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Restricting calcium currents is required for correct fiber type
specification in skeletal muscle
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ABSTRACT
Skeletal muscle excitation-contraction (EC) coupling is independent
of calcium influx. In fact, alternative splicing of the voltage-gated
calcium channel CaV1.1 actively suppresses calcium currents in
mature muscle. Whether this is necessary for normal development
and function of muscle is not known. However, splicing defects that
cause aberrant expression of the calcium-conducting developmental
CaV1.1e splice variant correlate with muscle weakness in myotonic
dystrophy. Here, we deleted CaV1.1 (Cacna1s) exon 29 in mice.
These mice displayed normal overall motor performance, although
grip force and voluntary running were reduced. Continued expression
of the developmental CaV1.1e splice variant in adult mice caused
increased calcium influx during EC coupling, altered calcium
homeostasis, and spontaneous calcium sparklets in isolated
muscle fibers. Contractile force was reduced and endurance
enhanced. Key regulators of fiber type specification were
dysregulated and the fiber type composition was shifted toward
slower fibers. However, oxidative enzyme activity and mitochondrial
content declined. These findings indicate that limiting calcium influx
during skeletal muscle EC coupling is important for the secondary
function of the calcium signal in the activity-dependent regulation of
fiber type composition and to prevent muscle disease.
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INTRODUCTION
Calcium is the principal second messenger regulating skeletal
muscle contraction, growth and differentiation. In excitation-
contraction (EC) coupling, cytoplasmic calcium levels are rapidly
increased in response to action potentials and the magnitude of these
calcium signals regulates the force of contraction. In skeletal
muscle, voltage-gated calcium channels (CaV1.1) and calcium
release channels (type 1 ryanodine receptors, RyR1) are physically
coupled to one another so that voltage-dependent activation of

CaV1.1 can directly activate opening of the RyR1. In mature
muscles, calcium is released from the sarcoplasmic reticulum (SR)
calcium stores, whereas calcium influx is dispensable for skeletal
muscle EC coupling (Melzer et al., 1995). Actually, calcium
currents through the major CaV1.1a splice variant are small and
activate slowly, only at strong membrane depolarizations.

Interestingly, during maturation of mammalian skeletal muscles
activity-dependent calcium influx is actively suppressed by
alternative splicing of CaV1.1. In fetal muscles, exclusion of exon
29 produces a CaV1.1e channel variant that conducts sizable L-type
calcium currents and activates in parallel to SR calcium release at
physiological voltages (Tuluc et al., 2009). However, after birth, the
developmental CaV1.1e splice variant is almost completely replaced
by the adult, poorly conducting CaV1.1a splice variant that includes
exon 29 (Flucher and Tuluc, 2011; Tang et al., 2012). Why calcium
influx is present in developing muscle but is then curtailed in mature
skeletal muscles is not known. Conversely, it remains to be
determined whether continued expression of the calcium-
conducting CaV1.1e splice variant alters contractile properties of
mature skeletal muscles.

In addition to their primary role in EC coupling, activity-induced
calcium signals in skeletal muscle are important for maintaining
calcium homeostasis and for the regulation of muscle growth and
differentiation. For example, calcium signals regulate the
transcription of genes involved in the adaptive response to
exercise (Bassel-Duby and Olson, 2006). Therefore, the tight
control of calcium influx by alternative splicing of the CaV1.1
channel is probably important for tuning muscle function to varying
activity levels. Conversely, calcium influx through CaV1.1e
channels in mature muscles might be harmful. Abnormal
expression of the embryonic, calcium-conducting CaV1.1e splice
variant in myotonic dystrophy type 1 (DM1) patients correlates with
their degree of muscle weakness (Tang et al., 2012). Moreover,
aberrant splicing of calcium channels and transporters in cultured
myotubes from DM1 patients leads to altered intracellular calcium
signaling (Santoro et al., 2014), and experimentally induced
skipping of exon 29 aggravated the disease phenotype in muscles
of a myotonia mouse model (Tang et al., 2012).

To identify the physiological importance of curtailing calcium
influx through CaV1.1 channels in adult skeletal muscle and to
reveal a possible involvement of aberrant calcium signaling in
DM1, we generated a genetic mouse model in which exon 29 has
been permanently deleted. As expected, skeletal muscles of
CaV1.1

ΔE29/ΔE29 knockout mice experienced increased calcium
influx during EC coupling and at rest. In addition, their contractile
properties were altered, calcium-activated downstream regulators
were upregulated, and the fiber type composition was shifted
towards slower fiber types. However, mitochondrial content and
oxidative enzyme activity were reduced. Together, these findingsReceived 11 August 2015; Accepted 29 February 2016
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indicate that chronically increased calcium influx through the
developmental CaV1.1e isoform has little effect on EC coupling, but
disturbs the normal regulation of muscle fiber type composition.
Furthermore, the increased calcium influx causes mitochondrial
damage and may thus contribute to muscle wasting in DM1.
Conversely, these results suggest that, during normal development,
limiting L-type calcium currents is important to enable the proper
specification of fiber type composition and to protect the muscles
from calcium-induced damage.

RESULTS
Selective deletion of CaV1.1 exon 29 prevents the
developmental switch from the CaV1.1e to the CaV1.1a
isoform
In order to study the importance of the isoform switch from the
calcium-conducting developmental CaV1.1e splice variant to the
poorly conducting adult CaV1.1a splice variant we generated a
mouse model with a constitutive knockout of exon 29 of the CaV1.1
(Cacna1s) gene (Fig. 1A). We reasoned that because the short
transcript CaV1.1e is predominant during fetal development,
CaV1.1

ΔE29 mice would develop normally up to birth, but that the
aberrant continuing expression of the high-conductance
developmental calcium channel splice variant throughout
postnatal development and adult life would reveal any influence
of the extra calcium influx on EC coupling and/or other calcium-
mediated signaling processes regulating muscle growth and
differentiation. Furthermore, the CaV1.1

ΔE29 mouse will expose
whether aberrant splicing of CaV1.1 is itself sufficient to cause a
disease phenotype reminiscent of DM1.
Heterozygous CaV1.1

+/ΔE29 and homozygous CaV1.1
ΔE29/ΔE29

mice were viable, they developed normally, and home cage activity
ofCaV1.1

ΔE29micewas not significantly different from that of wild-
type siblings (Fig. 1B, Fig. S1A). Expression of the two CaV1.1
transcripts at different developmental stages was analyzed in the
predominantly slow/oxidative soleus muscle, the predominantly
fast/glycolytic extensor digitorum longus (EDL) muscle, and the
mixed diaphragm muscle. Quantitative RT-PCR demonstrated that
wild-type fetal muscles express moderate levels of both splice
variants, with a higher proportion of the splice variant lacking exon
29 (CaV1.1e) (Fig. 1C). After birth, wild-type muscles experienced
a strong upregulation of the CaV1.1a transcript, whereas expression
of the CaV1.1e transcript declined to less than 3% in 16-week-old
mice. In muscles of ageing mice (15-18 months), total CaV1.1
transcript levels declined but the overall predominance of the
CaV1.1a variant was maintained. As expected, in homozygous
CaV1.1

ΔE29/ΔE29mice the CaV1.1e transcript was found exclusively.
At all developmental stages its expression levels resembled those of
total CaV1.1 transcripts in wild-type mice. Western blot analysis
confirmed normal expression levels of total CaV1.1 protein in soleus
(Fig. 1D). However, in EDL muscle total CaV1.1 protein was
reduced. This might, at least in part, reflect a reduced content of triad
junctions due to the fiber type shift observed in CaV1.1

ΔE29muscles
(see below).

Aberrant expression of the developmental CaV1.1e isoform
inmaturemuscles is not sufficient to cause severemyotonic
dystrophy symptoms in mice
Because aberrant expression of CaV1.1e in adults has been linked to
the DM1 phenotype in mouse and human (Santoro et al., 2014;
Tang et al., 2012), we subjected CaV1.1

ΔE29mice at 2 and 8 months
of age to a range of behavioral tests to examine different aspects of
muscle performance (Fig. 2). A wire hang test was used to assess

muscle strength. Endurance was tested by making the mice run on a
treadmill at accelerating speed until exhaustion. Overall motor
performance was examined with the Rotarod test. In none of these
tests was a significant difference in the performance of wild-type,
heterozygous CaV1.1

+/ΔE29 and homozygous CaV1.1
ΔE29/ΔE29 mice

observed. However, directly measuring grip strength revealed that
the grip force of the front paws was significantly reduced in
homozygous CaV1.1

ΔE29/ΔE29 mice (Fig. 2D). Finally, voluntary
running of the mice in a running wheel was recorded over the period
of 7 days. Both the distance run and the duration the mice spent
running per day were significantly reduced in homozygous
CaV1.1

ΔE29/ΔE29 mice compared with wild-type controls (Fig. 2E).
These behavioral and functional analyses indicate that aberrant
expression of CaV1.1e alters muscle performance without causing
severe motor deficits as assessed in tests that revealed the disease
phenotype in other DMmouse models (Gomes-Pereira et al., 2011).
Also, histological staining of muscle sections did not reveal an
increase in centrally located nuclei in CaV1.1

ΔE29/ΔE29 muscles
(Fig. S1B).

Aberrant expression of the developmental CaV1.1e isoform
in mature muscles alters the contractile properties of
isolated slow and fast muscles
Because the reduced grip force and voluntary running indicated
altered muscle performance, we next determined the contractile
properties directly in isolated mouse muscles. The contractile force
of soleus and EDL muscles was recorded in response to a single
electrical stimulus (twitch) and in response to high-frequency trains
of stimuli (tetanus) (Fig. 3A). Both were significantly reduced in
both muscles types of CaV1.1

ΔE29/ΔE29 mice (Fig. 3B, Table 1). The
relative decline of muscle force during a continuous series of
repetitive tetanic stimulations is a measure of the fatigability of the
muscle (Fig. 3C). Slow soleus muscles are more fatigue resistant
than fast EDL muscles. In CaV1.1

ΔE29/ΔE29 mice, both muscle types
display significantly reduced fatigue compared with wild-type
controls (Fig. 3D, Table 1). Finally the tetanic fusion frequency was
assessed by recording tetanic force during a series of stimulus trains
of increasing frequency (Fig. 3E). CaV1.1

ΔE29/ΔE29muscles reached
the half-maximal value and the plateau of contractile force at lower
frequencies than control muscles. This is reflected by a left shift of
the force frequency curve (Fig. 3F) and a reduction of the frequency
of the half-maximal tetanic force (Fig. 3G) in both soleus and EDL
muscles. Together, these tests on isolated muscles demonstrate that
expression of CaV1.1e in adult CaV1.1

ΔE29/ΔE29 mice significantly
reduces the contractile force, increases the fatigue resistance, and
lowers the tetanic fusion frequency of slow and fast muscles.

