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ABSTRACT
During embryogenesis the heart forms as a linear tube that then
undergoes multiple simultaneous morphogenetic events to obtain its
mature shape. To understand the gene regulatory networks (GRNs)
driving this phase of heart development, during which many
congenital heart disease malformations likely arise, we conducted
an RNA-seq timecourse in zebrafish from 30 hpf to 72 hpf and
identified 5861 genes with altered expression. We clustered the
genes by temporal expression pattern, identified transcription factor
binding motifs enriched in each cluster, and generated a model GRN
for the major gene batteries in heart morphogenesis. This approach
predicted hundreds of regulatory interactions and found batteries
enriched in specific cell and tissue types, indicating that the approach
can be used to narrow the search for novel genetic markers and
regulatory interactions. Subsequent analyses confirmed the GRN
using two mutants, Tbx5 and nkx2-5, and identified sets of duplicated
zebrafish genes that do not show temporal subfunctionalization. This
dataset provides an essential resource for future studies on the
genetic/epigenetic pathways implicated in congenital heart defects
and the mechanisms of cardiac transcriptional regulation.
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INTRODUCTION
Embryonic development is driven by the coordinated and precise
regulation of thousands of genes through gene regulatory networks
(GRNs). Each GRN contains the logic circuits that encode the
response of a cell to signaling pathways and other developmental
cues to form a specific tissue or organ, and their disruption can cause
a wide range of birth defects. Therefore, assembly of GRNs is
crucial for identifying genes involved in human disease, increasing
our mechanistic understanding of their interactions and providing
vital information for improved diagnosis and treatment of various
malformations.
One area where this progress is clearly evident is the study of

congenital heart disease (CHD). CHDs are the most common class
of congenital defects in newborns, and remain a major cause of
morbidity and mortality in children and adults. Mutations in at
least 25 transcription factors have been identified in patients with
heart defects (McCulley and Black, 2012). Several of these have

been strongly linked to CHD in model organisms and humans.
However, we still do not have a comprehensive view of the heart
GRN, and a majority of individuals with a CHD do not have
mutations in known genes (Fung et al., 2013). It is also likely that
some CHDs are not genetic, but caused by environmental factors
or perturbations in the epigenome that disrupt the GRN driving
heart morphogenesis (Lage et al., 2012). In order to study these
interactions, it is essential that the complete heart GRN be
assembled.

The heart is the earliest functioning organ in the developing
embryo, and is essential for normal embryonic development and
growth. Morphologically, the heart forms as a linear tube located
along the ventral midline of the embryo, with the inflow tract and
primitive atrium located caudal to the forming ventricle and outflow
tract. The heart then undergoes extensive remodeling, whereby it
loops upon itself to bring the inflow and outflow tracts together and
the primitive atrium into a position rostral/cranial and dorsal to the
primitive ventricle (Männer, 2009). During this same time period,
proliferation and addition of cardiac neural crest cells cause the
chambers to expand, and ventricular trabeculation and wall
compaction begin. Transcription factors, such as Tbx2 and Tbx3,
repress expansion of the region separating the primitive atrium and
ventricle, leading to the appearance of a constriction – the
atrioventricular canal (AVC) – between the developing chambers
(Ribeiro et al., 2007; Singh et al., 2012). The conduction system and
endocardial cushions, which will later form the valves, begin to
expand into the canal. Finally, remodeling events of the great
vessels and septation of the chambers occur in mammals, birds and
partially in most reptiles. These processes, except for septation, are
highly conserved across vertebrate species, including lamprey, fish,
reptiles, birds and mammals (Jensen et al., 2013).

Largely due to the clinical relevance of CHD, efforts to assemble
the cardiac GRN have been a major focus of research for many years.
As a result, several transcription factors involved in cardiac
differentiation and morphogenesis have been identified, including
Nkx2-5 (Chen and Schwartz, 1996) and members of the Tbx
(Piotrowski et al., 2003; Plageman and Yutzey, 2005; Ribeiro et al.,
2007), Gata (Pehlivan et al., 1999), Klf (Nemer and Horb, 2007) and
Fox (Chi et al., 2008; Kume et al., 2001; Wang et al., 2004) families,
and others (McCulley and Black, 2012). This research has focused on
select interactions between individual factors and their downstream
response genes. In order to build the complete GRN, current research
is now using high-throughput techniques to understand how these
factors interact, which genes they regulate, and how they function.
This effort has been greatly aided by the development of high-
throughput genomic technologies and systems biology approaches to
comprehensively identify gene regulatory interactions. These
technologies are greatly accelerating the pace of GRN assembly.

In order to elucidate the GRN driving heart morphogenesis
and differentiation, we used a systems biology approach to identify
regulatory interactions controlling temporal gene expressionReceived 2 May 2017; Accepted 7 August 2017
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patterns in the heart. We conducted an RNA-seq timecourse in
zebrafish with samples collected every 6 hours from 30 hpf to
72 hpf, corresponding to heart looping [30 to 72 hpf (Männer,
2009)], cardiomyocyte maturation, initial trabeculation and sino-
atrial (SA) node establishment, AVC formation [30-55 hpf (Peal
et al., 2011)] and valve formation [beginning at 55 hpf (Pestel et al.,
2016)]. We then clustered genes by their temporal expression
pattern using self-organizing map (SOM) analysis. We discovered
that clusters of genes with similar temporal gene expression patterns
contain cohorts of co-regulated genes, as confirmed by analyzing
the frequency of known gene regulatory interactions within the
clusters. We then searched the proximal cis-regulatory regions to
identify transcription factor binding motifs overrepresented in each
cluster. Using these data, we constructed a large GRN model to
explain the temporal expression patterns in heart morphogenesis.
Importantly, this GRN contained several groups of genes with
similar temporal expression patterns regulated by shared sets of
multiple transcription factors, consistent with the gene battery
hypothesis (Britten and Davidson, 1969; Nelander et al., 2005; Peter
and Davidson, 2011). This resource provides a framework to study
the effects of genetic or environmental factors that affect heart
development and the complex interactions governing combinatorial
control of gene batteries.

