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Myostatin-like proteins regulate synaptic function and neuronal
morphology
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ABSTRACT
Growth factors of the TGFβ superfamily play key roles in regulating
neuronal and muscle function. Myostatin (or GDF8) and GDF11 are
potent negative regulators of skeletal muscle mass. However,
expression of myostatin and its cognate receptors in other tissues,
including brain and peripheral nerves, suggests a potential wider
biological role. Here, we show that Myoglianin (MYO), the Drosophila
homolog of myostatin andGDF11, regulates not only bodyweight and
muscle size, but also inhibits neuromuscular synapse strength and
composition in a Smad2-dependent manner. Both myostatin and
GDF11 affected synapse formation in isolated rat cortical neuron
cultures, suggesting an effect on synaptogenesis beyond
neuromuscular junctions. We also show that MYO acts in vivo to
inhibit synaptic transmission between neurons in the escape
response neural circuit of adult flies. Thus, these anti-myogenic
proteins act as important inhibitors of synapse function and neuronal
growth.
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INTRODUCTION
Organismal muscle mass is tightly regulated by positive and
negative endocrine and autocrine/paracrine factors. Myostatin (also
known as growth and differentiation factor 8 or GDF8), a member of
the transforming growth factor β (TGFβ) superfamily of secreted
differentiation and growth factors, is a potent inhibitor of skeletal
muscle mass in mammals. Myostatin (Mstn) gene mutations or
deletions cause hyperplastic and/or hypertrophic muscle growth in
mice (McPherron et al., 1997) and a number of other species,
including humans (Carnac et al., 2007), with consequent loss of
muscle function (Gentry et al., 2011). Myostatin-like protein
GDF11 (also known as BMP11) was also recently identified as a

circulating inhibitor of skeletal muscle regeneration in rodents and,
potentially, humans (Egerman et al., 2015).

Both GDF8 and GDF11 bind to Activin-type receptor
complexes, leading to the phosphorylation of intracellular Smad2/
3 transcription factors, followed by their translocation to the nucleus
(Oh et al., 2002; Rebbapragada et al., 2003). In addition to its action
on muscles, GDF11 is a negative regulator of neuron number in the
olfactory epithelium (Kawauchi et al., 2009; Wu et al., 2003), an
inhibitor of neuronal precursors that give rise to olfactory receptors
(Gokoffski et al., 2011) and an antagonist of neurogenesis during
retinal development (Kim et al., 2005).Mstn transcript was recently
detected inmouse brain (Lein et al., 2007) andmyostatin receptors are
expressed in several tissues, including brain and peripheral nerves.
Apart from a study demonstrating an inhibitory effect of myostatin on
neuronal colony formation in vitro (Wu et al., 2003), the potential role
of myostatin in the nervous system remains unexplored despite its
potential biological and therapeutic significance.

The Drosophila myoglianin (myo) gene encodes the invertebrate
Activin-type ligand with the highest amino acid sequence
homology to myostatin and GDF11, both of which share 46%
amino acid identity and >60% similarity with MYO (Lo and Frasch,
1999). Unlike the predominant Mstn expression in vertebrate
skeletal muscle (Lee, 2004), myo is strongly expressed not only in
different muscle types throughout development but also in
embryonic (Lo and Frasch, 1999) and larval brain glia (Awasaki
et al., 2011). Considering the strong expression of Gdf11 in the
mammalian nervous system during development and adulthood
(Nakashima et al., 1999; Shi and Liu, 2011), it is tempting to think
of Myoglianin as combining the functions of myostatin and GDF11
in flies.

In this study, we identified MYO as a strong inhibitor of synaptic
function and composition at the larval NMJ, in addition to its role as
an inhibitor of body weight and muscle size. These synaptic effects
of MYO were mediated mainly by the transcription factor Smad2
(also known as Smox) and Shaggy, the Drosophila glycogen
synthase kinase 3 (GSK3) homolog. Myostatin could reverse
the effect of MYO depletion on synaptic strength in larvae.
Furthermore, myostatin and GDF11 inhibited neuronal growth and
synapse specification in rat cortical neurons, indicating that they can
act directly on neurons that are not associated with muscle. The in
vivo role of MYO in regulating neuronal function was confirmed in
a central, non-NMJ synapse in adult flies. Our findings show that
MYO and its mammalian orthologs myostatin and GDF11 have
previously unsuspected roles in the nervous system, acting as
important inhibitors of synapse function and neuronal growth.

RESULTS
MYO inhibits NMJ synapse strength and composition
The larval body wall musculature of Drosophila is composed of
bilaterally symmetrical hemisegments, each consisting of 30 easilyReceived 5 April 2017; Accepted 15 May 2017
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identifiable longitudinal and oblique multinucleated muscle
cells/fibers. We focused on ventral longitudinal muscles 6 and 7
(Fig. S1A), which are innervated by two axons forming a single
glutamatergic neuromuscular junction (Ruiz-Cañada and Budnik,
2006), a complex synapse composed of muscle, neuronal and
glial cells.
We investigated the functional significance of the presence

of MYO in larval musculature (Awasaki et al., 2011)
electrophysiologically. We used microRNA (miRNAmyo) or
dsRNA (UAS-myoRNAi) to downregulate, and a UAS-myoglianin
(WT) construct (Awasaki et al., 2011) to enhancemyo expression by
means of theMef2-GAL4muscle driver (Brand and Perrimon, 1993;
Ranganayakulu et al., 1995), resulting inmyo expression changes in
larval muscle preparations (Fig. S1B). Currents resulting from the
spontaneous release of presynaptic vesicles [miniature excitatory
junctional currents (mEJCs), or ‘minis’] and evoked release [evoked
excitatory junctional currents (eEJCs)] represent two functional
outputs at the neuromuscular synapse (Melom et al., 2013). Nerve-
evoked postsynaptic currents, and the frequency of spontaneous
release, reflect presynaptic Ca2+-dependent vesicular release
(Peron et al., 2009), whereas mini amplitudes mainly reflect the
postsynaptic sensitivity to transmitter, determined largely by the
properties of glutamate receptors (DiAntonio et al., 1999). When
eEJCs frommuscle 6 were measured in the voltage-clampmode (the
membrane potential was clamped to −60 mV), we observed that
experimentally reduced expression of myo in muscle increased
eEJC amplitude, whereas overexpression reduced it (Fig. 1A,B).
Although the mean mEJC frequency and amplitude remained
unchanged across genotypes (Fig. S1C,D), the amplitude
distribution showed a significant shift towards larger synaptic
currents with myo knock-down in muscles (KS test, P<0.0001)
(Fig. 1C,D), indicating increased postsynaptic sensitivity to
glutamate. These data thus revealed that muscle-derived MYO is
a potent suppressor of synaptic transmission at the NMJ through
impact on both presynaptic release and postsynaptic sensitivity. On
the postsynaptic side of the excitatory larval NMJ, heterotetrameric
ionotropic glutamate receptors (GluRs) comprise two functionally
distinct subtypes: IIA, containing the GluRIIA subunit; and IIB,
containing the GluRIIB subunit. Type IIA receptors generate larger
synaptic currents and mediate functional strengthening of the NMJ
(Petersen et al., 1997; Sigrist et al., 2002). Type IIB receptor
subunits are characterized by faster desensitization kinetics and
lower responsiveness to vesicularly released neurotransmitter
(DiAntonio et al., 1999). Brp (Bruchpilot), a presynaptic marker,
promotes active zone assembly and integrity, and vesicular
neurotransmitter release (Kittel et al., 2006); the presence of Brp
has been associated with presynaptic strengthening at larval NMJ
(Weyhersmuller et al., 2011).
Prompted by our electrophysiological results, we measured the

density of the GluRIIA receptor field and the number of Brp puncta
in the NMJ boutons (each bouton contains multiple active zones)
(Fig. 1E-G). Although myo levels negatively correlated with
GluRIIA signal intensity (Fig. 1G), only myo downregulation
(positively) affected the total active zone number (Fig. S1E) and the
number of Brp puncta normalized to the NMJ area (Fig. 1G). This
indicates that myo upregulation and silencing affect presynaptic
release through different mechanisms. To address the issue of
potential off-target effects of the miRNA construct, we have
confirmed our results by measuring the GluRIIA intensity in flies
expressing an anti-myo RNAi construct (Awasaki et al., 2011) in
somatic muscles (Fig. S1F). MYO also negatively affects NMJ
length and branching pattern (Fig. S1G), in line with increased

Fig. 1. MYO is a negative regulator of synaptic physiology and
composition. (A) Representative samples of eEJCs recorded from muscle 6
in B. (B) Quantification of evoked EJCs from the larvae with reduced
(Mef2-GAL4/UAS-miRNAmyo) or increased (Mef2-GAL4/UAS-myoglianin)
myo expression in muscles. Control phenotype: +/Mef2/GAL4 (n=5-9).
Representative traces (C) and cumulative frequency (CF) diagram (D) of
mEJC amplitudes from the larvae expressing myo transgenes in muscle;
larger synaptic currents are indicated by a shift of the curve to the right
(n=6-12 animals, ∼500-1200 events measured per genotype). (E,F)
Representative confocal images showing the 3rd instar larval NMJ 6/7
staining for GluRIIA (E) and Brp (F). Anti-HRP labels presynaptic
(motoneuronal) membrane. Scale bars: 20 μm. (G) Left: quantification of
GluRIIA signal intensities in larvae expressing various myo constructs in
larval muscles (n=10-18). Right: number of Brp puncta normalized to the
area of the 6/7 NMJ (n=12-15). Data are mean±s.e.m. ANOVA+Tukey’s
post-test: **P<0.01, ***P<0.001; n.s., not significant.
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axonal branching in myostatin-null mice (Gay et al., 2012). The lack
of effect on mini amplitudes inmyo overexpressing animals, despite
the reduction in IIA staining, could be attributable either to a
compensatory increase in the levels of other GluR subunits present
at the NMJ or to GluRIIA epitope masking (Renden and Broadie,
2003). We observed no effect of myomanipulations on the levels of
IIB type synaptic receptors (Fig. S1H), indicating a receptor
subtype-specific action of MYO. Together with our physiological
data, these results demonstrate a significant inhibitory effect of
muscle-derived MYO on the function and composition of the
neuromuscular synapse.

