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FGFR2 is required for airway basal cell self-renewal and terminal
differentiation
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ABSTRACT
Airway stem cells slowly self-renew and produce differentiated
progeny to maintain homeostasis throughout the lifespan of an
individual. Mutations in the molecular regulators of these processes
may drive cancer or degenerative disease, but are also potential
therapeutic targets. Conditionally deleting one copy of FGF receptor 2
(FGFR2) in adult mouse airway basal cells results in self-renewal and
differentiation phenotypes.We show that FGFR2 signalling correlates
with maintenance of expression of a key transcription factor for basal
cell self-renewal and differentiation: SOX2. This heterozygous
phenotype illustrates that subtle changes in receptor tyrosine
kinase signalling can have significant effects, perhaps providing an
explanation for the numerous changes seen in cancer.
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INTRODUCTION
Like human airways, the mouse trachea contains three major
epithelial lineages (Rock et al., 2010; Teixeira et al., 2013). Basal
cells (BCs) are a stem cell population and include slowly dividing
stem cells and committed luminal precursors (Mori et al., 2015; Rock
et al., 2009; Watson et al., 2015). Luminal secretory cells self-renew
and produce terminally differentiated ciliated cells (Rawlins and
Hogan, 2008; Rawlins et al., 2007, 2009). Multiple studies have
shown that SOX2 is a key transcription factor (TF) for the
development and maintenance of all airway epithelial cells (Gontan
et al., 2008; Hashimoto et al., 2012; Ochieng et al., 2014; Que et al.,
2009; Tompkins et al., 2009, 2011). Deletion of Sox2 in adult mouse
tracheal epithelium caused loss of differentiated cells. Moreover, the
Sox2Δ/Δ BCs were less able to proliferate in vitro or in vivo following
injury (Que et al., 2009). SOX2 is thus required for BC self-renewal
and luminal differentiation. SOX2 overexpression can be a driver of
squamous cell carcinoma, which has a predominantly basal cell
phenotype (Correia et al., 2017; Ferone et al., 2016).
FGFR2 function has been extensively studied during lung

branching where one of its roles is to maintain undifferentiated
epithelial progenitors by inhibiting SOX2 expression (Abler et al.,

2009; Que et al., 2007; Volckaert et al., 2013). However, at later
stages of embryonic development ectopic FGF10 can promote BC
differentiation in SOX2+ airway progenitors (Volckaert et al.,
2013). The same study expressed a secreted dominant-negative
FGFR2 in the late stages of embryogenesis and suggested that there
could be a role for FGFR2 signalling in maintenance of airway BCs.
We have now specifically tested this hypothesis in the steady-state
adult mouse trachea, and show that FGFR2 is required for BC self-
renewal and terminal differentiation. Moreover, FGFR2 signalling
maintains SOX2 expression.

RESULTS AND DISCUSSION
FGFR2 is required for normal tracheal homeostasis
We detected FGFR2 protein in airway basal cells and at the apical
surface of secretory cells (Fig. 1A,B), confirming previous results
(Watson et al., 2015). To determine the role of FGFR2 in BCs, we
conditionally deleted one copy of Fgfr2 and activated a GFP
reporter in adult tracheal BCs using Tg(KRT5-CreER);
Rosa26RfGFP/+; Fgfr2fx/+ (Fgfr2 conditional heterozygous, cHet)
and control Tg(KRT5-CreER); Rosa26RfGFP/+ mice (Fig. 1C). To
test for co-recombination between Fgfr2fx and the reporter, we
isolated GFP+ BCs by flow cytometry as GFP+, GSIβ4-lectin+ cells
at 3 weeks post-tamoxifen (tmx) induction and performed RT-
qPCR for Fgfr2 (Fig. 1D). This confirmed that cHet BCs had ∼50%
of the control Fgfr2 mRNA level. Hence, we use GFP+ cells as a
surrogate marker for Fgfr2Δ/+ cells, being aware that co-
recombination will not be 100%. Tracheae were harvested at
intervals to assess the contribution of GFP+, Fgfr2Δ/+ BCs to the
epithelium during homeostatic turnover (Fig. 1E). At 1.5 weeks
post-tmx, ∼30% of total BCs were GFP+ in Fgfr2cHet and control
mice. In controls, this percentage increased to ∼60% at 5 weeks
post-tmx, before dropping to initial levels by 24 weeks. By contrast,
in the Fgfr2cHet tracheae, the percentage of GFP+ BCs remained
approximately constant at 5 weeks, but decreased to less than 5% of
total basal cells by 24 weeks (Fig. 1F). In both genotypes, labelled
BCs produced labelled luminal cells. Luminal differentiation
initially appeared more rapid in the Fgfr2cHets. However, luminal
cell production was not sustained over time, likely due to the loss of
GFP+ BCs, and by 24 weeks the percentage of labelled luminal cells
was significantly lower in the Fgfr2cHet tracheae (Fig. 1G).

