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Incompatibility between mitochondrial and nuclear genomes

during oogenesis results in ovarian failure and embryonic lethality
Chunyang Zhang', Kristi L. Montooth? and Brian R. Calvi'-*

ABSTRACT

Mitochondrial dysfunction can cause female infertility. An important
unresolved issue is the extent to which incompatibility between
mitochondrial and nuclear genomes contributes to female infertility.
It has previously been shown that a mitochondrial haplotype from
D. simulans (simw®°") is incompatible with a nuclear genome from
the D. melanogaster strain Oregon-R (OreR), resulting in impaired
development, which was enhanced at higher temperature. This mito-
nuclear incompatibility is between alleles of the nuclear-encoded
mitochondrial tyrosyl-tRNA synthetase (Aatm) and the mitochondrial-
encoded tyrosyl-tRNA that it aminoacylates. Here, we show that this
mito-nuclear incompatibility causes a severe temperature-sensitive
female infertility. The OreR nuclear genome contributed to death of
ovarian germline stem cells and reduced egg production, which was
further enhanced by the incompatibility with simw?°" mitochondria.
Mito-nuclear incompatibility also resulted in aberrant egg morphology
and a maternal-effect on embryonic chromosome segregation and
survival, which was completely dependent on the temperature and
mito-nuclear genotype of the mother. Our findings show that maternal
mito-nuclear incompatibility during Drosophila oogenesis has
severe consequences for egg production and embryonic survival,
with important broader relevance to human female infertility and
mitochondrial replacement therapy.
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INTRODUCTION

Mitochondria are essential organelles that produce ATP through
oxidative phosphorylation and participate in a number of other
cellular processes (Cloonan and Choi, 2013; Tait and Green, 2010;
Vyas et al., 2016). Although mitochondria have their own genomes,
the vast majority of mitochondrial proteins are encoded in the
nucleus (~1500) (Meisinger et al., 2008). Studies in a number of
organisms have shown that incompatibility between mitochondrial
and nuclear genomes can have deleterious effects, and can
contribute to reproductive isolation between populations (Burton
and Barreto, 2012; Gibson et al., 2013; Hoekstra et al., 2013;
Lamelza and Ailion, 2017; Ma et al., 2016; Narbonne et al., 2012;
Sloan et al., 2017; Spirek et al., 2014). However, in only a few cases
have the specific genes responsible for mito-nuclear incompatibility
been identified (Chou et al., 2010; Lee et al., 2008; Meiklejohn
etal., 2013; Singh and Brown, 1991; Spirek et al., 2014). It is known
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that mitochondrial dysfunction can severely compromise female
fertility, and that maternal inheritance of sub-functional
mitochondria can reduce embryonic survival (Bentov et al., 2011;
Demain et al., 2016; Ge et al., 2012; Tilly and Sinclair, 2013). An
important unresolved issue is how incompatible interactions
between specific alleles of mitochondrial and nuclear genes
contribute to female reproductive failure.

We and others have previously described a specific mito-nuclear
incompatibility between alleles from two closely related Drosophila
species (Holmbeck et al., 2015; Meiklejohn et al., 2013; Montooth
et al., 2010). A strain with the mitochondrial genome from
D. simulans strain w*%" (simw’?!) and with the nuclear genome
from the D. melanogaster strain Oregon-R, hereafter denoted as
(simw’?!); OreR, had delayed development, disrupted larval
metabolic rate, compromised locomotion, bristle defects and
reduced fecundity (Hoekstra et al., 2013; Montooth et al., 2010;
Meiklejohn et al., 2013). These phenotypes were most severe at
higher temperatures, similar to other strains with compromised
mitochondrial function, which is consistent with metabolism being
a temperature-sensitive process (Clarke and Fraser, 2004; Ghosh
etal., 2013; Hoekstra et al., 2013). In contrast, a strain with the same
D. simulans mitochondria but with the D. melanogaster Austria
nuclear genome, (simw>?!); AutW132, was phenotypically normal
during larval development. Also phenotypically normal were
combinations of the Oregon-R mitochondria (ore) with either
D. melanogaster Austria or Oregon-R nuclear genomes, hereafter
(ore); AutW132 and (ore); OreR. The molecular basis for the mito-
nuclear incompatibility in the (simw’%); OreR strain was shown to
be an allelic interaction between the m#-tRNA"" encoded in the
simw??" mitochondria and the m#-tRNA® synthetase (Aatm)
encoded by the D. melanogaster OreR nuclear genome
(Meiklejohn et al., 2013). The simw’?! mitochondrial mt-tRNA®"
polymorphism changes a G:C to G:U in the stem of the tRNA
anticodon arm, and the OreR nuclear polymorphism changes a
highly conserved alanine to valine at position 275 next to the
synthetase ATP binding pocket Aatm??7°7. Consistent with the
predicted effects of this interaction on mitochondrial protein
translation, this incompatibility decreases oxidative phosphorylation
activity specifically for only those complexes that require
mitochondrial-translated proteins (Meiklejohn et al., 2013).

The incompatible (simw’’); OreR strain serves as a model for
deciphering how mitochondrial dysfunction contributes to human
disease. Mutation of the human ortholog of Aatm, YARS2, as well as
other mt-tRNA synthetases cause a spectrum of heritable diseases
(Riley et al., 2010). A current challenge is to understand why
mutations in different mt-tRNA synthetases result in different
clinical presentations (Jiang et al., 2016; Konovalova and
Tyynismaa, 2013). The results from the (simw’?); OreR strain
are consistent with the idea that mito-nuclear incompatibility in
specific individuals may contribute to the variability in clinical
phenotypes. Moreover, the reduced fecundity of the (simw’%!);
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OreR flies suggest the mito-nuclear incompatibility may impair
gametogenesis and embryonic survival, but the cellular basis for
this reproductive failure has not been investigated.

In this study, we investigate the impact of mito-nuclear
incompatibility on Drosophila oogenesis and female fertility. Each
Drosophila ovary is composed of ~16-20 ovarioles, which contain an
array of progressively more mature egg chambers (Bilder and Haigo,
2012; Lin and Spradling, 1993) (Fig. 1A,B). Egg chambers are
composed of one oocyte and 15 germline sister nurse cells
surrounded by an epithelial sheet of somatic follicle cells (Fig. 1B).
These cells are descendants of germline stem cells (GSCs) and
somatic follicle stem cells (FSCs) that reside in the germarium at the
tip of the ovariole (Fig. 1B). Egg chambers are formed and bud off
from the germarium as the transit-amplifying FSC daughter cells
surround the germline cells. These egg chambers then migrate

posteriorly down the ovariole as they mature through 14
morphologically defined stages (Fig. 1B). During early oogenesis,
mitochondria greatly increase in number, with some transported into
the oocyte, while others remain in nurse cells and are rapidly
transferred into the oocyte during later oogenesis (Cox and Spradling,
2003; Hill et al., 2014). In fly strains that are heteroplasmic for
different mtDNA haplotypes, the events of early oogenesis are
associated with selection and inheritance of functional mitochondria
(Ma et al., 2014). Similar mitochondrial proliferation, transport and
selection also occur during mouse oogenesis, and defects in these
processes can negatively impact oogenesis and embryonic survival in
both fly and mouse (Cox and Spradling, 2003; Lei and Spradling,
2016; Mishra and Chan, 2014; Pepling, 2016; Van Blerkom, 2011).