RESULTS
Identification and clustering of dynamically expressed
genes in cardiac development
Heart looping and concurrent morphogenetic events begin just
before 30 h post fertilization (hpf ) and are mostly complete by
72 hpf in the zebrafish (Fig. 1A). In order to identify genes that are
dynamically expressed during this critical period, we conducted
RNA-seq on isolated heart tissue taken from eight time points
between 30 hpf and 72 hpf (three replicates per time point). In order
to determine the relative similarity of the replicates and time points,
we used multidimensional scaling (MDS). MDS projects
multidimensional data, in this case gene counts for each of the
genes in the transcriptome, onto a two-dimensional space in a way
that preserves the relative distances between points as much as
possible. The resulting MDS plot showed strong clustering of the
replicates, except for two outlier samples (A30 and B42). Further
analysis of these two samples showed that they contained a high
amount of E. coli DNA contamination, so they were excluded from
subsequent analyses. MDS also showed a clear progression from
30 hpf to 72 hpf along the first axis (Fig. 1B), indicating that
gene expression patterns were altered sequentially through the
developmental stages analyzed.
The goal of this study was to investigate and identify gene

regulatory interactions occurring during heart morphogenesis.
Therefore, we identified and segregated genes that were
differentially expressed over the developmental timecourse. As
timecourse data are not suitable for pairwise hypothesis testing,
differential gene expression was assessed using the negative
binomial log ratio test in the DESeq2 package, which is
conceptually similar to an ANOVA test. A total of 5861 genes
exhibited dynamic changes in expression level during the time
period covered (Fig. 1C, Table S1). Hierarchical clustering grouped
genes into shared patterns of increasing expression, decreasing
expression, transient expression and transient repression during the
time window studied (Fig. 1D). The fact that a large number of
genes have changing expression patterns across our dataset
highlights the complexity of the developmental processes active
during our timecourse.

Self-organizing map (SOM) analysis identifies clusters of
genes with similar temporal expression patterns
In order to better separate the various expression patterns within the
set of dynamically expressed genes, we clustered them using SOM
analysis, which is an artificial neural network learning algorithm
that fits a grid of nodes to high-dimensional data – gene expression
patterns for individual genes in this case – and then assigns each
pattern to the nearest node. Thus, it can be thought of as a non-linear
principal component analysis (PCA), except each gene expression
pattern is assigned to a specific cluster instead of merely generating
loading values. Another important feature of SOM analysis is that
the algorithm lays out each co-clustered gene expression pattern
within a box (with relative expression on the y-axis and temporal
expression on the x-axis) and places each box on a relational grid,
with converse patterns at opposite corners and similar patterns
grouped more closely together, allowing the expression patterns of
genes in different clusters to be compared visually to determine
whether they are largely similar or are largely contrasting.

The number of nodes in an SOM must be chosen a priori and is
considered to be largely arbitrary, although SOMs using a low
number of nodes provide results conceptually similar to k-means
clustering, whereas grids with large numbers of nodes show emergent
properties that make them more topographical in nature. For our
purposes, we chose to cluster the dynamically expressed genes using
an SOM with a small number of nodes to create a set of discrete
expression patterns. Thus, we chose a rectangular 5×5 grid (Fig. 2A, a
complete table of normalized counts and SOM assignments is
available in Table S2) as the optimal number of nodes, since it was the
maximum size that did not result in any nodes containing no genes
and had nodes that produced similar, but distinct, expression patterns.
Larger numbers of nodes resulted in multiple nodes with what
appeared to be identical expression patterns and one or more empty
nodes (data not shown). Conversely, smaller numbers of nodes
merged clearly distinct patterns into a single node (data not shown).
The resulting grid had clusters containing 5-1125 dynamically
expressed genes. The largest clusters recapitulated the major patterns
seen by hierarchical clustering, but intermediate patterns were more
clearly represented in the other nodes. Of note, genes expressed at
constant levels throughout our timecourse (P>0.05) were not
included in the SOM analysis, but were assigned to an outgroup.
The resulting outgroup contains many genes essential for heart
development that were assigned to this cluster because their
expression, and likely their function, does not change during the
window covered.

SOM clusters contain cohorts of co-regulated genes
Because the SOM-derived clusters contain genes with similar
temporal expression patterns in the heart, we hypothesized that the
clusters represent groups of co-regulated genes. If this hypothesis
is correct, we would expect there to be more gene regulatory
interactions within a cluster than between clusters. Databases with
known gene regulatory interactions in zebrafish are lacking.
Therefore, we first converted the zebrafish gene identities to their
human orthologs using the Orthoretriever program (http://
lighthouse.ucsf.edu/orthoretriever/), which is an interface to the
Ensembl BioMart version 77 database (Kasprzyk, 2011). We then
calculated the number of known gene regulatory interactions within
clusters and between clusters using the GEA_CLR database in the
UCSC Interaction Browser, a database of known interactions from
various sources (Wong et al., 2013). The resulting graph of the
interactions for cluster A1 is shown in Fig. 2B, and those for all
clusters can be found in Fig. S1. Visual analysis of this graph
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appears to show a large number of interactions, with a few highly
connected nodes and many nodes with a few connections, which are
likely to represent regulators and their targets, respectively.
However, this inspection is insufficient to ascertain whether the

number of interactions within the graph is higher than expected with
a randomly selected group of genes this size. Therefore, we
calculated the assortativity coefficient for all clusters in the SOM
graph. The assortativity coefficient measures the homophily of the
data, i.e. the relative probability of interacting with another member
of one’s own class versus another class. In this case, a gene’s class
was taken to be its SOM-assigned cluster. Thus, the assortativity
coefficient gives a relative measure of the number of connections
within an SOM cluster versus the number of connections between
SOM clusters. A positive coefficient indicates that nodes are more
likely to connect to members of the same cluster, and vice versa for
negative coefficients. Larger assortativity values indicate stronger
preferences, but this is difficult to gauge without context. Therefore,
to determine the significance of this coefficient, a bootstrap null
distribution was calculated using 10,000 replicates containing
randomly scrambled cluster assignments (Fig. 2C). The calculated
assortativity coefficient for the SOM clustering results was
significantly greater than the mean (Fig. 2C, red line), with a
bootstrap P-value less than 1×10−5. Therefore, we can reject the
null hypothesis that co-expression clusters are independent of co-
regulated cohorts, suggesting that the SOM clustering corresponds

to groups of genes containing a large number gene regulatory
interactions.