This showed that Fgfr2cHet BCs can produce luminal cells, but
that mutant basal and luminal cells are gradually lost. One possible
reason for the loss of Fgfr2cHet cells is differential fitness and
competition with neighbouring wild-type cells (Vivarelli et al.,
2012). To test this, wemixed pure populations ofRosa26RtdTomato/+;
Fgfr2Δ/+with unlabelled Fgfr2+/+BCs (1:2 ratio) and assessed their
ability to compete in vitro at steady-state and following injury. We
were unable to find evidence for differential proliferation or survival
in the mixed cultures and conclude that it is unlikely that cell
competition contributes to the observed loss ofmutant cells (Fig. S1;
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Fgfr2cHet BCs do not differentiate into fully mature luminal
cells
We asked whether the loss of Fgfr2cHet cells was due to a decrease
in cell division. As expected, proliferation rates were low in all
tracheae, but dividing GFP+ cells were observed (Fig. S2A). We
noted an increase in proliferation of the Fgfr2cHet GFP+ cells at

1.5 weeks post-tmx, although this was not statistically significant
and the changewas not sustained over time (Fig. S2B). Thus, altered
proliferation does not explain the phenotype. We also assessed
apoptosis using cleaved caspase 3 staining, but did not identify
caspase 3+ cells (665 GFP+ cells scored in four independent 5 week
samples; Fig. S2C,D).

Fig. 1. Decreasing Fgfr2 levels in basal cells results in altered tracheal homeostasis. (A,B) Adult tracheal sections. (A) Green, FGFR2; red, T1α (basal cells).
(B) Green, FGFR2; red, SCGB1A1 (secretory cells). FGFR2+ secretory cells (arrowheads); rare SCGB1A1+, FGFR2− cells (arrow). (C) Experimental schematic.
(D) Relative expression of Fgfr2 mRNA in GFP+ basal cells from control and Fgfr2cHet mice 3 weeks post-tmx. (E) Representative sections from control
Tg(KRT5-CreER); Rosa26RfGFP/+ and cHet Tg(KRT5-CreER); Rosa26RfGFP/+; Fgfr2fx/+ tracheae. Green, GFP (Rosa reporter); red, T1α (basal cells).
Arrowheads indicate GFP+ basal cells. (F,G) Percentage of the total T1α+ BCs that are also GFP+ (F) and percentage of the total T1α− luminal cells that are also
GFP+ (G). Blue, DAPI. Error bars indicate s.e.m. Scale bars: 50 μm.
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We assessed the ability of Fgfr2cHet cells to differentiate by
analysing the luminal (KRT8) and basal (KRT5) cytokeratins at
5 weeks post-tmx (Fig. 2A). A higher percentage of the total GFP+

cells co-stained with KRT8 in the mutants, indicating that more cells
had begun differentiation to a luminal fate (Fig. 2B). Similarly,
plotting the GFP/T1α staining (Fig. 1D) as a percentage of GFP+

cells (GFP+, T1α−) showed more differentiating cells in the mutants
(Fig. 2B). Thus, Fgfr2cHet cells exit the basal layer at a greater rate
than controls and their descendants take on a luminal KRT8+, T1α−

fate, suggesting a self-renewal defect.
At steady-state, BCs initially differentiate into secretory cells that

later produce ciliated cells (Watson et al., 2015). Cell fate analysis at
5 weeks post-tmx showed that both control andFgfr2cHetBCsproduce

secretory SCGB1A1+ cells (Fig. 2C,D). Moreover, there were no signs
of goblet cell production in themutants (Fig. 2C; n=4MUC5AClo cells
observed from859 cells counted in 5Fgfr2cHet individuals). However,
analysis of acetylated tubulin-positive cilia (marker of terminal luminal
differentiation) at 24 weeks post-tmx showed that the Fgfr2cHet cells
never took on a ciliated cell identity (Fig. 2E).

Fgfr2cHet BCs have high levels of β-galactosidase activity
in vitro
We tested the ability ofFgfr2cHet cells to proliferate and differentiate
in vitro using a high dose of an adenovirus containing CMV-Cre
(Ad-Cre) to recombine Rosa26RfGFP/+; Fgfr2fx/+ and control
Rosa26RfGFP/fGFP BCs grown in self-renewing conditions