Here, we find that mito-nuclear incompatibility during oogenesis
has pleiotropic cell and developmental consequences that
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Fig. 1. The (ore); OreR and (simw’°"); OreR females have a lower oviposition rate at a higher temperature. (A) An illustration of a pair of Drosophila ovaries
with one ovariole indicated in pink. (B) A single ovariole with the developmental timeline of Drosophila oogenesis. Somatic follicle cells (pink) surround the
germline nurse cells and oocyte to form an egg chamber. (C) Experimental scheme for the temperature-shift and female egg lay rate assay. (D,E) Oviposition rate
of the indicated mito-nuclear females raised at 25°C (D) or 28°C (E) measured over 1 h. Fifty females per genotype, n=six biological replicates; data are meants.e.m.
***P<0.001 comparing (simw?®?); OreR with (ore); OreR using two-way ANOVA with Bonferroni correction. A and B are adapted, with the permission of the

Genetics Society of America, from Ables (2015).
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compromise egg production and embryonic survival. Overall, the
results provide a cellular basis for how mito-nuclear incompatibility
can reduce organismal fitness and potentially contribute to
reproductive barriers. More broadly, our findings are relevant to
understanding the impact of mito-nuclear incompatibility on
human female infertility, inter-generational inheritance of metabolic
defects, and mitochondrial replacement therapy.

RESULTS

Females from (simw®°?); OreR and (ore); OreR strains have
compromised fertility

Previous results suggested that the mito-nuclear incompatible
(simw>?!); OreR strain had reduced fecundity relative to the other
mito-nuclear combinations, which was more severe at the non-
permissive temperature of 28°C (Hoekstra et al., 2013; Meiklejohn
et al., 2013). To specifically evaluate the contribution of female
infertility to this reduced fecundity, and to eliminate the
contribution of male sterility, we outcrossed (simw’’!); OreR
females to males from a yellow (y) white (w) lab strain at 25°C and
28°C. Fecundity was measured by counting the number of pupae in
the next generation, and compared with the number of offspring
from y w females and females from strains previously shown to
have compatible mito-nuclear combinations — (simw’?!); AutW132,
(ore); AutW132 and (ore); OreR, all of which were outcrossed to y
w males (Table 1). The number of offspring was not significantly
different among the (simw’?!); AutW132, (ore); AutW132 and y w
females at either 25°C or 28°C (Table 1). Whereas the (ore); OreR
females had significantly fewer offspring than y w females at 25°C
and 28°C, they had significantly more offspring than (simw>%!);
OreR females at 28°C, which were completely infertile at this
temperature (Table 1). These results indicate that the OreR
nuclear genotype contributes to a reduced female fecundity, which
is further enhanced by the simw’?’ mitochondrial genotype and
higher temperature.

The nuclear OreR and mitochondrial simw®°? genotypes
contribute to a temperature-dependent decline in egg
production

We evaluated whether the low fecundity of the (simw’?!); OreR and
(ore); OreR females was because of a reduced egg production. We
raised mito-nuclear females at 25°C or 28°C, crossed them to y w
males and then measured egg lay rate (oviposition) on different days
of adulthood (Fig. 1C). At 25°C, all four types of mito-nuclear
females had a similar oviposition rate over 3-12 days of adulthood,
suggesting this temperature is permissive for egg production
(Fig. 1D). This result differs from those of Meikeljohn et al., who
reported that (simw’’!); OreR and (ore); OreR have lower
oviposition rates relative to (simw’%!); AutWi132 and (ore);
AutW132 at 25°C, perhaps because we measured oviposition rate

Table 1. Female fecundity of (mito); nuclear strains

over 1 h in the morning, whereas Meikeljohn et al. calculated
oviposition over an entire day (Meiklejohn et al., 2013). In contrast,
at 28°C the egg production from both (ore); OreR and (simw>%!);
OreR was very low, especially in older females, and was
significantly different from both (simw’%!); AutW132 and (ore);
AutW132 (Fig. 1E). The low oviposition rate of both the (ore); OreR
and (simw>%!); OreR females relative to the 4utW132 nuclear strains
suggests that the OreR nuclear genotype contributes to a
temperature-sensitive decline in egg production. Moreover, the
significantly lower egg lay rate of (simw’%!); OreR compared with
(ore); OreR in younger females, and the lack of an effect of the
simw’! mitochondria in the AutWI132 nuclear background,
suggests that the mito-nuclear incompatibility of (simw’%!); OreR
further compromises egg production.

The nuclear OreR and mitochondrial simw®>°? genotypes
contribute to temperature-dependent defects in ovary
development and egg chamber production

To define the problem with egg production in (ore); OreR and
(simw’?); OreR, we first examined the gross morphology of the
ovaries and ovarioles in the adult females on day three of adulthood
(Fig. 1A,B). Ovariole development starts during the early pupal stage
when somatic cells form a stem cell niche around germ cells, which
are destined to become adult germline stem cells (GSCs) (Gancz
et al., 2011). The adult ovaries of (ore); OreR and (simw’?!); OreR
females were smaller than those of (simw’%); AutW1i32 or (ore);
AutWi32 (Fig. SIA) and were composed of significantly fewer
ovarioles, a phenotype that was exacerbated at 28°C and most severe
in the (simw’?!); OreR strain (Fig. S1B). These results suggest that
(ore); OreR and (simw>?!); OreR females have temperature-sensitive
defects in gonadogenesis, resulting in a reduced adult ovariole
number that contributes to the lower egg production rates.

We next examined stages of oogenesis in adult females by
confocal microscopy of ovarioles labeled with the fluorescent DNA
dye DAPL. When females were raised at 25°C, on day three of
adulthood all four strains had normal germaria and distributions of
egg chambers representing different stages of oogenesis (Fig. 2A-D,
Fig. S2A). When raised at 28°C, the (simw>%); AutW132 and (ore);
AutWi32 females again had normal germaria and stages of
oogenesis (Fig. 2E,F, Figs S2B and S3A-B”). In contrast, in the
(ore); OreR and (simw’%!); OreR females raised at 28°C, ~70-80%
of the ovarioles were missing egg chambers from early and mid-
stages of oogenesis (Fig. 2G,H, Figs S2B and S3C-D"). It is known
that in response to metabolic and other stresses a vitellogenic
checkpoint results in reduced egg chamber production and
autophagy of egg chambers during stages 7-9 (Pritchett et al.,
2009). Some ovarioles in both (ore); OreR and (simw’’!); OreR had
degenerating egg chambers that were labeled with Lysotracker,
indicating that they were undergoing autophagy (data not shown).

GO mothers
yw (simw®°7); AutW132 (ore); AutW132 (ore); OreR (simw®°7); OreR
Temperature (G:C); Aatn'A* (G:U); Aatm™'4 (G:C); Aatm™'A (G:C); Aatm“"Y (G:U); Aatm“"Y
25°C 75.4+31.69% 69.9+21.76 (P>0.05)8 54.7+15.17 (P>0.05) 29.84+16.56 (P<0.001) 16.946.74 (P<0.001)
28°C 76.1£30.98 97.3+30.34 (P>0.05) 78.7+19.96 (P>0.05) 9.9+5.99 (P<0.001) 0.0£0.00 (P<0.001)"

*(mt-tRNAY" allele); Aatm alleles.

¥The estimation of female fecundity is based on the average pupa number produced by the crosses between five females and three y w males over 24 h. n=10

biological replicates.

§$P values are for significance relative to y w control crosses at the same temperature.

At 28°C, (simw®"); OreR was significantly different from (ore); OreR (P<0.001).
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Fig. 2. The OreR nuclear genotype contributes to a temperature-sensitive ovarian failure that is enhanced by simw>°’ mitochondria. Ovarioles labeled
with DAPI from different mito-nuclear females at day 3 of adulthood raised at either 25°C (A-D) or 28°C (E-H). The germarium (G) and stages (S) of egg chamber
maturation are indicated. Scale bars: 50 pm. (I,J) Quantification of the percentage of germaria with different numbers of germline stem cells (GSCs) from the
indicated mito-nuclear females raised at either 25°C (1) or 28°C (J). The numbers on the bars represent the total number of germaria analyzed. Comparison
of (ore); OreR and (simw®°"); OreR at 28°C, ***P<0.001 for two GSC, **P<0.01 for zero GSC, ns, non-significant for one GSC. Data are meanzs.e.m.