Aberrant expression of the developmental CaV1.1e isoform
inmaturemuscles alters calcium signals during EC coupling
and in resting muscle fibers
To clarify the cellular mechanisms underlying the altered muscle
properties of CaV1.1

ΔE29/ΔE29 mice we analyzed calcium currents
and cytoplasmic calcium signals directly in isolated flexor digitorum
brevis (FDB) muscle fibers using several experimental paradigms.
First, combined patch-clamp and cytoplasmic calcium recording
was performed in FDB fibers loaded with the fluorescent calcium
indicator Rhod-2. In line with the current properties of the CaV1.1e
splice variant previously determined in reconstituted dysgenic
myotubes (Tuluc et al., 2009), CaV1.1

ΔE29/ΔE29 FDB fibers
displayed sizable calcium currents starting at test potentials of
−30 mV (Fig. 4A). Under the same conditions (1.8 mM
extracellular calcium, 100 ms test pulses), control FDB fibers did
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Fig. 1. Characterization of the
CaV1.1

ΔE29 mouse. (A) Targeting
strategy for generating the CaV1.1 exon
29 knockout allele. (B) Voluntary home
cage activity at 2 and 8 months of age is
similar inCaV1.1

ΔE29/ΔE29mice compared
with wild-type and CaV1.1

+/ΔE29 siblings
(N=5). (C) Expression levels of CaV1.1a
and CaV1.1e mRNAs in wild-type,
CaV1.1

+/ΔE29 and CaV1.1
ΔE29/ΔE29 mice

were measured by quantitative RT-PCR
(TaqMan) in soleus, EDL and diaphragm
muscle at different developmental stages
(N=3). Numbers beneath show the
fractional content of the two CaV1.1
transcripts. (D) Western blot analysis of
total CaV1.1 protein (both splice variants)
in soleus and EDL muscle of wild-type
and CaV1.1

ΔE29 mice (N=3;
***P<0.001). Mean±s.e.m. See also
Fig. S1.
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not display measurable currents at any test potential. In order to
compare voltage sensitivity between the two genotypes, recordings
in control fibers were repeated using 5 mMextracellular calcium and
500 ms test pulses. The current-voltage and current-conductance
curves indicate that in CaV1.1

ΔE29/ΔE29 fibers half-maximal current
activation is shifted by 38.5±3.1 mV in the hyperpolarizing
direction (Fig. 4B). Accordingly, the simultaneously recorded
calcium transients in CaV1.1

ΔE29/ΔE29 fibers showed a pronounced
voltage-dependent component that peaked at −20 mV and declined
in parallel with the current density at positive potentials (Fig. 4C).
From the calcium transients the total calcium flux (influx and SR

release) during the depolarizing pulses was calculated (Fig. 4A
lower trace, Fig. S2). These calcium flux traces characteristically
showed an early peak followed by a steady-state plateau phase
(Szentesi et al., 1997). In control muscle, the voltage dependence of
both the peak and plateau calcium fluxes displayed a monotonic
increase, which could be fitted with a two-state Boltzmann function.
This is consistent with a model of skeletal muscle EC coupling in
which both parameters of the calcium flux (peak and plateau)
represent a single process, i.e. calcium release from the SR. In
CaV1.1

ΔE29/ΔE29 muscle fibers, the peak calcium flux behaved like
that in controls, whereas the voltage dependence of the plateau flux
was non-monotonous. At intermediate voltages the plateau flux was
significantly larger than that of controls. Thus, the additional
component in CaV1.1

ΔE29/ΔE29 muscles compared with controls
corresponds to voltage-dependent calcium influx, which peaks at
−20 mV where most CaV1.1e channels are activated and then

decreases in parallel with the declining driving force at positive
membrane potentials. Together, these analyses clearly demonstrate
that, during EC coupling, muscle fibers of CaV1.1

ΔE29/ΔE29 mice
experience increased calcium signals due to a substantial
component of calcium influx that is not observed in muscle fibers
of wild-type mice.

In addition to its immediate role in EC coupling, this extra
calcium influx in CaV1.1

ΔE29/ΔE29 mice might alter the calcium
homeostasis in muscle cells. Analysis of cytoplasmic calcium
concentrations in Fura-2-loaded isolated FDB fibers revealed no
difference in resting calcium levels of CaV1.1

ΔE29/ΔE29 mice
compared with wild-type controls (45.77±0.96 nM and 46.14±
1.14 nM, respectively; P>0.5). Next, we examined a possible
contribution of L-type calcium currents to refilling of SR calcium
stores. Both SR depletion and refilling resulted in a robust
cytoplasmic calcium transient (Fig. 4D), the relative magnitude of
which was expressed as the external to SR calcium transient ratio. In
wild-type muscle fibers this ratio was not affected by the application
of the L-type calcium channel blocker nisoldipine. However, in
CaV1.1

ΔE29/ΔE29 muscle fibers 5 µM nisoldipine dramatically
reduced the ratio, indicating that in CaV1.1e-expressing muscle
SR refilling is predominantly carried out by calcium influx through
L-type channels (i.e. CaV1.1e).

Finally, the spontaneous occurrence of focal calcium transients –
so called calcium sparklets – in resting muscle fibers was
investigated. Because similar local calcium release events are
exclusive to muscle cells expressing calcium-conducting CaV

Fig. 2. CaV1.1
ΔE29 mice show normal motor performance but reduced muscle strength. (A-C) Strength, endurance and motor skills were examined in

wild-type, CaV1.1
+/ΔE29 and CaV1.1

ΔE29/ΔE29 mice using the wire hang test (A), treadmill running to exhaustion (B) and the Rotarod test (C). At 2 and 8 months of
age, the performance of CaV1.1

ΔE29 mice did not differ from that of the other genotypes (N=5-8; P>0.05). (D) Direct measurement of front paw strength
revealed reduced grip force (both in absolute value and force normalized to body weight) in 6-month-old CaV1.1

ΔE29/ΔE29 mice compared with wild-type siblings
(N=5-8; *P<0.05). (E) Analysis of voluntary wheel running over a period of 7 days showed that the running distance and duration per day were decreased in
CaV1.1

ΔE29/ΔE29 mice compared with the wild type (N=8; ***P<0.001). Mean±s.e.m.
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channels (e.g. CaV1.2 in cardiac myocytes), we hypothesized that
aberrant expression of CaV1.1e might also bring about calcium
sparklets in mature muscle fibers of CaV1.1

ΔE29/ΔE29 mice. Indeed,
isolated FDB fibers from CaV1.1

ΔE29/ΔE29 mice loaded with Fluo-8
AM displayed spontaneous calcium sparklet-like behavior
(Fig. 4E). The average amplitude of these calcium sparklets was

0.140±0.001 [ΔF/F]. The average amplitude, full width and half
maxima of these calcium sparklets resembled those described by
Rodríguez et al. (2014). In 5 mM extracellular calcium, these
calcium sparklets occurred at a frequency of 0.724
±0.211 10−3 s−1 mm−1. When the extracellular calcium
concentration was reduced to 1.8 mM, or when L-type calcium

Fig. 3. Contractile properties of isolated slowand fast skeletalmuscles are altered inCaV1.1
ΔE29/ΔE29mice. (A) Representative recordings of twitch and tetanic

contractions in isolated soleus andEDLmuscles of 3- to 6-month-oldwild-type (black;N=5) andCaV1.1
ΔE29/ΔE29 (red;N=15)mice. Muscle twitcheswere elicited bya

single 2 ms supramaximal electrical pulse (top), tetani by stimulation trains at 100 Hz for 500 ms in soleus (lower left) or at 200 Hz for 200 ms in EDL (lower right).
(B) Maximal twitch and tetanic forces are significantly reduced inCaV1.1

ΔE29/ΔE29 comparedwith control muscles (controlN=5,CaV1.1
ΔE29/ΔE29 N=15). (C) Decline of

maximal force during 150 repetitive tetani in soleus (upper) and EDL (lower) muscles of wild-type (black) and CaV1.1
ΔE29/ΔE29 (red) mice (stimulation as in A,

repeated at 0.5 Hz; normalized to the first tetanus; control N=5, CaV1.1
ΔE29/ΔE29 N=15). (D) Relative reduction of force at the 100th and 150th tetanus was

significantly lower in CaV1.1
ΔE29/ΔE29 than in wild-type muscles. (E) Representative force transients of isolated EDL muscle stimulated with increasing frequencies

(10 to 85 Hz, with 0.5 Hz increment) from wild-type (black) and CaV1.1
ΔE29/ΔE29 (red) mice. Note that 50% of maximal force (dashed line) is reached at 40 Hz

(seventh transient) in wild-type and at 30 Hz (fifth transient) in CaV1.1
ΔE29/ΔE29 muscles. (F) Relative force-frequency curves are left shifted in soleus (left) and EDL

(right) muscles ofCaV1.1
ΔE29/ΔE29 (red) compared with wild-type (black) mice. (G) The frequency required for producing half-maximal forcewas significantly lower in

soleus and EDL muscles of CaV1.1
ΔE29/ΔE29 compared with wild type (control N=7, CaV1.1

ΔE29/ΔE29 N=12). *P<0.05, **P<0.01, ***P<0.001. Mean±s.e.m.
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channels were blocked with 10 µM nisoldipine, the calcium
sparklets were completely abolished, indicating their dependence
on calcium influx through CaV1.1e. In wild-type control muscle
fibers no such calcium release events were observed in normal or
high extracellular calcium concentrations. Together, these findings
demonstrate that calcium influx through the CaV1.1e splice variant
not only alters calcium handling during EC coupling and during
refilling of SR calcium stores, but also causes spontaneous calcium
signals in resting intact muscle fibers.