Although it is not currently possible to measure the level of
conservation between the GRNs in zebrafish and mammalian
heart development, this analysis supports the hypothesis that
most regulatory interactions are conserved between zebrafish and
humans. Otherwise, clustering zebrafish expression patterns would
not have enriched known human regulatory interactions. Thus, this
dataset will be useful for informing studies of heart development
across several classes within the phylum Chordata. Indeed,
when unconserved regulatory interactions are identified, they may
indicate evolutionary divergence of the network to drive
unconserved developmental processes, such as septation. These
divergences will also provide important information on the
mechanisms and evolution of cardiac GRNs.

Motif enrichment in specific temporal expression clusters
identifies gene batteries within GRNs
One limitation of the aforementioned method is that interactions are
constrained to known human gene regulatory interactions contained in
the GEA-CLR database (Lee et al., 2015; Lowdon et al., 2014; Wong
et al., 2013). Therefore, we next sought to identify novel regulatory
interactions responsible for the gene expression patterns identified in
our SOM analysis. In order to predict novel gene regulatory
interactions within the developing heart, we sought to identify

Fig. 1. RNA-seq timecourse analysis during heart looping morphogenesis. (A) Schematic of zebrafish heart (green) looping during the time period covered
by the timecourse. Although several overlapping morphogenetic events are occurring, including cardiomyocyte maturation, initial trabeculation and sino-atrial
(SA) node, atrioventricular canal (AVC) and valve formation, animals were staged based on heart looping. (B) Multidimensional scaling (MDS) of the RNA-seq
samples. Relative distances between samples indicate their relative similarity (closer indicates more similar). Letters indicate the replicate (A, B or C); numbers
(and colors) indicate the hours post-fertilization that the sample was collected. Each sample contained pooled hearts from ∼200 embryos. Outliers A30 and
B42 were excluded from subsequent analysis. (C) Volcano plot showing the maximum log2-scaled fold change of any time point compared with 30 hpf on the
x-axis and the Phred-scaled P-value of the negative binomial likelihood ratio test, which tests for differential expression anywhere in the timecourse, on the
y-axis. The blue horizontal line shows a Phred-scaled P-value cutoff of 13 (equivalent to a P-value of 0.05). The green vertical lines indicate a log2 fold change
cutoff of 1 and −1. Further analyses were conducted only on the differentially expressed genes in the upper left and upper right quadrants. (D) Heat map and
hierarchical clustering of genes showing statistically significant changes in gene expression over the timecourse. Red indicates high expression and blue
indicates low expression. Replicates were first averaged to create one column per time point.
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transcriptional regulatory interactions driving gene batteries. Gene
batteries were first proposed in a classic work that has inspired GRN
analysis for the last half century (Britten andDavidson, 1969; Peter and
Davidson, 2011). Under this model, it is expected that groups of genes
with the same expression pattern would be regulated by a common set
of one or more transcription factors, and evidence of gene battery
regulation has been reported using cohorts of genes with similar spatial

expression patterns (Nelander et al., 2005; Zhang and Horvath, 2005).
These gene batteries are the building blocks of GRNs (Peter and
Davidson, 2011). Therefore, we hypothesized that gene batteries in the
developing heart could be identified from sets of genes with shared
temporal expression patterns.

In order to identify novel gene batteries from the timecourse data,
we used the HOMER program (Heinz et al., 2010), which contains

Fig. 2. Self-organizing map (SOM) analysis of differentially expressed genes during heart looping. (A) SOM results for the timecourse data. Each panel
represents one cluster identified by SOM analysis. The red line indicates the median expression for the pattern, while the blue and gray regions represent
the interquartile range (IQR) and the range of the expression levels, respectively. Numbers in the lower right corner indicate the number of genes assigned to each
SOM cluster. (B) Graph of interactions found in the GEA_CLR database from the UCSC Interaction Browser between two genes within cluster A1. Orange
lines indicate an activating interaction, blue lines a repressing interaction, and gray lines indicate unknown interaction types. (C) Bootstrap analysis of the
assortativity coefficients using randomized cluster assignments (10,000 replicates). The vertical red line indicates the assortativity coefficient for the actual results,
which was greater than any of the 10,000 bootstrap replicates.
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motifs generated from a number of sources, including ChIP data and
in vitro transcription factor binding assays, to identify transcription
factor binding sites statistically overrepresented in the proximal
regions of the genes assigned to each SOM cluster. Identification of
transcription factor binding sites near the transcription start site does
not conclusively show regulation of the gene, but statistical
enrichment of binding sites within promoters of genes with
similar temporal expression patterns (single SOM clusters)
provides strong evidence of co-regulation, as transcription factor
binding motifs that are not actively involved in temporal regulation
should be randomly distributed throughout the SOM, not enriched
in particular clusters. This analysis identified 48 transcription factor
binding motifs enriched in 17 of the 25 clusters (Fig. 3). Within this
dataset were 9 of the 18 transcription factors that have been
implicated in human patients with CHD (McCulley and Black,
2012) and are included in the HOMER motif database (Heinz et al.,
2010). The number of interactions predicted by HOMER that are
also found in the GEA_CLR database was calculated to show the
ability of the method to capture known gene regulatory interactions,

strengthening the concurrence of the novel gene regulatory
interactions that we have identified. The percentage of HOMER-
predicted interactions that were in the database (ʻknown’) or not
(ʻnovel’) varied greatly between transcription factors (Fig. 3,
Table S3). On average, 36% of the gene regulatory interactions
predicted by this analysis were contained within the GEA_CLR
database, consistent with previous gene battery prediction results
using cohorts of spatially co-expressed genes (Nelander et al.,
2005). Thus, on average 64% of the predicted interactions represent
putative novel gene regulatory interactions in the developing heart,
providing a rich set of predicted interactions for future analysis of
heart development.