(K-M) Germaria from (simw®°7); OreR females raised at 28°C with two (K), one (L) or zero (M) GSCs, labeled with antibodies against Hts (red) and Vasa (green)
proteins, and DAPI (blue). Solid outlines: GSCs with Hts-labeled spherical spectrosomes. Dotted outlines: niche positions without a GSC. Scale bars: 20 um.
(N-P) Germline cell death in germaria from (simw®°?); OreR females raised at 28°C, labeled with antibodies against Hts (red) and cleaved caspase Dcp-1 (green).
Images show germaria with no Dcp-1 labeling (N), a Dcp-1 labeled GSC (arrow) (O) or a Dcp-1 labeled 16 cell cyst (P). Scale bars: 10 pm.

Unlike the vitellogenic checkpoint, however, these degenerating (germarium region 3) (Fig. 2G,H, Fig. S3C-D”). This last
chambers were also seen during earlier stages of oogenesis, phenotype suggests that in the (ore); OreR and (simw’%!); OreR
including stage 1. In many ovarioles, stages 1-7 were completely  females after an initial period of normal oogenesis egg chamber
absent and germaria were directly attached to stage 8 or later egg  production from the germarium ceases in many ovarioles. These
chambers, with no evidence of nascent stage 1 egg chambers failures in oogenesis are consistent with the observed temperature-
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sensitive decline in egg oviposition rate in the (ore); OreR and
(simw’?!); OreR females (Fig. 1E).

The (simw®°7); OreR and (ore); OreR females have a
temperature-sensitive defect in germline stem cell
maintenance and early germline cell survival

To further define the defect in egg chamber production, we
examined the earliest stages of oogenesis in the germarium. To
measure germline stem cell (GSC) number, we labeled ovaries with
antibodies against the germline protein Vasa and the Hu li tai shao
(Hts) protein, the Drosophila adducin ortholog that associates with a
spherical ‘spectrosome’ in the cytoplasm of GSCs (Lin et al., 1994).
In a normal ovariole, anti-Hts labels spectrosomes in two or more
GSCs that reside in the stem cell niche at the anterior tip of the
germarium (Losick et al., 2011). The GSC daughter cells, called
cystocytes, divide four times with incomplete cytokinesis to form
interconnected germline cysts. These cysts contain a branched
cytoskeletal body known as the fusome, which also labels with anti-
Hts (Lin et al., 1994). Most germaria from all four mito-nuclear
strains raised at 25°C had the normal two or more GSCs (Fig. 2I).
When raised at 28°C, most germaria from (simw’?!); AutW132 and
(ore); AutW132 females also had two or more GSCs (Fig. 2J,
Fig. S3A-B”). In contrast, many germaria from the (simw°%!); OreR
and (ore); OreR at 28°C had only one or zero GSCs and a reduced
number of cystocytes, a temperature-dependent reduction of early
germline cells that was significantly more severe in the (simw’?);
OreR strain (Fig. 2J-M, Fig. S3C-D"). Labeling of germaria with an
antibody against the cleaved Caspase Dcp-1 indicated that GSCs and
their daughter cystocytes were undergoing programmed cell death
(PCD) at an elevated rate in the (simw’?!); OreR and (ore); OreR
females specifically at 28°C (Fig. 2N-P, Fig. S2C-D) (McCall and
Peterson, 2004). The (simw’?!); OreR females had the highest
frequency of germline PCD, consistent with them having the lowest
GSC number at 28°C (Fig. 2J, Figs S2D and S3D-D”). TUNEL
labeling confirmed that GSCs and cystocytes were indeed undergoing
PCD (data not shown). These results suggest that death of GSCs and
cystocytes contributes to the temperature-dependent decline in egg
chamber production in the (simw’?!); OreR and (ore); OreR females.
The much lower frequency of this phenotype in the (simw’%);
AutW132 and (ore); AutW132 strains suggests that the OreR nuclear
genotype contributes to early germline cell death, which is further
exacerbated by the mito-nuclear incompatibility in the (simw’%);
OreR strain.

Many of the egg chambers produced by (ore); OreR and (simw
OreR females had more than the normal 15 germline cells (Fig. S3E-G).
Given that there were not more, and in fact fewer, cystocytes per cyst
in the germarium, the >15 germline cells per egg chamber is not the
result of extra cystocyte divisions. Instead, this phenotype is likely the
result of a follicle cell epithelium encapsulating two germline cysts
during the formation of a single stage 1 egg chamber. This phenotype
is similar to other mutants that have a deficit of transit-amplifying
follicle cells in the germarium, suggesting that (ore); OreR and
(simw”?!); OreR have problems with early follicle cell proliferation or
survival, or both (Cicek et al., 2016; Forbes et al., 1996).

St 01) .

The (simw?®°?); OreR incompatible strain has a unique
temperature-dependent maternal effect on embryo

hatch rate

The data suggested that (simw’%!); OreR and (ore); OreR females
share similar temperature-sensitive early oogenesis phenotypes.
Progeny counts had indicated, however, that whereas (ore); OreR
females had reduced number of progeny at 28°C, (simw’>?!); OreR
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females were completely infertile (Table 1). Therefore, the similar
ovary phenotypes in these two strains failed to account for the
difference in their female fecundity. Moreover, while progressive
GSC loss was somewhat more severe in the (simw>%!); OreR strain,
these females did produce some normal-looking egg chambers, yet
no progeny survived to the pupal stage. We therefore examined
whether a difference in the survival of offspring from (simw’%!);
OreR and (ore); OreR females accounts for their difference in
fecundity.

As before, we raised females from the four mito-nuclear strains at
either 25°C or 28°C (the GO generation) and then crossed them to y
w males. We collected embryos from these females during different
days of adulthood at 25°C or 28°C, allowed these G1 embryos to
develop at the same temperature, and counted the fraction that
hatched into larvac. When GO mothers were raised at 25°C, Gl
embryos from all four mito-nuclear strains had similar hatch rates
(Fig. 3A). When mothers were raised at 28°C, however, the G1
embryos from (simw’?!); OreR mothers had hatch rates that were
significantly lower than those in the other three strains (Fig. 3B). To
assess whether this is a temperature-sensitive process in the mother
or embryo, or both, we again raised females at 25°C or 28°C, but this
time shifted their embryos to the reciprocal temperature after a 1 h
egg lay. When mothers were raised at 25°C and embryogenesis was
at 28°C, all four strains had similar high hatch rates (Fig. 3C). When
mothers were raised at 28°C and embryogenesis was at 25°C,
however, the G1 embryos from (simw’?!); OreR mothers again had
hatch rates that was significantly lower than the other three mito-
nuclear strains (Fig. 3D). These results suggest that the hatch rate of
embryos is dependent on the temperature of the (simw’’!); OreR
mothers.

Although the embryos from these crosses inherit the simw’?!
mitochondria from their mother, they are heterozygous for Aatm’/
Aatm™ because their y w fathers are homozygous for the compatible
Aatm? allele (Table 2). The incompatible Aatm” allele has previously
been shown to be recessive to the compatible 4arm? allele for larval
development. Nevertheless, in our experiments inheritance of the
Aatm™ allele from the y w father failed to rescue the maternal effect on
embryonic hatch rate. We could not cross to (simw’?’); OreR males
because they had reduced fertility at 28°C. Therefore, to directly
assess whether embryos with a (simw’?!); OreR (Aatm”/Aatm")
genotype are temperature sensitive, we outcrossed (simw’?!); OreR
females to fertile (ore); OreR males, which have the Aatm” allele
(Fig. S4A). The hatch rate of homozygous Aatm"/Aatm” embryos
was not affected by the developmental temperature, but was
dependent on the developmental temperature of the (simw’);
OreR mother (Fig. S4B). These results suggest that the incompatible
(simw?!); OreR females have no surviving progeny because of a
strict maternal effect that is primarily dependent on the genotype and
temperature of the mother.