Fig. 2. Fgfr2 conditional heterozygous basal cells do not produce terminally differentiated luminal cells. (A) Confocal projections from control and Fgfr2cHet
tracheae 5 weeks post-tmx. Green, GFP (Rosa reporter); red, KRT5 (basal cells); white, KRT8 (luminal cells); blue, DAPI (nuclei). Arrowheads indicate GFP+ luminal
cells. Arrows indicate GFP+ basal cells. (B) Percentage of all GFP+ cells 5 weeks post-tmx that are GFP+, T1 α− (see Fig. 1D) or GFP+, KRT8+ (see A). (C) Sections
fromcontrol andFgfr2cHet tracheae 5 weeks post-tmx.Green, GFP (Rosa reporter); red, SCGB1A1 (club cells); white,MUC5AC (mucous). Arrows indicate club cells
containing a low level of MUC5ACprotein. (D) Percentage of all GFP+ cells 5 weeks post-tmx that areGFP+, SCGB1A1+. (E) Confocal sections from control andFgfr2
cHet tracheae at 24 weeks post-tmx. Green, GFP (Rosa reporter); red, acetylated tubulin (cilia). Error bars indicate s.e.m. Scale bars: 20 μm in A,C; 25 μm in E.
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(Fig. 3A). When analysed by genomic PCR, this resulted in an
almost-pure population of Fgfr2Δ/+ cells (Fig. S3A,B). Four days
after Ad-Cre-mediated deletion, we observed an increased proportion

of KRT8+ cells in the Fgfr2cHet cultures (Fig. 3A-C). This
recapitulates the in vivo phenotype and supports the conclusion that
Fgfr2cHet BCs have a self-renewal defect. Additional cultures were

Fig. 3. Fgfr2 conditional heterozygous basal cells have high levels of β-galactosidase and low levels of SOX2. (A) Experimental schematic for B-G.
(B) Percentage tracheal epithelial cells at day 6 post-seeding expressing KRT5 and/or KRT8. (C,D) Control and Fgfr2cHet tracheal cells day 6 post-seeding.
(C) Green, KRT5 (basal cells); red, KRT8 (luminal cells). (D) X-gal assay for β-galactosidase activity (blue pigment). (E) Representativewestern blots from control
and Fgfr2cHet BCs. (F) Quantification of protein levels in E. (G) SOX2 in cHet BCs day 6 post-seeding. Green, E-cadherin (lateral cell membranes); red, SOX2.
(H,I) Confocal images of control and Fgfr2cHet tracheal sections 5 weeks post-tmx. Green, GFP (Rosa reporter); red, SOX2; magenta, FGFR2. White arrows
indicate lineage-labelled cells with decreased levels of SOX2. Arrowheads indicate lineage-labelled cells with no change in SOX2. Yellow arrows indicate
unlabelled cells with decreased SOX2. Brackets in I indicate a patch of GFP+ cells that have decreased FGFR2 and no SOX2. Blue, DAPI. Error bars indicate
s.e.m. Scale bars: 100 μm in C; 250 μm in D; 50 μm in G; 25 μm in H,I.
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passaged and grown to confluence before differentiation at air-liquid
interface (Fig. S4A-D). The Fgfr2cHet cells survived passaging but
did not reach confluence and failed to express markers of ciliated or
basal cell differentiation. Moreover, passaged cells were unable to
grow in sphere-forming assays (Fig. S4E-H). The passaged
Fgfr2cHet cells were somewhat enlarged and flattened, possibly
indicating a senescent phenotype (Rodier and Campisi, 2011). We
therefore tested for senescence-associated β-galactosidase activity in
primary cultures of Fgfr2cHet cells. β-Galactosidase activity was
detected in 3/3 Fgfr2cHet cultures and 0/3 controls (Fig. 3D).

Senescence of the Fgfr2cHet cells in vivo could potentially explain
why the luminal GFP+ cells can express secretorymarkers, but do not
later produce ciliated cells. However, we cannot absolutely exclude a
luminal fate choice defect in Fgfr2cHet BCs.

Lower levels of SOX2 expression in the Fgfr2 conditional
heterozygous cells
We determined the effects of decreasing FGFR2 signalling on
downstream pathways using immunoblotting. There was a 1.5-fold
decrease in phosphorylated AKT in the Fgfr2Δ/+ cells (Fig. 3E,F),

Fig. 4. FGF7 and FGF10 increase colony size of
wild-type basal cells. (A) Experimental
schematic. Epithelial cells plated at low density,
3×104 cells/insert. (B) Colonies formed by control,
FGF7- or FGF10-treated wild-type cells. Red,
E-cadherin; blue, DAPI. Scale bar: 100 μm.
(C) Number of cells per colony in B. Data are
mean±s.e.m. (D) Level of Sox2 mRNA relative to
control (normalized to 1) in cells treated with FGF7
or FGF10 for 1 or 2 days. Error bars indicate
s.e.m. (E) Fgfr2cHet BCs rarely make self-
renewing divisions in which a newBC is produced.
Mutant BCs are more likely to produce
descendants with luminal morphology/markers
that are unable to completely differentiate,
possibly because they senesce. The result is that
GFP+ Fgfr2cHet cells are gradually diluted out
from both the basal and luminal populations, and
the epithelium is sustained by GFP− wild-type
BCs.
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but no change in phosphorylated ERK1/2 (Fig. S3C,D). These
changes are consistent with a decrease in FGFR2 signalling via the
PI3K-AKT pathway, which was implicated as the main pathway
downstream of FGFR2 in adult small airway secretory cells and the
developing trachea (Volckaert et al., 2011, 2013).
Most strikingly, there was a twofold decrease in SOX2 in the

