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ABSTRACT

The vertebrate embryonic dorsoventral axis is established and
patterned by Wnt and bone morphogenetic protein (BMP) signaling
pathways, respectively. Whereas Wnt signaling establishes the dorsal
side of the embryo and induces the dorsal organizer, a BMP signaling
gradient patterns tissues along the dorsoventral axis. Early Wnt
signaling is provided maternally, whereas BMP ligand expression in the
zebrafish is zygotic, but regulated by maternal factors. Concomitant
with BMP activity patterning dorsoventral axial tissues, the embryo
also undergoes dramatic morphogenetic processes, including the cell
movements of gastrulation, epiboly and dorsal convergence. Although
the zygotic regulation of these cell migration processes is increasingly
understood, far less is known of the maternal regulators of these
processes. Similarly, the maternal regulation of dorsoventral
patterning, and in particular the maternal control of ventral tissue
specification, is poorly understood. We identified split top, a recessive
maternal-effect zebrafish mutant that disrupts embryonic patterning
upstream of endogenous BMP signaling. Embryos from split top
mutant females exhibit a dorsalized embryonic axis, which can be
rescued by BMP misexpression or by derepressing endogenous
BMP signaling. In addition to dorsoventral patterning defects, split top
mutants display morphogenesis defects that are both BMP dependent
and independent. These morphogenesis defects include incomplete
dorsal convergence, delayed epiboly progression and an early lysis
phenotype during gastrula stages. The latter two morphogenesis
defects are associated with disruption of the actin and microtubule
cytoskeleton within the yolk cell and defects in the outer enveloping cell
layer, which are both known mediators of epiboly movements. Through
chromosomal mapping and RNA sequencing analysis, we identified
the lysosomal endopeptidase cathepsin Ba (ctsba) as the gene
deficient in split top embryos. Our results identify a novel role for Ctsba
in morphogenesis and expand our understanding of the maternal
regulation of dorsoventral patterning.
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INTRODUCTION
Early vertebrate development requires coordination of morphogenetic
movements and cell signaling to form the tissues of the embryonic
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body axis. The dorsal organizer, which is also called the embryonic
shield in zebrafish, functions as a dorsal signaling center that
establishes and patterns the dorsoventral axis (Langdon and Mullins,
2011). Shield formation in the zebrafish is initiated when maternal -
catenin activates one of the earliest zygotically expressed genes
bozozok (also known as dharma; Fekany et al., 1999; Koos and Ho,
1999; Yamanaka et al., 1998). Subsequently, additional dorsal genes
are expressed, including goosecoid, chordin, noggin and follistatin-
like 1b (fstl1b), which specify the dorsal embryonic domain (Dal-Pra
etal.,2006; Dixon Fox and Bruce, 2009; Langdon and Mullins, 2011,
Schulte-Merker et al., 1997). These factors act entirely or in part by
inhibiting bone morphogenetic protein (BMP) signaling, thereby
restricting it to ventral regions and generating a gradient of BMP
activity that promotes ventrolateral cell fates during axial patterning
(Bier and De Robertis, 2015; Langdon and Mullins, 2011). A Bmp2/
Bmp7 heterodimer is the only BMP ligand that signals in dorsoventral
patterning, binding to BMP type II and type I receptors, which
phosphorylate downstream Smad proteins that then regulate BMP
target genes (Dutko and Mullins, 2011; Little and Mullins, 2009).
Zygotic Wnt8 signaling also functions ventrolaterally through the
Vox, Vent and Ved transcriptional repressors to restrict bozozok
expression and the dorsal organizer from expanding into ventrolateral
regions, and to maintain BMP gene expression (Gawantka et al.,
1995; Imai et al., 2001; Kawahara et al., 2000; Ramel and Lekven,
2004; Shimizu et al., 2002).

In conjunction with the early signaling pathways that pattern
tissues, morphogenetic movements shape the axial embryonic
tissue. Epiboly, the process by which blastoderm cells spread over
the yolk, is initiated just prior to gastrulation (Kimmel et al., 1995).
During gastrulation, the yolk syncytial nuclei (YSN), as part of an
extraembryonic yolk syncytial layer (YSL), lead the blastoderm
cells and the outer enveloping cell layer (EVL) over the yolk (Rohde
and Heisenberg, 2007; Warga and Kimmel, 1990). Cytoskeletal
components of the yolk cell — microtubules and actin — are required
for epiboly progression. Microtubules are nucleated at the marginal
YSN, extend vegetally within the outer yolk cell cytoplasmic layer
(YCL) and function in the vegetal movement of the YSN (Solnica-
Krezel and Driever, 1994). Disruption of microtubules inhibits
epiboly progression (Solnica-Krezel and Driever, 1994; Strahle and
Jesuthasan, 1993). Similarly, actin, in conjunction with myosin,
forms an actomyosin band within the YSL and contraction of this
band, concomitant with retrograde actomyosin flow, results in
epiboly progression (Behrndt et al., 2012; Cheng et al., 2004,
Koppen et al., 2006). Pharmacological disruption of the actomyosin
band leads to slowing of epiboly and yolk cell lysis (Cheng et al.,
2004).

Many of the key regulators of dorsoventral axis formation are
maternal Wnt pathway components that induce dorsal organizer
formation. Far less is known about the maternal regulation of ventral
tissue specification or morphogenetic movements. To identify such
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factors, we performed a recessive maternal-effect mutagenesis
screen (Dosch et al., 2004; Wagner et al., 2004). We report the
identification of the novel maternal-effect mutant split top, which
displays defects in dorsoventral patterning and morphogenesis of
the embryo. Embryos from split fop mutant females display a range
of dorsalized phenotypes that can be rescued by induction of BMP
signaling. Embryos from split top mutant females also exhibit
defects in epiboly and dorsal convergence. Using traditional
positional cloning and RNA-seq analysis, we determined that the
split top mutant is deficient in the cathepsin Ba (ctsba) gene. Ctsba
is a lysosomal endopeptidase, which has previously been suggested
to be a positive regulator of apoptosis in zebrafish ovarian follicles
and to play a role in modifying or degrading the extracellular matrix
during fin regeneration (Eykelbosh and Van Der Kraak, 2010;
Saxena et al., 2012). Here, we reveal a novel role for Ctsba in
dorsoventral axial patterning and early embryonic morphogenesis.