There were two striking outcomes of this analysis. First, the
majority of the identified transcription factor binding motifs were
enriched in only a single SOM cluster; for example, TBX, ETS and
BMAL in SOM A1, B4, D3, respectively. Second, the majority of
clusters contained fewer than three enriched transcription factors
(Fig. 3B, Fig. 4A,B). The number of transcription factor binding
motifs found in a particular cluster was not correlated with the size

Fig. 3. Transcription factors binding motifs enriched in specific SOM clusters. (A) Transcription factor binding motifs enriched in one or more clusters.
Gene regulatory interactions predicted by HOMER and found in the GEA_CLR database (‘known’) or not found in the GEA_CLR database (‘novel’) are shown, as
well as the percentage of interactions that are novel. (B) Enriched transcription factor motifs and their respective SOM clusters.

3491

RESEARCH ARTICLE Development (2017) 144, 3487-3498 doi:10.1242/dev.154146

D
E
V
E
LO

P
M

E
N
T

http://dev.biologists.org/lookup/doi/10.1242/dev.154146.supplemental


of the cluster (Pearson correlation coefficient r=0.09). For clusters
with multiple transcription factors, distinct subsets and groups
containing multiple binding sites were seen. These groups form the
putative gene batteries predicted by this analysis and are often large,
with up to 157 genes containing a single transcription factor binding
site (Fig. 4C). Evidence for combinatorial control of these gene
batteries was also seen, as many batteries of similarly expressed
genes contained binding sites for several different transcription
factors (Fig. 4C). Transcription factors that were enriched in
multiple clusters also tended to be enriched in adjacent clusters,
indicating that they regulate genes with similar temporal expression
patterns (Fig. 5A), with subtle differences provided by the different
combinatorial factors found in adjacent clusters. Although it is
possible that their enrichment in multiple adjacent patterns indicates
that the SOM cluster subdivided cohorts of genes that should be
considered to be of the same cluster, the complement of enriched
transcription factor binding motifs differs for every cluster.
Therefore, it is more likely that combinatorial control by multiple
transcription factors creates small variations in the temporal
expression patterns of their target genes.
Many transcription factors can act as both repressors and activators

depending on their interaction with various co-factors. Because the
SOM clusters are laid out spatially by temporal expression pattern,
gene batteries activated by a given transcription factor should regulate
genes in their same cluster or in clusters nearby, as activation results
in a positive correlation between the expression levels of a
transcription factor and its targets. Conversely, gene batteries
repressed by a transcription factor should be expressed in clusters
arranged at opposite sides of the SOM grid, as repression results in a
negative correlation between a transcription factor and its targets.
Therefore, analyzing the relationships between the assignment of
transcription factors to an SOM cluster based on expression pattern
and the clusters enriched with targets for those transcription factors
might help determine whether the identified regulatory interactions
represent activation or repression by a specific transcription factor. In
order to test this hypothesis, we selected two well-characterized
transcription factor families in heart development – Sox andKlf – and
compared the SOM clusters containing members of that transcription
factor family with the SOM clusters that contained predicted targets.
Sox family members, especially the SoxE subfamily, have been

shown to be expressed dynamically during heart looping and valve
development in the chick (Montero et al., 2002). In our data
analysis, Sox was the transcription factor family with the largest
battery of gene targets, with 1087 target genes (643 known and 444
novel) across four SOM clusters (A3, A4, A5, B5, Fig. 3A, Fig. 5B).
Of note, all of the clusters enriched for Sox binding motifs are
located in the lower left corner of the SOM grid, corresponding to

genes expressed early during development and inactive at the end of
the timecourse. Twelve Sox family members were also expressed in
A3 (Sox12), A4 (Sox9a), A5 (Sox1b, Sox2, Sox3, Sox9b, Sox11a,
Sox18, Sox19a and Sox19b) and B5 (Sox19b and Sox21a). Of
these, ten have known transactivation domains (Lefebvre et al.,
2007). Sox6 was the only Sox family member not to follow this
pattern, with expression in C1. Interestingly, Sox6 does not have
any known activation or repression domains, but only contains
several dimerization domains (Lefebvre et al., 2007). Together, the
data strongly support the hypothesis that Sox family members play
an activating role during early stages of heart development and are
largely downregulated by the completion of heart looping.

Another transcription factor family with multiple family
members and clusters with enriched binding site motifs is the Klf
family. Klf motifs were enriched in four SOM clusters (Fig. 5C),
three on the right side and one in the lower left hand corner
(Fig. 5C). Klf family member expression is also divided into two
groups, with Klf1 (A3), Klf8 (A4), Klf13 (A4) and Klf17 (A5)
expression in the lower left clusters and Klf11b (B1), Klf12a (D1),
Klf5a (E1), Klf18 (C2), Klf6a (E3), Klf11a (C1), Klf2a/b (E2), Klf9
(E2) and Klf15 (E2) expression in the upper right corner. Further
studies are necessary to determine why our analysis breaks Klf
family members into two distinct classes, but it might be that
distinct sets of Klf factors are involved in early and late processes
during heart development. Alternatively, or in addition, Klf factors
may be involved in repressing and activating distinct sets of genes.
Klf family members with dynamic expression during this
timecourse also include those known to be involved in heart
development, such as Klf2 (Chiplunkar et al., 2013), Klf3 (Kelsey
et al., 2013), Klf5 (Drosatos et al., 2016) and Klf13 (Nemer and
Horb, 2007), as well as several novel factors. Thus, it is possible that
subsets of Klf factors play at least two distinct roles in the
developing heart – one early and one late. These data will be useful
in guiding future research that aims to determine the contrasting
roles of the individual Klf members identified here.