Fgfr2Δ/+ cells (Fig. 3E,F; Fig. S3C,D). We confirmed the decrease
in SOX2 protein at a cellular level by in vitro immunostaining
(Fig. 3G). Similarly, there was consistently lower SOX2 expression
in GFP+ cells in the Fgfr2cHet tracheae in vivo (Fig. 3H, arrows). As
expected from the genetic strategy, in the mutants we also observed
GFP+, SOX2+ cells (Fig. 3H, arrowheads) and GFP−, SOX2− cells
(Fig. 3H, yellow arrows), both are likely to have recombined only
one floxed allele. Co-immunostaining with FGFR2 confirmed that
the GFP+, SOX2+ cells observed in the mutants retained high levels
of FGFR2 protein (Fig. 3I).

FGF7 and FGF10 can promote BC colony expansion in vitro
We predicted that if a decrease in Fgfr2 results in loss of BC
self-renewal, then activation of FGFR2 in vitro should promote the
growth of BC colonies. FGF7 and FGF10 are expressed in
homeostatic tracheae (Balasooriya et al., 2016) and are known to
activate FGFR2 preferentially in vitro and in vivo (Ornitz et al., 1996).
We plated wild-type BCs at low density and added FGF7 or FGF10
on culture day 2 after colonies were established (Fig. 4A). Addition of
FGF7 or FGF10 had the opposite effect to decreasing Fgfr2 and
significantly increased colony size (Fig. 4B,C). Interestingly, FGF7
and FGF10 had no effect on the level of Sox2 mRNA (Fig. 4D).
In conclusion, our data suggest that a normal function of FGFR2

signalling in adult airway BCs is to promote asymmetric self-
renewing divisions (Fig. 4E). This is consistent with work in the
embryonic trachea where ectopic FGF10 was observed to promote
BC fate (Volckaert et al., 2013). By contrast, our previous work on
FGFR1 in adult BCs showed that FGFR1 is required to inhibit
steady-state proliferation and does not change the ability of BCs to
self-renew (Balasooriya et al., 2016). Thus, FGFR1 and FGFR2
have independent functions in airway BCs. We cannot exclude the
possibility that they also have other overlapping functions.
We also show that steady-state FGFR2 signalling is required,

directly or indirectly, to maintain SOX2 protein levels in the adult
airway. This is in contrast to the branching lung, where FGFR2
inhibits SOX2 expression at the tips. Interestingly, an FGFR2-
SOX2 inductive relationship has been observed in other cell types
(Mansukhani et al., 2005). An FGFR2-SOX2 relationship may be
maintained in some squamous lung cancers where FGFR2 and
SOX2 transcript levels are often correlated (Kim et al., 2016).

Haploinsufficiency of Fgfr2 in conditionally deleted adult
cells
We were surprised that our Fgfr2cHet BCs displayed striking
phenotypes when germline Fgfr2Δ/+ animals are viable and fertile
(Yu et al., 2003). We therefore looked for subtle epithelial defects in
germline-deleted Fgfr2Δ/+ tracheae compared with wild-type
siblings, but were unable to find any abnormalities (Fig. S5).
Fgfr2 is haploinsufficient in several organs, including the lacrimal
and salivary glands (Shams et al., 2007). We suggest that in mouse
embryos heterozygous for Fgfr2, genetic compensation operates in
most tissues. However, conditional heterozygous deletion in the
adult by-passes such mechanisms. This is very similar to recent
findings from zebrafish genetics where genetic compensation has
been found to operate in germline mutants, but not in acute
knockdowns (Rossi et al., 2015). It raises the possibility that many

genes that the mouse developmental community assume are
uninteresting/redundant based on lack of germline knockout
phenotypes do play important roles in development/homeostasis.

MATERIALS AND METHODS
Mice
Experimentswere approvedby local ethical review committees and conducted
according to UK Home Office project licenses PPL80/2326 and 70/812.
Fgfr2fx (Yu et al., 2003), Tg(KRT5-CreER) (Rock et al., 2009), Rosa26R-
fGFP (Rawlins et al., 2009), Gt(ROSA)26Sortm1(CAG-tdTomato*,-EGFP*)Ees

(Prigge et al., 2013) and Fgfr2Δ/+ animals were generated by crossing
Fgfr2fx toZp3-Cre (deVries et al., 2000). The genetic backgroundwasC57Bl/
6J.Males and females >8 weeks oldwere used. Thewild typeswereC57Bl/6J.

Tamoxifen
Adult (>8 week) animals were injected intraperitoneally four times, every
other day, with 0.2 mg/g body weight tamoxifen.