RESULTS

Maternal-effect split top embryos exhibit morphogenesis

and dorsalization defects

We identified the zebrafish mutant split top in a recessive maternal-
effect mutagenesis screen (our unpublished results). When crossed
to wild-type males, homozygous mutant females produced embryos
with dorsalized axial defects, henceforth referred to as split top
mutant embryos. These phenotypes are classic (C1-C5) dorsalized
phenotypes (Fig. 1A; Mullins et al., 1996), similar to those of BMP
signaling pathway mutants (Kramer et al., 2002; Mintzeretal., 2001;
Nguyen et al, 1998). However, unlike the uniform strong
dorsalization phenotype of BMP component mutant embryos, split
top mutant embryos exhibited a variable dorsalized phenotype
(Fig. 1A,B). In addition, split top mutant embryos displayed variable
morphological defects and early lysis. The phenotype of split top
mutants varied between clutches from a single mutant mother and
among clutches from different mutant mothers (Fig. 1B).

The earliest morphological defect observed in split top mutant
embryos was a delay in epiboly progression. Time-lapse imaging
analysis showed that the delay began between 50% epiboly and
shield stage (Fig. 1C), when mutant embryos paused for
approximately 1 to 2 h before resuming epiboly, whereas wild-
type embryos paused for about 30 min at this stage (Fig. 1C,
Movies 1 and 2). Once epiboly reinitiated, the outer enveloping cell
layer (EVL) continued to migrate over the yolk, whereas the deep
cells lagged behind and appeared uncoupled from the EVL in
mutant embryos (Fig. 1C). Actin- and DAPI-stained embryos
confirmed that deep cells were more severely retarded in epiboly
than the EVL (Fig. 1D). In some embryos, epiboly stalled during
mid-gastrulation, never completing, and eventually the gastrula
embryo rapidly retracted from the vegetal pole (Fig. 1C, Movie 2).
There were two distinct outcomes following this animal-ward
retraction: either the embryo developed midway along the yolk
causing the split-yolk phenotype (Fig. 1C, Movie 2), or the yolk cell
lysed within a few hours (Fig. 1C, Movie 3). Other split top mutants
initiated lysis during the prolonged shield stage and completely
lysed between 5.3 and 8 hpf or by the equivalent of 75-80% epiboly
(Movie 4). Strongly dorsalized class 5 (C5) embryos also lysed as a
result of the dorsalization, but at later somitogenesis stages
(~16 hpf) (Mullins et al., 1996). Additional defects in split top
mutant embryos included a kinked tail, thin-fin and C5-like
phenotypes (Fig. 1A).

We examined dorsoventral patterning during gastrulation in split
top mutants by performing in situ hybridization with the dorsally
expressed genes chordin and foxd3, and the ventrally expressed

genes folloid and gata2 (Fig. 2). In wild-type embryos, chordin and
foxd3 expression was restricted to the dorsal side of the embryo,
whereas in split top mutants, expression was expanded ventrally and
often extended completely around the embryo (Fig. 2A,B). To
assess chordin expression at bud stage, we identified split top
mutant embryos where the EVL had completely covered the yolk. In
many mutant embryos, chordin staining did not extend to the
tailbud, indicating that the deep cells did not complete epiboly
whereas the EVL did. Concomitant with expanded chordin
expression, the ventral rolloid (also known as bmpll) expression
domain was reduced in split top mutants (Fig. 2C). Interestingly,
gata? expression was present in the animal-most region, but reduced
in ventral-marginal regions of split top mutants (Fig. 2D),
suggesting that posterior (vegetal) regions are more strongly
dorsalized than anterior (animal) regions in some split top mutant
embryos. These data show that dorsal cell fates are expanded at the
expense of ventral ones in split top mutants.

In BMP pathway component mutants, dorsal midline mesoderm
is not affected, whereas loss of zygotic wnt8 or the ventrolateral
transcriptional repressors vox, vent and ved cause an expansion of
dorsal midline mesoderm (Langdon and Mullins, 2011; Ramel and
Lekven, 2004). To investigate whether dorsal midline mesoderm
tissue was affected, we examined goosecoid (gsc) expression. At
sphere stage (mid-blastula stage), mutant embryos exhibited a
modest ventral expansion of gsc expression (Fig. 3A), which
became robustly expanded by shield stage (Fig. 3B). Expansion of
gsc at sphere stage shows that dorsoventral patterning is altered prior
to the first observable morphological defects in split fop mutants.
Although not observed in BMP pathway mutants, a similar
expansion of dorsal midline mesoderm is observed in other
maternal-effect dorsalized mutants, including ints6 (Kapp et al.,
2013) and maternal-zygotic (MZ) pou5f3 (formerly pou5f1 or oct4)
(Belting et al., 2011; Reim and Brand, 2006).