Muscles of CaV1.1e-expressing mice display an altered fiber
type composition and oxidative metabolism
In skeletal muscle, calcium signals also regulate activity-dependent
control of muscle growth and fiber type specification. Moreover, the
observed changes in contractile properties – decreased force,
increased fatigue resistance and lower tetanic fusion frequency –
are all reminiscent of the differences between fast and slow muscle
types. Therefore, we hypothesized that the altered calcium signaling
in CaV1.1

ΔE29/ΔE29 mice might affect contractile properties
indirectly by a dysregulation of fiber type specification.
To analyze the fiber type composition of slow and fast muscles in

wild-type and CaV1.1
ΔE29/ΔE29mice, we immunostained sections of

soleus and EDL muscle with antibodies against specific myosin
heavy chain isoforms. The representative images in Fig. 5A,D
demonstrate a substantial shift towards slower fiber types in both
soleus and EDL muscles of CaV1.1

ΔE29/ΔE29 mice. Soleus muscles
of CaV1.1

ΔE29/ΔE29 mice experienced a 48% increase in the fraction
of type I fibers, mainly at the cost of type IIA and mixed fibers
(Fig. 5A-C). In EDL muscle of CaV1.1

ΔE29/ΔE29mice the fraction of
type IIB fibers was reduced by 26%, whereas the fractions of IIA,
IIX and mixed fibers increased 2- to 3-fold (Fig. 5D-F). Type I
fibers were not detected in CaV1.1

ΔE29/ΔE29 EDL muscles. These
findings indicate that expression of the calcium-conducting CaV1.1e
splice variant in skeletal muscles of adult CaV1.1

ΔE29/ΔE29 mice
causes a substantial shift in fiber type composition towards slower
fiber types.

Aberrant expression of CaV1.1e in mature skeletal muscle
causes mitochondrial damage
A slower fiber type composition is expected to be accompanied by
an increase in oxidative metabolism. Indeed, staining of succinate
dehydrogenase (SDH) in soleus and EDL muscles of 7-week-old
CaV1.1

ΔE29/ΔE29 mice revealed a marked increase in SDH activity
compared with wild-type controls (Fig. 6A). In soleus, a loss of
fibers with lower SDH activity was evident, probably reflecting the
increase in type I fibers relative to type IIA fibers. In EDL, an
increase in high SDH activity fibers occurred, consistent with the
increased fraction of oxidative IIA fibers relative to glycolytic fiber
types (see Fig. 5). Unexpectedly, in 6- and 12-month-old

CaV1.1
ΔE29/ΔE29 mice the SDH activity was significantly reduced

compared with the wild type (Fig. 6B, Fig. S3A). The left shift of
the intensity distribution diagrams was more pronounced in soleus,
but it was still significant in EDL. It equally affected fibers with low
and high SDH activity. Together, these results show that the initial
increase of oxidative metabolism in young CaV1.1

ΔE29/ΔE29 mice is
lost and even reversed at 6 months and older.

Because decreased SDH activity could arise from either a
reduction in mitochondrial activity or content, we analyzed
mitochondria in electron microscopy preparations. Consistent with
the overall healthy state and normal motor performance of the
CaV1.1

ΔE29/ΔE29 mice, electron microscopy did not reveal any
defects in the myofibrils and EC coupling membranes (Fig. 6C).
However, the mitochondria were distorted in CaV1.1

ΔE29/ΔE29

muscles. Morphometric analysis revealed that the mitochondrial
content was significantly reduced in CaV1.1

ΔE29/ΔE29 mice to
approximately half that in wild-type controls (Fig. 6D, Fig. S3B).
This loss of intact mitochondria was paralleled by an increase in the
fraction of damaged mitochondria up to 4.5-fold compared with
wild-type controls, as well as a decrease in the average size of the
healthy mitochondria. These findings explain the significantly
reduced SDH activity observed in CaV1.1

ΔE29/ΔE29 compared with
wild-type muscles of the same age.

Aberrant expression of CaV1.1e changes key activity- and
calcium-dependent regulators of fiber type specification and
mitochondrial biogenesis
If the altered calcium signals in CaV1.1e-expressing muscles impact
the regulation of fiber type specification this might be reflected in the
activity and/or expression levels of major calcium- and activity-
regulated signaling proteins. In skeletal muscle, the calcium-
dependent protein phosphatase calcineurin (protein phosphatase
2B) and the calmodulin-dependent protein kinase II (CaMKII)
decode fiber type-specific activation patterns and function as master
regulators of fast to slow fiber type changes (Chin et al., 1998; Wu
et al., 2001; Chin, 2005). Using a colorimetric phosphatase assay we
show that steady-state calcineurin activity is significantly increased in
CaV1.1

ΔE29/ΔE29 soleus and EDL muscles (Fig. 7A). Western blot
analysis using a phospho-specific antibody demonstrated that the
activated forms of all three CaMKII isoforms were significantly
increased in cytoplasmic fractions of soleus muscle (Fig. 7B),
whereas in EDL muscles no changes in CaMKII activation were
observed. A differential activation of CaMKII in slow versus fast
muscles is consistent with its suggested role in differentially decoding
slow and fast muscle calcium signals (Tavi and Westerblad, 2011).

Interestingly, expression of their respective downstream
transcriptional regulators, NFATC1 and HDAC4, in the
cytoplasm and nuclei of CaV1.1

ΔE29/ΔE29 muscles was not altered
(Fig. 7C,D, Fig. S4A,B). However, expression of peroxisome

Table 1. Contractile properties of soleus and EDL muscles of CaV1.1
ΔE29/ΔE29 and wild-type mice

Property

Soleus EDL

Wild type (N=5) Knockout (N=15) Wild type (N=5) Knockout (N=15)

Twitch force (mN/mm2) 70.3±10.0 50.2±4.8 P<0.05 78.0±7.3 54.2±4.1 P<0.01
Tetanic force (mN/mm2) 492.4±67.4 368.1±22.8 P<0.05 447.6±27.3 289.1±19.3 P<0.001
Fatigue (100th tetanus) % 45.2±2.8 35.3±2.7 P<0.05 52.1±2.3 44.9±2.2 P<0.05
Fatigue (150th tetanus) % 54.2±2.4 42.8±2.8 P<0.05 64.0±2.3 50.4±3.3 P<0.05
Force-frequency (slope, k) 9.20±0.67 6.90±0.45 P<0.01 13.74±0.67 12.90±0.54 P>0.05
Force-frequency (F50, Hz)* 19.74±0.85 11.97±0.44 P<0.001 34.75±1.61 27.09±1.02 P>0.001

Values represent mean±s.e.m.
*Frequency of half-maximal force.
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proliferator-activated receptor γ co-activator 1α (PGC1α;
Ppargc1a), a key downstream regulator of mitochondrial
biogenesis and of oxidative metabolism in muscle (Handschin
et al., 2007; Lin et al., 2002), was significantly increased in soleus
muscle of CaV1.1

ΔE29/ΔE29 mice compared with wild-type controls
(Fig. 7E). In EDL muscle, PGC1α expression was not significantly
altered. Expression of Six1, a key regulator of the fast fiber program
(Grifone et al., 2004; Wu et al., 2013), was not affected.
To further examine potential effects on the expression patterns of

the slow and fast program and on mitochondrial biogenesis,
Affymetrix expression profiling was performed on mRNA

preparations from soleus and EDL muscles of wild-type and
CaV1.1

ΔE29/ΔE29 mice. Although the analysis showed differential
gene expression in soleus versus EDL muscles of both genotypes,
comparison of wild-type versus CaV1.1

ΔE29/ΔE29 soleus and EDL
muscles did not reveal any significant differences (Fig. S4C). Also,
the specific analysis of genes involved in mitochondrial fusion and
fission revealed only small differences between slow and
fast muscles but not between wild-type and CaV1.1

ΔE29/ΔE29 mice.
Thus, the increased calcium influx through CaV1.1e chronically
hyperactivates calcineurin, CaMKII and PGC1α signaling and, over
time, produces the observed changes in fiber type composition

Fig. 4. Altered calcium signaling in isolatedmuscle fibers ofCaV1.1
ΔE29/ΔE29mice. Enzymatically isolated FDB fibers from 3- to 4-month-oldCaV1.1

ΔE29/ΔE29

(red) and wild-type (black) mice were loaded with Rhod-2 (A-C) or Fluo-8 AM (D-G). (A) Representative voltage-clamp recording of calcium currents and parallel
recording of cytoplasmic free calcium during a 100 ms depolarization to−30 mV. Bottom trace is the calculated total calcium flux. (B) Voltage dependence of peak
current densities and conductance display the 38.5±3.1 mV shift of channel activation inCaV1.1

ΔE29/ΔE29 fibers. Note thatCaV1.1
ΔE29/ΔE29 fibers were recorded in

1.8 mM extracellular calcium during 100 ms test pulses and control fibers in 5 mM calcium during 500 ms test pulses to experimentally normalize current
densities. (C) Calcium transient amplitudes display a striking increase in CaV1.1

ΔE29/ΔE29 muscle fibers at intermediate voltages, indicative of the calcium influx
through CaV1.1e. (D) Representative calcium recordings of wild-type and CaV1.1

ΔE29/ΔE29 fibers during an SR calcium release and reloading protocol. Note that
the relativemagnitude of the release and reloading transients is significantly decreased upon nisoldipine block of CaV1 channels inCaV1.1

ΔE29/ΔE29 but not in wild-
type muscle (**P<0.01). (E) Representative confocal images of a resting CaV1.1

ΔE29/ΔE29 FDB fiber in 1.8 mM and 5 mM calcium. Spontaneous calcium release
events occur only in 5 mM calcium and are blocked by addition of 10 µM nisoldipine. (F) Spatiotemporal properties in line-scan images identify the localized
calcium signals as calcium sparklets. (G) The sparklets are sensitive to the extracellular calcium concentration and L-type channel block. n=32 images/N=4
animals (1.8 mM), n=183/N=7 (5 mM) and n=24/N=3 (5 mM+nisoldipine). Mean±s.e.m. See also Fig. S2.
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without, however, a major induction of the slow muscle gene
program at basal activity levels in adult mice.

DISCUSSION
The developmental switch of CaV1.1 splice variants is
important for the correct specification of skeletal muscle
fiber types
Several lines of evidence at the molecular, functional and behavioral
level demonstrate that the continued expression of the
developmental CaV1.1e splice variant in mature muscles of
CaV1.1

ΔE29/ΔE29 mice alters the fiber type composition in the slow
direction: (1) in soleus muscle the fraction of type I fibers increases
at the expense of type IIA fibers, and in EDL muscles type IIA, IIX
and mixed fibers increase at the expense of type IIB fibers; (2) in
isolated soleus and EDL muscles maximal twitch and tetanic forces
are reduced, fatigue resistance is increased, and tetanic fusion of
contractions occurs at lower frequencies; (3) grip force and the
duration of voluntary wheel running are reduced; (4) calcineurin and
CaMKII activity and expression of PGC1α are upregulated.