Incompatibility between the nuclear Aatm" and
mitochondrial tRNA™" (G:U) alleles causes the temperature-
sensitive maternal effect

We next addressed whether the incompatibility between the nuclear
Aatm” and mitochondrial tRNA™" (G:U) alleles in (simw°?!); OreR
was the cause of the maternal effect. To do this, we conducted a
series of rescue crosses using strains with different Aatm transgenes
on the third chromosome that have either the incompatible OreR
allele (4atm”), the compatible AutW132 allele (Aatm™) or the OreR
Aatm” allele mutated to the compatible darm? allele (Aatm”?7>4)
(Fig. S5) (Meiklejohn et al., 2013). These rescue strains were
heterozygous on the second chromosome for a deletion of the
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Fig. 3. A temperature-sensitive mito-nuclear incompatibility in the mother severely reduces embryonic hatch rate. (A-D) Embryonic hatch rate depends
on the temperature of the (simw®’’); OreR mother. GO mothers were raised at 25°C or 28°C and their G1 embryos allowed to develop at the same or
reciprocal temperature. Embryonic hatch rates were measured for mothers of different ages post eclosion (x axis). Data are mean percentage of G1 hatched eggs
+s.e.m. for three biological replicates. (A) Mothers at 25°C and embryos at 25°C. (B) Mothers at 28°C and embryos 28°C. (C) Mothers at 25°C and embryos at
28°C. (D) Mothers at 28°C and embryos 25°C. ***P<0.001 comparing (ore); OreR and (simw®’’); OreR. n=3. (E) The compatible Aatn allele in the mother
rescues embryonic hatch rate. Hatch rates of embryos were measured from mothers with different mitochondria and doses of nuclear Aatm alleles, as indicated
below the x axis. Mothers were at 28°C and embryos at 25°C. n=3 biological replicates; data are meants.e.m. (***P<0.001). See Fig. S5 for cross scheme.

endogenous Aatm gene over the CyO balancer, which has the
compatible Aatm? allele (Meiklejohn et al., 2013). This resulted in
progeny females that had different doses of the datm®, Aatm” or
Aatm”?734 alleles and either ore or simw’?’ mitochondria. We then
tested these females (the GO mothers) for the maternal effect on
embryonic hatch rate (Fig. S5). We could not obtain adult females
that only had the 4atm" allele with the simw’?’ mitochondria when
raised continuously at 28°C because of insufficient rescue of larval
development. Therefore, for all the crosses, we shifted larvae from

25°C to 28°C at second instar to increase survival and obtain adult
females. These GO adult females were crossed to y w males, allowed
to lay eggs for 1 h at 28°C, and their embryos shifted to 25°C to
specifically assay the maternal effect. The results indicated that only
one copy of the Aatm? allele or Aatm"?7*4 allele was sufficient to
rescue the temperature-sensitive maternal effect on embryonic hatch
rate (Fig. 3E). Conversely, mothers that inherited only the
Aatm” allele with simw’?’ mitochondria displayed a strong
temperature-sensitive maternal effect on hatch rate (Fig. 3E).
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Table 2. Embryonic genotypes from crosses of (simw>°"); OreR females
(Aatm“™) to different males

Nuclear Aatm  Mitochondrial — Mito-tRNAY"
GO0 males genotype allele  haplotype anti-codon arm
y w Aatnr'A OreRlyw VIA simw?07 G:U
(ore); OreR Aatm""V  OreR A% simw®07 G:U

Thus, it appears that, similar to the previous results for larval
development, the compatible Aatm is dominant to the incompatible
Aatm” for the maternal effect on embryogenesis. These rescue
results suggest that it is the incompatibility between the nuclear
Aatm” and mitochondrial fRNA™" (G:U) alleles that is responsible
for the temperature-sensitive maternal effect on offspring survival.

The temperature-sensitive period of the (simw>°"); OreR
maternal effect begins during pupal development of the
mother

To define the temperature-sensitive period for the (simw’%’); OreR
maternal effect, we performed reciprocal temperature-shift
experiments. The GO females from all four mito-nuclear strains
began development at either 25°C or 28°C, but were then shifted to the
reciprocal temperature at different times of their larval, pupal or adult
life (Fig. 4A). The resulting adult GO females were crossed to y w
males, allowed to lay eggs on day five of adulthood, and the hatch rate
of their G1 embryos measured. Embryonic hatch rate from (simw’?!);
OreR mothers was significantly lower than the other strains when
these females were shifted from permissive (25°C) to restrictive
(28°C) temperature before early pupal development (Fig. 4B). The
reciprocal shift from restrictive (28°C) to permissive (25°C) resulted in
lower embryonic hatch rates when the (simw’?’); OreR mothers were
shifted after larval development (Fig. 4C). Together, these reciprocal
shift experiments suggest that the temperature-sensitive period of the
(simw’?); OreR maternal effect begins during early pupal
development, a period that coincides with ovariole morphogenesis
and the onset of oogenesis (Gancz et al., 2011).

The temperature-sensitive period for the mito-nuclear
maternal effect corresponds to early oogenesis

Curiously, shifting the temperature of (simw’?!); OreR females
during adulthood did not alter the maternal effect on hatch rate
(Fig. 4B,C). However, this maternal effect was assayed only on day
five of adulthood. Therefore, to further investigate the dynamics of
the temperature-sensitive maternal effect, we performed reciprocal
temperature-shift experiments with females on day one of
adulthood, and then measured hatch rate of their embryos from
day three to 12 of adulthood (Fig. 5A). As expected, the (simw’%!);
OreR females that were shifted from 25°C to 28°C initially laid
embryos with a very high hatch rate (Fig. 5B). This hatch rate then
gradually declined to significantly lower levels by day five of
adulthood, and continued to decline to very low levels until day 12
(Fig. 5B). Conversely, embryos from mothers shifted from 28°C to
25°C initially had a very low hatch rate. Despite shifting these
mothers to permissive temperature on day one of adulthood, this low
hatch rate persisted until day eight, with hatch rates rising only by
day nine (Fig. 5B).

The nine-day lag between the temperature shift and the rise in
hatch rate is approximately equal to the time it takes in oogenesis for
a GSC daughter cell in the germarium to develop into a mature stage
14 egg (Fig. 1B) (Lin and Spradling, 1993). This similarity in timing
suggested that the temperature-sensitive period for the mito-nuclear
incompatibility may coincide with events of early oogenesis in the
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germarium. Indeed, early oogenesis is a crucial time for
mitochondrial dynamics when germline mitochondria undergo a
period of rapid proliferation and increase greatly in number, with
some mitochondria actively transported into the differentiating
oocyte to form part of a distinct cluster called the Balbiani body
(Cox and Spradling, 2003; Hill et al., 2014; Lei and Spradling,
2016; Pepling, 2016; Pepling et al., 2007). To address whether these
processes were affected, we labeled mitochondria with antibodies
against ATPSa, a subunit of the F1 ATP synthase complex, and
examined them by confocal and super-resolution microscopy
(Godbout et al., 1993). This analysis suggested that the (ore);
OreR and (simw’?’); OreR females at 28°C have normal
mitochondrial number in the germarium (Fig. 6A,B). In many
(simw’?!); OreR germaria, however, mitochondria formed a more
tubular network, although this was difficult to quantify (Fig. 6B).
Mitochondrial labeling of (simw’%); OreR was similar to all the
other mito-nuclear strains in both somatic and germline cells of later
stage egg chambers (Fig. 6C-H). Thus, the combined data suggest
that mito-nuclear incompatibility does not result in observable
reductions in the number of mitochondria in developing egg
chambers. It remains possible, however, that early oogenesis is a
temperature-sensitive period for mitochondrial quality that later
manifests as reduced embryonic hatch rate, consistent with previous
evidence that the mito-nuclear incompatibility in (simw>%!); OreR
results in reduced mitochondrial oxidative phosphorylation capacity
(Meiklejohn et al., 2013).