Inclusion of predicted transcription factor binding motifs
expands the gene regulatory interaction graph for each
cluster
We next sought to determine the effect on the gene regulatory
interaction graphs when transcription factors with enriched motifs in
the cluster were added. We began with analysis of cluster A1, which
was enriched for a single class of transcription factor binding motif:
the Tbx family. Although several Tbx factors have been implicated
in heart development (Plageman and Yutzey, 2005), including
Tbx1, Tbx2, Tbx3, Tbx5 and Tbx18, none of the genes encoding
these transcription factors was in the A1 cluster, as they were

Fig. 4. Characteristics of enriched transcription factor binding motifs. (A) The number of transcription factor binding motifs enriched in each cluster.
(B) The number of clusters that each transcription factor binding motif is enriched in. (C) The ten largest gene batteries. Genes were grouped by shared
complement of transcription factor binding sites enriched in the first 1 kb upstream of the transcription start site.
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generally expressed at constant levels during the timecourse, sorting
to the SOM outcluster. Therefore, we chose to add these
transcription factors to the gene list for cluster A1 and generate a
new graph based on known interactions in the GEA_CLR database
(Fig. 6A). Four of the five genes had multiple known gene
regulatory interactions with genes in the cluster and became major
nodes within the graph. Interestingly, Tbx18, which is expressed
exclusively in the epicardium except for a small region of expression
in the myocardium at the sinus venosus (Greulich et al., 2011),
displayed no known gene regulatory interactions with genes in the
graph. The overall graph grew from 58 nodes to 66 nodes and 124
edges to 196 edges. This graph also shows strong evidence for gene
batteries under combinatorial control. In order to highlight these
groups, we created a hierarchical clustering based on known gene
regulatory interactions in cluster A1 (Fig. 6B). The resulting
dendrogram shows six putative gene batteries containing two to
seven genes each (red branches).

Testing the proposed GRN with cardiac transcription factor
mutants in mice and zebrafish
We sought to determine whether our predicted GRN interactions
from the SOM and motif enrichment analyses were supported by
differential expression analysis in cardiac transcription factor
mutants. First, we compared enrichment of differentially
expressed genes in the Tbx5 mouse knockout model (Waldron
et al., 2016). Mouse data were used owing to the lack of such
genomic data for tbx5a/b null fish, although they have a similar
phenotype (Parrie et al., 2013). Differentially expressed genes from
that study were compared with their zebrafish orthologs in our data
to identify enrichment in SOM clusters, specifically in cluster A1,
which showed an overrepresentation of Tbx family motifs. Overall,
1110 SOM-assigned genes were differentially expressed in the
Tbx5 null mouse heart. In cluster A1, 90 of the 149 genes were
differentially expressed in Tbx5 mutant hearts, including 40 of the
52 genes with predicted Tbx binding motifs and identifiable mouse

Fig. 5. Distribution of enriched transcription factormotifs across the SOM. (A) Enriched transcription factor bindingmotifs in their corresponding SOMcluster
locations. Black font indicates transcription factor binding motifs enriched exclusively in one SOM cluster. Colored transcription factor binding motifs are found
in more than one cluster. (B) Correspondence of Sox gene expression (diagonal lines) and Sox binding motif enrichment (orange shading) in the SOM clusters.
(C) Correspondence of Klf gene expression (diagonal lines) and Klf motif enrichment (green shading) in the SOM clusters.
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orthologs (Fig. 7A). It should be noted that the published RNA-seq
data contained only two biological replicates, represented only a
single developmental time point, and were obtained in mouse, thus
requiring lift-over into another species. Despite these limitations, we
were able to identify strong concurrence of altered expression with
our gene assignments to Tbx-enriched SOM clusters, highlighting
the predictive power of our zebrafish datasets and the applicability
of this analysis for cross-species comparisons.
We next analyzed nkx2-5 mutant zebrafish embryos as a

confirmation of a transcription factor binding motif that was not
enriched in any SOM cluster, and the nkx2-5 transcript was assigned
to the outcluster with other transcripts that were expressed in the
heart at steady-state levels. Nkx2-5 is a well-studied transcription
factor that is known to be involved in cardiomyocyte differentiation
(Benson et al., 1999; McCulley and Black, 2012; Tanaka et al.,
1999). The nkx2-5 mutant phenotype in zebrafish includes looping
and chamber size defects (Hill et al., 2013; Targoff et al., 2008),
indicating that it may play a role in the heart development processes
studied here. A recent study showed that Nkx2-5 expression in early
cardiomyocyte differentiation was sufficient to maintain chamber
identity and size (George et al., 2015). Thus, it is possible that
Nkx2-5 acts early in differentiation to establish gene expression
patterns for heart development and regulates the continued, steady-
state expression of a cohort of genes during the period covered by
our timecourse. Consistent with this, nkx2-5 RNA expression was
constant in our timecourse, and assigned to the SOM outgroup.
To further explore the hypothesis that Nkx2-5 acts earlier in

development, we analyzed genes differentially expressed between
nkx2-5 null and sibling embryos at 48 hpf to identify their SOM
assignments in our timecourse analysis. In contrast to the large
number of SOM-assigned genes that are differentially expressed in
the Tbx5mutant mouse, most genes that were differentially expressed

in nkx2-5 null zebrafish embryoswere assigned to the SOMoutgroup,
and only 57 SOM-assigned genes showed differential expression
between nkx2-5 mutant and sibling embryos, comprising 38
upregulated and 19 downregulated genes in nkx2-5 mutants
(Table S4). Strikingly, the differentially expressed genes were
separated into two distinct SOM clusters based on the direction of
change in the nkx2-5mutant (Fig. 7B). Of the 38 upregulated genes,
35 clustered into SOM clusters with increasing expression during
heart looping and chamber maturation (clusters B1, C1, D1, D2 and
E1-5). Similarly, 14 of the 19 downregulated genes clustered into the
lower left corner (clusters A5, B5 and C5), corresponding to genes
that show decreasing expression during looping and chamber
maturation. However, in neither case would these numbers be
sufficient to create a statistically significant overrepresentation in the
patterns, consistent with our motif enrichment results. Together, the
Tbx5 and nkx2-5 mutant data support the power of the model GRN
generated here to predict the gene regulatory interactions driving
major expression patterns in the heart during looping morphogenesis.