Split top functions upstream of BMP signaling
Whnt, Nodal and BMP signaling are essential for dorsal specification
and early axial patterning (Langdon and Mullins, 2011; Schier and
Talbot, 2005). Maternal Wnt signaling establishes the dorsal side of
the embryo and the dorsal organizer (Kelly et al., 2000; Schneider
et al., 1996). Later, zygotic Nodal signaling induces dorsal
mesoderm as part of the organizer, whereas BMP signaling is
required to pattern ventrolateral axial cell types. To investigate
whether these pathways might be altered in split top mutant
embryos, we examined the expression of a maternal Wnt target
gene, bozozok, as well as expression of bmp2b and the Nodal ligand
squint. In split top mutant embryos, bozozok expression was
restricted to the organizer, as in the wild type, indicating
establishment of the dorsal organizer and normal early Wnt
signaling (Fig. 4A). Likewise, squint expression in the dorsal
margin at sphere stage and within the entire blastoderm margin at
dome stage was indistinguishable between wild-type and mutant
embryos (Fig. 4B). The expression of bmp2b was also unaltered at
shield stage in split top mutant embryos, but was decreased by mid-
gastrulation (Fig. 4C). Mutants of BMP pathway components show
a similar effect on bmp2b gene expression, displaying normal
induction in blastula stages, but loss during gastrula stages (Nguyen
et al.,, 1998; Schmid et al., 2000; Schulte-Merker et al., 1997).
On the basis of altered BMP ligand transcript expression during
gastrulation, we hypothesized that loss of BMP signaling in split fop
mutants contributes to the dorsalized defects in these mutants.

To test whether restoring BMP signaling in split top mutants can
rescue them, we misexpressed bmp2b or bmp7a in mutant embryos.
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Fig. 1. split top mutant embryo phenotypes. (A) 1 dpf split top mutant embryo C1 to C4 dorsalized phenotypes, split-yolk (SY), kinked tail (KT) and thin-fin (TF)
phenotypes or additional (Add.) defects. (B) Three mutant females (NN22-4, NN22-14 and NN23-2) illustrate that clutches from a single mutant mother exhibit
similar phenotypic trends, but also variability in phenotypic distribution. (C) Time-lapse imaging of wild-type and split top mutant embryos was performed at 21°C,
thus development proceeded more slowly than at 28°C. Red arrowheads mark the deep cells and black ones, the EVL. Yellow asterisks on the split-yolk mutant
mark the yolk and the arrow marks the developing eye. (D) Confocal z-projections of double-stained embryos. In most split top embryos EVL migration is
uncoupled from deep cells, as indicated with brackets. Scale bars: 240 ym (C), 150 ym (D).

To ensure only modest overexpression of the BMP ligands, we
injected mRNA concentrations of each ligand that weakly ventralize
(V1) wild-type embryos (Fig. 4D-G). We found that misexpression
of both bmp2b (Fig. 4D,E) and bmp7a (Fig. 4F,G) rescued split top
dorsalized mutant embryos. Expression of bmp2b rescued 55% of
split top mutant embryos to a wild-type or weakly ventralized (V1-
V2) phenotype. The remaining dorsalized embryos (21%) displayed
fewer of the strongest dorsalized phenotypes (C5-like, C4, split-
yolk). Interestingly, there was no difference in the percentage of
embryos that lysed among the uninjected (14% lysed) and bmp2b-

1018

injected (14% lysed) split top embryos, indicating that BMP
signaling cannot rescue the lysis phenotypes. We also found that
bmp2b misexpression can rescue the expanded gsc domain in split
top mutants (Fig. 3C).

Injection of bmp7a mRNA also rescued dorsalized split top
embryos to wild-type or ventralized them, and those embryos that
remained dorsalized displayed weaker phenotypes (Fig. 4F,G). We
note that the percentage of lysed embryos decreased from 83% in
uninjected to 60% in bmp7a-injected embryos. Because CS5
dorsalized embryos also lyse during somitogenesis, we believe
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Fig. 2. Dorsoventral marker analysis. (A) chordin, (B) foxd3, (C) tolloid and
(D) gata2 expression. Animal and lateral views, dorsal to right. Dorsal views,
anterior to top.

that the reduced percentage of lysed embryos reflects rescue of the
later lysis associated with C5 dorsalized embryos, rather than the
earlier lysis phenotypes.

As forced BMP expression can rescue the dorsalized mutant
phenotype, we next investigated whether the endogenous BMP
pathway was intact in split top mutant embryos. We asked whether
alleviating repression of endogenous BMP signaling by depletion of
the BMP antagonists chordin, noggin and fstl1b, could also rescue
the dorsalization. Similar to forced BMP ligand expression,
depletion of these BMP antagonists ventralized split top embryos,
but was unable to rescue the early lysis phenotypes (Fig. 4H,I).
These data suggest that Split top functions upstream of a functional

A Animal Lateral B Animal Lateral
gsc gsc
£ ™
? p
= p
s 1
27127

Sphere

split top  Wild-type

Qo
8
=
-5. gsc  +bmp2b +bmp2b
» Q >

>~

=

Q

7]

24/43 4/43

Fig. 3. Expanded goosecoid expression in split top mutant embryos.
(A) Sphere and (B,C) shield stage embryos. (C) Injection of bmp2b mRNA
rescued the expanded gsc expression domain of mutants (animal views). In
addition to the embryos with the stainings shown, 15 of 43 embryos showed
weak or no gsc expression, indicating ventralization. Dorsal to right.

endogenous BMP signaling pathway. However, split top also
functions in a distinct process regulating epiboly progression and
preventing early lysis, which is independent of BMP signaling.

Convergence and extension are altered in split top mutants
split top mutant embryos displayed altered overall morphology
suggestive of defects in convergence and extension. Therefore,
convergence and extension were assessed by in situ hybridization of
the T-box genes brachyury (also known as tb) and tbx16. In wild-
type embryos at bud stage, brachyury is expressed in the notochord
and tailbud (Schulte-Merker et al., 1992), whereas thx16 is restricted
from the notochord and expressed in the tailbud, adaxial cells and
paraxial mesoderm (Griffin et al., 1998; Fig. SA,B). In split top
mutant embryos, brachyury expression in the dorsal midline was
broader laterally and reduced along the anterior-posterior axis,
suggesting that cell migration to the midline and extension along the
anterior-posterior axis was impaired in split top embryos (Fig. 5SA).
Similarly, thx16 expression was restricted from a larger mediolateral
region of mutant embryos, consistent with a laterally expanded
midline (Fig. 5B). Additionally, the entire tbx16 expression domain,
including the prechordal plate, was shortened along the anterior-
posterior axis (Fig. 5B), which is a hallmark of impaired
convergence and extension. Finally, expression of the neural
markers pax2.1 (also known as pax2a) and krox20 (also known as
egr2a) and the somitic marker myoD (also known as myod1), which
were expanded ventrolaterally as a result of dorsalization, were also
shortened along the anterior-posterior axis, suggesting defects in
convergence and extension (Fig. 5C,D). Taken together, these
results suggest that convergence and extension is altered in split top
mutants.