Maternal mito-nuclear incompatibility in (simw®°?); OreR has
pleiotropic effects on egg morphology, fertilization, and
embryonic cell divisions

We next examined the eggs laid by (simw’%’); OreR mothers to
determine how maternal mito-nuclear incompatibility inhibits
embryonic hatch rate. At 28°C, (simw®%!); OreR mothers laid
eggs that were smaller with shells of unusual morphology (Fig. 7A-C,
Fig. S6A-C). The A-P axis length of these eggs was significantly
shorter than those from other mito-nuclear mothers by ~20%,
without an increase in egg width, indicating that eggs laid by
(simw’?!); OreR have reduced volume (Fig. 7D,E). This reduction
in egg length without a significant change in width is similar to
other mutants that have incomplete ‘dumping’ of nurse cell
cytoplasm into the oocyte during late oogenesis (Bilder and
Haigo, 2012; Cooley et al., 1992). An examination of late stages
of oogenesis indicated that the (simw’%/); OreR females did indeed
have a very high fraction of egg chambers with incomplete nurse
cell dumping (Fig. 7F). In addition, many of the eggs laid by
(simw’?!); OreR mothers had soft, gelatinous eggshells, a structure
that is synthesized by somatic follicle cells. These follicle cells
developmentally amplify the copy number of eggshell protein
(Chorion) genes late in oogenesis (Calvi, 2006; Calvi et al., 1998;
Spradling and Mahowald, 1980). However, labeling of ovaries with
the nucleotide analog EdU indicated that developmental
amplification of chorion genes was not impaired, suggesting that
problems with eggshell synthesis are downstream of developmental
gene amplification (Fig. S6D-F) (Calvi and Lilly, 2004; Calvi et al.,
1998). Many of these eggs had unusual branching morphology of
their eggshell dorsal appendages, with some of them wrapping
laterally around the egg. Labeling of egg chambers with antibodies
against the dorsal determinant Gurken, however, did not provide
evidence for a disruption of D-V patterning (Fig. S6G-I). Together,
these phenotypes suggest that some of the (simw’?!); OreR female
infertility may be caused by defects in both germline nurse cells and
somatic follicle cells.
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Fig. 4. The temperature-sensitive period in the mito-nuclear incompatible mothers begins at the L3-to-pupa transition. (A) Experimental scheme for the
reciprocal temperature-shift experiments. The GO females were shifted from 25°C to 28°C (red arrows) or from 28°C to 25°C (black arrows) during different larval
stages (L), white pre-pupae (pupae) or day 1 of adulthood. The resulting GO adult females were crossed to y w males, and on day five post-eclosion G1
embryos were collected, allowed to develop at 25°C, and hatch rate counted after 36 h of embryogenesis. (B) Hatch rate of G1 embryos when their GO mothers
were shifted from a permissive (25°C) up to a restrictive (28°C) temperature at the indicated developmental times. (C) Hatch rate of G1 embryos when their GO
mothers were shifted from a restrictive (28°C) to a permissive (25°C) temperature at the indicated developmental times. n=3 biological replicates; data are
meanzs.e.m. **P<0.01 and ***P<0.001 for comparison between (ore); OreR and (simw®°"); OreR.
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the maternal effect, mothers were raised at 28°C, mated to y w  against the paternally-supplied centrosomal protein Centrosomin
males, and the embryos then allowed to develop at 25°C. Many of (Cnn) (Eisman et al., 2015; Megraw et al., 1999). This analysis
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Fig. 5. Adult temperature shifts have a delayed impact on the maternal effect. (A) (simw®?); OreR females were raised at 25°C or 28°C, kept at the same
temperature, or shifted to the reciprocal temperature on day 1 of adulthood, and then crossed to y w males. Embryos from these females were collected on days 3-12 of
adulthood, allowed to develop at 25°C and hatch rates were measured at 36 h. (B) Hatch rates of embryos from (simw?®°?); OreR mothers who were treated as described
in A. n=3 biological replicates; data are meants.e.m.. Red asterisks represent P values for comparison of 25-28°C shift (red line) versus constant 25°C (blue line). Black
asterisks represent P values for comparison of 28-25°C shift (black line) versus constant 28°C (gold line). *P<0.05; **P<0.01; ***P<0.001. n=3.
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revealed that at 28°C ~36% of eggs from (simw>?!); OreR mothers
were unfertilized, a fraction that was significantly higher than the
5% unfertilized fraction produced by control y w mothers (Fig. 7G).
Although the fraction of unfertilized eggs from (ore); OreR mothers
at 28°C was also elevated (~17%), this number was not
significantly different from y w (Fig. 7G). Sperm enter the egg
through a hollow cone called the micropyle, a specialized structure
of the vitelline membrane (Nonidez, 1920; Suzanne et al., 2001).
For some eggs from (simw”%); OreR mothers, the micropyles were
occluded by aberrant eggshell structures, at least partially explaining
the fertilization defect (Fig. S6J-L).

Although 64% of embryos from (simw’?!); OreR mothers were
fertilized, hatch rate was close to zero. For y w embryos, the duration
of embryogenesis was ~22 h with hatch rates of over 90%, whereas
almost all embryos from (simw’?’); OreR mothers failed to hatch
even after 36 h. While embryos arrested at distributed stages, ~70%
of fertilized embryos had defects in syncytial nuclear divisions
during the first 2 h of embryogenesis (Fig. 7H,K). These embryos
frequently had unevenly spaced nuclei and bridging/lagging mitotic
chromosomes, indicative of syncytial nuclear positioning and
division defects (Fig. 7K). Taken together, these data suggest that
mito-nuclear incompatibility in the (simw>?!); OreR mothers results
in severe pleiotropic effects on egg morphology, fertilization and
embryonic cell divisions.

DISCUSSION

In this study, we show that a specific mito-nuclear incompatibility
results in a suite of cell and developmental phenotypes that
contribute to complete temperature-sensitive infertility of
(simw’?!); OreR females. The data indicate that both (ore); OreR
and (simw’?!); OreR have germline cell death and a decline in egg
production with female age, suggesting that the OreR nuclear
genotype contributes to reduced female fecundity (Hoekstra et al.,
2013; Meiklejohn et al., 2013; Montooth et al., 2010). These
phenotypes were more severe for (simw’%!); OreR than (ore); OreR,
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Fig. 6. Mitochondrial abundance and morphology
in the ovary. (A,B) Super resolution image of
germaria labeled with anti-ATP5a and DAPI from
(ore); OreR (A) and (simw®’"); OreR (B) females
raised at 28°C. Scale bars: 5 ym. (C-H) Confocal
images of a stage 10 (C-E) and stage 12-13 (F-H) egg
chambers labeled with anti-ATP5a and DAPI from
(simw®°7); AutW132 (C,F), (ore); OreR (D,G) and
(simw®"); OreR (E,H) females that were raised at 28°
C. Scale bars: 50 uym.

(simw®");0OreR

and were absent in (simw’%!); AutW132, suggesting that mito-
nuclear incompatibility enhances this ovarian failure. The allelic
mito-nuclear incompatibility in (simw’%/); OreR strain caused a
unique temperature-sensitive maternal effect that resulted in
complete infertility. Our results provide a cell and developmental
framework for understanding how mito-nuclear incompatibility can
contribute to reproductive barriers among divergent populations and
cause human disease.