The findings with Nkx2-5 highlight one of the limitations of this
type of study. Although our timecourse encompassed heart looping
morphogenesis, it is still unclear how the timing between gene
regulatory interactions and morphogenetic events is related.
Transcription factors may make epigenetic changes that set the
stage for subsequent regulatory events. For example, we have
recently shown that Nkx2-5 regulates DNA methylation patterns
(Gorsi et al., 2017 preprint). This might also explain the absence of
GATA factor binding sites in our analysis, as GATA factors have
been shown to interact with Nkx2-5 early in development (Searcy
et al., 1998). Both Gata4 and Nkx2-5 expression, as well as that of
several other canonical heart transcription factors, was detected by
the RNA-seq data presented here, but their expression levels were
constant throughout the timecourse, so they were not clustered by

Fig. 6. GRNs for cluster A1. (A) Gene regulatory interaction graph for SOM cluster A1 with Tbx transcription factors added. (B) Hierarchical clustering
dendrogram based on vertex similarity in the graph shown in A. Putative batteries with identical edges in the graph are marked by a red line.

Fig. 7. SOM cluster assignment of
genes with altered expression in Tbx5
mutant mice and nkx2-5 mutant
zebrafish. (A) Comparison of genes in
cluster A1 predicted to have Tbx binding
sites with those differentially expressed in
the Tbx5 null mouse. (B) Location of genes
with altered expression in nkx2-5 null
zebrafish hearts at 48 hpf in the SOM.
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SOM and were assigned to the outgroup. The enrichment analysis,
by its nature, also misses isolated gene regulation events for small
sets of genes, instead focusing on regulatory events that appear to
simultaneously affect the expression of many genes. Therefore, the
expression patterns identified here should not be taken as an
exhaustive list of regulatory events found in the heart, but this
approach certainly provides a broad representation of the major
temporal gene expression patterns during heart morphogenesis.

Analysis of cell type-specific and tissue-specific gene
batteries
Many of the concurrent developmental processes occurring during
this timecourse are restricted to subsets of cell types or tissues.
Although it is important to recall that a ʻdifferentiation gene battery
is not the same thing as a cell type’ (Peter and Davidson, 2011), we
asked whether a subset of SOM clusters would be confined to
specific cell types or tissues in the developing heart. We created 13
hand-curated lists containing 398 known tissue-specific markers
(Table S5), described here in three groups.
The first group contained markers for the major structures in the

embryonic zebrafish heart: sinus venosus, atrium, AVC, ventricle
and bulbus arteriosus (Fig. 8A). The markers for all of these
structures appear to be distributed into three distinct groups: early,
middle, and late expression.
The second group contained genes expressed in each of the major

cell types of the embryonic heart: progenitor, endocardial,
myocardial, epicardial, pericardial and neural crest cells (Fig. 8B).
Progenitor cell markers were enriched in the lower left corner of the
SOM, i.e. decreasing over time, as expected. Neural crest cells also
showed enrichment for genes with decreasing expression patterns,
although a few genes were increasing. By contrast, the four major
tissue types in the heart (endocardium, myocardium, epicardium
and pericardium) showed distinct expression patterns,
predominantly found in mutually exclusive clusters. For example,
the myocardial markers were enriched in the upper middle side of

the SOM (clusters C1, C2, D1), and the epicardial markers were
enriched on the righthand side of the SOM (clusters E2, E3),
indicating that the genes are generally increasing. This is consistent
with the timing of epicardial migration to cover the heart, which is
not complete until after the period covered by our timecourse
(Peralta et al., 2014). Conversely, pericardial markers were largely
decreasing. Finally, the other two major cell types, endocardium
and myocardium, showed a complex expression pattern, with some
genes decreasing and others increasing during the timecourse.
Although the clusters containing the decreasing genes were largely
overlapping, the clusters with increasing genes differed between cell
types, with myocardial markers increasing expression earlier than
endocardium.

Finally, the third group contained genes encoding ion channels
and structural proteins such as muscle fiber components (e.g. actin
and myosin). Strikingly, both categories were enriched in the top
middle of the SOM, indicating that expression comes on at ∼48 h
and remains on for the remainder of the timecourse (Fig. 8C).

In conclusion, although these tissues are undergoing active and
complex gene regulatory events throughout the timecourse, cluster
information for a particular gene may provide clues to its likely role
within heart development, and in the hunt for functions of novel
genes this might allow investigations to focus on particular cell
and tissue types according to SOM assignment of that gene. For
example, comparison of novel genes co-regulated with known
tissue-specific genes in a given SOM cluster would provide insight
into the likely spatial localization of the novel gene, creating testable
hypotheses for future studies.

Timecourse analysis identifies pairs of duplicated genes
with similar expression patterns
Sets of duplicated genes are common in many vertebrates, and it is
thought that these duplicated genes create an important source of
phenotypic divergence in evolution (Prince and Pickett, 2002).
Although there have been several genome duplication events during

Fig. 8. Distribution of genes involved in
specific processes/cell types within
the SOM. A curated list of annotations for
genes known to be involved in heart
development was generated from the
literature. Each panel represents a single
annotation, and the location of shaded
rectangles within the panel corresponds to
SOM clusters where the genes with that
annotation are located. The color of the
shading indicates the number of genes for
the given annotation found in the
corresponding SOM cluster.
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vertebrate evolution, duplicate genes are not maintained unchanged.
There are three major potential fates of duplicated genes: non-
functionalization, where one copy becomes a pseudogene; neo-
functionalization, where one gene gains a novel function; or
subfunctionalization, where both copies lose some of their functions
such that both are required to perform the function of the ancestral
gene. This last case is thought to have resulted in 10% of the
duplicated copies from the teleost-specific genome duplication
being retained (Postlethwait et al., 2000). Subfunctionalization is
most commonly manifest by divergence in expression patterns
between the two copies. Thus, we analyzed all pairs of duplicated
genes in the timecourse to measure the amount of divergence in
expression patterns, and to identify genes that have retained similar
expression patterns. A total of 1272 duplicated gene pairs had at
least one gene differentially expressed and assigned to SOM clusters
during our timecourse. Of these, 287 (22.6%) had both members of
the pair assigned to SOM clusters, supporting the hypothesis that
most pairs diverge into vastly different expression patterns.
However, when both members of the pair were dynamically
expressed over our timecourse, they frequently showed very similar
expression patterns. Of the 287 pairs in the SOM, 61 were in the
same cluster and 100 were in adjacent clusters (Fig. S2, see Table S6
for complete analysis). Future studies will focus on analysis of these
pairs to determine the nature of their retained redundancy and to
pursue functional tests to assess whether the evolutionary process of
subfunctionalization explains their continued co-expression.