Yolk cell microtubules and actin disrupted

Several features of split top mutant embryos indicate that epiboly
is mis-regulated, including the developmental delay during
gastrulation, the lysis phenotype and the split-yolk phenotype
(Fig. 1). As microtubules and actin are required for epiboly
progression (Cheng et al., 2004; Lepage and Bruce, 2010; Solnica-
Krezel and Driever, 1994; Strahle and Jesuthasan, 1993), we
hypothesized that these YCL cytoskeletal components may be
defective in split top mutants. In wild-type blastula embryos, the
microtubule network covered the yolk cell in a mesh-like pattern,
which was maintained throughout gastrulation (Fig. 6A). By
contrast, split top mutants displayed regions lacking microtubules
in the YCL as early as 30% epiboly (Fig. 6A). During gastrulation,
the regions devoid of microtubules increased in size and sometimes
encompassed nearly the entire YCL. Bright-field images revealed
that even where there was little to no YCL microtubules, the
embryos were intact, albeit exhibiting an irregular vegetal yolk
appearance (Fig. 6A). We found that the YCL actin cytoskeleton
was similarly disrupted beginning at mid-blastula stages (Fig. 6B).
Gaps in the actin network appeared progressively larger through
gastrulation stages in split top mutants (Fig. 6B). In both
microtubules and actin, patches devoid of these networks were
associated with intervening regions of increased density, suggesting
displacement and bunching of the cytoskeleton. These changes in
the YCL cytoskeleton probably underlie at least some of the epiboly
defects observed in split top mutants.

EVL defects

The EVL attaches to the YSL through tight junctions and adhesion
to the underlying deep cells mediates their progression through
epiboly (Lepage and Bruce, 2010). To investigate whether the EVL
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was compromised, we stained for actin, which prominently labels embryos (Fig. 6B,C). At 75% epiboly, high-magnification confocal
the EVL cell borders. We found that the EVL cells were distinctly —images revealed a larger and more elongated EVL cell shape
larger in the mid-gastrula stage mutant compared with wild-type = phenotype (Fig. 6C). We found that EVL mutant cells were about
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expansion of the midline (probably combined with increased midline
mesoderm tissue) and reduced extension in split top mutants. Additionally,
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by T-bars in wild-type (black or white) and split top (red) mutants. The brackets
indicate the distance from the anterior-most point of the embryo to the neural
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20-30 um larger than wild-type cells in both their animal-vegetal
and dorsoventral axial dimensions. EVL cell number was
significantly (P<0.0001) reduced about 1.8-fold in split top
mutants (Fig. 6C). The reduction in cell number could be caused
by decreased EVL cell proliferation or EVL cell loss, with a
concomitant expansion of EVL cell size to compensate for the
deficiency. Such compensation through EVL cell size alterations
has been described previously (Sonal et al., 2014; Xiong et al.,
2014). The cause of the reduced EVL cell number might reflect
other deficiencies of the EVL, which could also contribute to the
morphogenesis defects observed in these mutants.

Molecular nature of the split top gene

To identify the split top mutant gene, we mapped the mutation to a
chromosomal position through bulk segregant analysis of simple
sequence length polymorphism (SSLP) markers in genomic DNA
pooled from mutant versus wild-type females (Pelegri and Mullins,
2011). Following a genome-wide scan of SSLPs, we found linkage
of the split top mutation to marker z11341 on chromosome 17.
Subsequent fine chromosomal mapping analysis of recombinant
mutant and wild-type females (~300 meioses) determined that the
mutant gene resided in a 7.9 Mb region between SSLP markers
722279 and z6561 (Fig. 7A). From the Sanger Centre Zv9 genome
sequence, we found that this interval contains more than 120 genes
and several gaps. Rather than narrow the region further, we used
RNA-seq analysis to identify transcripts within our region of interest
that were differentially expressed between wild-type and split top
mutant embryos (Hill et al., 2013; Miller et al., 2013). We isolated
RNA from embryos at the 128- to 256-cell stage, prior to the onset
of large-scale zygotic transcription at the 512-cell stage, to enrich
for maternal transcripts.

For RNA-seq analysis, cDNA libraries from wild-type and
mutant embryos were barcoded and run in a single lane on the
Illumina Hi-Seq 2000 platform. The resultant data were sorted and
analyzed using the RNA Mapper analysis package, which analyzes
transcripts for missense, nonsense and splicing mutations, and
nonsense-mediated decay (Miller et al., 2013). The analysis
package also assesses differences in gene expression,
transcriptional start sites, output by promoter and differential
isoform expression. Within our interval, there was a single gene,
cathepsin Ba (ctsba), that was differentially expressed in the
mutants versus the wild-type. Ctsba (GenBank accession number
BC056688; OMIM 116810) is a lysosomal cysteine-type
endopeptidase. The ctsba gene contains 10 exons, which encode
at least two mRNA isoforms. In split top mutants, ctsha gene
expression, differential isoform expression and differential coding
sequence output by promoter and transcriptional start site were each
decreased ~4600-fold or more (Table 1). Notably, there were few
ctsba transcripts in the mutant sample and a number of exons had
minimal or no coverage (Fig. S1). From the RNA-seq analysis and
sequencing of mutant ctsha cDNA, we did not identify any
nonsense, insertion or deletion mutations in split fop mutants,
suggesting that a regulatory component such as a promoter or
enhancer is disrupted.