The nuclear Oregon-R and mitochondrial simw>°? genotypes
contribute to ovarian failure

The (ore); OreR and (simw’?!); OreR females both had a
temperature-sensitive reduction in ovariole number and a
progressive ovarian failure caused by egg chamber degeneration
and programmed cell death of germline cells in the germarium,
suggesting that the OreR nuclear genotype contributes to these
phenotypes (Fig. 8). It has been previously reported that dividing
germline cystocytes undergo a Caspase-dependent cell death
in response to metabolic stresses (Drummond-Barbosa and
Spradling, 2001; Ikeya et al., 2002; Morrison and Spradling,
2008). Activated Caspase labeling of GSCs was surprising,
however, given that it has been reported that GSCs and other
stem cells are resistant to apoptosis after irradiation (Xing et al.,
2015). It is possible that mitochondrial stress is a more potent
inducer of apoptosis in stem cells than the genotoxic stress caused
by irradiation. Given that ovarioles form around presumptive
GSCs during early pupal stages of development, the reduction in
ovariole number suggests that GSCs may also be lost before
adulthood (Belles and Piulachs, 2015; Gilboa and Lehmann, 2006;
Song et al., 2002).

The similar phenotypes of (simw’?!); OreR and (ore); OreR in the
ovary contrast with their different phenotypes in larvae reported by
earlier studies, which showed that (simw’%); OreR, but not (ore);
OreR, has temperature-sensitive defects during larval development
(Hoekstra et al., 2013; Meiklejohn et al., 2013). The main effect of
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Fig. 7. The (simw®°?); OreR mito-nuclear incompatibility compromises egg morphology, fertilization and embryonic cell divisions. (A-C) Bright-field
images of eggs laid by (simw®°7); AutW132 (A) (ore); OreR (B) and (simw®""); OreR (C) females at 28°C. Eggs from (simw®°?); OreR females are shorter,
with soft eggshells, and unusual dorsal appendage morphology (arrow). Scale bars: 100 um. (D,E) Measurement of anterior-posterior length (D) and dorsal-
ventral width (E) of ~0-2 h embryos from mothers of the indicated genotypes at 28°C (*P<0.05, ***P<0.001. n=19 per genotype). (F) Percentage of stage
11-13 egg chambers with reduced transfer of nurse cell cytoplasm into oocyte. (G) Percentage of unfertilized embryos from mothers of the indicated genotypes at
28°C determined by anti-Cnn labeling (n=4, **P<0.01). (H) Percentage of fertilized embryos that were arrested by 8 h after egg lay (AEL). (n=4, *P<0.05).
(I-K) Confocal images of embryos during nuclear cleavage cycles, 0-2 h AEL. Embryos are from mothers raised at 28°C and of the indicated genotype.
Centrosomes are labeled with anti-Cnn antibody (red) and nuclear DNA is labeled with DAPI (green). The insets show higher magnifications of mitotic

chromosome segregation. Scale bars for panels and insets: 20 ym.

the OreR nuclear genome to disrupt oogenesis, but not larval
development, is consistent with the known tissue-specific
characteristics of other metabolic dysfunctions in development
and disease, and the sensitivity of oogenesis to metabolic stress,
including that caused by mitochondrial dysfunction (Benkhalifa
et al., 2014; Bentov et al., 2011; Boots et al., 2016; Grindler and
Moley, 2013; McCall, 2004; Morrison and Spradling, 2008; Sieber
et al.,, 2016). Although our rescue experiments showed that the
allelic incompatibility between the Aatm” allele and simw’?!
mitochondria causes the maternal effect embryonic lethality,
preliminary observations suggest that the ovarian failure
phenotype is multigenic and not just determined by alleles of
Aatm. Changing the OreR nuclear background through rescue

crosses ameliorated the ovarian failure phenotype. Females that
inherited the simw’?’ mitochondria and only the incompatible
Aatm” allele still had an ovarian failure phenotype, but this
phenotype was less severe than in the parental (simw’%!); OreR
(Aatm"”) females. The rescue-cross females with only the
incompatible Aatm” allele, but with ore mitochondria, did not
have an ovarian failure phenotype, consistent with the interpretation
that mito-nuclear incompatibility enhances ovarian failure.
Moreover, whereas (simw’%!); OreR and (ore); OreR had similar
early oogenesis phenotypes, these phenotypes were more severe in
(simw>?!); OreR, and absent in (simw’?!); AutW132, suggesting that
they are enhanced by the mito-nuclear incompatibility. The degree
to which alleles of Aatm and other genes contribute to the OreR
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nuclear main effect on ovarian failure is a complex genetic issue that
will be addressed by future mapping studies.

Mito-nuclear incompatibility in (simw®>°7); OreR results in
complete female infertility

Importantly, the (simw’?); OreR females had the unique
temperature-sensitive phenotypes of abnormal egg morphology,
fertilization failure and maternal-effect embryonic lethality (Fig. 8).
The embryos from these females had aberrant nuclear cleavage
division and severe chromosome segregation errors during the first
2 h of embryogenesis. This embryonic lethality was a strict maternal
effect dependent on the temperature of the mother, which rescue
experiments suggest is caused by incompatibility between the nuclear
Aatm” and mitochondrial fRNAY" G:U alleles. The temperature-shift
experiments suggested that early oogenesis is a temperature-sensitive
period, which is known to be a crucial time for mitochondrial
proliferation, transport and selection, and alleles of mitochondrial
proteins can even influence early oocyte specification (Cox and
Spradling, 2003; Hill et al., 2014; Hurd et al., 2016; Ma et al., 2014;
Teixeira et al., 2015). Our analysis, however, did not reveal defects
in mitochondrial number, transport or oocyte specification. It is
likely, therefore, that this mito-nuclear incompatibility impairs
mitochondrial quality, consistent with previous evidence that
(simw’?);  OreR  mitochondria have reduced oxidative
phosphorylation complex activity and an aberrant morphology in
muscle (Holmbeck et al., 2015; Meiklejohn et al., 2013). Thus,
temperature-sensitive events during early oogenesis in (simw’?);
OreR mothers may result in persistent sub-functional mitochondria
that cannot support energy-demanding processes during later
oogenesis and early embryogenesis (Sieber and Spradling, 2015;
Sieber et al., 2016).

The aberrant eggshell synthesis suggests that some of the
processes affected by this incompatibility are in somatic follicle
cells. The fertilization failure of these eggs may also be the result of
aberrant eggshell and vitelline membrane synthesis by follicle cells
(Fig. 8). The incomplete transfer of nurse cell cytoplasm and short
egg phenotype resembles that of other ‘dumpless’ mutants, and
suggests that mito-nuclear incompatibility also impairs germline
functions (Bilder and Haigo, 2012; Frydman and Spradling, 2001,
Mahajan-Miklos and Cooley, 1994). Rapid transfer of nurse cell
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nuclear incompatibility has pleiotropic
effects on female fertility. At a higher
temperature (28°C), the OreR nuclear
genotype causes loss of GSCs, reduced
egg chamber production and
degeneration of egg chambers through
apoptosis and autophagy, all of which are
enhanced by incompatibility with simw®°’
mitochondria. These ovarian phenotypes
together contribute to greatly decreased
egg production. Temperature-sensitive
mito-nuclear incompatibility in (simw?°?);
OreR females caused unique nurse cell
dumping and eggshell synthesis defects
during later oogenesis. Below:
temperature-sensitive mito-nuclear
incompatibility in (simw®°7); OreR
mothers resulted in mitotic errors in their
embryos, which may be caused by
insufficient maternal metabolites or
maternal inheritance of sub-functional
mitochondria.

Nurse cell dumping defects
Egg shell synthesis

Abnormal egg morphology
Fertilization failure

cytoplasm depends on actin polymerization and contraction, and is
sensitive to ATP/ADP ratio, perhaps explaining why it is sensitive to
mitochondrial dysfunction (Huelsmann et al., 2013). A recent report
indicates that compromised function of the muscular ovariole sheath
can also affect nurse cell dumping and results in short eggs with
reduced ooplasm (Andersen and Horne-Badovinac, 2016). Thus,
it is also possible that the reduced nurse cell dumping is a
non-autonomous effect of an ovariole sheath myopathy.