Glia-expressed myo has a modulatory role at the NMJ
We next examined whether MYO was produced in the larval
NMJ glia. We used a UAS-GFP construct driven by theMyo-GAL4
driver (Awasaki et al., 2011), and detected a strong GFP-positive
signal around synaptic boutons and in the extramuscular tracts
running in parallel with the motoneurons innervating muscles 6 and
7 (green signal in Fig. 2A). Although the increased GFP signal
intensity around boutons likely stems from the elaborate infoldings
of the muscle membrane ensheathing the boutons, known as
the subsynaptic reticulum, the extramuscular tracts (Fig. 2A,
arrowheads) imply glial myo expression at the larval NMJ,
consistent with the previous detection of the myo transcript in
peripheral larval glia (Fuentes-Medel et al., 2012). The effect of
manipulation of myo expression in glia on synaptic physiology was
less prominent than in muscle, probably because of the small size of
the glial compartment at the NMJ in comparison with muscle, with
only upregulation reducing the mean evoked response amplitude
(Fig. 2B,C). We also observed a small, but significant (KS test,
P<0.0001), negative effect of glial myo on the distribution of
miniature amplitudes (Fig. 2D,E), with the ‘mini frequency’ and
mean ‘mini amplitude’ remaining unperturbed (Fig. S2A,B).
Knockdown of glial myo increased synaptic GluRIIA
fluorescence (Fig. S2C), consistent with the effect of myo
knockdown on the distribution of mini amplitudes (Fig. 2D,E);
we did not detect GluRIIA changes in myo-overexpressing
animals, possibly owing to relatively minor changes in receptor
number and/or composition in these larvae (Fig. S2C). Type-IIB
receptor levels were unaffected by myo expression (Fig. S2D),
and no significant effect of myo downregulation was seen on the
levels of type IIA receptors when myo was silenced in the
motoneurons innervating larval body-wall muscles (Fig. S2E),
consistent with absence of MYO in this cell type. Together, these
results imply a modulatory role for MYO of glial origin at the
neuromuscular synapse.

MYO displays a myostatin-like effect on larval weight and
muscle size
Having established a role for MYO at the NMJ, we next determined
whether MYO resembles myostatin in its negative impact on body
weight, and adult (McPherron et al., 1997) and embryonic
(Manceau et al., 2008) muscle size. We first examined the effect
of MYO on larval mass and muscle size. The wet weight of
3rd instar wandering larvae (72-96 h after hatching) was reduced
by experimentally increased expression of myo, and increased by
its knockdown, in larval muscle preparations (Fig. 3A).
Developmental progression (time to pupariation) was unaffected
in these genotypes (Fig. S3A). Wet weight was also increased in
larvae expressing the previously used myo RNAi construct driven
by a different muscle driver (24B-GAL4), and decreased in animals
expressing an alternate UAS-myoglianin construct (see Materials

and Methods) (Fig. S3B). Interestingly, we observed a similar effect
on larval weight whenmyo constructs were driven with the pan-glial
repo driver (Fig. 3B). Whereas miRNA againstmyo in motoneurons
(Fig. S3C) or fat body (Fig. S3D) had no effect on larval weight,
downregulation of myo in the midgut resulted in significantly
increased weight (Fig. S3D), suggesting a role for MYO outside the
nervous system and muscle. Body wall muscles are the major
constituent of the larval body in terms of size and mass (Bate et al.,
1999), and we therefore examined the effect of myo expression on
the size of the larval body-wall muscles 6 and 7 (Fig. 3C). Similar to
larval weight, the surface area of both muscles was reduced by
increased myo expression, and increased by its knockdown in the
muscle (Fig. 3D and Fig. S3E). We observed no difference between
genotypes when myo expression was manipulated in glia (Fig. 3E).
Larval crawling speed was also negatively correlated with myo
expression levels (Fig. 3F, Movies 1-6), showing that manipulations
of myo in muscle and glial cells have significant behavioral
consequences. Together, these data establish a role for muscle- and
glia-expressed myo as a strong negative regulator of larval weight
and motility, and establish that muscle-derived MYO has a
myostatin-like function in regulating muscle size in Drosophila
larvae.

Fig. 2. MYO is produced at the larval NMJ and is a modulator of its
function. (A) Confocal images showing the NMJ expression of a GFP
construct under Myo-GAL4 control. Anti-HRP (red) marks motoneurons
innervating the 6/7 NMJ; anti-GFP antibody (green) was used to enhance the
GFP signal. Asterisk marks the GFP-positive area in the muscle. Arrow (inset)
indicates strong GFP signal in the synaptic boutons, with the arrowheads
indicating thread-like, GFP-labeled, extramuscular structures running
alongside neuronal projections. Scale bar: 20 μm. (B-E) Physiological
measurements in larvae mis-expressing myo in glia.
(B) Representative eEJCs traces. (C) Quantification of evoked EJCs
(n=5-9; ANOVA+Tukey’s post-test: *P<0.05). (D) RepresentativemEJC traces.
(E) Cumulative frequency diagram of mEJC amplitudes (n=6-12).
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Downregulation of myo promotes signaling through GSK3/
Shaggy
We next identified potential intracellular mediators of reduced
MYO and their relevance for MYO action on synaptic physiology.
Akt plays an important role in modulating synaptic plasticity in
Drosophila (Guo and Zhong, 2006) and in mammals through
phosphorylation-induced inhibition of GSK3β (Peineau et al.,
2007). We therefore investigated how manipulations of myo
expression in muscles affected the levels of these signaling
proteins in larval body-wall musculature. Downregulation of myo
significantly increased the levels of active phosphorylated Akt (Fig.
S4A,B), with total Akt levels remaining stable across genotypes
(Fig. S4C), whereas phosphorylated Akt was unaffected by myo
overexpression. Although muscle-specific silencing of myo
significantly increased the phosphorylation of GSK-3/Shaggy
(Fig. S4A,D), with up-regulation again having no effect, the
levels of p-S6K, a marker for mTOR activation, were unperturbed
by myo manipulations (Fig. S4E). We next wanted to examine the
potential dependency of myo downregulation on GSK3/Shaggy and

Akt in regulating synaptic physiology. Genetic Akt suppression in
the muscle caused larval lethality in both control and ‘reduced
MYO’ background, precluding the investigation of genetic
interactions between myo and Akt. RNAi-mediated downregulation
of GSK3/Shaggy (sggRNAi), however, completely abolished the
positive effect of myo silencing on the main electrophysiological
parameters: eEJC (Fig. S4F,G) and mEJC (KS test, P<0.0001)
(Fig. S4H,I). Overall, these results implicate Shaggy as an
intracellular effector of MYO signaling at the larval NMJ synapse.