DISCUSSION
The genomics approach used here identified several major temporal
gene expression patterns in the heart during looping morphogenesis,
as well as key transcription factors driving these expression patterns.
These data were then used to generate a model GRN for heart
looping morphogenesis and concurrent processes, providing a
valuable resource for future GRN studies in the heart. The model
GRN assembled here represents a predictive network that identifies
putative regulatory mechanisms for large batteries of genes in heart
morphogenesis. Many of these gene batteries do not only share sites
for a single transcription factor, but for a number of potentially
interacting transcription factors. This characteristic would be missed
by traditional analysis methods focusing on knockdown or
knockout of a single transcription factor and provides an
important dataset for studying the combinatorial control of gene
expression.
Although this is the first heart looping morphogenesis RNA-seq

timecourse in zebrafish, three timecourses have been conducted in
cell cultures or mice. The timecourse conducted by Wamstad et al.
(2012) followed gene expression patterns while differentiating
mouse ESCs into cardiomyocytes in vitro. Each data point in their
study thus represented a distinct cell type (embryonic stem cells,
mesoderm, cardiac progenitors, and cardiomyocytes), all of which
are likely to represent cell types earlier in development than covered
by our data. By contrast, most of the time points in the single-cell
timecourse generated by Delaughter et al. (2016) were taken after
heart looping, including two postnatal time points. The most similar
timecourse to ours was created by Li et al. (2016), which contains
three time points during heart looping, but was generated using
single-cell sequencing of mouse cardiomyocytes at three time
points as compared with the eight time points collected in our study.
Thus, both the similarities and differences between these datasets
might provide key insights into heart development. However, it
should be emphasized that these datasets are complementary, rather
than redundant, with the dataset presented here. It is established that

single-cell analysis is not well suited for reliably assessing
quantitative changes owing to the high number of PCR cycles
needed during library preparation, but is able to distinguish between
different cell types. Therefore, while single-cell datasets provide
high-resolution spatial information, the timecourse presented here
will provide more accurate assessment of temporal changes in gene
expression. The combined application of these datasets will help
define the GRNs driving heart development.

MATERIALS AND METHODS
Heart collection and total RNA collection
Groups (∼20 males and ∼20 females) of fish positive for the cmlc2:GFP
transgene (Huang et al., 2003) were mated to generate large synchronized
clutches of embryos. After the embryos were collected and cleaned, they
were divided into eight groups of∼200 embryos for heart isolation at 30, 36,
42, 48, 54, 60, 66 or 72 hpf. Embryos were dechorionated as needed and
anaesthetized by adding 0.02% tricaine to the embryo dish. Hearts were then
isolated as previously described (Burns and MacRae, 2006), except that
hearts were manually selected from the medium instead of filtering. Hearts
were then placed in fresh medium and manually picked again, to ensure no
carryover of non-cardiac tissues, and placed in a 1.5 ml microcentrifuge
tube. Tubes containing the isolated hearts were centrifuged briefly (1000 g
for 30 s) to pellet the tissue and the supernatant removed under a
microscope. Approximately 2 µl Trizol (Life Technologies) per heart was
then added to the tube and the hearts homogenized before storage at −80°C.

RNA was isolated by phenol-chloroform extraction followed by ethanol
precipitation using standard protocols. In order to obtain the necessary
amount of RNA for library preparation, the total RNA from two collections
were combined together at each time point. Therefore, the three replicates in
this experiment arose from a total of six collections conducted on different
days.

RNA-seq
Library construction and RNA sequencing (RNA-seq) were performed at
the Huntsman Cancer Institute High-Throughput Genomics Core Facility.
Libraries were constructed from the total RNA using the NuGEN Ovation
RNA-Seq Library System. Sequencing was performed on a HiSeq 2000
sequencer (Illumina) to generate 50 bp single-end reads. Three biological
replicates for each of the eight time points (24 samples) were split across four
lanes. Post-sequencing quality control was conducted by FastQC (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). The total number of
reads ranged from 22-34 million reads per sample and both per-base and
per-sequence quality scores were above 30 for more that 90% of the reads.
Sequencing results were then aligned by Novoalign (Novocraft) to a
reference genome containing the zv9 build of the zebrafish genome and a set
of known and theoretical splice junctions generated from the Ensembl
version 75 genome annotation using the MakeTranscriptome program in the
USeq package (Nix et al., 2008).

Differential gene expression analysis and clustering
Differential gene expression and clustering analyses were performed in
R. First, a count matrix of the data was created using the package Rsubread
(Liao et al., 2013). Next, consistency of the replicates was assessed using the
plotMDS function in the EdgeR package (Robinson et al., 2009) using
default parameters, which include the 500 genes with the largest pairwise
distances for analysis. Based on this analysis, we removed replicate A30 and
B42 from all future analyses. Because timecourse experimental designs do
not involve a clear case versus control or baseline comparison, genes that
were differentially expressed over the timecourse were determined by the
negative binomial log ratio test in the DESeq2 package (Love et al., 2014).
Genes with an adjusted P-value less than 0.05 were selected. The rlog
normalized values (generated by DESeq2) of the replicates were then
averaged to generate a single expression value for each gene at each time
point. These values were converted to z-scores and clustered using the som
package (https://CRAN.R-project.org/package=som) and a rectangular 5×5
grid. Grid size was determined by the maximum dimensions not resulting in
any empty clusters.
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Known gene regulatory interaction analysis
The interconnectedness of each SOMcluster wasmeasured using known gene
regulatory interactions in the GLR_CEA database on the UCSC Interaction
Browser (Wong et al., 2013). Interaction lookups were limited to those where
both the source and the sink were contained within the SOM cluster being
analyzed. P-values were calculated by generating a bootstrapped distribution
from 10,000 groups of randomly assigned gene clusters and determining the
interconnectedness within the random groups. All network graphs were
created in R using the igraph package (Csardi and Nepusz, 2006).