Tracheal epithelial cell culture
Tracheal cells were isolated following published methods (Rock et al.,
2009). Briefly, cells were incubated in Dispase II (Gibco, 16 U/ml) for
20 min at room temperature. Epithelial sheets were dissociated using 0.1%
trypsin/EDTA. Unless otherwise stated, 5×104 cells in 0.5 ml MTEC/+
media (You et al., 2002) were plated on collagen-coated 12-well tissue
culture inserts (BD Falcon, 353180). For tracheospheres, cells were
passaged into 50% matrigel (Becton Dickinson). Adeno-Cre (University
of Iowa, Gene Transfer Vector Core) was incubated at MOI 2500; vector pfu
1×106 for 8 h. Recombinant mouse FGF7 and FGF10 (R&D Systems) were
used at 100 ng/ml. For competition assays, mixed populations of cells were
grown to confluence and then imaged every 4 h for 10 days in a Nikon
Biostation. Alternatively, confluent cultures were scratched and imaged
every 2 h for 5 days. In vitro experiments were preformed in triplicate.

Immunostaining
Tracheae were fixed in 4% paraformaldehyde at 4°C for 4 h; washed PBS,
sucrose protected, embedded in OCT (Optimum Cutting Temperature
Compound, Tissue Tek) and sectioned at 6 μm. Airway culture inserts were
washed in PBS, fixed for 10 min in 4% paraformaldehyde at room
temperature and permeabilized with 0.3% Triton X-100. Primary antibodies
are listed in Table S1. Alexa Fluor-conjugated secondary antibodies
(1:2000) were from Life Technologies (Table S1). DAPI and fluoromount
were from Sigma. X-gal staining was performed using Senescence β-
galactosidase staining kit (Cell Signaling, 9860).

Microscopy and image scoring
Slides were imaged on a Zeiss AxioImager compound, or a Leica Sp8/Sp5
confocal microscope. Cells were scored manually in Fiji. For cryosections,
every epithelial cell along the entire proximal to distal length of a
longitudinal section from the centre of the trachea was scored. For cultured
cells at least three random fields of view from each insert were scored. Raw
cell counts are available in Fig. S6.

RT-qPCR
Primary tracheal epithelial cells were isolated and sorted using a
fluorescence-activated cell sorting MoFlo flow cytometer. GFP+ basal cells
from control and Fgfr2cHet tracheae were sorted as GFP+, GSIβ4 lectin+

(Balasooriya et al., 2016). Total RNA was extracted using Qiagen RNEasy
Mini Kit. Taqman gene expression assays for Ppia (Mm02342429_g1),
Fgfr2 (Mm01269930_m1) and Sox2 (Mm03053810_s1) (Life
Technologies) were used.

Immunoblots
Cells were collected in Cell Extraction Buffer (Invitrogen, FNN0011) with
protease inhibitor (Roche 04693116001) and PMSF (Sigma, P7626).
Proteins were separated on 10% or 12% SDS-PAGE gels before being
transfer onto Millipore Immobilon-P PVDF Membrane (Merck Millipore,
IPVH00010). Primary antibodies are listed in Table S1. Detection with
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HRP-conjugated secondaries (Abcam, 1:10,000) and enhanced
chemiluminescense (Thermo Scientific, PI-32109) was carried out.
Quantitation is based on protein from three biological replicates separated
on the same polyacrylamide gel. Band intensity was analysed in Fiji
normalised to the loading control.

Statistics
P-values were obtained using an unpaired two-tailed student’s t-test with
unequal variance.
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Figure S1. No evidence for cell competition between Fgfr2Δ/+ and Fgfr2+/+ basal cells in 

vitro. (A) Experimental set-up in B. Freshly isolated basal cells were mixed at a 1:2 ratio, 

grown to confluence on cell culture inserts and imaged at intervals for 10 days. In cultures 

with no competition both cell populations will continue at the same ratio, whereas in cultures 

with competition the patch size of the “loser” cell population will decrease over time. (B) 0 

and 240 hour frames from phase contrast/red channel time-lapse experiments. Upper panel: 

control experiment, red cells: Fgfr2Δ/+, unlabelled cells: Fgfr2 Δ/+. Lower panel: competition 

experiment, red: Fgfr2Δ/+, unlabelled: Fgfr2+/+. No evidence for competition was observed. 

(C) Experimental set-up in D. Freshly isolated basal cells were mixed at a 1:2 ratio, grown to 

confluence on cell culture inserts, mechanically wounded using a pipette tip and imaged at 

intervals for 5 days. In cultures with no competition labelled and unlabelled cells will 

contribute approximately equally to wound closure. In cultures with competition, the “loser” 

cell population will contribute less to wound closure. (D) 0 hour and 114 hour frames from 

phase contrast/red channel time-lapse experiments. Upper panel: control experiment, red 

cells: Fgfr2Δ/+, unlabelled cells: Fgfr2 Δ/+. Lower panels: competition experiment, red cells: 

Fgfr2Δ/+, unlabelled cells: Fgfr2+/+. No evidence for competition was observed. Bar = 0.5 

mm in all panels. See also movies 1-5.  
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Figure S2. Fgfr2 conditional heterozygous basal cells can proliferate and show no 

evidence of apoptosis. (A) Sections from control Tg(KRT5-CreER); Rosa26RfGFP/+ and cHet 

