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There were errors published in ‘SoxF factors induce Notch1 expression via direct transcriptional regulation during early arterial
development’ by Ivy Kim-Ni Chiang, Martin Fritzsche, Cathy Pichol-Thievend, Alice Neal, Kelly Holmes, Anne Lagendijk, Jeroen
Overman, Donatella D’Angelo, Alice Omini, Dorien Hermkens, Emmanuelle Lesieur, Ke Liu, Indrika Ratnayaka, Monica Corada, George
Bou-Gharios, Jason Carroll, Elisabetta Dejana, Stefan Schulte-Merker, Benjamin Hogan, Monica Beltrame, Sarah De Val and Mathias
Francois (2017). Development 144, 2629-2639 (doi: 10.1242/dev.146241).

The contribution of Nicolas Fossat, Tania Radziewic and Patrick P. L. Tam was inadvertently omitted. These authors generated and
validated the Sox7 knockout mouse line used to produce the Sox7/Sox18 double-knockout line (Fig. 9A). An explanation of how this mouse
line was generated was absent from the supplementary Materials and Methods. In addition, the middle initial of Benjamin Hogan was
missing.

The corrected author list and affiliations appear above. Revised Author contributions and Funding sections, as well as a revised section of
the supplementary Materials and Methods that now includes generation of the Sox7 knockout mouse line, appear below.

The authors apologise to readers for these mistakes.
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Supplementary Materials and Methods
Generation and analysis of transgenic and mutant mice (final paragraph)
Sox7:tm1 (Sox7+/−) mice were generated through germline transmission in chimaeras, using VGB6 ES cells (of C57BL/6NTac
background) that contained an inactivated Sox7 allele replaced with a ZEN-Ub1 cassette from Velocigene (Sox7tm1(KOMP)Vlcg), and
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obtained from the KOMP repository at University of California at Davis (https://www.komp.org/pdf.php?projectID=VG10649).
Compound Sox7−/−;Sox18−/− mouse embryos were generated on the C57BL/6 background through crossing heterozygous Sox7:tm1 to
Sox18:tm1, generating Sox7+/−;Sox18+/−micewhich were subsequently incrossed (Pennisi et al., 2000a). Genotypewas confirmed by PCR
using the following primers: mSox7(F), TGTAACTTGGAGATCCATAGAGC; mSox7(R), TCATTCTCAGTATTGTTTTGCC;
mSox7lacZ(R), TGGATCAGCTAAGCCAGGT; mSox18(F), CCCGACGTCCATCAGACCTC; mSox18(R), GTCGCTTGCGCTCGT-
CCTTC; mSox18lacZ(R), CGCCCGTTGCACCACAGATG. All animals used were 7-24 weeks old.
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phenotype was detected in F2 notch1b-15uq1mf/uq1mf homozygous
zebrafish (F1 heterozygous notch1b-15uq1mf/+ in-cross) (Fig. S6A),
suggesting partial enhancer redundancy. Such redundancy, which is
potentially explained by the pervasiveness of redundant, or
ʻshadow’, enhancers around developmental genes (Cannavò
et al., 2016), has previously been well documented in key
endothelial genes, with examples including the Dll4, Flk1 and
Tal1 loci (Cannavò et al., 2016). By contrast, we detected a
subpopulation (20-30%) of larvae from the F3 generation
(F2 homozygous notch1b-15uq1mf/uq1mf in-cross) that displayed a
phenocopy of the notch1b loss-of-function phenotype (Fig. S6B).
This increase in the phenotypic severity in the F3 generation
suggests that, in the context of the notch1b-15uq1mf /+ cross,
maternal mRNA deposition is likely to help compensate for
the disruption of notch1b transcription caused by deletion of the
notch1b enhancer, a compensation that is reduced in a purer
notch1b-15uq1mf /uq1mf genetic background (Harvey et al., 2013).
To bypass potential rescue effects of shadow enhancers