However, in mature mice the increased slow fiber content and the
increased expression of PGC1α were no longer accompanied by the
expected increase in oxidative enzyme activity, most likely because
the increased calcium influx inCaV1.1

ΔE29/ΔE29muscles also caused
a severe loss of mitochondria.

The fiber type composition of skeletal muscles is primarily a
genetically determined adaptation of muscle properties to their
specific physiological functions. Furthermore, it is subject to
continuous dynamic adaptation to altered demand. The changes in
fiber type composition and contractile properties observed in the
CaV1.1

ΔE29/ΔE29 mice are reminiscent of adaptations occurring in
response to endurance training. The magnitude of the observed shift
in fiber type composition is within the range observed in mice
subjected to stringent endurance training protocols (Allen et al.,
2001; Krüger et al., 2013). However, neither monitoring home cage
activity nor the behavioral tests revealed increased spontaneous
activity. If anything, CaV1.1

ΔE29/ΔE29 mice spent less time
voluntarily running than wild-type controls. Therefore, the
observed changes in fiber type composition cannot be explained

Fig. 5. Changes in fiber type composition andmetabolic properties of soleus and EDLmuscles inCaV1.1
ΔE29/ΔE29mice. (A,D) Representative transverse

sections of soleus and EDL muscles from 5- to 6-month-old wild-type and CaV1.1
ΔE29/ΔE29 mice immunostained with fiber type-specific myosin heavy chain

antibodies. Scale bar: 100 µm. Note the increase of type I fibers and decrease of type IIA fibers inCaV1.1
ΔE29/ΔE29 soleus (A), and the increase of IIA and IIX fibers

in parallel with the decrease of IIB fibers in CaV1.1
ΔE29/ΔE29 EDL (D). (B,E) The fractional redistribution of fiber types in CaV1.1

ΔE29/ΔE29 soleus and EDL muscles.
(C,F) The relative magnitude and statistical significance of the changes in individual fiber types. N=3; *P<0.05, **P<0.01. Mean±s.e.m.
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Fig. 6. Mitochondrial content and enzyme activity are reduced in CaV1.1
ΔE29/ΔE29 muscles. (A,B) SDH activity was analyzed in sections of wild-type (black)

and CaV1.1
ΔE29/ΔE29 (red) mice. Staining intensity was measured in each fiber profile and plotted in intensity distribution diagrams. (A) In 7-week-old mice,

SDH activity is markedly increased in CaV1.1
ΔE29/ΔE29 soleus and EDL muscles, as seen by the right-shifted intensity distribution histogram. (B) In 6-month-old

mice, SDH activity is significantly reduced in CaV1.1
ΔE29/ΔE29 soleus muscle and in EDL muscles. In EDL also the full width at half maximum (FWHM) was

reduced. N=3. (C) Electron micrographs of 4- and 5-month-old wild-type and CaV1.1
ΔE29/ΔE29 soleus and EDL muscles. Whereas myofibrils and EC coupling

membranes appear normal, dilated and lysed mitochondria are found in CaV1.1
ΔE29/ΔE29 muscles. (D) Morphometric analysis demonstrates significantly

decreased fractional content (percentage area occupied by intact mitochondria) in both CaV1.1
ΔE29/ΔE29 muscle types. Mitochondrial size is decreased in

CaV1.1
ΔE29/ΔE29muscles and the fraction of damagedmitochondria increased inCaV1.1

ΔE29/ΔE29 soleusmuscles.N=30-40 images of two biological replicates per
condition. *P<0.05, **P<0.01, ***P<0.001. Mean±s.e.m. See also Fig. S3. Scale bars: 100 µm in A,B; 0.5 µm in C.
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as a normal adaptive response to altered activity, but represent a
dysregulation of fiber type composition owing to the absence of
postnatal inclusion of CaV1.1 exon 29 in CaV1.1

ΔE29/ΔE29 mice.
Since CaV1.1 is almost exclusively expressed in skeletal muscle and
the functional effects (e.g. reduced force, increased fatigue
resistance) were observed in isolated muscles, muscle-intrinsic
mechanisms are likely to be responsible for the altered muscle fiber
type composition in CaV1.1

ΔE29/ΔE29 mice.

Expression of CaV1.1e alters skeletal muscle calcium
signaling and activates the pathways for the slow twitch
fiber program
Calcium is the principal second messenger regulating adaptive
changes of muscle properties in response to training or
experimentally altered innervation patterns (Bassel-Duby and

Olson, 2006; Chin et al., 1998; Liu et al., 2005). As the primary
defects in the CaV1.1

ΔE29/ΔE29 mice are altered gating and
conduction properties of the skeletal muscle L-type calcium
channel expressed in adult mice, a role of increased calcium
influx in determining the fiber type composition is very likely. In
cultured dysgenic myotubes reconstituted with either of two CaV1.1
splice variants, we previously reported that exclusion of exon 29
caused a 30 mV left-shifted voltage dependence of current
activation and an 8-fold increase in current density (Tuluc et al.,
2009). Here, we demonstrate that also in isolated muscle fibers of
CaV1.1

ΔE29/ΔE29mice, sole expression of the CaV1.1e splice variant
causes an equally large left shift of voltage sensitivity and a
substantially increased calcium influx during EC coupling.
Interestingly, the calcium influx on top of the calcium released
from the SR was not reflected in a parallel increase in contractile

Fig. 7. Altered expression of regulators of fiber type specification and mitochondrial biogenesis in slow and fast muscles of CaV1.1
ΔE29/ΔE29 mice.

(A) Basal enzymatic activity of calcineurin is significantly increased inCaV1.1
ΔE29/ΔE29 soleus and EDLmuscles (red) compared with wild type (black). (B)Western

blot analysis shows a significant increase of activated CaMKII β, γ and δ isoforms (phosphorylated at Thr286) in soleus but not EDL muscle of CaV1.1
ΔE29/ΔE29.

(C,D) Cytoplasmic and nuclear localization of NFATC1 and HDAC4 does not differ between the genotypes (age of mice 6-8 months). Controls for the cytoplasm
and nuclear fraction are GAPDH and histoneH3, respectively.N=3. (E) QuantitativeRT-PCR analysis demonstrates that expression ofPGC1α (Ppargc1a) mRNA
is significantly increased inCaV1.1

ΔE29/ΔE29 soleus muscles, whereas the decline ofPGC1α in EDL and ofSix1 expression in both muscles is not significant.N=3.
*P<0.05, ***P<0.001. Mean±s.e.m. (F) Model of signaling pathways causing fiber type shift and mitochondrial damage in CaV1.1

ΔE29/ΔE29 muscles. During EC
coupling, increased calcium influx through CaV1.1e activates calcineurin (CN), CaMKII and PGC1α, the primary regulators of fiber type specification and
mitochondrial biogenesis. The shift in fiber type composition in the slow direction offsets the direct effects of increased calcium signals on EC coupling. Parallel
upregulation of oxidative metabolism by PGC1α is counteracted by mitochondrial damage caused by calcium overload due to increased activity-dependent and
spontaneous calcium influx and altered calcium homeostasis. See also Fig. S4.
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strength. This indicates that, with respect to muscle contraction, the
effects of increased calcium influx are counteracted by other
consequences of the altered calcium signaling in CaV1.1

ΔE29/ΔE29

mice. In fact, the observed fiber type shift to slower, and thus
weaker, fiber types could be part of a compensatory response of the
muscle cell to an increased calcium load during EC coupling. The
effects of continued expression of the calcium-conducting CaV1.1e
splice variant on fatigability and fiber type composition are
consistent with recently published results obtained in a CaV1.1
mutant (Lee et al., 2015). A knock-in mouse with a mutation in the
CaV1.1 pore that abolished calcium binding and conduction showed
increased fatigability and type IIB fiber content. Together, the two
studies demonstrate that fiber type specification in skeletal muscle is
highly sensitive to the magnitude of L-type calcium currents. The
loss of calcium influx through CaV1.1 shifts the muscles towards a
faster phenotype, whereas an increase of calcium currents causes a
shift towards a slower phenotype.
In addition to altered calcium transients during EC coupling, a

nisoldipine-sensitive component of calcium influx was observed in
a store-refilling protocol, indicating that the extra calcium influx
through the developmental CaV1.1e splice variant also contributes
to mechanisms of calcium homeostasis. Functionally, increased
store filling probably contributes to the increased fatigue resistance
observed in muscles of CaV1.1

ΔE29/ΔE29mice. Consistent with this
notion, the opposite effects – decreased store filling and decreased
fatigue resistance –were observed in the calcium permeation mutant
mouse (Lee et al., 2015).
Furthermore, at rest muscle fibers of CaV1.1

ΔE29/ΔE29 mice
generated focal calcium transients – so called calcium sparklets.
Although calcium sparks are common in cardiac muscle cells, in
developing skeletalmuscle fibers and in culturedmyotubes, they have
never before been observed in mature muscle fibers of healthy mice
(Cheng and Lederer, 2008; Weisleder and Ma, 2006). The calcium
sparklets observed in CaV1.1

ΔE29/ΔE29 mice were dependent on the
extracellular calcium concentration and were sensitive to the L-type
channel blocker nisoldipine. Thus, there can be little doubt that
calcium influx through CaV1.1e channels contributed directly or
indirectly to this phenomenon.As calcium sparks in cardiacmyocytes
can be activated by the opening of even a single CaV1.2 channel
(Lopez-Lopez et al., 1995), it is conceivable that in skeletal muscles
spontaneous openings of CaV1.1e channels trigger the opening of
RyR1 and thus activate calcium sparklets by calcium-induced
calcium release. In wild-type mice this is limited to developing
myotubes, which naturally express the CaV1.1e splice variant. In
CaV1.1

ΔE29/ΔE29mice these spontaneous calcium signals occur also in
differentiated muscles, where they might affect signaling pathways
regulating fiber type composition and cause mitochondrial damage.
Downstream of calcium, it is calcineurin and CaMKII that are the

key regulators of fast to slow twitch fiber type changes (Chin et al.,
1998). Calcineurin regulates transcription of muscle genes via the
classical NFAT pathway, CaMKII via HDAC4. Both converge on
MEF2, but have also been reported to activate PGC1α (Tavi and
Westerblad, 2011). A key feature of these parallel signaling
pathways is their ability to distinguish between calcium signals in
response to chronic, repetitive (slow fiber type) activation patterns
and those in response to phasic (fast fiber type) activation patterns
(Liu et al., 2005; Tavi and Westerblad, 2011). Apparently,
expression of a calcium-conducting CaV1.1e splice variant in
adult muscles tips the balance of this delicate calcium sensing
mechanism and leads to constitutive activation of the signaling
pathway for the slow muscle program (Fig. 7F). Consistent with this
notion, we observed that calcineurin and CaMKII activity, as well as

expression of PGC1α, were constitutively upregulated in skeletal
muscles of CaV1.1

ΔE29/ΔE29 mice, and that activation of CaMKII
and PGC1α was specific to slow muscles. In accordance with this,
altered CaMKII signaling was also observed in the calcium
permeation CaV1.1 mutant (Lee et al., 2015).

