, one obtains an explicit expression for
displacement u as a function of position. As the complete expression is

rather lengthy and not especially telling, we do not provide it here. Instead,
we present plots showing the solution u obtained by directly evaluating the
(truncated) Fourier expansion in Fig. S1A.

Numerical simulations I
The code for all simulations is included in the supplementary information.
Simulations in Fig. 2 were implemented as follows. We solve boundary
problem 1 by introducing an additional term ∂tu on the right-hand side and
evolving the resulting equation to equilibrium. All spatial derivatives were
approximated as second-order central differences. The displacement of the
(outermost) boundary was initially set to zero and not updated (fixed
boundary conditions). As the deformation remained localized away from the
boundary throughout the course of the simulation, the particular choice of
the boundary conditions is expected to not influence the result. Time
integration was carried out using the Euler-forward (explicit) scheme. The
domain was discretized into a regular grid of 800×800; the Euler forward
step was dt=10−5. In order to avoid development of singularities, we
‘smeared out’ the forces at the boundaries of the contractile domain over a
region of finite size. Specifically, force distribution had Gaussian profile exp
(−r2/ξ2), with ξ=0.3 (this was, however, found not to be necessary as no
singularities developed in the limit of much smaller ξ). Parameters are listed
in the corresponding figure caption.

Fig. 2D,E was generated by evaluating the Fourier-expanded expressions
given in the next section. The 600 lowest Fourier modes were summed. We
checked explicitly that analytical results closely matched the results of the
numerical simulations. Although our treatment focuses on the description of
a flat elastic sheet, it may readily be modified to describe a semi-infinite
three-dimensional elastic continuum by replacing the coefficient in front of
the last term of Eqn 1 with E/(1+σ)(1−2σ). The major conclusions about the
anisotropy of the asymptotic state hold in this case as well.

Simulations in Fig. 3 were carried out using a numerical scheme that
differed from simulations in Fig. 2 in order to simplify the implementation
of ablation. Specifically, instead of using a finite difference scheme, we
discretized the domain as an (unstructured) grid of equilateral triangles
whose edges are linear springs. It has been shown that this approximation
reduces to the equations of linear elasticity (i.e. Eqn 1) in the limit of small
strains, see, for example, Seung and Nelson (1988) and Liang and
Mahadevan (2011). Simulation parameters were chosen as follows. The
simulated domain had a size of 2×2, the length of an individual spring edge
was 0.03. Stiffness of an individual spring edge was set to 50. The
contractile domain had a length of 1.2 and awidth of 0.6, and was positioned
in the center of the simulated domain. Edges within the contractile domain
were subjected to compressive force of 2.5. We used fixed boundary
conditions (as in Fig. 2). Ablation was simulated after mechanical
equilibrium was reached (t=5) by effectively removing all nodes and
edges within a circle of radius 0.025 in the center of the domain. Integration
was carried out using Euler-forward scheme with a time step of 5 · 10−4.

For the parameter sweep of (1), we non-dimensionalized the equation.
Dividing throughout by φ0, and rescaling length by the width of the
contractile domain Ly one obtains the re-scaled equation in the same form as
Eqn 1, except with φ0 set to 1, and Young’s modulus E replaced by the
dimensionless ratio E/φ0. The non-dimensionalized version of Eqn 1 has the
following three dimensionless parameters: the ratio of Young’s modulus to
active stress magnitude E/φ0, Poisson’s ratio σ and the length-to-width ratio
of the contractile domain Lx/Ly. The plots in Figs S2C and S3 were
constructed using analytical expressions for the solution in terms of Fourier-
expansion, see Eqn A.1.

Numerical simulations II: finite element implementation
The displacement profiles shown in Fig. S2A,B were obtained by solving
Eqn 1 with the finite element method (FEM) (Zienkiewicz and Taylor,
1991). To that end, we first rewrite Eqn 1 in its compact form as:

r � sþr � ðfIÞ ¼ 0; A.6

where φ(x, y) is the distribution of the active stress introduced in the main
text, I is the identity tensor and s is the Cauchy stress tensor in the entire
domain. This tensor is related to the displacement field u through the
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constitutive relation:

s ¼ lsðr � uÞI þ 2mseðuÞ; A.7

where eðuÞ ¼ 1

2
ðruþruTÞ is the strain tensor and λs μs are elastic

constants that are, in the plane stress approximation, given by:

ls ¼ Es

ð1þ sÞð1� sÞ ; ms ¼
E

2ð1þ sÞ :

Here, E and σ are, respectively, the Young’s modulus and Poisson’s ratio
introduced in the main text.

Weak formulation
In order to obtain the displacement field using FEM, we use a test function v
and rewrite Eqn A.6 in the following weak form:ð

@V

ðs � nÞvdð@VÞ �
ðð
V

½lsðr � uÞðr � vÞ þ 2mseðuÞ : eðvÞ�dV

þ
ðð
V

rf � vdV ¼ 0:

A.8

In Eqn A.8, Ω and ∂Ω are respectively the bulk and boundaries of the
numerical domain, while n is the outward normal vector to ∂Ω.