We next examined expression of ctsha in blastula and early
gastrula embryos. In wild-type embryos, ctsba was expressed in the
blastoderm cells and in the YSL (Fig. 7B). Consistent with the
RNA-seq results, ctsba expression was strongly reduced in split top
mutant embryos at mid-blastula stages. However, by early gastrula
stages, ctsba zygotic expression was similar in mutant and wild-type
embryos (Fig. 7B), suggesting that zygotic ctsha expression is
insufficient to suppress the maternal deficiency. To determine
whether there is a zygotic contribution to the split top mutant
phenotype, mutant females were crossed to heterozygous split top
mutant males and the resulting embryos scored for phenotype
strength and then genotyped. Consistent with the split fop gene
functioning maternally, there was no relationship between the
phenotype and the genotype of the embryo with respect to the
strongest dorsalization classification (Fig. 7B). Although the weak
C1-C2 dorsalized phenotype was rare, these embryos were
disproportionately heterozygotes, which might reflect zygotic
ctsba rescue.

To determine definitively if ctsba is the gene defective in split top
mutants, we tested whether injection of wild-type ctsha mRNA
could rescue the mutant phenotype. Injection of ctsba had little to no
effect on wild-type embryos but rescued 72% of split top mutant
embryos to wild-type (Fig. 7C,D). Importantly, ctsba mRNA was
sufficient to rescue the lysis phenotypes from 67% in uninjected
embryos to 13% in injected embryos. We also found that ctsba
mRNA injection could rescue the YCL actin cytoskeletal defect in a
third of split top mutant embryos (Fig. 7F). Taken together, these
experiments show that ctsba is the gene that is deficient in split top
mutants. However, it is possible that a closely linked gene to ctsba
that regulates its expression is defective. In any case, we determined
that the defects of split top mutants are caused by deficiency of
Ctsba.

Considering the YCL defects in split top mutants, it is possible
that Ctsba itself functions exclusively within the yolk cell, as we
found for the maternal-effect mutant betty boop (also known as
mapkapk2a) (Holloway et al., 2009). To test whether Ctsba
functions solely in the yolk cell, we injected split top embryos
with ctsha mRNA either at the one-cell stage or in the yolk at a
mid-blastula stage (high to dome stage). Although injection at the
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one-cell stage robustly rescued the mutants, yolk cell injection at
mid-blastula stages did not (Fig. 7E). The lack of rescue does not
exclude a function for Ctsba in the yolk cell, but it does indicate that
it is not sufficient.

Ctsba endopeptidase function in patterning and
morphogenesis

We next investigated if Ctsba functions in development via its
catalytic endopeptidase. We treated wild-type embryos with the
cysteine cathepsin inhibitor E-64, which alkylates the active site
cysteine of cathepsins, blocking proteolytic function (Sekiguchi
et al., 2002; Turk et al, 2012). We found that incubating
dechorionated embryos in E-64 caused extensive cell death or had
little phenotypic effect. However, injecting E-64 at the one-cell
stage remarkably dorsalized some wild-type embryos (Fig. 7G).
Many embryos lysed prior to 1 dpf, whereas others exhibited
considerable cell death and appeared dorsalized. To investigate the
dorsalization further, we examined the expression of chordin during
gastrulation. We found that chordin was expanded into ventral
regions in most E-64-treated embryos (Fig. 7G), confirming the
1 dpf dorsalized phenotype.

To test specifically if the catalytic activity of Ctsba is required in
dorsoventral patterning and morphogenesis, we mutated the active
site cysteine of Ctsba to an alanine (Turk et al., 2012) (Fig. 7H). We
then injected the presumptive catalytically dead ctsha mRNA into
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split top mutant embryos. We found in multiple experiments that the
catalytically deficient Ctsba failed to rescue split fop mutants
(Fig. 7H). When injected into wild-type embryos, however, it
caused 20-40% dorsalization (Fig. 7H), indicating that the mutant
protein is produced and probably behaves like a dominant-negative.

DISCUSSION

Ctsha endopeptidase function in development

Maternal components have been postulated to play significant roles
in early vertebrate embryonic development and axis formation,
although few are known or studied. We have identified a new
maternal factor, Ctsba, as a crucial component of dorsoventral axis
formation. Ctsba is a lysosomal endopeptidase belonging to the
Papain superfamily, which contains 19 cathespin genes. Prior to
this study, no role was known for Ctsba in axial patterning
or morphogenesis. These mutants display a unique split-
yolk phenotype resulting from combined morphogenesis and
dorsalization defects.

Cathepsins are synthesized as precursor proteins called zymogens
and many function in the lysosome, where the protease function
becomes activated at low pH (Fonovi¢ and Turk, 2014; Mohamed
and Sloane, 2006; Turk et al., 2000). Ctsba is a cysteine type
cathepsin and the nucleophile is the sulphydryl group of a cysteine
residue, which forms an acyl intermediate. Requirement of this
cysteine residue for rescue activity indicates that the proteolytic
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Table 1. RNA-seq analysis of split top mutant cleavage stage embryos