or maternally deposited transcripts, we also investigated
arteriovenous differentiation and sprouting angiogenesis in F2
notch1b-15uq1mf/uq1mf zebrafish after low-level depletion of notch1b
mRNA. A splice notch1b MO was injected into eggs from a
notch1b-15uq1mf/+ in-cross in the tg(flt1:YFP;lyve1:dsRed)
background. The notch1b MO was used at suboptimal
concentration (5 ng/embryo), which is known to result in minimal
phenotypes (Sacilotto et al., 2013). The developing vasculature of
each resulting embryo was analysed blindly at 3 dpf, and genotypes
were assigned to embryos after image acquisition (Fig. 8D, red).
Whereas most WT siblings had normal ISV development, we
observed an increased number of hypersprouting ISVs across the
notch1b-15uq1mf/+ and notch1b-15uq1mf/uq1mf population (Fig. 8E,
asterisks; Fig. 8F, top) in a gene dosage-dependent manner, similar
to the phenotype described previously in high MO concentration
notch1b morphants and Notch signalling-deficient embryos
(Geudens et al., 2010; Siekmann and Lawson, 2007). Further,
mutant embryos also demonstrated loss of arterial connections
between the dorsal aorta and dorsal longitudinal anastomotic vessel,
similar to those described in Notch signalling-deficient zebrafish
(Geudens et al., 2010; Quillien et al., 2014), while the notch1b-
depleted notch1b-15+/+ and notch1b-15uq1mf/+ morphant embryos
demonstrated an equal proportion of arterial and venous ISVs as
previously reported (Bussmann et al., 2010) (Fig. 8E,F bottom).
To further confirm that interfering with notch1b-15 enhancer

activity is additive to notch1b transcript depletion, we chemically
treated the notch1b-15uq1mf/+ cross with DAPT, a well characterised
Notch signalling inhibitor, over the course of endothelial
differentiation (15- to 16-somite stage through to 3 dpf) (Fig. 8D,
blue). All embryos treated with a suboptimal concentration of
DAPT (5 µM) showed a straight body axis, indicating that
somitogenesis (and therefore Notch activity) was not significantly
compromised (Fig. S7A). Interestingly, despite this lack of
morphological defects, F2 fish homozygous for the notch1b-
15uq1mf allele displayed a lower arterial-to-total ISV ratio (Fig. 8G,
Fig. S7A). By contrast, fish homozygous for the notch1b-15uq1mf

allele treated with DMSO vehicle alone had a comparable aISV ratio
to both notch1b-15+/+ and notch1b-15uq1mf/+ siblings (Fig. S7B),
similar to the untreated control. This suggests that the observed loss
of aISV is specific to an additive effect of DAPT treatment and
notch1b-15 enhancer activity disruption. Overall, these data suggest
a functional role of the notch1-15 enhancer in the endothelial-
specific initiation of notch1b transcription to promote the
acquisition of arterial cell identity.

SoxF factors are required for endogenous Notch1/notch1b
expression
Our results have clearly implicated SoxF factors as direct upstream
regulators of arterial Notch enhancers, and therefore suggest a
considerably greater role for SoxF in the regulation of the Notch
receptors than of the Notch ligands. However, since the notch1b-15
enhancer is partially redundant with other notch1b shadow
enhancers, we wished to establish whether SoxF regulation is
required for endogenous notch1b expression itself, not just enhancer
activity. Further, our results so far do not entirely rule out the
possibility of SoxF/Rbpj combinatorial regulation of notch1b, as
was previously shown for Dll4 enhancers (Sacilotto et al., 2013).
Although neither the human NOTCH1+16 nor the zebrafish
notch1b-15 enhancer contains conserved consensus Rbpj/Notch
bindingmotifs, transcription factors can bind non-consensus motifs,
and not all transcription factors necessarily bind conserved motifs
(Wong et al., 2015). The nature of the SoxF/Notch combinatorial
regulation of Dll4, where the SOX or RBPJ binding motifs play
functionally interchangeable roles, indicates potential direct
interactions between these two proteins, such that only a single
SOX binding motif might be necessary for SoxF/Rbpj synergy. We
therefore investigated the consequences of SoxF depletion on
endogenous Notch1/notch1b expression in vivo.