Thus, in CaV1.1
ΔE29/ΔE29 mice the continuous expression of

CaV1.1e causes increased calcium influx during EC coupling, in
homeostatic calcium regulation, and at rest. Which of these calcium
influx events contribute to the activation of the slowmuscle pathway
remains to be determined. Because calcineurin and CaMKII
signaling is highly sensitive to the calcium signaling patterns in
response to slow fiber type-specific activity, we favor a role of
altered calcium signal during EC coupling. In any case, if aberrant
activation of these signaling pathways causes an increase in slow
fibers in CaV1.1

ΔE29/ΔE29 mice, during normal development the
alternative splicing event causing the shift from a calcium-
conducting to a non-conducting CaV1.1 variant might be an
important prerequisite for the proper regulation of fiber type
composition at basal activity levels as well as in response to exercise.

The contribution of aberrant CaV1.1 splicing to myotonic
dystrophy
Splicing defects of important muscle proteins, including the
CLCN1 chloride channel, insulin receptor, SERCA1 (ATP2A1)
and CaV1.1, lead to DM1 (Thornton, 2014). The myotonia is likely
to be caused by a hyperexcitability of muscles due to the loss of
CLCN1 function (Lueck et al., 2007). Because aberrant expression
of the CaV1.1e splice variant correlates with the degree of muscle
weakness in DM1 patients, and forced missplicing of CaV1.1 exon
29 caused centrally localized nuclei in a myotonia mouse model, it
has been suggested that increased calcium influx through the
developmental CaV1.1e splice variant may contribute to the
myopathy (Santoro et al., 2014; Tang et al., 2012). This
hypothesis is in line with the known role of increased calcium
influx via various entry pathways in muscular dystrophy (Allen
et al., 2010; Whitehead et al., 2006). Here, we examined whether
aberrant missplicing of CaV1.1 exon 29 by itself is sufficient to
cause DM-like symptoms. At the organismal level this was not the
case. Homozygous CaV1.1

ΔE29/ΔE29 mice, which exclusively
express the developmental CaV1.1e splice variant, did not show
severe muscle weakness, and their muscle sections did not reveal
centrally located nuclei, which is a histopathological hallmark of
dystrophic muscle. Although the contractile force of isolated
muscles was reduced, this was accompanied by increased fatigue
resistance and might therefore be the consequence of the fiber type
shift rather than a symptom of DM1.

We observed decreased SDH activity and severe mitochondrial
damage in muscles of mature and aged CaV1.1

ΔE29/ΔE29 mice.
Similar mitochondrial damage has been described in other mouse
muscle disease models with aberrant calcium signaling (Irwin et al.,
2003). Calcium overload leads to mitochondrial damage and
ultimately produces the symptomatic central cores in the diseased
muscles (Boncompagni et al., 2009; Brookes et al., 2004). Similarly,
the CaV1.1e-mediated spontaneous calcium sparklets, or the
increased calcium influx after store depletion, might overburden
the mitochondrial calcium handling capacity and cause their loss in
CaV1.1

ΔE29/ΔE29 muscles. In fact, both calcium sparks and store-
operated calcium currents have previously been implicated in the
pathophysiology of muscular dystrophy (Goonasekera et al., 2014;
Weisleder andMa, 2006). Thus, themitochondrial damage observed
in CaV1.1

ΔE29/ΔE29 mice might precede the appearance of
histopathological and clinical features of DM1.
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We conclude that, by itself, missplicing of exon 29 in CaV1.1 is
not sufficient to reproduce the full spectrum of DM1 symptoms in
mice. As the disease phenotype in dystrophy and myotonia mouse
models is often less severe than in human disease, this does not
preclude the possibility that missplicing of CaV1.1 makes a notable
contribution to the disease in DM1 patients. Furthermore, it is likely
that in combination with the splicing defects in other muscle genes
involved in calcium handling (Serca1) and excitability (Clcn1), the
mitochondrial damage observed in the CaV1.1

ΔE29/ΔE29 mice might
be aggravated, and thus contribute to the myopathy (Tang et al.,
2012). If so, the use of clinically approved L-type calcium channel
blockers to target CaV1.1e currents might be a viable strategy to
alleviate the symptoms of DM1 (Benedetti et al., 2015).
In conclusion, the effects of CaV1.1 missplicing in the

CaV1.1
ΔE29/ΔE29 mice revealed a novel role of increased L-type

calcium currents in the dysregulation of muscle fiber type
composition. With regard to normal muscle physiology these
findings suggest that, during development, skeletal muscles actively
suppress L-type calcium currents by alternative splicing of CaV1.1,
so as to prevent unrestrained calcium influx during EC coupling
from interfering with the second calcium signaling function in
regulating muscle fiber type composition. Furthermore, aberrant
expression of the developmental CaV1.1e splice variant in mature
muscles causes mitochondrial damage, which might contribute to
the pathology of DM1.

MATERIALS AND METHODS
Mice and animal care
CaV1.1

ΔE29 mice were generated in a C57BL/6N background at Taconic
Artemis (Cologne, Germany). All experimental protocols conformed to
guidelines of the European Community (86/609/EEC) and were approved
by the AustrianMinistry of Science (BMWF-66.011/0069-II/10b/2010) and
by the Institutional Animal Care Committee of the University of Debrecen
(22/2011/DE MAB). Genotyping is described in the supplementary
Materials and Methods.

Quantitative RT-PCR
RNAwas isolated frommuscles of wild-type andCaV1.1

ΔE29mice using the
RNeasy Fibrous Tissue Mini Kit (Qiagen). After reverse transcription
(SuperScript II reverse transcriptase, Invitrogen) the absolute number of
transcripts was assessed by quantitative TaqMan PCR (50 cycles). For
primer sequences and experimental details, see the supplementary Materials
and Methods and Table S1.

Microarray
Affymetrix GeneChip analysis of mRNA expression in soleus and EDL
muscles of wild-type and CaV1.1

ΔE29/ΔE29 mice was performed as detailed
in the supplementary Materials and Methods.

Behavioral experiments
The following tests were performed on 2- and 8-month-old wild-type,
heterozygous CaV1.1

+/ΔE29 and homozygous CaV1.1
ΔE29/ΔE29 mice: home

cage activity, voluntary running, Rotarod test, wire hang test, grip force
measurements. For details, see the supplementary Materials and Methods.

Force measurements
Contractile force of isolated EDL and soleus muscles of 3- to 6-month-old
mice in response to twitch and tetanic stimulations were recorded with a
capacitative mechanoelectric force transducer as described in the
supplementary Materials and Methods.

Single fiber measurements
Single fibers were isolated from FDB muscles and used for voltage-clamp
recordings of calcium currents with an Axoclamp 2B amplifier (Axon
Instruments), and cytoplasmic calcium signals were recorded using

fluorescent calcium indicators and imaging with a Zeiss 5 Live confocal
microscope (20× objective). Further experimental details and data analysis
are described in the supplementary Materials and Methods.

Immunohistochemistry and SDH activity assay
Cryosections of EDL and soleus muscles from 6-month-old wild-type and
CaV1.1

ΔE29/ΔE29 mice were immunostained with antibodies against specific
myosin heavy chain isoforms (Developmental Studies Hybridoma Bank,
University of Iowa, Iowa, USA). Histochemical staining of SDH activity was
performedwith succinic acid andnitroblue tetrazolium for 1 h.For information
on the antibodies used and further details of experimental and quantification
procedures, see the supplementary Materials and Methods and Table S2.

Western blot and calcineurin assay
Cytoplasmic and nuclear protein fractions were prepared from 6-month-old
wild-type and CaV1.1

ΔE29/ΔE29 mice and separated on 6-10% bis-Tris gels
for western blotting. Calcineurin activity was determined using a
Calcineurin Phosphatase Activity Colorimetric Assay (Abcam) according
to the manufacturer’s instructions. For antibodies and experimental details,
see the supplementary Materials and Methods.

Electron microscopy
Tissue processing for transmission electron microscopy of EDL and soleus
muscles, and the analysis of mitochondria, were performed as detailed in the
supplementary Materials and Methods.

Statistical analysis
A two-way ANOVAwith Bonferroni post-hoc test was used for home cage
activity and fiber type analysis. One-way ANOVA was used for the other
behavioral tests. Student’s t-test and Mann–Whitney U-test were used to
calculate the statistical significance for fiber type and contractile properties
analysis. N represents the number of animals. Data are presented as mean±
s.e.m. The statistical analysis was performed with GraphPad Prism. For
further details see the supplementary Materials and Methods.
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Supplementary Materials and Methods: 

Genotyping 

Genomic DNA was isolated from ear punches or tail biopsies of mice using the HOTSHOT method as 

described previously (Truett et al., 2000). The PCR conditions for genotyping: 95°C for 3 min, 95°C for 

30 sec, 60°C for 30 sec, 72°C for 40 sec, repeated for 30 cycles; 72°C for 5 min. The forward primer 

and the reverse primers for the CaV1.1 gene were 5´ -CCTGTCTCTGTCTGGTCTTCC- 3´ and 5´ -

GCCTGCTCTAAGGAAAGGAG- 3´, respectively. Expected band size for CaV1.1ΔE29 is 344 bp and for 

wildtype is 373 bp. 