Tg(KRT5-CreER); Rosa26RfGFP/+; Fgfr2fx/+ tracheae at 1.5 and 24 weeks post-tmx. Green: 

GFP (Rosa reporter); red: KI67 (proliferating cells); blue: DAPI (nuclei). Arrowheads mark 

KI67 positive cells. (B) Quantitation of the percentage of GFP+ cells that co-express KI67 

throughout the experimental timecourse. Error bars = sem. (C) Sections from control 

Tg(KRT5-CreER); Rosa26RfGFP/+ and cHet Tg(KRT5-CreER); Rosa26RfGFP/+; Fgfr2fx/+ 

tracheae at 5 weeks post-tmx. Green: GFP (Rosa reporter); red: Cleaved Caspase-3 (apoptotic 

cells); blue: DAPI (nuclei). (D) Section of E18.5 Glucocorticoid receptor null lung (GR-/-, 

also known as Nr3c1) as a positive control for Cleaved Caspase-3 staining. Green: E-

cadherin (lateral membranes); red: Cleaved Caspase-3 (apoptotic cells); blue: DAPI (nuclei). 

Scale bar = 50 µm in all panels. 
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Figure S3. Fgfr2 conditional heterozygous tracheal cells fail to terminally differentiate  

and self-renew in vitro 

(A) Experimental schematic. Control (Rosa26RfGFP/fGFP) and cHet (Rosa26RfGFP/+; Fgfr2fx/+) 

tracheal epithelial cells were seeded in BC expansion conditions and infected with Ad-Cre at 

day 2. On day 4 BCs were passaged onto new collagen-coated inserts for further expansion 

and ALI differentiation. (B) cHet BCs attach and proliferate post-passaging on collagen-

coated inserts. (C, D) Control cultures form fully-differentiated monolayers containing 

multiciliated cells (C) and differentiated BCs (D) by 12 days post-seeding, but cHet BCs do 

not reach confluence and do not express differentiated markers in vitro. Arrows: fragmented 

nuclei, or multi-nucleate cells, seen in cHet cultures, but not controls. (E) Experimental 

schematic. Control (Rosa26RfGFP/fGFP) and cHet (Rosa26RfGFP/+; Fgfr2fx/+) tracheal epithelial 

cells were seeded in BC expansion conditions and infected with Ad-Cre at day 2. On day 4 

BCs were passaged into matrigel for sphere-forming assays. (F) Representative confocal 

sections of control and Fgfr2 cHet cultures 2 days post-seeding in matrigel. Green: KRT8; 

red: KRT5. (G) Images of control and Fgfr2 cHet tracheospheres 9 days post-seeding in 

matrigel. (H) Tracheosphere diameter, arbitrary units. Scale bars = 100 µm (B-D, G); 5 µm 

(F). 
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Figure S4. Decrease in FGFR2 signalling in vitro does not affect levels of MEK-ERK 

signalling. (A) Schematic of in vitro experimental time-course. (B) Representative 

genotyping (gDNA) PCR from Rosa26RfGFP/fGFP and Rosa26RfGFP/+; Fgfr2fx/+ viral-infected 

cells at day 6. Note that the cHet cells have efficient amplification of the wild-type (wt) and 

deleted (∆) alleles, but very little amplification of the floxed (fx) allele indicating high levels 

of recombination in vitro. (C) Representative western blots from control and Fgfr2 cHet day 

6 basal cells showing levels of SOX2, pERK1/2, total ERK and Histone H3. (F) 

Quantification of protein levels in (E). 

Development 144: doi:10.1242/dev.135681: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



60

70

50

40

30

20

10

0

Sibling control Fgfr2∆/+

% total epithelial cells 
which are basal

% luminal cells 
which are ciliated

Pe
rc

en
ta

ge

n=
4

n=
4

A

B

SCGB1A1 T1α ACT DAPI

Mutant: Rosa26RfGFP/fGFP; Fgfr2∆/+Sibling: Rosa26RfGFP/fGFP; Fgfr2+/+

p=0.47

p=0.3

Figure S5. Fgfr2Δ/+ adult mice have a normal tracheal epithelium. (A) Representative 

sections from control Rosa26RfGFP/fGFP and sibling Rosa26RfGFP/fGFP; Fgfr2Δ/+ tracheae. 