Although Sox17 is robustly expressed in arterial endothelial cells
(Corada et al., 2013; Hosking et al., 2009), compound Sox7;Sox18
deletion in mice resulted in a reduction of Notch1 mRNA levels in
the trunk dorsal aorta and primitive heart cavities of E8.5 embryos
(Fig. 9A, Fig. S8A). These results concur with observations in the
mouse retina, where the vascular phenotype after Sox7;Sox17;
Sox18 endothelial-specific triple deletion closely resembled defects
caused by loss of Notch signalling (Zhou et al., 2015). Strikingly,
both MO-induced gene knockdown and compound mutation of
sox7 and sox18 in zebrafish embryos also led to a near-complete
loss of notch1b transcript expression specifically in endothelial
cells, as shown by in situ hybridisation analysis (Fig. 9B,C,
Fig. S8B). These results further establish an essential role for SoxF
transcription factors in the induction of Notch1/notch1b gene
expression, and position SoxF proteins at the top of the
transcriptional hierarchy regulating arterial specification.

DISCUSSION
Recent work has implicated SoxF, Ets and Rbpj, the Notch
transcriptional effector, in the regulation of the Notch ligand Dll4
and many other key arterial genes (Corada et al., 2013; Lizama et al.,
2015; Sacilotto et al., 2013; Wythe et al., 2013), but has not
established the hierarchical arrangement of these diverse factors
in arterial specification and differentiation. In this study, we
demonstrate that arterial expression of the Notch receptor Notch1/
notch1b, a key player in arterial specification, is directly
downstream of SoxF regulation in both fish and mouse. Unlike
other key arterial specification markers, including Dll4, Efnb2a and
Dlc (Sacilotto et al., 2013), ablation of Notch1/Notch1b expression
after depletion of SoxF factors occurred without concurrent
inhibition of Notch signalling. Therefore, this work positions
SoxF factors directly above Notch signalling in the transcriptional
hierarchy initiating arterial development, and suggests that SoxF
factors might initiate a feed-forward loop directing arterial identity.
In this model, SoxF factors would first activate Notch signalling via
the transcriptional activation of Notch receptors in combination
with weak activation of Notch ligands (Sacilotto et al., 2013). This
early SoxF-mediated activity would then be boosted by the
initiation of Notch signalling, resulting in the sustained activation
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of other downstream genes, eventually activating the full cohort of
genes necessary to acquire and maintain arterial endothelial
cell identity.
Understanding the function of SoxF factors through mutational

analysis has presented significant challenges. Strain-specific
variations in mice after depletion of individual SoxF genes and
varying levels of compensation from other SoxF factors have
resulted in some contradictory reports (Corada et al., 2013; Lee
et al., 2014), as is also the case for zebrafish morphant analysis
(Cermenati et al., 2008; Herpers et al., 2008; Pendeville et al.,
2008). Nonetheless, the results described here agree with an
increasingly convincing body of work suggesting that SoxF factors
influence Notch signalling yet are unaffected by Notch ablation. For
example, overexpression of Sox17 upregulates components of the
Notch pathway (Corada et al., 2013; Lizama et al., 2015), loss of
functional SoxF factors results in defects similar to those observed

after Notch inhibition in mice and fish (Corada et al., 2013;
Sakamoto et al., 2007; Zhou et al., 2015), while Notch ablation
results in little alteration to the endothelial expression of SoxF
factors in mice and fish (Abdelilah et al., 1996; Corada et al., 2013).
Data reported here combine with these reports to strongly support a
role for SoxF factors as part of the initial transcriptional machinery
that instructs arterial specification events.