Smad2 mediates MYO signaling at the NMJ
The canonical model of TGFβ signaling inDrosophila assumes two
possible intracellular mediators of MYO action: the transcription
factors MAD and Smad2 (Van der Zee et al., 2008). Whereas the
Activin-type ligands phosphorylate Smad2, BMP-like ligands in
Drosophila work through the transcription factor MAD (Fuentes-
Medel et al., 2012; Peterson et al., 2012). If reduced MYO results in
reducedMAD or Smad2 activity, then their forced activation should
reverse the effects of MYO depletion. We expressed constitutively

Fig. 3. MYO negatively regulates larval
weight and muscle size. (A) Larval weights
in animals with muscle-expressing myo
constructs. (B) Wet weight in larvae with glia-
manipulated myo expression: repo-GAL4/
UAS-miRNAmyo (silencing), repo-GAL4/
UAS-miRNAmyo (upregulation) and +repo-
GAL4 (control). n=14-68 measurements
per genotype, three to five larvae per
measurement. (C) Part of a single larval
abdominal hemisegment containing
muscles 6 and 7. Scale bar: 40 μm. (D,E)
Surface area of fibers 6 and 7 in indicated
genotypes (n=5-11). (F,G) Crawling speed in
3rd instar larvaewithmyo levels manipulated
in muscle (F) and glial (G) cells (n=15-51).
Data are mean±s.e.m. ANOVA+Tukey’s
post-test: *P<0.05, **P<0.01, ***P<0.001;
n.s., not significant.
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active forms of MAD or Smad2 in myo knockdown flies and
measured evoked synaptic responses, the main readout for NMJ
transmission strength. Whereas activated MAD had no effect on
evoked response inMef2-GAL4/UAS-miRNAmyo larvae, expression
of the constitutively active Smad2 fully reversed the amplitude of
the responses (Fig. 4A,B). Activated Smad2 also completely (KS
test, P<0.0001) reversed the effect of suppressed myo on the
amplitude of spontaneous NMJ responses (Fig. 4C). Activated
MAD had a significant (KS test, P<0.019) effect on the distribution
of mEJCs (Fig. 4A,C), but was unable to fully reverse the phenotype
in Mef2-GAL4/UAS-miRNAmyo animals. We observed no effect of
Smad2 or MAD activation on larval weight (Fig. 4D), indicating
that weight regulation by MYO requires alternative intracellular
mediators. Smad2 is therefore a principal effector of MYO action on
synaptic physiology in the larval NMJ.

Human myostatin reverses the effects of myo silencing on
synaptic strength in developing larvae
Genetic manipulations of myo only imply, but do not prove, a
commensurate effect on the levels of MYO protein. We therefore
conducted an experiment to establish whether human myostatin
protein could reverse the effects of myo knockdown. We injected
either human myostatin or control solution (BSA) into 2nd instar
larvae 25-48 h after hatching; this juvenile stage is characterized by
rapid tissue growth and peak larval protein synthesis rate (Church
and Robertson, 1966). Importantly, both myostatin and MYO have
been shown to bind to the Drosophila TGFβ (Wit/Babo) receptor
complex (Lee-Hoeflich et al., 2005). If the effect of reduced myo
expression on larval weight and/or synaptic physiology is mediated
via reduced MYO synthesis and secretion, then extracellular
injection of myostatin should reverse these effects in 3rd instar
wandering stage larvae. Injected myostatin (∼50 pg/larva, see
Materials and Methods) completely reversed the elevated mean
eEJC response inMef2-GAL4/UAS-miRNAmyo animals (Fig. 5A,B);
the postsynaptic density of type IIA glutamate receptors was also
reduced (Fig. 5C,D) in these larvae, demonstrating the influence of
myostatin on both synaptic compartments. The inability of injected
myostatin to reverse the weight phenotype (Fig. 5E) could be due to
an insufficiently high myostatin concentration acting on the somatic
muscle tissue during larval growth. These results support the notion
that the positive effect of myo silencing on synaptic composition and
strength was due to reduced expression, synthesis and secretion of
muscle-derived native MYO in developing larvae. They also suggest
that myostatin might regulate synaptic function in the mammalian
nervous system.

Myostatin and GDF11 negatively affect synapse formation
and neuronal morphology
The impact of myo mis-expression on synaptic composition at the
NMJ cannot be unambiguously attributed to a direct action on
neurons. We therefore tested whether physiological levels (10 ng/
ml) (Chen et al., 2016; Lakshman et al., 2009; Schafer et al., 2016;
Szulc et al., 2012) of mammalian MYO homologs myostatin and
GDF11 could modulate synaptogenesis in isolated mammalian
neurons. Consistent with its role in synaptic development and
plasticity (Caraci et al., 2015; Zhang et al., 1997), addition of
TGFβ1 (5 ng/ml) (Czarkowska-Paczek et al., 2006; Ramesh et al.,
1990) onto primary cortical rat neurons increased neurite outgrowth,
reduced excitatory synapse formation and increased inhibitory
synapse formation (Fig. 6, Fig. S5). This effect was likely mediated
by Smad2/3 signaling, because inhibition of Alk5 (a TGFβ
receptor) with the small inhibitor A83-01 had the opposite effect,

whereas direct activation of Smad2/3 with alantolactone (bypassing
the TGFβ receptor) mimicked addition of TGFβ1 (Fig. 6C-E,
Fig. S5). As expected from its inhibition of neurogenesis
(Nakashima et al., 2001), supraphysiological levels of BMP2

Fig. 4. Smad2 mediates effects of MYO on synaptic function.
(A) Representative traces of evoked (top) and spontaneous (bottom)
responses for indicated genotypes. (B) Activation of Smad2 in ‘low myo’
background (Mef2-GAL4/UAS-miRNAmyo/Smad2↑) abolished the effect of
reduced myo expression on evoked response (n=8-10). (C) Cumulative
frequency graph showing the distribution of ‘mini amplitudes’ in various
mutants. Downregulation ofmyo caused a significant increase in the amplitude
of ‘minis’ (red line) that was completely abolished by simultaneous Smad2
activation (yellow line) (n=5-15). Mef2-GAL4/Smad2↑ flies (gray line)
generated miniature amplitudes than were higher than in +/Mef2-GAL4
controls, and significantly lower than in Mef2-GAL4/UAS-miRNAmyo animals
(KS test, P<0.0001). (D) Wet weight measurements of 3rd instar larvae of
indicated genotypes (n=13-26). Data are mean±s.e.m. ANOVA+Tukey’s
post-test: *P<0.05, ***P<0.001; n.s., not significant.
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(10 ng/ml) (Fei et al., 2013) had the opposite effect, with a reduction
in neurite outgrowth, increased excitatory synapse formation and
reduced inhibitory synapse formation (Fig. 6, Fig. S5). Surprisingly,
addition of myostatin and GDF11 also reduced neurite outgrowth
(Fig. 6A-C), indicating that these two mammalian orthologs of myo
do act directly on neurons and limit their capacity to connect with
distant cells. This effect appears to be conserved across species,
because myo downregulation in larval muscles leads to an increased
number of neuron-to-muscle connections at the larval NMJ (Yu
et al., 2013). Similar to TGFβ1, myostatin and GDF11 signal
through the Smad2/3 pathway (Oh et al., 2002; Rebbapragada et al.,
2003). Interestingly, myostatin reduced inhibitory synapse formation,
whereas GDF11 increased excitatory synapse formation (Fig. 6), both
affecting mainly the levels of pre-synaptic markers (Fig. S5).
Altogether, these findings show that myostatin and GDF11 act
directly on neurons by inhibiting neurite growth and modulating
synaptogenesis.

MYO inhibits a central synapse
To determine in vivo whether MYO controls synapse function
outside of the larval NMJ, we examined neurotransmission in
the giant fiber system (GFS) of adult flies. This circuit mediates
escape response by conveying visual and mechanosensory signals
from the brain to the thoracic ganglia via two GF interneurons. The
GFs activate the leg extensor muscle (TTM) via TTM motoneurons
(TTMn) and electro-chemical GF-TTMn synapses; they also
activate flight muscles (DLMs) by forming electro-chemical
connections with the peripherally synapsing interneuron (PSI),
which in turn chemically synapses onto DLMmotoneurons (DLMs)
(Allen et al., 2006) (Fig. 7A).

Midline glia have been shown to promote GF-TTMn synapse
formation during pupal development via Netrin-Frazzled signaling,
and TTMn dendrites appear to physically contact the midline glia
during development (Orr et al., 2014). We used the midline glia-
specific slit-GAL4 driver to manipulate myo in these cells during

Fig. 5. Myostatin injections into developing larvae
reverse the effect of myo downregulation in muscles.
(A) Representative evoked response traces for indicated
genotypes (+BSA or MST) for the quantification shown in
B. (B) Myostatin reverses the effect of myo downregulation
on the mean evoked EJCs in the +/Mef2-GAL4 and Mef2-
GAL4/UAS-miRNAmyo larvae (n=5-9). Two-way ANOVA
analysis: the treatment/genotype interaction is highly
significant (P=0.0043). (C) Myostatin negatively regulates
the abundance of type II NMJ glutamate receptors in 3rd
instar larvae with muscle-reduced myo expression.
Representative confocal images for Mef2-GAL4/UAS-
miRNAmyo larvae injected with BSA (left) or myostatin
(right). Scale bar: 30 μm. (D) Quantification of synaptic
GluRIIA density in injected Mef2-GAL4/UAS-miRNAmyo
larvae (n=6 or 7). (E) Injection of myostatin (maroon bars)
into 2nd instar larvae does not reverse the effect of myo
downregulation in muscle (n=18-26) on larval weight. Two-
way ANOVA analysis: the treatment/genotype interaction is
not significant. Data are mean±s.e.m. ANOVA+Tukey’s
post-test (A,E) or unpaired t-test (D): *P<0.05, **P<0.01,
***P<0.001.
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pupal development, and examined the effect on the GFS function in
young adult flies by measuring the latency between the stimulation
of the GF cell bodies in the brain and TTM (or DLM) depolarization
(Fig. 7A). Silencing of myo had speeded up the transmission
through the TTM (Fig. 7B,C) but, as expected, not through the
DLM (Fig. S6) branch of the circuit, resulting in a mean response

latency that is shorter than in the control genotype (+/slit-GAL4).
Overexpression of myo had the opposite effect, lengthening the
muscle response time following brain stimulation (Fig. 7B,C). To
assess a possible role of the NMJ between the TTMn and TTM, we
stimulated the motoneuron directly by placing the stimulating
electrodes in the thorax, thereby bypassing the GF axon (Fig. 7A).