Motif enrichment analysis
Overrepresentation of transcription factor binding motifs in the proximal
promoter regions of the genes in each cluster was determined using the
HOMER program (Heinz et al., 2010) set to search 1000 bp upstream and
100 bp downstream of the transcription start site. All genes were used as the
background set for P-value calculation. Results presented here are limited to
known motifs.

nkx2-5 and Tbx5 RNA-seq comparisons
Comparisons between our timecourse and RNA-seq data from nkx2-5mutant
zebrafish embryos and Tbx5mutant embryonic mouse hearts were conducted
using data generated in our lab (Gorsi et al., 2017 preprint) and existing data
(Waldron et al., 2016), respectively. nkx2-5 data were generated from 48 hpf
zebrafish hearts collected from nkx2-5 mutant and wild-type siblings
identified phenotypically. Differential expression for both genes was
conducted using DESeq2 (Love et al., 2014). For mouse Tbx5,
differentially expressed genes were converted to their zebrafish orthologs
using Orthoretriever, and then merged with the SOM classification by Gene
ID. Genes differentially expressed in the nkx2-5 data were directly compared
with the SOM assignments.

Spatial gene expression analysis
SOM assignment of known markers was conducted using a hand-curated
list of genes created by an extensive literature search (Table S5). Genes
identified in the literature were annotated for function, anatomical location
and/or cell type. These lists were then merged with the SOM gene
assignments and each annotation visualized in R.

Duplicate gene analysis
Pairs of genes duplicated in the zebrafish genome were downloaded from the
Ensembl database (Ensembl release 88) and merged with the SOM data table
to identify the cluster locations of each. Relative distances between pairs were
calculated using the Euclidean distance on the grid: a distance of 0 indicates
both members of the pair are in the same SOM cluster, a distance of 1
indicates members are in adjacent clusters, a distance of 1.4 indicates diagonal
clusters, and larger distances indicate more distant clusters.
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Figure S1: Known regulatory interactions within SOM clusters. Graph of interactions found in the GEA_CLR 
database from the UCSC Interaction Browser between two genes within a single cluster. Orange lines indicate an 
activating interaction, blue lines are repressing interaction and grey lines are unknown. 
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Pattern B1 (pattern1−0)
number of genes = 162, number of connections = 811
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Pattern B2 (pattern1−1)
number of genes = 0, number of connections = 0

Pattern B3 (pattern1−2)
number of genes = 0, number of connections = 0

Pattern B4 (pattern1−3)
number of genes = 7, number of connections = 6
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Pattern B5 (pattern1−4)
number of genes = 324, number of connections = 2183
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Pattern C1 (pattern2−0)
number of genes = 291, number of connections = 1727
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Pattern C2 (pattern2−1)
number of genes = 5, number of connections = 4
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Pattern C3 (pattern2−2)
number of genes = 0, number of connections = 0

Pattern C4 (pattern2−3)
number of genes = 2, number of connections = 1
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Pattern C5 (pattern2−4)
number of genes = 63, number of connections = 117
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Pattern D1 (pattern3−0)
number of genes = 301, number of connections = 2198
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Pattern D2 (pattern3−1)
number of genes = 9, number of connections = 8
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Pattern D3 (pattern3−2)
number of genes = 3, number of connections = 2
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Pattern D4 (pattern3−3)
number of genes = 0, number of connections = 0

Pattern D5 (pattern3−4)
number of genes = 13, number of connections = 14
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Pattern E1 (pattern4−0)
number of genes = 327, number of connections = 1402
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Pattern E2 (pattern4−1)
number of genes = 337, number of connections = 1542
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Pattern E3 (pattern4−2)
number of genes = 400, number of connections = 1124
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Pattern E4 (pattern4−3)
number of genes = 177, number of connections = 424
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Pattern E5 (pattern4−4)
number of genes = 29, number of connections = 48
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Development 144: doi:10.1242/dev.154146: Supplementary information
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Figure S2: Distance between pairs of duplicated genes in the SOM. A histogram showing the distance between 
SOM clusters containing duplicate gene pairs arising from the teleost-specific genome duplication event. Distances were 
calculated using the Euclidean distance between clusters on the SOM grid. Therefore, a distance of 1 indicates that the 
two genes in the pair were in adjacent clusters, and a distance of 1.4 indicates that the two genes were in diagonally 
adjacent clusters. Any larger distances indicate that the genes were at least 2 clusters apart.  
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Click here to Download Table S1

Click here to Download Table S2

Click here to Download Table S3

Click here to Download Table S4

Click here to Download Table S5

Click here to Download Table S6

Table S1. RNAseq data and differential gene expression analysis

Table S2. SOM clustering analysis

Table S3. SOM cluster motif enrichment analysis

Table S4. SOM assignment of Nkx2.5 differentially expressed genes

Table S5. Hand-curated list of heart markers

Table S6. SOM cluster assignment of duplicated zebrafish genes
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http://www.biologists.com/DEV_Movies/DEV154146/TableS1.xlsx
http://www.biologists.com/DEV_Movies/DEV154146/TableS2.xlsx
http://www.biologists.com/DEV_Movies/DEV154146/TableS3.xlsx
http://www.biologists.com/DEV_Movies/DEV154146/TableS4.xlsx
http://www.biologists.com/DEV_Movies/DEV154146/TableS5.xlsx
http://www.biologists.com/DEV_Movies/DEV154146/TableS6.xlsx