Quantitative TaqMan RT-PCR 

For expression analysis of CaV1.1 splice variants RNA was isolated from soleus (Sol), extensor 

digitorum longus (EDL) and diaphragm (Dia) muscle of E17, newborn, 3 weeks, 6 weeks, 16 weeks 

and 15-18 months old mice using the RNeasy® Fibrous Tissue Mini kit (Qiagen, Cat. No.74704, Venlo, 

NL). Except for the 15-18 months old mice, in which case only wildtype males were used, muscles 

were isolated from mice of either sex and of all genotypes. Following reverse transcription 

(SuperScript®II Reverse Transcriptase, Invitrogen, Carlsbad, CA, USA), the absolute number of 

CaV1.1a and CaV1.1e transcripts was assessed by quantitative TaqMan PCR (50 cycles), using a 

standard curve generated from PCR products of known concentrations as described previously 

(Schlick et al., 2010). For primers see Supplementary Table 1. 

To analyze expression of other genes involved in fiber type regulation, only Sol and EDL muscles 

were used from 6-7 months old mice. The relative mRNA expression levels of PGC-1α and SIX1 were 

calculated as relative amount of specific cDNA versus HPRT1, using the ΔΔCt method (2-ΔΔCt), where 

ΔCt was defined as Ct (gene) – Ct (HPRT1, housekeeping gene) and ΔΔCt as ΔCt – ΔCt (WT control). 

Taqman gene expression assays designed to span exon-exon boundaries (Table S1) were purchased 

from Applied Biosystems (Vienna, AT). Data were normalized as described previously (Schlick et al., 

2010) and analyzed using the ABI PRISM 7500 sequence detector (Applied Biosystems, Vienna, AT). 

Affymetrix GeneChip analysis 

The whole-genome gene expression data were obtained at the Expression Profiling Unit of the 

Medical University Innsbruck using the Affymetrix GeneChip MoGene-1.0-ST-v1 Array. Sample 
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preparation was performed according to the manufacturer’s protocols. In brief, RNA quantity and 

purity was determined by optical density measurements (OD 260/280 ratio) and by measuring the 

RNA integrity using the Agilent Technologies 2100 Bioanalyzer. Then, 250 ng of RNA per sample were 

processed to generate biotinylated hybridization targets using the Affymetrix GeneChip WT 

Expression kit and the Affymetrix GeneChip WT Terminal Labeling KIR. Resulting targets were 

hybridized to the Affymetrix GeneChip MoGene-1.0 ST v1 and stained in an Affymetrix fluidic station 

450. Raw fluorescence signal intensities were recorded by an Affymetrix scanner 3000 and image 

analysis was performed with the Affymetrix GeneChip Command Console software (AGCC). All 

further analysis was performed in R (version 3.1.2) using packages from the Bioconductor project 

(Gentleman et al., 2004). Pre-processing of the raw microarray data was performed as described in 

(Bindreither et al., 2014). In brief, raw microarray data was pre-processed using the "generalgcrma" 

package (Rainer et al., 2012) and our custom transcript-level "CEL definition file" (CDF) that defines 

probe sets for each transcript of all genes in the Ensembl database version 75. After GCRMA pre-

processing a representative transcript probe set was selected for each gene based on a combination 

of its average expression and variance of expression across all EDL or Soleus samples. 

Differential gene expression analysis was performed using the limma package (Smyth, 2004). The 

resulting p-values were subsequently adjusted for multiple hypothesis testing using the method 

from Benjamini and Hochberg (Benjamini and Hochberg, 1995) for a strong control of the false 

discovery rate (FDR). Genes with an M-value > 1 (representing more than 2-fold regulation) at a 5% 

FDR (adjusted p-value < 0.05) were considered to be significantly differentially expressed. 

The raw and preprocessed microarray data have been submitted to the Gene Expression Omnibus 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=shkxmwesffehzcb&acc=GSE67803). 

Behavioral experiments 

All behavioral experiments were done at 2 and 8 months of age. 

Wire hang test: Mice were put on a wire mesh which was then turned upside down. Time was 

recorded until the mice fell off, or tests were ended at 60 s. Tests were repeated thrice for each 

mouse. 

Homecage activity: To monitor the homecage activity, mice were individually placed in cages with 

free access to food and water, enriched with a plastic tube. Movement of mice was monitored 

through an infrared detection system (InfraMot, TSE Systems, Homburg, DE). Analysis was started at 

Development 143: doi:10.1242/dev.129676: Supplementary information 

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=shkxmwesffehzcb&acc=GSE67803


5 PM for a 72 h period. Arbitrary activity counts for a period of 48 h starting from 6:46 AM were 

collapsed into 60 min bins to examine the hourly distribution of activity. 

Rotarod test: The mice had two familiarization trials on the rotarod (Acceler Rota-Rod 7650, Ugo 

Basile, IT) at 4 rpm for 1 min each with an interval of 10 min between the trials. 30 min after the 

second familiarization trial, they were tested on an accelerating (4-40 rpm) rotarod for up to 300 s. 

The test was repeated after 15 min. 

Treadmill: The mice were familiarized to the treadmill (Exer 3/6 open treadmill, Columbus 

Instruments, Ohio, USA) for 30 min at rest followed by two times for 5 min at a speed of 10 m/min at 

an interval of 5 min. The next day before starting the test, the mice underwent another 

familiarization for 5 min at 10m/min. 15 min after this familiarization the mice were tested with an 

accelerating speed starting at 10 m/min increasing for 2 m/min every 5 min. The cut off time was 30 

min. 

Voluntary activity wheel measurement: Mice from both groups were singly housed in a cage with a 

mouse running wheel (Campden Instruments Ltd., Loughborough, UK). Wheels were interfaced to a 

computer and revolutions were recorded in 20 minutes intervals, continuously for 8 days. The 

average and the maximal speed, the distance and the duration of running was calculated for the 

individual mice and then averaged by groups. 

Forepaw grip test: The force of forepaw was measured as described earlier (Bodnar et al., 2014). 

Briefly, when the animals reliably grasped the bar of the grip test meter, they were then gently 

pulled away from the device. The maximal force before the animal released the bar were digitized at 

2 kHz and stored by an online connected computer. For better comparison the maximal force was 

normalized to the body weight of the animals. 

Measurement of contractile force 

Muscle contractions of 3-6 month old mice were measured as described previously (Oddoux et al., 

2009). In brief, EDL and Sol were placed horizontally in an experimental chamber continuously 

superfused (10 ml/min) with Krebs’ solution (containing in mM: NaCl 135, KCl 5, CaCl2 2.5, MgSO4 1, 

Hepes 10, glucose 10, NaHCO3 10; pH 7.2; room temperature) equilibrated with 95% O2 plus 5% CO2. 

One end of the muscle was attached to a rod, the other to a capacitive mechanoelectric force 

transducer. Contractions were elicited by 2 ms supramaximal electrical pulses delivered by two 

platinum electrodes placed adjacent to the muscle. Force responses were digitized at 2 kHz by using 

Digidata 1200 A/D card and acquired with Axotape software (Axon Instruments, Foster City, CA, 
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USA). Muscles were then stretched by adjusting the position of the transducer to a length that 

produced the maximal force response and allowed to equilibrate for 60 min before testing. At least 

10 twitches at 2 s intervals were recorded from each muscle. The individual force transients within 

such a train varied by less than 3% in amplitude, thus the mean of the amplitude of all transients was 

used to characterize the given muscle. To elicit tetanic contractions, trains of pulses were applied 

with a frequency of 200 Hz for 200 ms (EDL) or 100 Hz for 500 ms (Sol). Duration of individual 

twitches and tetani were determined by calculating the time between the onset of the transient and 

the relaxation to 90% of maximal force. The time constant (Tau) of the On and Off phase of 

contraction was determined from a single exponential fit to the rising and falling phase of the force 

transient. To test muscles fatigue 150 tetani were applied with 0.5 Hz (Oddoux et al., 2009). The 

degree of fatigue was expressed by normalizing the amplitude of each tetanus to that of the first 

tetanus. The tetanic fusion frequency was tested with a series of repeated pulses stimulated at 

increasing frequencies starting from 10 Hz. To quantify development of complete tetanus the 

following equation was fitted to the maximum of the force transient in one series: 

T= A/(1+exp(-(F-F50)/k)        (Eqn. 1.) 

where T is the actual tension at frequency F, A is the amplitude of the maximal tetanus, F50 is the 

frequency at half maximal tension and k is the slope factor of the function. 

Isolation of whole skeletal muscles and single muscle fibers 

3-4 month old mice were anesthesied with pentobarbital (27 mg/kg), then m. flexor digitorum brevis 

(FDB) from the fore limb, and the EDL and Sol from the hind limb were dissected. Single muscle 

fibers were enzymatically dissociated in calcium free modified Tyrode’s solution (in mM, 137 NaCl, 

5.4 KCl, 0.5 MgCl2, 11.8 Hepes, pH 7.4) containing 0.2% Type I collagenase (Sigma, St. Louis, USA) at 

37°C for 50-55 minutes (Csernoch et al., 2008). To release single fibers muscles were triturated 

gently in modified Tyrode’s solution supplemented with 1.8 mM CaCl2. The fibers were then 

mounted on laminin-coated cover slip floors of culture dishes and kept at 4°C until use. 

Voltage clamp and ICa measurement 

The experimental design was as described in (Sztretye et al., 2011). Briefly, isolated fibers were 

voltage-clamped (Axoclamp 2B, Axon Instruments, Foster City, CA, USA) and imaged using a confocal 

microscope (Zeiss 5 Live, Oberkochen, Germany, 20x objective). Fibers were dialyzed with the rhod-

2-containing internal solution. Experimental temperature was 20-22°C and the holding potential was 
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-80 mV. Pipette resistance varied between 1 and 2 MΩ. Correction for linear capacitive currents was 

performed by analog compensation. The peak current versus voltage relationship for ICa was fitted 

with: 

I = (Vm - VCa) * G(Vm) (Eqn. 2) 

where Vm is the transmembrane potential, VCa is the estimated equilibrium potential for Ca, and 

G(Vm) is the voltage dependence of the conductance given as: 

G(Vm) = Gmax / (1 + exp(-(Vm – V50)/k)) (Eqn. 3) 

where Gmax is the maximal conductance, V50 is the potential where the conductance is half of Gmax, 

and k is the slope factor. All currents and the maximal conductance were normalized to fiber 

capacitance to take the size of the individual fibers into account. 