Fig. 6. Myostatin and GDF11modulate neurite outgrowth and synapse formation. (A) Images of rat brain isolated cortical neuron culture treated as indicated
with either DMSO (control), 5 ng/ml TGFβ1 (TGFβ), 10 ng/ml BMP2, 10 ng/ml myostatin (also called GDF8) or 10 ng/ml GDF11 for 5 days commencing from 6
DIV. Cultures were immunostained for excitatory pre- (vGLUT1, green) and post- (PSD95, red) synaptic density markers in addition to a neuronal marker (MAP2,
blue). Higher magnification insets underneath correspond to boxed regions in the top row and arrowheads indicate synapses, as indicated by co-labeling with
vGLUT1 and PSD95 localized to neurites (MAP2). Scale bars: 15 μm. (B) Images of rat brain cortical neuron culture treated as in A. Cultures were immunostained
for inhibitory pre- (VGAT, green) and post- (GPHN, red) synaptic density markers in addition to a neuronal marker (MAP2, blue). Higher magnification insets
underneath correspond to boxed regions in the top row and arrowheads indicate synapses, as indicated by co-labeling with VGATandGPHN localized to neurites
(MAP2). Scale bars: 15 μm. (C)Microscopy image quantification of themedian neurite area occupied per image normalized to control after indicated treatments in
A, in addition to a TGFβ1 signaling antagonist (TGFβ inhib, 400 nM) and agonist (TGFβ bypass, 400 nM) (n=3 independent experiments). (D) Microscopy image
quantification of the median synapse frequency per neurite area per image normalized to control after indicated treatments in B. Synapses are indicated by co-
labeling with vGLUT1 and PSD95 localized to neurites (MAP2) (n=3 independent experiments). (E) Microscopy image quantification of the median synapse
frequency per neurite area per image normalized to control after indicated treatments in B. Synapses are indicated by co-labeling with VGAT and GPHN localized
to neurites (MAP2) (n=3 independent experiments). Data are mean±s.e.m. ANOVA+Dunnett’s test: *P<0.05; **P<0.01; ***P<0.001; n.s., not significant.
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The response latencies measured this way were normal (∼0.6 ms)
(Tanouye and Wyman, 1980) and did not differ between the
genotypes (Fig. 7D), implying no effect of MYO of midline glial
origin on this NMJ. These data firmly implicate MYO in the
formation of functional GF-TTMn synapses during adult
development. Together, our results show that MYO is an in vivo
inhibitor of synaptic transmission between neurons.

DISCUSSION
Growth factors regulate many aspects of tissue development, growth
and metabolism. Myostatin and GDF11 are highly homologous
members of the TGFβ superfamily of growth factors. Whereas
GDF11 plays a role in a variety of systems, the role of myostatin
appears to be confined to skeletal and cardiac muscles (Huang et al.,
2011; Lee, 2004).

MYO is a negative regulator of synaptic transmission, larval
weight and muscle size
Despite the previously described roles of MYO in neural
remodeling and synapse refinement (Awasaki et al., 2011; Yu
et al., 2013), very little is known about the impact of MYO on
synaptic physiology. We first established muscle-derived MYO as a
negative regulator of both spontaneous and evoked response at the
NMJ, demonstrating its role as a broad regulator of synaptic
transmission. The highly coordinated apposition of active zones and
glutamate receptors underlies their ability to regulate synaptic
strength and plasticity of the larval NMJ (Marrus and DiAntonio,
2004). We show that muscle expression of myo inversely affects
the NMJ quantity of Brp and GluRIIA, which are crucial pre- and
postsynaptic proteins, and determinants of evoked neurotransmitter

release and quantal size (i.e. postsynaptic sensitivity to
presynaptically released transmitter), respectively (DiAntonio
et al., 1999; Kittel et al., 2006). Although it is possible that MYO
exerts its influence on synaptic strength through other mediators,
GluRIIA and Brp are their likely downstream effectors. Our
electrophysiological results, obtained using the GAL4-UAS system
for targeted manipulation of myo, differ from the ones obtained
recently using a genetic null myo mutant showing slightly reduced
miniature amplitudes (Kim and O’Connor, 2014). The likely
explanation is that compensatory effects happen in other tissues
in the tissue-specific knockdown animals that cannot occur in
genetic nulls, especially for systemic type factors. The other possible
explanation is differential cross-regulation between different (MYO-
like) ligands in genetic null versus tissue knockdown animals. These
results thus indicate the relevance of tissue specificity ofMYO action,
and of myo expression levels, in regulating synaptic function, and
emphasize the need for caution when interpreting results from
different types of gene manipulations.

We detected myo expression in the glial cells of the larval
neuromuscular junction. Although Drosophila NMJ contains at
least two subtypes of glia (Augustin et al., 2007), myo expression
appears confined to the ‘repo-positive’ subtype both in the central
(Awasaki et al., 2011) and peripheral nervous system (this work).
The dual muscle and glial presence makes MYO ideally positioned
for regulating NMJ function. Owing to the small size of the
compartment, however, glia-derived MYO likely has a modulatory
role at the neuromuscular junction.

We have also found that muscle suppression of MYO, a
Drosophila homolog of myostatin and GDF11, promotes
increased larval weight and body-wall muscle size in developing

Fig. 7. MYO inhibits transmission in an adult
synapse. (A) Schematic diagram of the fly giant
fiber system (GFS) with the indicated positions
of main electrode insertion sites for
electrophysiological measurements (upper
stimulating electrode, stimulation of the GFS cell
bodies; lower stimulating electrode, motoneuronal
stimulation). PSI forms cholinergic synapses with
five DLMns (only three shown). The NMJs between
TTM and DLM motoneurons and their target
muscles are chemical (glutamatergic).
(B) Representative traces showing latency periods
(double-headed arrow) between the stimulation
and TTM depolarization. (C) Quantification of
response latencies in the TTM branch of the GFS
circuit (n=7 or 8). (D) TTM responses following
thoracic (NMJ) stimulations (n=6 or 7). Data are
mean±s.e.m. ANOVA+Tukey’s post-test: *P<0.05,
***P<0.001; n.s., not significant.
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larvae, resembling the effect of Mstn knockdown in mammals.
Interestingly, pan-glial expression of myo negatively affected larval
wet weight, but not the size of somatic myofibers, suggesting
previously unsuspected systemic roles for glial cells.

Smad2 is a downstream effector of MYO
We found that Smad2 is a mediator of MYO action on both
evoked response and postsynaptic sensitivity, with MAD having
a minor effect on the latter. Although MAD primarily functions as a
cytoplasmic transducer of BMP signaling, it has been demonstrated
that, under certain conditions, MAD can be phosphorylated in
response to Activin pathway activation (Peterson et al., 2012).
We have detected elevated levels of phosphorylated Akt and

GSK3/Shaggy in larval somatic muscles of animals with reduced
myo expression in this tissue. In flies and mammals, the Akt-mTOR
axis promotes skeletal muscle growth (Piccirillo et al., 2014), and
phosphorylation-induced inhibition of GSK3/Shaggy induces
hypertrophy in skeletal myotube (Vyas et al., 2002). The effects
of attenuated myo expression on larval tissue size, however, do not
appear to be mediated by Smad2 (or MAD) activation, as their
overexpression does not reverse the weight phenotype in ‘low myo’
background. Indeed, ‘non-Smad’ signaling pathways have been
demonstrated for various TGFβ ligands in vertebrates and
Drosophila (Huang et al., 2011; Ng, 2008). In addition to its role
as an inhibitor of the NMJ growth (Franco et al., 2004) and active
zone formation (Viquez et al., 2009) in developing Drosophila
larvae, GSK3β is also a crucial promoter of synaptic plasticity
(Nelson et al., 2013; Peineau et al., 2009, 2007), possibly through
regulation of glutamate receptor function or trafficking (Bradley
et al., 2012; Salcedo-Tello et al., 2011; Wei et al., 2010). Our work
has revealed Shaggy as a mediator of reduced MYO action, and as a
negative regulator of synaptic strength at the larval NMJ. Although
MYO likely affects both sides of the synapse directly, an unlikely
but possible scenario is that presynaptic motoneuron responds to a
retrograde signal released from muscle/glial cells at the NMJ in
response to an induction by MYO. An attractive hypothesis is
that MYO negatively regulates presynaptic release directly, in
conjunction with muscle-secreted Gbb, a positive regulator of
neuromuscular synapse development and growth (McCabe et al.,
2003). The effects of MYO could also be mediated through the
transmembrane protein Plum, previously proposed to regulate
connectivity at the larval NMJ by sequestratingMYO (Yu et al., 2013).