The mito-nuclear incompatibility in the (simw’?’); OreR mothers
resulted in an inter-generational lethality of their embryos (Fig. 8).
Many embryos had unevenly spaced nuclei and aberrant mitotic
chromosome segregation during the first 2 h of embryogenesis.
Nuclear spacing and migration is ATP dependent and is enacted by
aster microtubules and actin cytoskeleton (Telley et al., 2012). Thus,
this energy-demanding process may be sensitive to cellular energy
deficits, similar to actin-based nurse cell dumping and muscle
function. These aberrant nuclear division and spacing phenotypes
may be the result of maternal inheritance of sub-functional
mitochondria or insufficient maternally-supplied metabolites.
Although we favor the interpretation that the ovarian and
embryonic phenotypes are caused by mitochondrial failure in
somatic and germline cells of the ovary, it is also possible that they
are influenced by non-autonomous effects caused by perturbation of
female physiology and neuro-endocrine axis.

The impact of mito-nuclear incompatibility on female fertility

Our data are relevant to how mito-nuclear incompatibility can
contribute to reproductive barriers between species (Burton et al.,
2006; Chang et al., 2015; Gibson et al., 2013; Ma et al., 2016;
Meiklejohn et al., 2013; Narbonne et al., 2012; Paliwal et al., 2014,
Spirek et al., 2014). Our results reveal the cellular and developmental
bases for the severe effects of this genomic incompatibility on female
fertility in a high-temperature environment — a higher-order
genexgenexenvironment (GXGxE) effect, and suggest that it has
the potential to strongly contribute to reproductive barriers among
different populations via pleiotropic effects on female fertility
(Hoekstra et al., 2013). Although our data show in general how
mito-nuclear incompatibilities can generate barriers to reproduction,
it is clear that nuclear-nuclear incompatibilities are the major barrier
to reproduction between D. simulans and D. melanogaster (Ferree
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and Barbash, 2009; Phadnis et al., 2015). A recent report indicated
that incompatibility between nuclear and mitochondrial genomes can
also compromise female fertility in mouse, although the allelic basis
for this incompatibility is not known (Ma et al., 2016). Together with
our findings, these data suggest that mito-nuclear interactions may
contribute to female infertility in humans.

Mutations in the human ortholog of Aatm, YARS2, cause
myopathy, anemia and optic neuropathy (Jiang et al., 2016;
Jordanova et al., 2006; Riley et al., 2010), and it has recently
been reported that incompatibility between alleles of YARS2 and a
specific mitochondrial haplotype worsens Leber’s hereditary optic
neuropathy (Jiang et al., 2016; Konovalova and Tyynismaa, 2013).
Mutation of the human mitochondrial histidine tRNA synthetase
HARS?2 is known to cause ovarian dysgenesis, but an effect of
YARS?2 on female fertility has not been reported. Our results suggest
that polymorphisms in Y4RS2 may have undocumented effects on
human female fertility that may depend on mitochondrial
haplotype, and emphasize that mito- nuclear interactions should
be considered when interpreting mechanisms of mitochondrial
disease (Lu et al., 2015; Storkebaum et al., 2009). A careful
consideration of possible mito-nuclear interactions is also important
for informing best practices for mitochondrial replacement therapies
that introduce nuclei from two parents into the oocyte cytoplasm of
a donor female (Craven et al., 2010; Kang et al., 2016).

MATERIALS AND METHODS

Drosophila genetics

The Drosophila mito-nuclear strains and rescue strains used in this study
were previously described and are available in Table S1. The control strain, y
w07¢23was obtained from the Bloomington Stock Center and sequenced to

confirm that it is homozygous for the Aatm” allele.

Temperature-shift experiments and phenotypic assays

Female fecundity in Table 1 was assayed by crossing five virgin females to
three y w males over 24 h at either 25°C or 28°C. After removing the adults,
the vials were kept at the same temperature and the number of pupae were
counted on day 7. Ten biological replicates were conducted for each
genotype and temperature.

For oviposition and ovary analyses of Figs 1, 2 and Figs S1, S2, flies were
allowed to lay eggs in vials for 6 h at 25°C. After the adults were removed, the
vials were either kept at 25°C or shifted to 28°C. The offspring in these vials
develop into the GO mothers that were subsequently assayed. Adult GO
mothers were kept at either 25°C or 28°C, mated to y w males, conditioned on
wet yeast, and their oviposition rate and ovaries analyzed beginning on day 3 of
adulthood. The ovarian failure phenotypes in Figs 2, 6 and 7, Figs S1, S2, S3
and S6 were analyzed on day 3 of adulthood. For oviposition rate, 50 newly
emerged females were mated to 25 y w or (ore); OreR males, conditioned for
2 days on grape plates with wet yeast. Oviposition rate was measured over 1 h
in the morning and flies were transferred to fresh yeast daily.

The GO mothers were crossed to y w males and the hatch rate of the G1
embryos was analyzed at 36 h after egg lay (Fig. 3). To assay maternal-
embryonic temperature sensitivity, GO mothers were allowed to lay eggs for
one hour, and then those G1 offspring were kept at the same temperature or
shifted to the reciprocal temperature.

In the reciprocal temperature-shift experiments in Fig. 4, the GO females
were allowed to develop at 25°C or 28°C until they reached the indicated
developmental stages and were then shifted to the reciprocal temperature,
followed by measurement of hatch rate of their embryos as described. For
rescue crosses, (ore); OreR and (simw’%!); OreR virgin females were
crossed to the males from thee different rescue strains. The GO females were
raised at 25°C until second-instar larvae and were then shifted to 28°C for
further development.

For Fig. 5, the GO adult females were mated to y w males and the
temperature was shifted on day one of adulthood, followed by measurement
of G1 hatch rate beginning on day 3.

For embryo size measurements, embryos at 0~2 h of development were
dechorionated and measured along their A-P and D-V axis using Openlab
imaging software (Fig. 7). Nurse cell dumping was quantified by estimating
the A-P axis length ratio of nurse cell compartment to oocyte in stage 12-14
egg chambers.

Immunofluorescence microscopy

Ovaries and embryos were fixed and labeled as previously described (Calvi
and Lilly, 2004). The following antibodies and concentrations were used:
mouse anti-Hts [1:20 dilution, Developmental Studies Hybridoma
Bank (DHSB)]; rabbit anti-cleaved Dcp-1 (1:100 dilution, Cell Signaling
Technology, 9578); mouse anti-ATP5a (1:100 dilution, Abcam,
ab14748); rat anti-Vasa (1:100 dilution, DHSB); and mouse anti-Gurken
(2 pg/ml, Hybridoma bank). EdU labeling of amplicon foci was carried
out as previously described (Calvi and Lilly, 2004; Paranjape and
Calvi, 2016).

Secondary antibodies were Alexa Fluor 488-conjugated goat anti-mouse IgG
(4 pg/ml, Invitrogen, 169425); Alexa Fluor 488-conjugated goat anti-rabbit IgG
(4 ug/ml, Invitrogen, 1705869); Alexa Fluor 568-conjugated goat anti-mouse
1gG (4 ug/ml, Invitrogen, 1698376); Alexa Fluor 568- conjugated donkey anti-
rabbit IgG (4 pug/ml, Life Technologies, 1668655); and FITC-conjugated goat
anti-rat IgG (2 pg/ml, Life Technologies, A18866). DNA was labeled with
1 pg/ml DAPI (Invitrogen).