External bath solution (in mM): 140 TEA-CH3SO3, 2 CaCl2, 2 MgCl2, 10 Hepes, 1 4-AP, 0.001 TTX 

(citrate), and 0.05 BTS (N-benzyl-p-toluene sulphonamide; Sigma-Aldrich). pH was adjusted to 7.2 

with TEA-OH and osmolarity was adjusted to 320 mOsm with TEA methanesulfonate. Internal 

(pipette) solutions (mM): 110 N-methylglucamine, 110 L-glutamic acid, 10 EGTA, 10 Tris, 10 glucose, 

5 Na ATP, 5 phosphocreatine Tris, 0.1 rhod-2, 3.56 CaCl2, and 7.4 mM MgCl2 were added for a 

nominal 1 mM [Mg2+] and 100 nM [Ca2+]. pH was set to 7.2 with NaOH and osmolarity to 320 mOsm 

with N-methylglucamine. Normal Tyrode’s solution (in mM): 137 NaCl, 5.4 KCl, 0.5 MgCl2, 1.8 CaCl2, 

11.8 Hepes-NaOH, 1 g/l glucose, pH 7.4). 

SOCE measurement 

Isolated FDB fibers loaded with the Ca2+ sensitive dye fluo-8 AM (4 µM, 20 min, room temperature) 

were imaged with a laser scanning confocal microscope (Zeiss 5 Live, Oberkochen, DE) and subjected 

to multiple manual solution exchanges. Changes in the fluorescence were recorded in the presence 

or absence of [Ca2+]e following the application of a releasing cocktail and presence of a SOCE 

inhibitor (10 µM BTP2) and/or 1 µM nisoldipine, a potent L-type Ca2+ channel blocker. Following the 

manual delimitation of the cell border, the change of [Ca2+]i was calculated as ΔF/F0, where ΔF was 

calculated over the cell, while F0 next to cell. “Releasing cocktail” (in mM): 0.4 4-chloro-M-cresol (4-

CMC), 0.004 thapsigargin (TG), and 0.05 BTS. In some experiments, the cells were preincubated with 

1 µM nisoldipine and/or 10 µM BTP2. 
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Elementary calcium events 

Isolated intact mouse skeletal muscle fibres from the FDB were loaded with 5 μM Fluo-8 AM for 20 

min at RT. This solution was then replaced by normal Tyrode’s solution. Images were captured with a 

Zeiss LSM 510 LIVE confocal microscope (Zeiss, Oberkochen, DE) equipped with a 40x oil immersion 

objective (NA=1.3). Fluo-8-AM was excited with the 488-nm line of an argon laser and the emitted 

fluorescent light was measured at wavelengths >505 nm. 15 min following application of the 

recording solution, series of 200 512×512 (x,y) images captured every 67 ms were collected in each 

tested fibre. Test experiments were carried out in the presence of 10 μM nisoldipine in the recording 

solution. In some cases the recording solution contains 1.8 mM calcium. 

Detection of calcium release events and their analysis were performed using methods and 

algorithms described previously by (Szabo et al., 2010). 

Immunostaining and image processing 

Muscles were isolated from 6 month old mice and embedded in Tissue Tek and freshly frozen in 

isopentane cooled to -80ᵒC. Frozen muscles were stored at -80ᵒC and transferred to -20ᵒC one day 

before sectioning. Cryosections of 8 µm thickness were prepared and stored at -80ᵒC till further use. 

Before immunostaining, cryosections were thawed and air dried at room temperature (RT) for 30 

min. Then the muscle sections were incubated in blocking buffer consisting of 5% normal goat serum 

in PBS containing 1% bovine serum albumin (BSA) and 0.5% Triton X-100 (PBS/BSA/Triton) or in 

M.O.M blocking solution (Vector Laboratories, Burlingame, CA, USA) for 1 h at RT. Next the sections 

were incubated in primary antibodies (Table S2) overnight at 4ᵒC. On the following day the sections 

were washed in PBS/BSA/Triton thrice at interval of 10 min and then stained with goat anti-mouse 

IgG-Alexa Fluor 594 or goat anti-mouse IgM-Alexa Fluor 594 (1:4000; Invitrogen) for 1 h at RT. After 

washing with PBS/BSA/Triton thrice at intervals of 10 min, the sections were mounted in Vectashield 

(Vector Laboratories, Burlingame, CA, USA). Samples were analyzed on a confocal microscope (TCS 

SP5, Leica microsystems, Wetzlar, DE) using a 40X objective (1.25 NA) and 16 bit images were 

acquired with the LasAF acquisition software (Leica microsystems, Wetzlar, DE). Figures were 

arranged in Adobe Photoshop CS6, and where necessary linear adjustments were performed to 

correct black level and contrast.  

For fiber type analysis, all fibers within the entire muscle/cross-section were characterized. Fibers 

stained with specific antibodies against MHCs were counted in each section. For hybrid fibers serial 

cross-sections were analyzed simultaneously to locate the fibers stained with more than one 
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antibody. Fiber counts and percentages of fiber types were performed with Metamorph software 

(Molecular Devices, Sunnyvale, CA, USA). 

SDH staining and analysis 

Frozen sections of Sol and EDL were air dried for 30 min at RT and incubated in 0.2 M phosphate 

buffer (pH 7.4), 0.1 M succinic acid and 1.2 mM nitroblue tetrazolium for 1 h in a humidity chamber. 

Following incubation the slides were washed with milliQ water for 3 min and dried in methanol 

(Roth, Karslruhe, DE) for 2 min. The slides were then mounted in DPX mounting medium. 

Preparations were analyzed on an AxioImager microscope (Carl Ziess, Oberkochen, DE) using 25X 

(0.8 NA) and 40X (1.25 NA) objectives. 12-bit images were acquired with the SPOT Idea 1.3 Mp Color 

Mosaic Camera (SPOT Imaging solutions; Diagnostic Instruments Inc., Sterling Heights, MI, USA) and 

Spot Idea software (Version 4.6). The images were first converted to black and white tiff images in 

ImageJ (U.S. National Institutes of Health, Bethesda, MD, USA). Then the staining intensity of each 

fiber was measured using Metamorph software (Molecular Devices, Sunnyvale, CA). 

Electron Microscopy and Morphometry 

Sol and EDL muscles were dissected from two matched wildtype and CaV1.1ΔE29 mouse pairs 4 and 

5 months of age, immediately fixed with 3.5% glutaraldehyde in 0.12 M Na-Cacodylate buffer and 

processed for transmission electron microscopy as previously described in (Hess et al., 2000). 

Longitudinal sections of the muscles were systematically imaged across muscle fibers and at two 

levels of each fiber. Thirty to forty images of each condition were analyzed using the Metamorph 

software (Molecular Devices, Sunnyvale, CA). The persons taking the images and conducting the 

analysis were both “blinded” with regard to the experimental condition. In each image a region was 

traced along the myofibril bundles and the Z-lines. Within these regions healthy mitochondria were 

traced to measure the size of the mitochondria and the total area covered by healthy mitochondria. 

From these data the fractional content of healthy mitochondria, the percentage of damaged 

mitochondria, and the average mitochondrial size were calculated. To exclude a possible influence of 

contractile state and sectioning plane on the analysis, the sarcomere length was measured and the 

sarcomeres in each region were counted so that the number of good and damaged mitochondria per 

sarcomere could be calculated. Because these controls gave the same results as when expressed as 

fraction of the analyzed area, they are not shown. 
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Protein extraction and Western blotting 

Mouse Sol and EDL were isolated from 6 month old wildtype and knockout (CaV1.1∆E29) mice and 

snap frozen in liquid nitrogen. Then the frozen muscle was ground into powder using a mortar and 

pestle. The powder was homogenized in RIPA buffer composed of 1% Igepal, 50 mM Tris HCl, 150 

mM NaCl, 0.1% SDS, 10 mM NaF and 10% glycerol to extract all the protein. The homogenized 

samples were centrifuged at 12,000 rpm for 15 min at 4ᵒC. The supernatant containing the whole 

protein was collected. For separation of the cytoplasmic and nuclear fractions a different procedure 

was used as described previously (Dimauro et al., 2012). Protein concentrations were determined 

using the PierceTM BCA Protein Assay Kit (Thermo Fisher Scientific Inc., Rockford, IL, USA) and 

measured with the NanoDrop 2000 (Thermo Fisher Scientific Inc., Rockford, IL, USA). A standard 

curve was determined with different concentrations of bovine serum albumin (BSA) every time 

protein extraction was done. 20-40 µg of protein was loaded per lane onto 6-10% Bis-Tris Gel and 

separated at 196 V, 40 mA for 50-60 min. The blot was performed at 25 V, 100 mA for 3 h at 4ᵒC with 

a semidry-blot system (Roth, Karslruhe, DE). Primary antibodies were applied overnight at 4ᵒC and 

incubation with HRP-conjugated anti-mouse or anti-rabbit secondary antibody (1:5000, Pierce) was 

done for 1h at RT. The primary antibodies used were as follows: Mouse antibodies against CaV1.1 

(1:1000, MA3-920, Thermo Fisher Scientific), phospho-CaMKII (1:1000, #12716, Cell Signaling 

Technology, MA, USA), HDAC4 (1:2000, #2072, Cell Signaling Technology, MA, USA), NFATc1 (1:500, 

sc-13033, Santa Cruz Biotechnology, Heidelberg, DE), Histone H3 (1:2000, Cell Signaling Technology, 

MA, USA), GAPDH (1:100,000, SC32233, Santa Cruz Biotechnology, Heidelberg, DE) and α-tubulin 

(1:1000, ab7291, Abcam, Cambridge, UK). The development was performed with SuperSignal® West 

Pico Chemiluminiscent Substrate (Thermo Fisher Scientific Inc., Rockford, IL, USA) and ImageQuant 

Las 4000 (GE Healthcare Europe GmbH, Vienna, AT) was used to visualize the bands. Quantification 

of the bands was done with ImageJ (U.S. National Institutes of Health, Bethesda, MD, USA, 

imagej.nih.gov/ij) software (mean ± SEM, N=3, p > 0.05, * p < 0.05, *** p < 0.001). 