Myostatin negatively regulates synaptic function and
neuronal morphology
We found that injections of myostatin into rapidly growing larvae
abolish the positive effect of myo downregulation on NMJ strength
and composition, and reverse the elevated muscle p-Akt levels.
Furthermore, both myostatin and GDF11 suppressed the growth of
neuronal processes and perturbed the formation of synapses in
cultured brain neurons, suggesting a direct action on neurons and
regulation of synaptogenesis beyond neuromuscular junctions.
Recently, myostatin transcript and protein were detected in the
mouse hippocampus and olfactory system neurons, respectively
(Iwasaki et al., 2013; Lein et al., 2007), and myostatin type I
(Alk4/5) and type II (ActIIB) receptors were found to be expressed
in the mammalian nervous system (Böttner et al., 1996; Cameron
et al., 1994; Rebbapragada et al., 2003). Our results therefore
expand on these findings, suggesting functional relevance for
myostatin in both peripheral and central nervous system, and beyond
its action as a canonical regulator of skeletal muscle growth. These
novel roles remain to be further explored.

MYO is a broad regulator of synaptic function in flies
We have expanded our analysis of the functional relevance of MYO
in the nervous system by demonstrating its importance in a non-
NMJ synapse. Specifically, MYO plays a role in the development of
a mixed electrochemical synapse in theDrosophila escape response
pathway, likely by regulating the density of shakB-encoded gap
junctions at the GF-TTMn synapse (Blagburn et al., 1999). These
findings implicate MYO as a broad negative regulator of neuronal
function across the nervous system and developmental stages. Our
work thus reveals broad and novel roles for anti-myogenic TGFβ
superfamily of proteins in the nervous system and suggests new
targets for interventions into synaptic function across species.

MATERIALS AND METHODS
Drosophila experiments
Fly stocks and husbandry
All stocks were maintained and all experiments were conducted at 25°C on a
12 h:12 h light:dark cycle at constant humidity using standard sugar/yeast/
agar (SYA) media (15 g/l agar, 50 g/l sugar, 100 g/l autolyzed yeast, 100 g/l
nipagin and 3 ml/l propionic acid) (Bass et al., 2007). Second and 3rd instar
larvae used in the experiments were selected based on morphological (larval
spiracles and mouth-hook) and behavioral criteria. Flies were mated for 48 h
before separating females from males. Drosophila stocks used in the paper
are described in the supplementary Materials and Methods.

Larval NMJ electrophysiology
Recordings were performed as previously described (Robinson et al., 2014).
TEVC recordings using sharp electrodes were made from ventral
longitudinal muscle 6 in abdominal segments 2 and 3 of 3rd instar larvae.

GFS electrophysiology
Recordings from the giant fiber system were carried out as described
previously (Allen et al., 1999; Augustin et al., 2011).

Larval microinjections
Second instar larvae were injected with myostatin or BSA using a
microinjector, and successful delivery was visualized using blue food
dye. For further details, see supplementary Materials and Methods.

Time to pupariation and weight measurements
Measuring the time to pupariation was carried out essentially as described
recently (Johnson et al., 2013). For further details, see supplementary
Materials and Methods.

Crawling speed
Larval motility was measured using a custom-made tracking and analysis
software (S. Pletcher, University of Michigan, Ann Arbor, MI, USA). For
further details, see supplementary Materials and Methods.

Statistical analyses
Most statistical analyses were performed using GraphPad Prism 5 software.
A two-way ANOVA test was used to perform (age×genotype) interaction
calculations. For other comparisons between two or more groups, a one-way
ANOVA followed by a Tukey-Kramer or Dunnett’s (for cell culture
experiments) post-hoc test was used. In all instances, P<0.05 is considered
to be statistically significant (*P<0.05; **P<0.01; ***P<0.001). Values are
reported as the mean±s.e.m. The Kolmogornov-Smirnov (KS) test was used
to analyze the cumulative distribution of ‘miniature amplitudes’.

Immunocytochemistry and confocal microscopy
Immunocytochemistry and confocal microscopy were performed as
described previously (Augustin et al., 2007) using Zeiss 700 inverted
confocal microscope. All neuromuscular junction (NMJ) images and
analyses were from NMJs on larval ventral longitudinal muscles 6 and 7
(hemisegments A3-A4). Measurements of the density of postsynaptic

2453

RESEARCH ARTICLE Development (2017) 144, 2445-2455 doi:10.1242/dev.152975

D
E
V
E
LO

P
M

E
N
T

http://dev.biologists.org/lookup/doi/10.1242/dev.152975.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.152975.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.152975.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.152975.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.152975.supplemental


glutamate receptors were made using ImageJ by drawing a circle around
quantifying mean postsynaptic immunofluorescence intensity relative to
fluorescence in surrounding muscle tissue (Fsynapse−Fbackground membrane).
Brp densities were calculated by counting the number of Brp puncta per
NMJ and dividing by the area of the presynaptic motor neuron. For further
details, see the supplementary Materials and Methods.

Western blots
Larval muscle preparations were dissected (six preparations per sample,
three to five samples per genotype per experiment) in cold HL3 buffer and
flash frozen prior to western blot analysis. For further details, see the
supplementary Materials and Methods.

RNA extractions
RNA extractions were carried out using a modified Trizol-based protocol.
For further details, see supplementary Materials and Methods.

cDNA synthesis using superscript system for RT-PCR
cDNA synthesis was carried out using standard molecular biology
protocols. For further details, see supplementary Materials and Methods.

Cell culture experiments
Neuronal cell cultures were prepared and treated as outlined in more detail in
supplementary Materials and Methods, after which cells were fixed in 4%
paraformaldehyde (PFA), permeabilized with 0.1% Triton-PBS and labeled
using DAPI, anti-MAP2 and either anti-vGLUT1 and anti-PSD95 or anti-
Gephyrin and anti-VGAT (for details of antibodies, see supplementary
Materials andMethods). Images of labeled cells were acquired using a high-
content analysis system (ImageXpress, Micro XLS, Molecular Devices).
Image analysis was performed using a protocol established in CellProfiler
image analysis software (Kamentsky et al., 2011) and is a variation on a
protocol established previously (Nieland et al., 2014). A set of image
analysis algorithms or ‘pipeline’ was constructed to measure the properties
of interest within the cortical neuron culture labeled with either DAPI, anti-
MAP2, anti-PSD95 and anti-vGLUT1 or with DAPI, anti-MAP2, anti-
Gephyrin and anti-VGAT. Each image-set, corresponding to one field of
view or site and comprising four fluorescently labeled channels, was
analyzed independently using this pipeline. Nine sites per well were
analyzed and repeated in triplicate experiments.

Statistical analyses
Results shown are mean normalized to GAPDH. One-way ANOVA and
Dunnett’s test were performed using Prism 5 (GraphPad Software).
Significance of mean comparison is annotated as follow: *P<0.05;
**P<0.01; ***P<0.001.

Acknowledgements
We thank Michael O’Connor (University of Minnesota, USA) for myoglianin lines,
useful discussions and comments on the manuscript; Takeshi Awasaki (Janelia
Farm, USA and Kyorin University, Japan) for myoglianin miRNA lines; and the
Bloomington Drosophila Stock Center for reagents.

Competing interests
The authors declare no competing or financial interests.

Author contributions
Conceptualization: H.A., E.B., L.P.; Methodology: H.A., K.M., J.R.S., H.M.C., J.A.,
E.F.H., J.T.K., E.B.; Software: H.A., K.M.; Validation: H.A., J.R.S.; Formal analysis:
H.A., K.M., J.R.S., H.M.C.; Investigation: H.A., H.M.C., J.A., M.C., A.V., E.F.H.,
J.T.K., E.B., L.P.; Resources: K.M., J.R.S., E.B., L.P.; Writing - original draft: H.A.,
E.B., L.P.; Writing - review & editing: H.A., K.M., E.B., L.P.; Visualization: H.A., K.M.;
Supervision: E.B., L.P.; Project administration: L.P.; Funding acquisition: E.B., L.P.

Funding
This work was funded by a Wellcome Trust Strategic Award to L.P., by the Max
Planck Society and by a Biotechnology and Biological Sciences Research Council
David Phillips fellowship (to E.B.). Deposited in PMC for immediate release.

Supplementary information
Supplementary information available online at
http://dev.biologists.org/lookup/doi/10.1242/dev.152975.supplemental

References
Allen, M. J., Shan, X., Caruccio, P., Froggett, S. J., Moffat, K. G. and Murphey,

R. K. (1999). Targeted expression of truncated glued disrupts giant fiber synapse
formation in Drosophila. J. Neurosci. 19, 9374-9384.

Allen, M. J., Godenschwege, T. A., Tanouye, M. A. and Phelan, P. (2006). Making
an escape: development and function of the Drosophila giant fibre system. Semin.
Cell Dev. Biol. 17, 31-41.

Augustin, H., Grosjean, Y., Chen, K., Sheng, Q. and Featherstone, D. E. (2007).
Nonvesicular release of glutamate by glial xCT transporters suppresses
glutamate receptor clustering in vivo. J. Neurosci. 27, 111-123.