However, some questions remain. In particular, it is notable that
sox7;sox18 double-mutant fish, although exhibiting severe
arteriovenous defects very similar to those seen in Notch-
deficient fish (Lawson et al., 2001), do not fully recapitulate the
effects of Vegfa depletion on arterial specification (Lawson et al.,
2002). While this difference may in part be attributed to weak
expression of zebrafish sox17, which is expressed in some arterial
endothelial cells (Hermkens et al., 2015), it is also expected that
the Vegfa pathway has a wider effect on arterial endothelial cells
more generally, away from SoxF-mediated activation of Notch
signalling. SoxF factors are also influenced by signalling
pathways beyond Vegfa. The diverse nature of Vegfa roles in
the vasculature, including the regulation of both sprouting
angiogenesis and arteriogenesis, processes that inevitably
involve different cohorts of downstream targets, make it
necessary that multiple regulatory pathways interact with Vegfa
during vascular development. While recent work has shown that
Vegfa signalling increases the nuclear translocation of SoxF
(Duong et al., 2014), and inhibition of Vegfa results in the loss of
vascular sox7 in fish, sox18 is still expressed in the absence of
intact Vegfa signalling (Pendeville et al., 2008). Additionally, loss
of the Vegf co-receptor Nrp1 has little effect on SoxF expression in
mouse retinal vasculature (Zhou et al., 2015), pointing to other
upstream influences on SoxF function in endothelial cells. Other
upstream effectors of SoxF function are likely to include canonical
Wnt signalling and Vegfd, both of which have been shown to
influence SoxF nuclear localisation (Corada et al., 2013; Duong
et al., 2014; Zhou et al., 2015).

Recent evidence has also implicated a role for a coordinated
Vegf-Mapk-Ets pathway in the induction of Notch signalling
components and early arterial differentiation (Wythe et al., 2013).
Notably, in addition to SoxF motifs, both the Notch1 and Dll4
enhancers share a number of highly conserved consensus motifs
for the Ets family of transcription factors. While ETS motifs are
common to all vascular enhancer elements, including many that
are not preferentially expressed in the arterial vasculature (De Val
and Black, 2009), the Ets factor Erg has been specifically
implicated in arterial-specific regulation of Dll4 (Wythe et al.,
2013). It is therefore likely that Vegfa-mediated activation of
Ets factors may contribute to the transcriptional activity of
Notch downstream effectors, and thus may influence arterial
establishment independently of SoxF factors. However, it is
notable that Vegfa-mediated activation of Ets transcription factors
alone does not appear to be sufficient for arterial gene expression.
Dll4 enhancers lacking SOX and RBPJ motifs but retaining all
ETS motifs were unable to drive any transgene expression
(Sacilotto et al., 2013), nor were Notch enhancers lacking SOX
motifs (Figs 2-4). Similar results were found in other delineated
arterial enhancers, including the Ece1 upstream enhancer
(Robinson et al., 2014) and the Flk1 intron 10 enhancer, where
loss of Rbpj-mediated repression resulted in expansion of
enhancer activity into venous cells without alterations to ETS
motif binding (Becker et al., 2016). Combined with recent
observations demonstrating that Erg also plays a crucial role in
venous specification through activation ofAplnr (Lathen et al., 2014),

Fig. 9. Mouse and zebrafish arterial Notch1 expression is dependent on
SOX7/18 activity. (A) Transverse sections of whole-mount in situ hybridisation
for Notch1 transcript on E8.5 mouse embryos shows a reduction of Notch1
expression (asterisks) in the bulbus cordis (bc) region of the primitive heart and
vitelline artery (va) of Sox7/Sox18 double knockouts. (B) At 24 hpf notch1b
expression is significantly downregulated in the dorsal aorta (asterisks) of
sox7/sox18 double-morphant zebrafish, whereas its signal is unaffected in the
neural tube. flt1 expression is comparable between controls and sox7/sox18
double morphants, indicating that the dorsal aorta is correctly formed.
(C) notch1b was barely detectable in the dorsal aorta and ISVs of sox7/18
double-knockout zebrafish (asterisks), as compared with the WT, sox7 or
sox18 heterozygotes (arrows). The number of embryos showing the illustrated
phenotype among the total examined is indicated. DA, dorsal aorta; PCV,
posterior cardinal vein.
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it is therefore likely that the role of Erg, and of other Ets factors,
downstream of Vegfa in arterial-restricted gene expression occurs
in co-operation with additional essential, arterial-specifying
transcription factors. The data presented in this work, combined
with the analysis of further arterial enhancers, including those ofDll4
and Ece1 (Robinson et al., 2014; Sacilotto et al., 2013; Wythe et al.,
2013), increasingly suggest that SoxF may fulfil this role.