Transcript effect Gene Locus Wild type split top Log, fold change Fold decrease
Differential coding sequence output by promoter  ctsba 17:32828688-32841875 285.534 0.0568 -12.294 ~5000
Differentially expressed genes hspa12a 17:21053106-21087796 15.5827 1.6854 -3.2088 ~9.2

ctsba 17:32828688-32841875 303.036 0.0630 -12.232 ~4800
Isoform expression change ctsha 17:32828688-32841875 285.534 0.0568 —-12.294 ~5000
Differential coding sequence output by hspai2a 17:21053106-21087796 15.5827 1.6854 —3.2088 ~9.2

transcriptional start site
ctsha 17:32828688-32841875 289.994 0.0630 -12.169 ~4600

activity of Ctsba is essential to its functions in dorsoventral
patterning and morphogenesis (Fig. 7H). Ctsba is expressed
throughout embryogenesis and a role for Ctsba and a similar
protein, cathepsin La, as putative yolk processing enzymes has been
suggested (Carnevali et al., 1999, 2006; Kwon et al., 2001; Raldua
et al., 2006; Tingaud-Sequeira and Cerda, 2007). Zebrafish mutants
with defective processing of the major yolk proteins exhibit opaque
egg phenotypes (Dosch et al., 2004). Thus, either residual Ctsba is
sufficient or it is not essential as a yolk processing enzyme in
zebrafish, because the yolk of split top mutant embryos appears
similar to the wild type.

Numerous studies have shown that Ctsb and other cathepsins can
function in degrading the extracellular matrix (ECM) in association
with multiple processes, including endothelial tube formation
(Cavallo-Medved et al., 2009), tumor cell progression (Bengsch
et al., 2013; Buck et al., 1992; Koblinski et al., 2002; Porter et al.,
2013; Turk et al., 2000; Yan and Sloane, 2003) and rheumatoid
arthritis (Hashimoto et al., 2001). The ECM components fibronectin
and laminin are first evident at 65% epiboly in zebrafish embryos
(Latimer and Jessen, 2010), which is a stage after we first observed
defects in split top mutants, suggesting that ECM degradation is not
an essential maternal function of Ctsba. However, an increase in
ECM fibronectin fibrils is observed in the zebrafish convergent-
extension mutants glypican 4 (gpc4) and MZ frizzled 7 (fz7a) at the
end of gastrulation, suggesting that mechanisms to reduce ECM
levels normally act in the embryo (Dohn et al., 2013). It is possible
that Ctsba plays such a role during gastrulation and that excess ECM
in split top mutants affects embryonic patterning and/or
morphogenesis.

However, Ctsba might act by distinct mechanisms, other than
ECM degradation. Interestingly, Ctsb is also known to function in
cleaving amyloid-B peptides that cause plaques in Alzheimer’s
disease (Mueller-Steiner et al., 2006). A null mutant of czsb in the
mouse is homozygous viable but exhibits significantly increased
amyloid plaque formation in a mouse model for Alzheimer’s
disease. In addition, cathepsins have been found in the nucleus and
can proteolytically cleave histones to modulate chromatin and
regulate ES cell differentiation (Bulynko et al., 2006; Duncan et al.,
2008), as well as regulate the CUX1 transcription factor (Ceru et al.,
2010; Goulet et al., 2004). Thus, Ctsba could modulate, through
proteolytic cleavage, the activity of transcription factors, chromatin
or other factors acting in dorsoventral patterning or morphogenesis.
Future studies are required to decipher the substrates of Ctsba in
regulating these processes.

A mouse double mutant for cathepsin b and cathepsin [ exhibits
severe neurodegeneration, which causes death a few weeks after
birth (Felbor et al., 2002). In this model, as well as in cell culture
models, an increase in lysosomes is observed together with a
displacement or absence of microtubules (Bednarski et al., 1997,
Felbor et al., 2002). We also observed patches of increasing size
in the YCL devoid of microtubules during epiboly, with a
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corresponding increased microtubule density in intervening
regions, suggesting displacement and bunching of microtubules
(Fig. 6A). The cause of the microtubule displacement in the
zebrafish and mouse mutants is not known and will require further
study.

Ctsha, the YCL cytoskeleton and EVL during epiboly

Dynamic regulation of actin and microtubules in the YCL is
required for epiboly progression. Moreover, both stabilization and
destabilization of actin or microtubules results in disorganized
arrays with voids, similar to the phenotypes of split top mutant
embryos (Fig. 6A,B; Fontenille et al., 2014; Jesuthasan and Strihle,
1997; Solnica-Krezel and Driever, 1994). Interestingly, MZ
zebrafish mutants of the atypical cadherin Dachsous 1b (Dchs1b)
display similar voids in the YCL actin and microtubule cytoskeleton
and slow epiboly progression (Li-Villarreal et al., 2015). A similar
defect is observed in MZ pou5f3 zebrafish mutant embryos, where a
loss of the YCL itself is associated with the microtubule gaps
(Lachnit et al., 2008). We also observe abnormalities of the yolk
cortex (e.g. Fig. 6A, 75% epiboly), which might reflect a loss of the
YCL. However, whether the microtubule voids are a cause or effect
of YCL loss in MZ pou5f3 mutants is unclear. MZ pou5f3 mutants
also exhibit a defect in E-cadherin trafficking, which contributes to
the slow directed migration of deep cells during epiboly in these
mutants (Song et al., 2013). Thus, Ctsba might also function in
multiple aspects of epiboly regulation like Pou5f3.

The non-dorsalized lysis phenotypes of split top mutants could be
caused by the YCL cytoskeleton, EVL or other defects. In one class
of split top mutants, the margin of the EVL and deep cells rapidly
retracts in an animal-ward direction (Fig. 1C, Movie 2). Although
MZ pou5f3 and MZ dchs b mutants with similar YCL cytoskeletal
defects do not exhibit this lysis phenotype, the cytoskeletal defects
are more penetrant and possibly more severe in split fop mutant
embryos (100%) than these other mutants, which could thus cause
the marginal retraction and lysis. Alternatively, the larger size and
reduced number of EVL cells might compromise the integrity of the
EVL and cause the marginal retraction. With the increasing surface
area of the EVL as epiboly proceeds, the EVL cells in split top
mutants enlarge their surface to compensate for their reduced cell
number. It is possible that as epiboly proceeds, the EVL cells cannot
enlarge any further and detach from the yolk cell. Because the deep
cells adhere to the EVL, both would retract, ultimately causing lysis.
Ctsba might function within the yolk cell to maintain the YCL and/
or facilitate reorganization of the cytoskeleton through its
proteolytic cleavage activity to allow epiboly progression.
Although ctsha mRNA injection into the yolk cell at sphere stage
did not rescue the lysis defect, insufficient Ctsba might be produced
by injection at this stage for it to function. The incomplete
penetrance of this defect could be due to hypomorphic loss of ctsha,
with embryos that receive higher levels of the protein developing
past the early lysis stages. However, additional proteinases could
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also partially compensate for the loss of Ctsba during early
embryogenesis.