At this stage, it is straightforward to account for the boundary conditions
on the boundaries on the embedding domain. Both in the case of traction-
free conditions and zero displacement conditions, the first term of Eqn A.8
vanishes. In the former case, this is easily obtained, as s · n=0 on ∂Ω. In the
latter case, that term can be reduced to zero by choosing test functions v that
vanish on ∂Ω. Therefore, Eqn A.8 can be simplified as:

�
ðð
V

½lsðr � uÞðr � vÞ þ 2mseðuÞ : eðvÞ�dVþ
ðð
V

rf � vdV ¼ 0: A.9

Next, we discretize Eqn A.9 by expanding the displacement field in the
basis of shape functions (chosen to be the same as the test functions):

u ¼ PN
j¼1

ujvj , where the uj is a scalar unknown to be found and N is the

number of nodes of the computational domain. Inserting this decomposition
into the weak form and letting v=vi, the displacement field is obtained by
inverting the following linear system:

XN
j¼1

Aijuj ¼ Fi; A.10

where Aij ¼
ÐÐ
V

½lsr � vir � vj þ 2mseðviÞ : eðvjÞ�dV are components of the

stiffness matrix and Fi ¼
ÐÐ
V

rf � vidV are components of the forcing arising

from the active stress.
We discretize the domain Ω with a triangular mesh, choose P2 elements

as shape functions and solve the system of Eqn A.10 using the finite element
open software FreeFem++ (Hecht, 2012). In building the mesh, we ensure
that the contractile (or inner) domain is much more refined than the
embedding (or outer) domain. In order to ensure a smooth transition of the
mesh between the contractile and embedding parts, we include an
intermediate zone where the mesh progresses from being very refined
near the inner domain to being less refined as one approaches the outer
domain. Fig. S4 shows the mesh used to obtain the displacement field that
we plot in Fig. S2A′ and Fig. S2B′.

Boundary conditions treatment
Case of zero displacement condition
In the case of fixed boundary conditions, we use a penalty technique to
enforce uj=0 on the nodes corresponding to the domain boundary. That is, if
p is the index of a node located on the boundary, we ascribe to it a very large
number and write App=1030 as well as Fp=0×1030. Consequently, on the row

of the stiffness matrix corresponding to that node, we havePN
j¼1

Apjuj � 1030up ¼ 1030 � 0, thus leading to up=0.

Case of zero traction condition
In the case of traction-free boundary conditions, we simply solve Eqn A.10,
which was obtained from Eqn A.8 with the traction term (s · n) put to zero on
∂Ω, the boundary of the embedding domain.

However, unlike in the case of zero displacement conditions on ∂Ω, the
embedding domain here is kinematically unconstrained. As a result, we find
numerical solutions of Eqn A.10 that contain contributions from rigid
modes of the system, i.e. the eigenmodes of the stiffness matrix with zero
eigenvalue. Indeed, if us is a solution of Equation A.10, and if ur is an
eigenmode of the matrix Aij with zero eigenvalue, then clearly uh=us+ur is
also a solution of Eqn A.10.

In order to compare the displacement field obtained under the conditions
of zero displacement with that obtained under the condition of zero traction
on ∂Ω, we must first remove the rigid modes contributions from the
numerical solution (uh). This ensures that both displacement fields
correspond to the elastic deformations due the active force only and, in
absence of the latter force, the displacement fields would uniformly zero. To
that end, we proceed as follows.

We first rewrite the numerical solution in the basis of the eigenmodes mj

of the stiffness matrix, i.e. uh ¼
PN
j¼1

ûjmj , where the coefficients of the

expansion are given by the dot products ðuh �mjÞ ¼ ûj . Then, by identifying
the rigid modes as those of the stiffness matrix with zero eigenvalue, we find
three such modes (two translations and one rotation) that we note mk with
k=1, 2, 3. Last, by removing these rigid displacements from the previously
computed solution, we obtain the following displacement field due to the
active force only:

us ¼ uh �
X3
k¼1

ðuh �mkÞmk : A.11

It is the displacement field us that we show in Fig. S2B and Fig. S2B′.
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Figure S1

Color plots showing the magnitude of deformation calculated in Figures 2b,c.
a). The x-component of the deformation field (ux) is shown with red colors
(positive values) indicating rightwards displacement, and blue colors (neg-
ative values) indicating leftwards displacement. b). The y-component of
the deformation field uy; red (positive) indicates upwards displacement, blue
(negative) indicates downwards displacement.
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Figure S2

Convergence of solution with respect to the boundary conditions. a). Val-
idation of the numerical scheme. x- and y-components of the displacement
field (ux and uy) along the vertical and the horizonal cross sections of the
simulated domain (at equilibrium). Three curves compare results using two
numerical schemes (finite differences and finite elements) and the analytical
results using Fourier expansion. Parameters are as in Figure 2b. b). x- and
y-components of the displacement field for the case of fixed (black) and free
(red) boundary conditions obtained using finite elements. Note particularly
close agreement in the vicinity of the contractile domain. All parameters
except domain size as in Figure 2b. c). Final shapes of square and rectangu-
lar contractile domains embedded in either square or rectangular stress-free
domains. The dimensions of the embedding domains were taken to be either
100x100 or 200x100. Initial size of the contractile domain is either 4x4 (left)
or 10x2 (right). The two curves essentially coincide, indicating that the ge-
ometry of the contractile domain is essentially independent of the boundary
conditions (for the chosen domain sizes).
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Figure S3

Convergence of the aspect ratio of the contractile domain in the limit of large
embedding domain (plotted using analytical expressions). Left: Equilibrium
aspect ratio as a function of embedding domain size and Poisson’s ratio.
Right: Equilibrium aspect ratio as a function of embedding domain size and
Young’s modulus. For both plots, the length of the embedding domain is
labeled on the x-axis; its width is smaller by 8 units (the difference between
the length and the width of the contractile domain). The curves were plotted
using the Fourier-expansion given in the appendix. Parameters are as in

Figure 2b.
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Figure S4

Finite element mesh used for calculation in Figure S2b.
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Click here to Download Supplemental code files
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