Green: SCGB1A1 (secretory cells); red: T1α (basal cells); white: acetylated tubulin (cilia); 

blue: DAPI. (B) Quantitation of the percentage of epithelial cells which are basal, and 

luminal cells which are ciliated in the two genotypes. Error bars = sem. Scale bar = 20 µm. 
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Fgfr2 conditional heterozygous cell counts Figure S2 Figure 1

1 KRT5-CreER/+; R26-fGFP/+ 1033 64 6 0 0.0 1164 564 80 1 14.18 0.17
2 KRT5-CreER/+; R26-fGFP/+ 1469 96 24 1 1.0 1907 934 201 5 21.52 0.51
3 KRT5-CreER/+; R26-fGFP/+ 1024 228 6 2 0.9 1573 789 307 7 38.91 0.89

4 KRT5-CreER/+; R26-fGFP/+; Fgfr2 fx/+ 216 25 3 1 4.0 648 238 82 493 34.45 0.49
5 KRT5-CreER/+; R26-fGFP/+; Fgfr2 fx/+ 1523 203 87 18 8.9 1607 677 221 325 32.64 0.97
6 KRT5-CreER/+; R26-fGFP/+; Fgfr2 fx/+ 1523 285 48 9 3.2 1472 752 241 341 32.05 0.14

Figure 2 Figure 2

1 KRT5-CreER/+; R26-fGFP/+ 1560 552 18 13 2.4 1325 575 360 215 62.61 5.33 291 27 0 10 10 196 0 259 0 43.1 56.9 0
2 KRT5-CreER/+; R26-fGFP/+ 1228 409 25 13 3.2 1444 546 324 222 59.34 4.12 227 46 0 2 10.2 139 0 238 0 36.9 63.1 0
3 KRT5-CreER/+; R26-fGFP/+ 1125 439 35 16 3.6 1288 582 339 243 58.25 5.95 271 18 0 5 11 76 0 184 0 29.2 70.8 0
4 KRT5-CreER/+; R26-fGFP/+ / / / / / / / / / / / / / / / / 51 0 202 0 20.2 79.8 0

5 KRT5-CreER/+; R26-fGFP/+; Fgfr2 fx/+ 1171 408 22 11 2.7 1283 583 234 349 40.14 5.57 159 32 0 8 14.3 31 0 82 0 27.4 72.6 0
6 KRT5-CreER/+; R26-fGFP/+; Fgfr2 fx/+ 1071 218 9 2 0.9 1149 441 151 290 34.24 6.07 126 32 0 6 22.2 30 0 44 0 40.5 59.5 0
7 KRT5-CreER/+; R26-fGFP/+; Fgfr2 fx/+ 970 347 21 6 1.7 1505 733 276 457 37.65 14.51 164 55 0 14 28.9 119 0 109 0 52.2 47.8 0
8 KRT5-CreER/+; R26-fGFP/+; Fgfr2 fx/+ 1001 263 20 9 3.4 1451 529 212 317 40.08 4.45 133 24 0 9 16.2 63 0 94 1 39.9 59.5 0.6
9 KRT5-CreER/+; R26-fGFP/+; Fgfr2 fx/+ 1241 429 8 2 0.5 1195 685 301 384 43.94 19.22 267 55 0 20 24.6 139 0 135 2 50.4 48.9 0.7

1 KRT5-CreER/+; R26-fGFP/+ 1241 351 14 2 0.6 1659 592 216 130 36.49 12.18
2 KRT5-CreER/+; R26-fGFP/+ 1155 381 15 1 0.3 1155 608 188 420 30.92 29.43
3 KRT5-CreER/+; R26-fGFP/+ 1411 319 18 4 1.3 1517 799 152 647 19.02 21.87

4 KRT5-CreER/+; R26-fGFP/+; Fgfr2 fx/+ 1684 57 28 1 1.75 1766 587 7 580 1.19 3.39
5 KRT5-CreER/+; R26-fGFP/+; Fgfr2 fx/+ 1341 125 30 0 0.00 1081 472 32 440 6.78 8.21
6 KRT5-CreER/+; R26-fGFP/+; Fgfr2 fx/+ 1801 143 34 0 0.00 1787 710 31 679 4.37 11.23
7 KRT5-CreER/+; R26-fGFP/+; Fgfr2 fx/+ 1883 20 21 0 0.00 1940 829 9 820 1.09 1.35

Fgfr2 germline heterozygous cell counts Figure S5

 Rosa26R-fGFP; Fgfr2+/+ 340 354 219 416 44.97 61.78
 Rosa26R-fGFP; Fgfr2+/+ 504 576 417 783 39.16 58.01
 Rosa26R-fGFP; Fgfr2+/+ 595 535 479 862 40.84 52.76
 Rosa26R-fGFP; Fgfr2+/+ 648 782 424 939 43.63 50.82

 Rosa26R-fGFP; Fgfr2D/+ 592 497 481 765 40.83 64.84
 Rosa26R-fGFP; Fgfr2D/+ 583 513 438 752 43.67 53.94
 Rosa26R-fGFP; Fgfr2D/+ 716 755 555 874 45.03 57.63
 Rosa26R-fGFP; Fgfr2D/+ 548 635 375 695 44.09 62.87