For embryo labeling, 0~2 h embryos were collected on grape plates and
rinsed with 0.01% Triton-X 100, dechorionated with 1:1 mixture of bleach
and 0.2% NaCl/ 0.02% Triton-X 100, and then slow fixed using a
modification of previous protocols (Sullivan et al., 2000). Briefly, the
dechorionated embryos were brushed into a glass vial and then 1 ml heptane
was added followed by 1 ml of 3.7% formaldehyde in PEM buffer. After
shaking the vial for 15 s, the embryos were allowed to fix at room temperature
for 15 min. The bottom layer was removed and 1 ml of methanol was added.
After vortexing for 10 min, the embryos that did or did not sink were collected
separately and hand devitellinized. We did this because alterations to vitelline
membrane synthesis in the incompatible strain made even fertilized embryos
partially resistant to methanol devitellinization, and to quantify the
fertilization rate independent of devitellinization efficiency. All the embryos
were rehydrated with PBTA solution and labeled with rabbit anti-Cnn
antibody (1:100, a generous gift from T. Kaufman, Indiana University,
Bloomington, USA). The unfertilized embryos were quantified based on lack
of Cnn labeled centrosomes.

Ovaries and embryos were mounted in Vectashield and imaged with
Leica-SP5 scanning confocal microscope. For live embryo imaging,
embryos were rinsed with PBS and mounted on supported slides in PBS
and micropyles were imaged by DIC with Leica DMRA2 fluorescence
microscope. The germaria mitochondrial morphology images were captured
on an OMX super resolution microscope (Applied Precision).

Statistics

One-way ANOVA was used for comparison of GSC number or GSC death
among all four strains on day three of adulthood. One-way ANOVA was
also used to compare the four strains for developmental temperature-shift
experiments in Fig. 4, and for rescue experiments in Fig. 3E. For Fig. 5,
significance was assessed by two-way ANOVA of temperature and age.
For all other analyses, two-way ANOVA of female age and genotype was
used to compare the four strains. ANOVA was followed by Tukey’s or
Bonferroni posttests to evaluate additivity of variables (e.g. female age and
genotype) and correct for false discovery rate (FDR), respectively. All
statistical analysis was carried out using GraphPad Prism5 statistical
packages.
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Fig. S1. The (ore); OreR and (simw®%); OreR females have smaller ovaries and reduced
ovariole numbers at higher temperature. (A) Bright field images of ovaries from the indicated
mito-nuclear females that were raised at 28°C. Scale bar: 500um. (B) Quantification of ovariole
numbers from the indicated mito-nuclear females raised at either 25°C (black bars) or 28°C
(grey bars). The numbers on the bars represent the total number of ovaries analyzed.
Comparing to (simw®’!); Autw132 at the same temperature, **: p < 0.01; ** = p < 0.001 by two-
way ANOVA. Error bars represent standard error.
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Fig. S2. The OreR nuclear genotype contributes to a temperature-sensitive ovarian

failure that is enhanced by the incompatible simw®! mitochondria. (A-B) Quantification of

frequency of ovarioles with different stages of egg chambers (earlier to later stages are from left

to right) from the indicated mito-nuclear females raised at either 25°C (A) or 28°C (B). The

numbers on the bars represent the total number of ovarioles analyzed. Comparing to (simw®’%);
AutW132 at the same temperature, **: p<0.01; ***: p<0.001. N=3. Error bar represents standard

error. (C-D) Quantification of the frequency of germaria with germline cell death from the

indicated mito-nuclear females raised at either 25°C (C) or 28°C (D). The y-axis represents the
frequency of germaria with germline cell death in cysts comprising the indicated cell numbers
(C). The numbers on the bars represent the total number of germaria analyzed. N=3. Error bar

represents standard error. Comparison of (ore); OreR and (simw®"); OreR at the same
temperature *: p<0.05; **: p<0.01; ***: p<0.001 by two-way ANOVA.
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Fig. S3. At 28°C, the OreR nuclear genome contributes to the loss-of-germline cells and
increased nurse cell number per egg chamber. Confocal images of ovarioles from the
indicated mito-nuclear females that were raised at 28°C. The ovarioles were labeled with anti-
Hts (A-D, green), anti-Vasa (A’-D’, red) and merged (A”-D™). In (D, D’, D”) a germarium (G) is
directly attached to a stage 10 (S10) egg chamber in a (simw®*!); OreR ovariole. Scale bar:
30um. (E) A stage 9 egg chamber from (simw®®); Autw132 with 15 nurse cells. (F) A stage 9
egg chamber from (simw®°); OreR with more than 15 nurse cells. Scale bar: 20pum. (G)
Quantification of the percentage of egg chambers with increased number of nurse cells at 28 °

C. N=4. Error bar represents standard error. ***: p<0.001.
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Fig. S4. Homozygous Aatm?™V G1 embryos from (simw?®!); OreR mothers raised at 28°C
also have a severely reduced hatch rate. (A) Experimental scheme for temperature shift and
female egg lay rate assay. The (simw®*!); OreR GO mothers were raised at 25 °C or 28 °C and
then crossed to the fertile (ore);OreR males (see Table Il for genotypes). Eggs were collected
on days 3-12 and allowed to develop at the same temperature, or shifted to the reciprocal
temperature, followed by hatch rate counts. (B) G1 embryonic hatch rates. Embryonic hatch
rates were measured for mothers of different ages post eclosion (x-axis). Data represents

average G1% hatched and standard error for three biological replicates.
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or
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or or
(ore);Ore
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GO genotypes Allele and dosage
Mito: (simw) or (ore) Aatm?V Aatm?** AatmVZ’5A
Aatm?”*V/Cy0,Aatm?"**; phiC31{Aatm?"°V}/ + 2 1 0
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§ Aatm?*V/Cy0O,Aatm?"**; phiC31{Aatm? "}/ + 1 2 0
§ Aatm?*V/Df(2R)BSC606; phiC31{Aatm?"*"}/ + 1 1 0
2
Aatm?”*V/Cy0,Aatm?"**; phiC31{Aatm"?">"}/ + 1 1 1
Aatm?”*V/Df(2R)BSC606; phiC31{Aatm"?°*}/ + 1 0 1

Fig. S5. The rescue crosses and genotypes of GO mothers. (simw®®); OreR or (ore); OreR
virgin females were crossed to males from rescue strains of the indicated genotypes. The red
superscript indicates the allele of Aatm: Aatm?’** (compatible with simw>*) Aatm?"Y
(incompatible with simw*®) Aatm"?">* (incompatible genomic transgene mutated to compatible
allele). The three columns of numbers under each allele on the bottom right indicate the dosage
of that allele in the different GO females. See Fig.3E for the rescue results.
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(simw®'');AutW132 (ore);OreR (simw®’’);0reR

DAPI
EdU

DAPI
Gurken

Fig. S6. (simw®%!); OreR mothers raised at 28°C lay eggs with aberrant dorsal
appendages and micropyles, but do not have altered Gurken protein localization or
developmental gene amplification. Eggs and ovaries were analyzed from females raised at
28 C and of the genotype indicated at the top of each column: (simw®*}); Autw132 (A, D, G, J),
(ore); OreR, (B, E, H, K), (simw*®); OreR (C, F, I, L). (A-C) Bright field images of laid eggs
viewed from a dorsal aspect. Eggs from (simw>%'); OreR females are shorter, with unusual
dorsal appendage morphology. Scale bar:100um. (D-F) Confocal images of EdU-labeled
amplicon foci in stage10B follicle cells. Scale bar: 50um. (G-1) Confocal images of anti-Gurken
labeled egg chambers. Scale bar;50um. (J-L): Differential Interference Contrast (DIC) images of
micropyles at the anterior of laid eggs. Chorion obscures the micropyle on the egg from the

(simw®™); OreR female (L). Scale bar:15um.
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Table S1. Strains used in this study

(Simw®Y); Autw132

(ore);Autw132

(ore);OreR

(simw®);0reR

w8 Df(2R)BSC606 / CyO,Aatm?’**; PBac{Aatm?°"}
w8 Df(2R)BSC606 / CyO,Aatm?’**; PBac{Aatm?">"}
w8 Df(2R)BSC606/ CyO,Aatm?">*; PBac{Aatm"?">}

y w2 (Bloomington stock #6599)

Strains were previously described by Meiklejohn et al. 2013 and are available upon request.
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