Calcineurin activity assay 

Mouse Sol and EDL tissue samples were frozen in liquid N2 at the time of dissection, stored at -80oC 

and homogenized in a buffer containing 0.1 M sucrose, 46 mM KCl, 0.5 % BSA, 100 mM Tris-HCl (pH 

7.4) and EDTA-free protease inhibitors (SIGMA). Protein determination were carried out as described 

before (Lontay et al., 2004). Calcineurin (protein phosphatase 2B; PP2B) activity was determined by 

the Calcineurin Phosphatase Activity Colorimetric Assay (Abcam) following the the manufacturer’s 

instructions. Shortly, PP2B activity of the skeletal muscle lysates was measure by using RII 
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phosphopeptide substrate. The quantity of the free-phosphate liberated was detected by Malachite 

green assay at 620 nm and it was correlated with the PP2B activity. Human recombinant calcineurin 

was applied as a positive control. To discriminate between the contribution of other protein 

phosphatases lysates were incubated with 100 nM okadaic acid (OA; a specific protein phosphatase 

1 and 2A inhibitor) with or without EGTA before the enzyme activity measurement. Calcineurin 

activity was calculated as the difference of the enzyme activities measured in the OA-treated  and 

the OA/EGTA-treated lysates and was normalized in each case to the total protein concentration. 

Statistical analysis. 

A two way ANOVA with Bonferroni post hoc test was used for homecage activity and fiber type 

analysis (Fig. 1A and 1B). A one way ANOVA was used for the other behavioral tests. The Student’s t-

test was used to calculate the statistical significance for fiber type analysis in SDH staining, 

mitochondria analysis in electron microscopy and all tests for contractile properties.  Levels of 

significance for t-test and ANOVA are indicated as * p < 0.05; ** p < 0.01; *** p < 0.001. The 

statistical analysis was performed with GraphPad Prism (GraphPad Software, La Jolla, CA, USA). 

Supplemental References: 

Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful 
approach to multiple testing. J Roy Statist Soc Ser B 57, 289-300. 

Bindreither, D., Ecker, S., Gschirr, B., Kofler, A., Kofler, R. and Rainer, J. (2014). The synthetic 
glucocorticoids prednisolone and dexamethasone regulate the same genes in acute 
lymphoblastic leukemia cells. BMC genomics 15, 662. 

Bodnar, D., Geyer, N., Ruzsnavszky, O., Olah, T., Hegyi, B., Sztretye, M., Fodor, J., Dienes, B., 
Balogh, A., Papp, Z., Szabo, L., Muller, G., Csernoch, L. and Szentesi, P. 
(2014)Hypermuscular mice with mutation in the myostatin gene display altered calcium 
signaling. Journal of Physiology 592, 1353-1365. 

Csernoch, L., Pouvreau, S., Ronjat, M. and Jacquemond, V. (2008). Voltage-activated elementary 
calcium release events in isolated mouse skeletal muscle fibers. The Journal of membrane 
biology 226, 43-55. 

Dimauro, I., Pearson, T., Caporossi, D. and Jackson, M. J. (2012). A simple protocol for the 
subcellular fractionation of skeletal muscle cells and tissue. BMC research notes 5, 513. 

Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., Ellis, B., Gautier, L., 
Ge, Y., Gentry, J., et al. (2004). Bioconductor: open software development for 
computational biology and bioinformatics. Genome biology 5, R80. 

Development 143: doi:10.1242/dev.129676: Supplementary information 

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Hess, M. W., Schwendinger, M. G., Eskelinen, E. L., Pfaller, K., Pavelka, M., Dierich, M. P. and 
Prodinger, W. M. (2000). Tracing uptake of C3dg-conjugated antigen into B cells via 
complement receptor type 2 (CR2, CD21). Blood 95, 2617-2623. 

Lontay, B., Serfozo, Z., Gergely, P., Ito, M., Hartshorne, D. J. and Erdodi, F. (2004). Localization of 
myosin phosphatase target subunit 1 in rat brain and in primary cultures of neuronal cells. 
The Journal of comparative neurology 478, 72-87. 

Oddoux, S., Brocard, J., Schweitzer, A., Szentesi, P., Giannesini, B., Brocard, J., Faure, J., Pernet-
Gallay, K., Bendahan, D., Lunardi, J., et al. (2009). Triadin deletion induces impaired skeletal 
muscle function. The Journal of biological chemistry 284, 34918-34929. 

Rainer, J., Lelong, J., Bindreither, D., Mantinger, C., Ploner, C., Geley, S. and Kofler, R. (2012). 
Research resource: transcriptional response to glucocorticoids in childhood acute 
lymphoblastic leukemia. Molecular endocrinology 26, 178-193. 

Schlick, B., Flucher, B. E. and Obermair, G. J. (2010). Voltage-activated calcium channel expression 
profiles in mouse brain and cultured hippocampal neurons. Neuroscience 167, 786-798. 

Smyth, G. K. (2004). Linear models and empirical bayes methods for assessing differential expression 
in microarray experiments. Statistical applications in genetics and molecular biology 3, 
Article3. 

Szabo, L. Z., Vincze, J., Csernoch, L. and Szentesi, P. (2010). Improved spark and ember detection 
using stationary wavelet transforms. Journal of theoretical biology 264, 1279-1292. 

Sztretye, M., Yi, J., Figueroa, L., Zhou, J., Royer, L. and Rios, E. (2011). D4cpv-calsequestrin: a 
sensitive ratiometric biosensor accurately targeted to the calcium store of skeletal muscle. 
The Journal of general physiology 138, 211-229. 

Truett, G. E., Heeger, P., Mynatt, R. L., Truett, A. A., Walker, J. A. and Warman, M. L. (2000). 
Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris 
(HotSHOT). BioTechniques 29, 52, 54. 

Development 143: doi:10.1242/dev.129676: Supplementary information 

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Supplementary Tables: 

Table S1: Oligonucleotides for real time PCR 

Table S2: Antibodies for immunostaining 

*All primary antibodies were purchased from Developmental Studies Hybridoma Bank, Iowa, USA.

Gene Ref. no. Method Forward primer 
(5’-3’) 

Reverse primer 
(5’-3’) 

Probe 

CACNA1S NM_001081023 TaqMan gttacatgagctggatca
cacag 

atgagcatttcgatggt
gaag 

CACNA1S-

E29 

NA TaqMan ctaatcgtcatcggcagc
at 

tctcatctgggtcatcg
atct 

attgacgtcatcctgagc 

CACNA1S+

E29 

NA TaqMan ctaatcgtcatcggcagc
at 

ctccacccaggcaata
cagt 

attgacgtcatcctgagc 

Ppargc1a NM_008904 TaqMan ctccatctgtcagtgcat
ca 

ccaaccagtacaacaa
tgagc 

agggcaatccgtcttcatc
cacg 

Six 1 NM_009189 TaqMan gagagagttgattctgct
tgttg 

ggtcagcaactggttta
agaac 

cgaggccaaggaaaggg
agaaca 

Fibre type Primary Antibody* Concentration Secondary Antibody Concentration 

I BA-D5 1:2000 Anti-mouse  IgG Alexa 594 1:4000 

IIA SC-71 1:2000 Anti-mouse  IgG Alexa 594 1:4000 

IIB BF-F3 1:2000 Anti-mouse  IgG Alexa 594 1:4000 

IIX 6H1 1:200 Anti-mouse  IgM Alexa 594 1:4000 
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Supplementary Figures: 

Figure S1. Phenotype of CaV1.1ΔE29 mice: Normal weight gain and muscle histology. (A) The 

increase of body weight measured at 3, 6 and 9 weeks of age was similar in CaV1.1ΔE29 mice 

compared to the wildtype and heterozygous siblings (mean ± SEM, N=15-37, p>0.05). (B) 

Haematoxylin and eosin stained cryosections of soleus and EDL muscles at 6 months revealed no 

centrally located nuclei in CaV1.1ΔE29 muscle fibers (Scale bar: 100µm). Quantitative analysis 

showed no significant differences between CaV1.1ΔE29 and wildtype mice (mean ± SEM, N=3, p > 

0.05). 
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Figure S2. Voltage-dependence of calcium transients and calcium fluxes in FDB muscle fibers of 

wildtype and CaV1.1ΔE29 mice. Calcium transients were recorded in voltage-clamped, Rhod-2 

loaded FDB fibers and calcium fluxes were calculated as described in the extended materials and 

methods. At intermediate voltages the plateau flux relative to the peak is substantially higher in 

CaV1.1ΔE29 than in wildtype controls, indicating a strong contribution of voltage-dependent calcium 

influx to the myoplasmic calcium transients.  
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Figure S3. SDH staining and electron microscopy analysis demonstrates reduced mitochondrial 

function and content in CaV1.1ΔE29 muscles. (A) SDH activity was analyzed in sections of 12 months 

old wildtype (black) and CaV1.1ΔE29 (red) mice (Scale bar: 100 µm). Staining intensity was measured 

in each fiber profile and plotted in intensity distribution diagrams. SDH activity is significantly 

reduced in CaV1.1ΔE29 soleus and EDL muscles visible as left shift in the distribution curves (mean ± 

SEM, N=3 (B) (Biological replicate of experiment shown in Fig. 6C and D, and corresponding to the 

second data set given in Results). Morphometric analysis demonstrates significantly decreased 

fraction of the area occupied by intact mitochondria in both soleus (p<0.01) and EDL (p<0.001) 

muscles of CaV1.1ΔE29. Mitochondrial size is decreased in CaV1.1ΔE29 EDL (p<0.01) and the fraction 

of damaged mitochondria increased (p <0.001) in CaV1.1ΔE29 soleus muscles (mean ± SEM, N=2). 
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Figure S4. Expression of the transcriptional regulators NFATc1 and HDAC4 and the gene expression 

profile were not altered in CaV1.1ΔE29 mice. (A, B) Quantitative analysis of NFATc1 and HDAC4 

Western blots shown in Fig. 7 revealed no significant differences in cytoplasmic or nuclear fractions 

of soleus and EDL muscles of 5-6 month old CaV1.1ΔE29 mice and wildtype controls (mean ± SEM, p 

> 0.05, N=3). (C) Volcano plots of Affymetrix gene chip analysis show differentially expressed genes 

in soleus and EDL muscles, but differential expression in 6 month old wildtype and CaV1.1ΔE29 

muscles did not reach significance. Both soleus and EDL muscles were pooled from three female 

CaV1.1ΔE29 and wildtype mice six months of age (mean ± SEM, p>0.05, N=3). (D) Expression of genes 

linked to mitochondrial fusion (left) and fission (right) was not altered in CaV1.1ΔE29 muscles. 
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