Fgfr2 in vitro cell counts Figure 3

 Rosa26R-fGFP/ Rosa26R-fGFP 1107 670 337 7 52.2 31.6
 Rosa26R-fGFP/ Rosa26R-fGFP 814 797 424 10 60.4 28.8
 Rosa26R-fGFP/ Rosa26R-fGFP 1001 297 124 0 70.4 20.9

 Rosa26R-fGFP/+; Fgfr2fx/+ 996 476 174 5 39.8 39
 Rosa26R-fGFP/+; Fgfr2fx/+ 813 930 521 18 35.6 40.8
 Rosa26R-fGFP/+; Fgfr2fx/+ 570 564 461 3 35.7 35.3
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Fig. S6. Raw cell counts



Movie 1. In vitro cell competition at confluence, control culture. Red cells: Fgfr2Δ/+, 
unlabelled cells: Fgfr2 Δ/+. Confluent culture imaged every 4 hours for 10 days in a Nikon 
Biostation. Cell clones do not change in size; no evidence for cell competition.  

Movie 2. In vitro cell competition at confluence, experimental culture. Red cells: Fgfr2Δ/+, 
unlabelled cells: Fgfr2 +/+. Confluent culture imaged every 4 hours for 10 days in a Nikon 
Biostation. Cell clones do not change in size; no evidence for cell competition.  

Movies 

Development 144: doi:10.1242/dev.135681: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n

http://movie.biologists.com/video/10.1242/dev.135681/video-1
http://movie.biologists.com/video/10.1242/dev.135681/video-2


Movie 3. In vitro cell competition following wounding, control culture. Red cells: 
Fgfr2Δ/+, unlabelled cells: Fgfr2 Δ/+. Confluent culture was wounded and then imaged every 2 
hours for 5 days in a Nikon Biostation. Both cell populations expand into the wound equally; 
no evidence for cell competition.  

Movie 4. In vitro cell competition following wounding, experimental culture 1. Red cells: 
Fgfr2Δ/+, unlabelled cells: Fgfr2 +/+. Confluent culture was wounded and then imaged every 2 
hours for 5 days in a Nikon Biostation. Both cell populations expand into the wound equally; 
no evidence for cell competition.  

Development 144: doi:10.1242/dev.135681: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n

http://movie.biologists.com/video/10.1242/dev.135681/video-3
http://movie.biologists.com/video/10.1242/dev.135681/video-4


Movie 5. In vitro cell competition following wounding, experimental culture 2. Red cells: 
Fgfr2Δ/+, unlabelled cells: Fgfr2 +/+. Confluent culture was wounded and then imaged every 2 
hours for 5 days in a Nikon Biostation. Both cell populations expand into the wound equally; 
no evidence for cell competition.  
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Table S1. Antibodies 

Primary antibodies used for immunostaining on tissue sections or cells 

Protein Species Dilution 

Factor 

Antigen 

Retrieval* 

Company Order 

number/clone 

Acetylated 

tubulin 

Mouse 1:3000 No Sigma T7451 

Cleaved 

Caspase-3 

Rabbit 1:100 No AbCam ab2302 

E-cadherin Rat 1:3000 No Thermofisher 13-1900 

FGFR2 Rabbit 1:200 No Santa Cruz sc-122 

GFP Chick 1:1000 No AbCam AB13970 

Keratin5 Rabbit 1:500 No Covance PRB-160P 

Keratin8 Rat 1:200 No DSHB TROMA-1 

KI67 Mouse 1:200 Yes BD 550609 

MUC5AC Mouse 1:500 No Thermofisher MS-145P0 

SCGB1A1 Goat 1:400 No Santa Cruz sc9772 

SOX2 Goat 1:200 No Santa Cruz clone Y-17 

T1 Hamster 1:1000 No DSHB 8.1.1 

*Antigen retrieval by boiling tissue sections in 10 mM sodium citrate, pH 8 for Ki67.

Primary antibodies used for western blot 

Protein Dilution Factor Company Order 

number/clone 

p-Akt(S473) 1:3000 Cell Signalling 3787 

Akt (pan) 1:1000 Cell Signalling 4691 

dpErk1/2 1:300 Cell Signalling 4370 

Erk1/2 (total) 1:300 Cell Signalling 4695 

SOX2 1:3000 AbCam ab97959 

Histone H3 1:10000 AbCam ab39655 

β-actin 1:50000 Sigma A3854 

Fluorescent secondary antibodies  

All at 1:2000 from ThermoFisher Scientific (Molecular Probes) 

Donkey anti-mouse 488 A21202 

Goat anti-chick 488  A11039 

Donkey anti-goat 488  A11055 

Donkey anti-rabbit 488 A21206 

Donkey anti-mouse 546 A10036 

Donkey anti-rabbit 546 A10040 

Donkey anti-goat 555  A21432 

Goat anti-hamster 568  A21112 

Donkey anti-rat 594  A21209 

Donkey anti-mouse 647 A31571 

Donkey anti-rabbit 647 A31573 

Goat anti hamster 647  A21451 

Goat anti-rat 647 A21247 
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