MATERIALS AND METHODS
Cloning
The 10×UAS:Sox18Ragged-mCherry plasmid was generated using the full-
length mouse Sox18Ragged cDNA sequence, tagged with 10×UAS and
mCherry and cloned into pDestTol2CG2 (Kwan et al., 2007). notch1b-15:
GFPWTwas generated by cloning a 1219 bp PCR fragment from zebrafish
genomic DNA together with gata2a promoter and GFP reporter gene into
the zebrafish enhancer detection (ZED) vector (Bessa et al., 2009). notch1b-
15mutSOX-a/b was generated by site-directed PCR mutagenesis of the WT
construct. The NOTCH1−68, NOTCH1+3/5 and NOTCH1+33 enhancers
were generated by PCR from human genomic DNA, NOTCH1+16WT and
NOTCH1+16mutSOX-a/b enhancers were generated as custom-made,
double-stranded linear DNA fragments (GeneArt Strings, Life
Technologies). All mammalian fragments were cloned into the hsp68-
lacZ Gateway vector (provided by N. Ahituv) (De Val et al., 2004). Primers
and sequences for DNA fragments are listed in the supplementary Materials
and Methods.

Transgenic animals and genome editing
Animal procedures were approved by local ethical review and licensed by
the UK Home Office or conformed to institutional guidelines of the
University of Queensland Animal Ethics Committee. Transgenic mice were
generated by oocyte microinjection and analysed as detailed in the
supplementary Materials and Methods (De Val et al., 2004). Compound
Sox7−/−;Sox18−/− (C57BL/6) mouse embryos were generated on the
C57BL/6 background through crossing heterozygous Sox7:tm1 to Sox18:
tm1 generating Sox7+/−;Sox18+/− mice, which were subsequently
in-crossed (Pennisi et al., 2000a).

Transgenic zebrafish embryos were generated using the Tol2 system in
conjunction with the ZED vector (Bessa et al., 2009). The sox7hu5626;
sox18hu10320 double-homozygous mutant zebrafish have been described
previously (Hermkens et al., 2015). The tg(fli1a:Gal4FF,10×UAS:
Sox18Ragged-mCherry) zebrafish line was generated by crossing
10×UAS:Sox18Ragged-mCherry with fli1a:Gal4FF, 4×UAS Utrophin
GFP. MO-mediated knockdown was performed as previously described
(Herpers et al., 2008). CRISPR genome editing for notch1b-15 was
performed as described by Gagnon et al. (2014) using the primers listed
in the supplementary Materials and Methods to generate notch1b-15uq1mf

(203 bp deletion) allele.
The F2 notch1b-15uq1mf/uq1mf was generated by in-crossing notch1b-

15uq1mf/+, while F3 notch1b-15uq1mf/uq1mfwas generated from the F2 notch1b-
15uq1mf/uq1mf in-cross, both in the tg(flt1:YFP;lyve1:dsRed) background.

Chromatin immunoprecipitation (ChIP)
Positive tg(fli1a:Gal4FF;10×UAS:Sox18Ragged-mCherry) fish larvae were
collected at 26-28 hpf and processed as described in supplementary Materials
and Methods (Mohammed et al., 2013). DNA amplification was performed
using the TruSeq ChIP-seq Kit (Illumina, IP-202-1012) following
immunoprecipitation. The library was quantified using the KAPA library
quantification kit for Illumina sequencing platforms (KAPA Biosystems,
KK4824) and 50 bp single-end reads were sequenced on a HiSeq 2500
(Illumina) following the manufacturer’s protocol. FASTQ files were mapped
toGRCz10/danRer10 genome assembly using bowtie (Langmead, 2010), and
peaks were called using MACS version 2.1.0. using input as a reference. To
avoid false-positive peaks calling due to the mCherry epitope, ChIP-seq with
the mCherry epitope only was performed in parallel to SOX18Ragged-
mCherry ChIP-seq and peaks called in these experimental conditions were
subtracted from the peaks called in the SOX18Ragged-mCherry conditions.
For details, see the supplementary Materials and Methods.