Augustin, H., Allen, M. J. and Partridge, L. (2011). Electrophysiological recordings
from the giant fiber pathway of D. melanogaster. J Vis Exp, e2412.

Awasaki, T., Huang, Y., O’Connor, M. B. and Lee, T. (2011). Glia instruct
developmental neuronal remodeling through TGF-beta signaling. Nat. Neurosci.
14, 821-823.

Bass, T. M., Grandison, R. C., Wong, R., Martinez, P., Partridge, L. and Piper,
M. D. W. (2007). Optimization of dietary restriction protocols in Drosophila.
J. Gerontol. A Biol. Sci. Med. Sci. 62, 1071-1081.

Bate, M., Landgraf, M. and Ruiz Gomez Bate, M. (1999). Development of larval
body wall muscles. Int. Rev. Neurobiol. 43, 25-44.

Blagburn, J. M., Alexopoulos, H., Davies, J. A. and Bacon, J. P. (1999). Null
mutation in shaking-B eliminates electrical, but not chemical, synapses in the
Drosophila giant fiber system: a structural study. J. Comp. Neurol. 404, 449-458.
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Supplementary Materials and Methods 

Drosophila crosses and stocks 

Ubiquitous and neuron-specific expression was achieved with the GAL4-UAS system 

[GAL4-dependant upstream activator sequence] (Brand and Perrimon, 1993). UAS-

miRNAmyo and Myo-GaL4 lines (Awasaki et al., 2011) were a gift from T. Awasaki from 

Tzumin Lee lab at Janelia Farm; Bloomington Stock Center lines: Mef2-GAL4 (#27390), repo-

GAL4 (#7415), 24B-GAL4 (#1767) and C164-GAL4 (#33807); UASmyoRNAi (#33132) was 

received from Vienna Drosophila Resource Center; UASmyoglianin (2
nd 

chr.), UAS-

myoglianin (3
rd 

chr.), UAS-Smad2↑ and UAS-MAD↑ were a kind gift from M. O’Connor, 

University of Minnesota. The UAS-Smad2↑ and UASMAD↑ lines have the two of the 

serines in SSVS motif at the C-terminal tail changed to aspartate, rendering Smad2 and MAD 

constitutively active. Mef2-GAL4/UASmiRNAmyo/MAD↑ and Mef2-GAL4/ UAS-

miRNAmyo/Smad2↑ were created using standard Drosophila crossing schemes. The slit-

GAL4 line was a kind gift from Iris Salecker, The Frances Crick Institute; fb-GAL4 line was 

received from I. Bjedov, UCL; np1-GAL4 is the Drosophila Genetic Resource Center (Kyoto) 

stock #112001; UAS-mCD8-GFP line was a gift from Y. Grosjean, CNRS/Université de 

Bourgogne. wDah was the “wild-type” strain used in all experiments. The white Dahomey 

(wDah) stock was derived by incorporation of the w1118 mutation into the outbred 

Dahomey background by back-crossing.  

NMJ and GFS electrophysiology  

NMJ recordings were performed using pClamp 10, an Axoclamp 900A amplifier and Digidata 

1440A (Molecular Devices, USA) in hemolymph-like solution 3 (HL-3). Recording electrodes 

(10–30 MΩ) were filled with 3 M KCl. mEJCs were recorded in the presence of 0.5 μM 
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tetrodotoxin (Tocris, UK). All synaptic responses were recorded from muscles with input 

resistances ≥4 MΩ and resting potentials more negative than −60 mV at 25°C as differences 

in recording temperature cause changes in glutamate receptor kinetics and amplitudes 

(Postlethwaite et al., 2007). Holding potentials were -60 mV. The extracellular HL-3 

contained (in mM): 70 NaCl, 5 KCl, 20 MgCl2, 10 NaHCO3, 115 sucrose, 5 trehalose, 5 HEPES 

and 0.5–3 CaCl2 (as specified). Average single eEJC amplitudes (stimulus: 0.1 ms, 1-5 V) are 

based on the mean peak eEJC amplitude in response to ten presynaptic stimuli (recorded at 

0.2 Hz). Nerve stimulation was performed with an isolated stimulator (DS2A, Digitimer). All 

data were digitized at 10 kHz and for miniature recordings, 200 s recordings we analyzed to 

obtain mean mEJC amplitudes, decay and frequency values. mEJC and eEJC recordings were 

off-line low-pass filtered at 500 Hz and 1 kHz, respectively. Materials were purchased from 

Sigma-Aldrich (UK) unless otherwise stated. Quantal content was estimated for each 

recording by calculating the ratio of eEJC amplitude/average mEJC amplitude followed by 

averaging recordings across all NMJs for a given genotype. For GFS recordings, individual 

adult flies were anaesthetized by cooling on ice and secured in dental wax placed inside a 

small Petri dish, ventral side down, with the wings held outwards in the wax to expose 

lateral and dorsal surfaces of the thorax. A tungsten earth wire (ground electrode) was 

placed in the abdominal cavity. Extracellular stimulation of the Giant Fiber interneurons was 

achieved by placing two electrolytically (NaOH) sharpened tungsten electrodes through the 

eyes and into the brain to deliver a 40 V pulse for 0.03 ms using an npi electronic ISO-STIM 

01D stimulator. For the thoracic stimulation, the stimulating electrodes were moved from 

the brain and carefully placed through the cuticle at the anterior end of the thorax and into 

the fused thoracic ganglia in the ventral part of the thorax. Recordings were made using 

glass microelectrodes (resistance 40-60 MΏ) filled with 3 M KCl and inserted into the TTM 

and a contralateral DLM through the thoracic cuticle. Responses were amplified using 

Axoclamp 900A microelectrode amplifier (Molecular Devices, USA) and the data digitized 

using an analog-digital Digidata 1440A digitizer (Molecular Devices, USA) and Axoscope 10.5 

software (Axon Instruments, USA).  
 

 

Immunocytochemistry and Western blots  

Dissections were performed using a modified Drosophila saline (HL3) with physiological 

levels of glutamate (in mM; 135 NaCl, 5 KCl, 4 MgCl2, 1.8 CaCl2, 5 N-
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Tris(hydroxymethyl)methyl2- aminoethanesulfonic acid (TES), 72 sucrose, and 2 L-

glutamate). For glutamate receptor (GluRIIA) and Brp staining, dissected 3rd 
instar larval 

preparations were fixed for 30 min in Bouin’s fixative. Mouse monoclonal anti-GluRIIA 

(8B4D2) and anti-Brp (nc82) antibodies were obtained from the University of Iowa 

Developmental Studies Hybridoma Bank (Iowa City, USA) and used at 1:100 and 1:20, 

respectively. AlexaFluor-conjugated goat anti-mouse secondary antibodies were used at 

1:200. TRITC-labeled anti-horseradish peroxidase (HRP) antibodies (staining neuronal 

membranes) were used at 1:100. To visualize larval muscles, phalloidin was added to fresh 

larval preparations fixed for 30 min with 4% paraformaldehyde. DAPI was added prior to 

mounting to stain myofiber nuclei. Quantitative image analysis was performed with ImageJ 

(NH, Bethesda, USA) on maximum intensity projection Z-stacks. We first drew a circle 

around individual boutons delineated by the HRP (horseradish peroxidase) signal and 

quantified the mean postsynaptic immunofluorescence in the second (GluRIIA/B) channel. 

The same bouton outline was then moved to a nearby region of the same muscle and 

fluorescence measured in the same way as for the bouton. The value for the first 

measurement was divided by the second number representing muscle fluorescence.  

The fluorescence intensity (“signal intensity”) was quantified using underexposed images as 

“integrated density” (area x mean fluorescence) and normalized to the control genotype 

(e.g. +/Mef2-GAL4). Individual Brp puncta were counted manually in 1b boutons across the 

NMJ. The pre-synaptic NMJ area was measured by delineating the area labelled by HRP.  

For Western blots, samples were homogenized in Laemmli buffer containing 0.5% β- 

Mercaptoethanol and boiled at 95°C for 5 min for gel electrophoresis. Gels were run at 150 

V and transferred to nitrocellulose membrane via semi-dry transfer methods using BioRad. 

All westerns blots were normalised against actin staining (Abcam #ab8224 Ms-anti-actin 

[1:10000] in 5% milk/TBS-T). 10% SDS-PAGE gels with 3.75% stacking gel were run for p-AKT 

quantification (Cell Signalling #4060) which was also normalised against total-AKT (Cell 

Signaling #9272). p-GSK (Cell Signaling #9331) was also run on 10% gel whereas p-S6K (Cell 

Signalling #9209) was run on 8% SDS-PAGE gels. The n in the figure legend denotes the 

number of biological replicates.  
 