Ctsba upstream of BMP signaling in patterning
split top mutant embryos, like BMP signaling pathway component
mutants, display normal BMP ligand gene induction but subsequent
loss of expression due to a gastrula stage transcriptional
autoregulatory feedback mechanism (Nguyen et al., 1998; Schmid
et al.,, 2000; Schulte-Merker et al., 1997). Thus, loss of bmp2b
expression is consistent with a loss of BMP signaling in the mutants.
Rescue of the dorsalization by forced expression of bmp2b or
bmp7a (Fig. 4D-G) shows that ctsha mutants fail to initiate or
maintain BMP signaling, although BMP gene expression is induced
normally. Rescue of dorsalization by knockdown of the BMP
antagonists (Fig. 4H,I) demonstrates that the endogenous BMP
signaling pathway is intact and functional in ctsha mutants and
indicates that Ctsba does not regulate a BMP pathway component.
BMP signaling was unable to rescue the early lysis phenotypes
of ctsba mutants. This partial phenotypic rescue suggests
BMP-dependent and -independent functions of Ctsba during
development. The BMP-dependent function is a requirement for
Ctsba upstream of BMP signaling to pattern the dorsoventral axis.
Ctsba might function upstream of BMP signaling with Pou513
(Reim and Brand, 2006), Ints6 (Kapp et al., 2013), Runx2b (Flores
et al,, 2008) and/or Lnx2b (Ro and Dawid, 2009), possibly
regulating the zygotic expression or function of Wnt8 or its
mediators, the ventrolateral transcriptional repressors Vox, Vent
and/or Ved (Gawantka et al., 1995; Imai et al., 2001; Kawahara
et al., 2000; Ramel and Lekven, 2004; Shimizu et al., 2002). As in
split top, all of these factors when deficient cause an expansion of
dorsal-midline markers, such as gsc, which is not observed in BMP
mutants (Khokha et al., 2005; Mullins et al., 1996). However,
deficiency of Pou5f3 and Ints6 also causes defects in epiboly, as
seen in split top mutants. Pou5f3 and Runx2b are transcription
factors, and Ints6 is a component of the Integrator complex that acts
in 3’ end processing of RNA and in other processes (Baillat et al.,
2005; Lai et al., 2015). Interestingly, Lnx2b is a ubiquitin ligase that
binds and ubiquitinates Bozozok, regulating its stability (Ro and
Dawid, 2009). Bozozok is a direct target of maternal Wnt signaling
that functions in dorsal organizer formation (Leung et al., 2003; Ryu
et al., 2001). Future studies are required to determine whether Ctsba
functions with Lnx2b in the proteolysis of Bozozok or with some of
these other factors, to block the dorsal midline mesoderm from
expanding ventrolaterally.

BMP signaling and convergent extension

Analysis of tissue-specific markers in split fop mutants suggests that
dorsal convergence and extension are impaired (Fig. 5). Ctsba might
affect convergent extension indirectly through its effect on BMP
signaling. The BMP signaling gradient that forms during
gastrulation (Hashiguchi and Mullins, 2013; Tucker et al., 2008)
also includes instructional cues for directed cell movements (Myers
et al., 2002a,b). High levels of BMP signaling ventrally cause cells
to migrate vegetally, intermediate levels laterally lead to
convergence and extension movements, and little to no BMP
signaling dorsally allows extension movements without
convergence. BMP signaling regulates convergence and extension
of mediolateral cells by negatively regulating Ca>'/cadherin-
dependent cell-cell adhesion and inhibiting the ability of cells to
respond to Wnt signaling, independent of its role in cell fate
specification (Myers et al., 2002a; von der Hardt et al., 2007).
Because BMP misexpression in split fop mutants also rescued the

convergent-extension defect (Fig. 4D), it is likely that loss of Ctsba
disrupts the BMP signaling gradient that is required for this process.

Conclusions

We identified a novel role for maternal Ctsba in dorsoventral
patterning and morphogenesis. Ctsba is required in distinct
developmental processes to promote epiboly progression through
modulation of the YCL cytoskeleton and promotes dorsoventral
axial patterning upstream of BMP signaling. The role for Ctsba in
morphogenesis is complex because Ctsba has BMP-dependent
functions in DV patterning and probably also convergent-extension
cell movements, but it also has BMP-independent functions
necessary for the cytoskeletal organization underlying epiboly.
Ctsba might modulate the ECM, regulate Ints6 or transcription
factors such as Pou5f3, which have similar patterning and epiboly
defects, or modulate other components to regulate -early
morphogenesis and epiboly. Future studies are needed to identify
the molecular mechanisms through which Ctsba regulates these
developmental processes.

MATERIALS AND METHODS

Zebrafish strains and staging

The split top”>**¥™ allele was generated in a recessive maternal-effect ENU
mutagenesis screen (E.W.A., F.L.M. and M.C.M., unpublished results). The
Tupfel long fin (TL) zebrafish (Danio rerio) strain was used for wild-type
control embryos. For most experiments, TL males were crossed to split
top??**" mutant females, for all other experiments sibling fish were
crossed. Fish were 4 months to ~1.5 years old. Embryos are stage-matched
unless otherwise stated. All animal studies were approved by the University
of Pennsylvania IACUC committee.