Motif identification and EMSA
Sequences were analysed for consensus sequence motifs by eye and using
TRANSFAC (BIOBASE; http://genexplain.com/transfac/) (Matys et al.,
2006). EMSAs were performed as previously described (De Val et al.,
2004), as outlined in the supplementary Materials and Methods.

Morpholinos and drug treatment
MO-mediated knockdown was performed as previously described (Duong
et al., 2014; Cermenati et al., 2008). ATGMOs against sox7 and sox18were
injected into the tg(notch1b-15:GFP) stable line at the 1-2 cell stage at 5 ng/
embryo (Herpers et al., 2008). To assess the effect of sox7/18 knockdown on
endogenous notch1b transcripts, sox7 and sox18 MOs were injected into
WT zebrafish larvae at 1 ng/embryo in parallel with a standard control MO
(std-MO) injected at 2 ng/embryo (Cermenati et al., 2008). To characterise
notch1b-15uq1mf, notch1bMOwas injected into the notch1b-15uq1mf/+ cross
at 5 ng/embryo. For MO sequences, see the supplementary Materials
and Methods.

N-[(3,5-difluorophenyl)acetyl]-L-alanyl-2-phenyl]glycine-1,1-dimethylethyl
ester (DAPT; Sigma-Aldrich) was used at 5 μM dissolved in 1% DMSO. Fish
were treated from the 15- to 16-somite stage to 3 dpf and themedium containing
DAPT was refreshed daily.

In situ hybridisation and immunofluorescence staining
Whole-mount in situ hybridisation in zebrafish larvae was performed as
described (Coxam et al., 2015; Duong et al., 2014). Section and whole-mount
in situ hybridisation in mouse was performed as described (Metzis et al.,
2013; Fowles et al., 2003). The Notch1 probe was generated by PCR from
mouse embryo cDNA pool at E14.5, and reverse transcribed with T7
polymerase. Whole-mount immunohistochemistry for anti-GFP was
performed as described (Koltowska et al., 2015). For details, see the
supplementary Materials and Methods.

Quantification and data analysis
To characterise the vasculature in Fig. 8E-G and Figs S6, S7, intersomitic
vessels (20-22 ISVs) expressing tg(flt1:YFP) were analysed across 10-11
somites through a z-stack using ImageJ (NIH) after image acquisition
by confocal microscopy. Intersomitic vessels connecting the dorsal
longitudinal anastomotic vessel to the dorsal aorta expressing YFP were
assigned as arterial ISVs. Vessels were also scored for ectopic sprouting.
The proportion of aISVs or hypersprouts among the total number of ISVs
was analysed by two-tailed Mann–Whitney U-test. To quantify the GFP
intensity of tg(notch1b-15:GFP) and tg(notch1b-15mutSOX-a/b:GFP)
(Fig. 7A), two to three ISVs across five to six somites in the trunk
region were analysed using ImageJ. A region of interest (ROI) covering a
single ISV was selected and mean pixel intensity for each ISV was
quantified from each individual stack across three z-sections. This value
was further corrected by subtracting the background value. Average ISV
GFP intensity (quantified from two to three ISVs) for each fish larva was
subsequently corrected for its genomic GFP copy number. A similar
method was used to quantify GFP intensity in the endothelial lining along
the dorsal aorta.

Fluorescence-activated cell sorting (FACS) and expression
analysis
Flt1:YFP-positive endothelial cells were isolated from WT and F3 notch1b-
15uq1mf/uq1mf at 24-28 hpf. RNA was extracted, amplified and cDNA was
synthesized as previously described (Coxam et al., 2014; Picelli et al.,
2014). Primer sequences and details of the quantitative PCR analysis are
provided in the supplementary Materials and Methods.
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