RNA extractions  

Larval preps (6 preps per sample, 3-5 samples per genotype per experiment) were dissected 

in cold HL3 medium and transferred straight into 1 ml of ice cold Trizol. The samples were 
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ribolysed for 20 s and then incubated at room temperature for 5 min. 0.2 ml chloroform was 

added, samples were vortexed for 15 s then incubated at room temp for 2 mins before 

centrifugation at 12,000 rpm for 15 min at 4ºC. The clear aqueous layer was transferred 

(about 60% of total Trizol volume) to a fresh tube. 0.5 ml room temperature isopropanol 

was added, mixed and incubated at room temperature for 15 min. Samples were 

centrifuged at 12,000 rpm for 15 min at 4ºC. The supernatant was removed and RNA pellets 

were washed (x4 with 70% ethanol/DEPC water (~ 400 µl). Supernatants were removed and 

pellets were dried at room temp before re-suspending in 15 µl of RNAse free (DEPC) water. 

RNA concentration was determined using a NanoDrop.  
 

cDNA synthesis using superscript system for RT-PCR  

As per protocol (Invitrogen), cDNA was synthesized from 5 µg of RNA in a total volume of 5 

µl (volumes adjusted using sterile DEPC-treated water). cDNA was synthesized as per SOP. 

Briefly, 10x DNase buffer and DNase was added to the RNA and incubated at 37ºC for 15 

min. 24 mM EDTA (pH 8, RNase free) was added and samples heated to 75ºC for 5 min then 

chilled on ice. 0.5 µg/µl Oligo dT and 10 mM dNTP mix was added, heated to 65ºC for 5 min 

then chilled on ice. 5x RT buffer, DEPC-treated water, 0.1 M DTT and RNaseOut 

Recombinant RNase Inhibitor was added, incubated at 42ºC for 2 min then 1 µl of 

SuperScript II RT was added and the samples were incubated at 42ºC for 50 min before 

terminating the reaction at 70ºC for 15 min then chilling the cDNA on ice. cDNA was stored 

on ice until PCR reaction, or at –20ºC. All values are the average of four replicates, and 

standardized to 4 housekeeping genes: rp49, β-actin, α-tubulin and tbp (sequences for 

myoglianin primers are: 5’-CGCAGAAACCTGGATGAAGT-3’ and 5’ATTTCACCAGCTTTGGATGG-

3’; product size is 196 bp).  
 

Larval microinjections  

2
nd 

instar larvae were secured onto adhesive tape and injected posterior-laterally using a 

pedal operated microinjector (PicoSpritzer II, Parker) and needles pulled from glass 

capillaries (0.58/1 mm ID/OD; #30-0019 Harvard Apparatus). Myostatin (recombinant 

human; PeproTech #120-00) was injected from a 1 µg/mL solution in Ringers buffer (10 mM 

Tris-HCl pH 7.2, 182 mM KCl, 46 mM NaCl, 3 mM CaCl2•2H2O) supplemented with 0.1% w/v 

BSA and 0.25% w/v blue food dye (FD&C Blue No.1) to visualize successful delivery 

(Cocheme et al., 2012). The injected amount per larva equates to 50 pg of Myostatin (±4 

SEM, n=6). The injection volume was quantified by homogenizing groups of 5 injected larvae 
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and measuring the blue dye content from the A629 against a serial dilution of the injection 

solution (Wong et al., 2009).  

Time to pupariation and weight measurements  

Pupariation and wet weight measurements were done on larvae reared under the same 

conditions (food composition, humidity and temperature) as the larvae used for other 

experiments. Measuring the time to pupariation was done essentially as described recently 

(Johnson et al., 2013). Eggs were collected for 1-2 h and and collected. 24 h later, first instar 

larvae were placed onto Petri dishes containing regular fly food (SYA). Larvae (~10 groups of 

10 larvae per genotype) were inspected daily; following the beginning of the pupariation 

period animals were scored every 2-3 h and the number of pupariated larvae was counted. 

The blue segment of bars in Figure S1E denotes period between the first and last 

pupariation event. Third instar larvae were weighed on a microbalance (Denver Instrument 

SI-64) in groups of 3; the mean of the 3 measurement was counted as a single data point.  

Crawling speed 

Larval motility was measured using camera recordings followed by video analysis using fly 

tracking software (Scott Pletcher, University of Michigan). Videos were recorded at 2 frames 

per second and converted to AVI file format, which was analyzed using VideoFly software. 

The distance travelled by individual larvae during the first minute following their placement 

onto a large Petri dish was used to calculate their crawling speed.   
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Cell culture experiments 

Reagents and antibodies 

Antibodies used for immunofluorescence analysis in this study were mouse monoclonal 

anti-PSD95 (Pierce, MA1-045); mouse monoclonal anti-Gephyrin (referred to as ‘GPHN’) 

(Synaptic Systems, 3B11); chicken polyclonal anti-MAP2 (Abcam, Ab5392); rabbit polyclonal 

anti-VGAT (Synaptic Systems, 131003); Guinea pig anti-vGLUT1 (Synaptic Systems, 135304); 

Alexa Fluor 488-, 555-, 633 conjugated goat anti-mouse, anti-rabbit, anti-chicken, anti-

Guineapig antibodies were from Life Technologies. Reagents concentrations shown, with 

the exception of DMSO, were determined to be the minimum effective concentrations after 

serial dilution, as assessed by their measured deviation from control according to the 

criteria analysed. DMSO referred to as ‘Control’ (1:1000, Sigma); TGFβ1 (R&D Systems) was 

used at 5 ng/ml (within physiological levels (Ramesh et al., 1990); BMP2 (R&D Systems) was 

used at supraphysiological levels of 10 ng/ml to induce acute Smad 2 signalling; GDF8, also 

known as myostatin (R&D Systems) was used at 10 ng/ml (within physiological levels 

(Lakshman et al., 2009); GDF11 (R&D Systems) was used at 10 ng/ml (within physiological 

levels (Schafer et al., 2016), Alantolactone referred to as ‘TGFβ bypass’ (400 nM, Sigma 

SML0415) and A8301, referred to as ‘TGFβ inhib’ (400 nM, Tocris 2939). 

Neuronal cell culture and treatments  

All experimental procedures were carried out in accordance with institutional animal 

welfare guidelines and the UK Animals (Scientific Procedures) Act 1986. Rat cortical neuron 

cultures were prepared from E18 Sprague-Dawley rat embryos as described previously 

(Arancibia-Carcamo et al., 2009) with the following modifications: Glass bottomed 96 well 

culture plates were coated with poly-D-lysine (0.05 mg/ml, Sigma) in PBS over night at 37ᵒC, 

5% CO2, after which, a second coating of laminin (0.01 mg/ml, Sigma) in PBS was applied for 

2 h at 37ᵒC, 5% CO2. Approximately 4 x 104 
isolated cortical neuronal cells were seeded per 

well and allowed to attach in neuronal attachment media (Minimum Essential Medium 

Eagle’s with Earl’s BSS (Sigma), 10% (w/v) FBS (ThermoFisher), 1 mM sodium pyruvate 

(Sigma), 20% (w/v) glucose (Sigma), 2 mM glutamax (ThermoFisher), antibiotic-antimycotic 

(Sigma)) and maintained at 37ᵒC, 5% CO2 for 12 h after which the media was exchanged to 

neuronal maintenance media (Neurobasal (ThermoFisher), 2% (w/v) B27 (ThermoFisher), 2 

mM glutamax (ThermoFisher), antibiotic-antimycotic (Sigma) and cultures maintained at 

37ᵒC, 5% CO2. Neuronal maintenance media was exchanged every three days for the first 6 
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days in vitro (DIV) after which treatments were added to the neuronal culture in fresh 

neuronal maintenance media and maintained for a further 5 DIV prior to fixation. Optimum 

treatment concentrations for each condition were determined by serial dilution using a 5 

times dilution between concentration points between well rows.  

Fixation and fluorescence labelling for microscopy  

Treated cells were fixed in 4% paraformaldehyde (PFA) in PBS for 20 min at room 

temperature, followed by two washes with PBS and then incubated for 1 h in 50 mM NH4Cl 

in PBS to quench the residual PFA. Cells were then permeabilized with 0.1% Triton-PBS and 

immunolabeled in the presence of horse serum (Life Technologies) at an antibody dilution of 

1:5000 for anti-MAP2, 1:500 for anti-vGLUT1, 1:200 for antiPSD95, 1:500 for anti-Gephyrin 

and 1:200 for anti-VGAT primary antibodies, 1:1000 for all secondary antibodies and 

1:10,000 for DAPI staining of DNA. Fluorescently labelled samples were analysed and images 

captured with a 20x air objective using a widefield high-content analysis system 

(ImageXpress Micro XLS, Molecular Devices).  