Time-lapse imaging

Live embryos were dechorionated and embedded in 0.3% low melt agarose
in E3 medium. Images were taken at 15 min intervals with QCapture Suite
Plus software using a QImaging (Q33900) camera, and movies were made
using ImageJ (NIH).

In situ hybridization

Embryos were processed for in situ hybridization as described (Kapp et al.,
2013). The following probes were used: chordin (Miller-Bertoglio et al.,
1997), tolloid (Blader et al., 1997), gata2 (Detrich et al., 1995), brachyury
(Schulte-Merker et al., 1992), thx16 (Griffin et al., 1998), pax2.1 (Krauss
et al., 1992), krox20 (Oxtoby and Jowett, 1993), myoD (Weinberg et al.,
1996), bozozok (Yamanaka et al., 1998), gsc (Schulte-Merker et al., 1994),
squint (Erter et al., 1998), bmp2b (Nguyen et al., 1998) and ctsba (Thisse
and Thisse, 2004).

Injection experiments

HA-bmp2b, HA-bmp7a (Little and Mullins, 2009) and ctsba mRNA was
made as described (Miller-Bertoglio et al., 1997) and 0.5 pg, 50 pg and
740 pg, respectively, was injected into the yolk of one-cell stage embryos.
Morpholinos directed against chordin (1 ng/nl), noggin (2 ng/nl) and fstl1b
(5 ng/nl) were co-injected in a 1.5 nl volume into the yolk of one-cell
embryos, as described (Dal-Pra et al., 2006). Mutant embryos were
generated from split top”?***" homozygous mutant females crossed to wild-
type TL males.

The active site cysteine of ctsha was mutated to alanine by an overlap
extension PCR method and cloned into pCS2+. The full-length mutated
ctsha was generated using the primer sets: ctsba-EcoRI-N-terminus-F,
5'-CCATCGATTCGAATTCATGTGGCGGCTGGCTTCC-3’, ctsba-N-
terminus-R, 5'-AGCGTAATCTGGCACATCGTATGGGTACATTGGGA-
TTCCAGCCACG-3', ctsba-C-terminus-F, 5-CTCCAAATGCCCAGGC-
TGAACCGCAAGAA-3' and ctsba-Xhol-C-terminus-R, 5'-GTTCTAGA-
GGCTCGAGTTACATTGGGATTCCAGGC-3’. The selective cysteine
protease inhibitor E-64 (Sigma) was injected at 100-150 pg and 200-
250 pg in 0.1 M KCl into one-cell stage embryos.
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Immunohistochemistry

Whole-mount microtubule staining of embryos was performed following
standard procedures (Topezewski and Solnica-Krezel, 1999). A monoclonal
anti-o-tubulin (Sigma, clone DM1A, T6199; 1:1000) primary antibody and
Molecular Probes Alexa Fluor 488 (1:500) secondary antibody were used to
visualize microtubules. Images were taken on a Zeiss LSM 710 confocal
microscope.

To visualize actin filaments, embryos were fixed for 1 h in 3.7%
formaldehyde in actin stabilizing buffer (ASB: 10 mM EGTA, 10 mM
PIPES pH 7.3, 5 mM MgCl,, 900 mM KCl), dechorionated and then fixed
overnight. Embryos were then washed (3% for 5 min) in ASB and incubated
for 30 min in cold quenching buffer (150 mM glycine in ASB). The
embryos were then rinsed in cold ASB and blocked overnight in blocking
solution (1% fetal calf serum in ASB). Embryos were washed (4% for 5 min)
in ASB and incubated for 30 min in Alexa Fluor 568 Phalloidin (Molecular
Probes; 1:200) and DAPI (Molecular Probes; 1:1000) in the dark. Embryos
were then rinsed twice and washed (3% for 5 min) in the dark. Images were
taken on a Zeiss LSM 710 confocal microscope.

At 75% epiboly, wild-type and mutant EVL cells were counted in
a determined lateral region (DLR) of depthxheightxwidth of 100x
427.27x427.27 pm. Number of cells was plotted using DataGraph 3.0
(Visual Data Tools) and statistical analysis performed using a two-tailed
Student’s #-test in InStat 3.1 (GraphPad).

Positional cloning and RNA-seq

Bulk segregant analysis was performed with pooled wild-type or mutant
female DNA and screened with standard Z markers (Pelegri and Mullins,
2004). RNA for RNA-seq analysis was isolated from 128- to 256-cell stage
wild-type and mutant embryos using TruSeq [llumina RNA Preparation kit.
Standard RNA-seq analysis was performed usingl00 bp paired end
sequencing on the Illumina HiSeq 2000. RNA-seq data were analyzed
using RNA Mapper (Miller et al., 2013).
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Fig. S1. Comparison of ctsba exon reads in wild-type and split top mutant
embryos using the Integrated Genomic Viewer. In split top mutant embryos
ctsba transcript reads are greatly reduced relative to wild-type. In split top mutant
embryos, exons 1, 6, 7 are not covered by any transcripts while exons 2-5, 8-10
have minimal coverage (<4 transcripts per exon). Only a subset of the wild-type
ctsba reads are shown.
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Movie 1. Time-lapse imaging of wild-type zebrafish embryo. Wild-type embryo
development from blastula to somitogenesis stages.
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Movie 2. Time-lapse imaging of split top mutant embryo phenotypes. split top
mutant embryo highlighting the developmental delay, separation of the EVL and the
deep cells, and the lysis phenotype.
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Movie 3. Time-lapse imaging of split top mutant split-yolk phenotype. split top
mutant embryo highlighting the development of the split-yolk phenotype.
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Movie 4. Time-lapse imaging of split top mutant early lysis phenotype. split top
mutant embryo highlighting the development of the early lysis phenotype.
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