Image processing and quantitation  

Image analysis was performed using a protocol established in CellProfiler image analysis 

software (Kamentsky et al., 2011) and is a variation on a protocol established previously 

(Nieland et al., 2014). A set of image analysis algorithms or ‘pipeline’ was constructed to 

measure the properties of interest within the cortical neuron culture labelled with either 

DAPI, anti-MAP2, anti-PSD95 and anti-vGLUT1 or with DAPI, antiMAP2, anti-Gephyrin and 

anti-VGAT. Each image-set, corresponding to one field of view or site and comprising four 

fluorescently labelled channels, were analysed independently using this pipeline. 9 sites per 

well were analysed and repeated in triplicate experiments. In brief, an illumination 

correction function was calculated for each channel using a median filter (200x200 pixels) to 

correct for illumination variations across each 96-well plate. Each image set was then 

processed in an imaging pipeline as follows. The four channels' raw images were divided by 

their respective plate/channel illumination function. Firstly, segmentation of the nuclei of 

each cell in the field of view was identified corresponding to an arbitrary fluorescence 

intensity, median size (20 to 60 pixels) and shape (circular) according their DAPI DNA 

labelling. Next, neurites were identified extending from the nuclei using an arbitrary 

fluorescence intensity corresponding to anti-MAP2 labelling and were enhanced using the 

neurite enhance module within CellProfiler by the ‘Tubeness’ method after which, a mask 
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within all channels according to the identified neurite network, minus that of the nuclei, was 

created. Only PSD95, vGLUT1, Gephyrin and VGAT punctae within the masked region, with a 

typical diameter range of range of 8 to 20 pixels and having an arbitrary threshold of 

fluorescence intensity associated with their corresponding antibody labelling were identified 

as ‘primary punctae objects’ for analysis. Excitatory and inhibitory synapses were 

subsequently identified and designated as ‘synaptic objects’ if two ‘primary punctae objects’ 

were determined to co-localise in the pre and post synaptic marker channels of either 

PSD95 and vGLUT1 (excitatory) or Gephyrin and VGAT (inhibitory). The cortical neuron cell 

number per image was measured by counting the number of nuclei from which there were 

neurite extensions. The neurite network area per image, identified as described above, was 

measured as the pixel area occupied per image. The ‘synaptic object’ size for the image pair 

size overlap was measured as pixel area overlap. In addition, the count of both ‘synaptic 

objects’ and non-synaptic ‘primary punctae objects’ per unit area of the neurite network 

were measured. Data per well were determined by first aggregating the data of images 

taken within the same well for all sites and then over replicate wells and experiments. A 

dilution series of per well of the reagents used in each condition was undertaken to 

determine their minimum effective concentration as assessed by their deviation from 

control conditions. Results shown were calculated from the data derived from each 

condition at its minimum effective concentration and are determined from the median 

measurements per image per condition, normalised to neuron cell number per well and 

represent the average of triplicate experiments expressed as a percentage of control 

conditions. The average number of neuron cells per condition per experiment were >200. 

The median numbers of pre and post excitatory or inhibitory marker punctae per condition 

per experiment measured were >1200 and >1000, or >1100 and >800, respectively. The 

median numbers of excitatory and inhibitory synapses per condition per experiment 

measured were >400 and >600, respectively.  
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Supplementary  Figures
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Figure S1. (A) Larval body muscles in third instar larvae stained with phalloidin. A third 

hemisegment containing muscles 6 and 7 is marked with yellow bars. Dashed line marks the 

midline. The posterior (P) and anterior (A) directions are denoted with the double-headed 

arrow above the image. Scale bar: 500 μm. (B) Relative levels of the myo transcript in 3rd 

instar larval muscle preparations (n = 4 per genotype). (C) Expression of myoglianin 

constructs in body-wall muscles did not affect the frequency of miniature excitatory 

junctional currents (mEJCs) at the larval NMJ (n = 6-16), or the mean amplitude of miniature 

excitatory responses (n = 7-16) (D). (E) Total number of Brp puncta at the 6/7 NMJ (n = 10-

15). (F) GluRIIA signal intensity at the NMJ (n = 6-10). (G) NMJ length (left), and number of 

6/7 NMJ branches (right) (n = 11-21). (H) Synaptic GluRIIB remained unchanged upon 

motoneuronal myo manipulation (n = 5-7). All panels: error bars indicate SEM (ANOVA + 

Tukey’s post-test: *p < 0.05, **p < 0.01, ***p < 0.001, n.s. = not significant).  

Development 144: doi:10.1242/dev.152975: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Figure S2. (A and B) No change in the frequency of mEJCs (A) or mean ‘mini amplitude’ (B) 

upon myo manipulation in glial cells (n = 6-12). (C) Quantification of GluRIIA signal intensities 

in larvae expressing various myo constructs in glial cells (n = 7-10). (D) Glial expression levels 

of myo did not affect the NMJ density of GluRIIB receptors (n = 6-7). (E) Synaptic GluRIIA 

remained unchanged upon motoneuronal myo silencing (n = 7). All panels: Error bars 

indicate SEM (ANOVA + Tukey’s post-test or unpaired t-test (for comparison between 2 

genotypes): *p < 0.05, n.s.= not significant).  
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Figure S3. (A) Developmental progression in flies expressing variable levels of myo (n = ~100 

per genotype). Blue marks the period of time during which the larvae pupariated. (B) Larval 

wet weight is increased when a different muscle driver (24B-GAL4) is combined with a UAS-

myoRNAi transgenic construct (left), and decreased when an alternative UAS-myoglianin 

(2nd chromosome) construct is used (right). (C) Wet weight in the larvae with myo levels 

manipulated in motoneurons (C167-GAL4 driver), or (D) fat bodies (fb-GAL4 driver) and 

midgut (np1-GAL4 driver) (n = 922 for weight measurements). All panels: error bars indicate 

SEM (ANOVA + Tukey’s post-test: *p < 0.05, **p < 0.01, ***p < 0.001 and n.s. = not 

significant). (E) Representative images of the muscles 6  (asterisk) and 7 (circle) examined for 

fiber area in Figure 3D. Scale bar: 40 µm. 
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Figure S4. (A) Representative Western blots from Mef2-GAL4/UAS-miRNAmyo, Mef2-

GAL4/UAS-miRNAmyo and +/Mef2-GAL4 (control) larval muscles using different antibodies 

(see Supplemental Experimental Procedures). (B-E) Quantification of Western blots 

performed on larval muscle preparations (n = 5-12). (F) Representative eEJC traces for (G). 

(G) Quantification of eEJC amplitudes  in the myo/Shaggy epistasis experiment (n = 6-12). (H) 

Representative ‘miniature’ EJC traces for (I). (I) Cumulative frequency diagram of mEJC 

amplitudes (n = 6-16). All panels: error bars indicate SEM (ANOVA + Tukey’s post-test: *p < 

0.05, **p < 0.01, *** P<0.001, n.s = not significant).si  
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Figure S5. (A) Microscopy image quantification of median excitatory synapse area occupied 

per image, normalised to control after indicated treatments as in Fig. 6C. Synapses are 

marked by co-labelling with vGLUT1 and PSD95 localized to neurites (MAP2) (n = 3 

independent experiments). (B) Microscopy image quantification of median inhibitory 

synapse area occupied per image normalised to control after indicated treatments as in Fig. 

6C. Synapses are marked by co-labelling with VGAT and GPHN localized to neurites (MAP2), 

(n = 3 independent experiments). (C) Microscopy image quantification of rat brain isolated 

cortical neuron culture treated as indicated with either DMSO (Control), 5 ng/ml TGF-β1 

(TGF-β), 400 nM TGF-β1 signalling antagonist (A83), 400 nM TGF-β1 signalling agonist 

(Alento), 10 ng/ml BMP2 (BMP2), 10 ng/ml Myostatin or 10 ng/ml GDF11 (GDF11) for 5 days 

commencing from 6 DIV. Cultures were immunostained for excitatory pre (vGLUT1) and post 

(PSD95) and inhibitory pre (VGAT) and post (GPHN) synaptic density markers in addition to a 

neuronal marker (MAP2, blue). Quantification represents the median punctae frequency per 

neurite area per image of the indicated marker normalised to control (n = 3 independent 

experiments). Error bars represent SEM. (ANOVA + Dunnett + test: * P<0.05; ** P<0.01; *** 

P<0.001, n.s = not significant).  
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Figure S6. Quantification of response latencies in the DLM branch of the GF circuit (n = 5-7). 

(ANOVA + Tukey’s post-test: n.s. = not significant).  

Development 144: doi:10.1242/dev.152975: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Movies 

Movie 1. Larval crawling in +/Mef2-GAL4 

Development 144: doi:10.1242/dev.152975: Supplementary information
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http://movie.biologists.com/video/10.1242/dev.152975/video-1


Movie 2. Larval crawling in Mef2-GAL4/UAS-miRNAmyo 

Development 144: doi:10.1242/dev.152975: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n

http://movie.biologists.com/video/10.1242/dev.152975/video-2


Movie 3. Larval crawling in Mef2-GAL4/UAS-myoglianin 
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http://movie.biologists.com/video/10.1242/dev.152975/video-3


Movie 4. Larval crawling in +/repo-GAL4 

Development 144: doi:10.1242/dev.152975: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n

http://movie.biologists.com/video/10.1242/dev.152975/video-4


Movie 5. Larval crawling in repo-GAL4/UAS-miRNAmyo 
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http://movie.biologists.com/video/10.1242/dev.152975/video-5


Movie 6. Larval crawling in repo-GAL4/UAS-myoglianin 
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http://movie.biologists.com/video/10.1242/dev.152975/video-6

