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ABSTRACT
Inducible loss of gene function experiments are necessary to uncover
mechanisms underlying development, physiology and disease.
However, current methods are complex, lack robustness and do not
work in multiple cell types. Here we address these limitations by
developing single-step optimized inducible gene knockdown or
knockout (sOPTiKD or sOPTiKO) platforms. These are based on
genetic engineering of human genomic safe harbors combined with
an improved tetracycline-inducible system and CRISPR/Cas9
technology. We exemplify the efficacy of these methods in human
pluripotent stem cells (hPSCs), and show that generation of
sOPTiKD/KO hPSCs is simple, rapid and allows tightly controlled
individual or multiplexed gene knockdown or knockout in hPSCs and
in awide variety of differentiated cells. Finally, we illustrate the general
applicability of this approach by investigating the function of
transcription factors (OCT4 and T), cell cycle regulators (cyclin D
family members) and epigenetic modifiers (DPY30). Overall,
sOPTiKD and sOPTiKO provide a unique opportunity for functional
analyses in multiple cell types relevant for the study of human
development.

KEY WORDS: Human pluripotent stem cells, shRNA, CRISPR/Cas9,
OCT4, POU5F1, T, brachyury, DPY30

INTRODUCTION
Loss-of-function experiments in human pluripotent stem cells
[hPSCs; comprising human embryonic stem cells (hESCs) or
human induced pluripotent stem cells (hiPSCs)] provide a unique
opportunity to study the mechanisms that regulate human
development, physiology and disease (Avior et al., 2016;
Pourquié et al., 2015; Zhu and Huangfu, 2013). However,

functional genomic applications of hPSCs are currently limited by
the lack of an easy and efficient method to conditionally manipulate
gene expression in both hPSCs and hPSC-derived cells. Indeed,
such a system is necessary both for the study of genes essential for
hPSC self-renewal and for functional analyses at specific stages of
differentiation.

Historically, the expression of inducible short hairpin RNAs
(shRNAs) has been the most popular method to trigger gene
knockdown in human cells. This has been achieved using a TET-
ON system, which relies on a modified RNA polymerase (Pol) III
promoter that is responsive to a tetracycline-sensitive repressor
protein (tetR) to induce shRNA expression by simple tetracycline
(TET) treatment (Lambeth and Smith, 2013). Nevertheless,
application of this TET-ON system in hPSCs has proved
challenging for two main reasons: (1) tight control of shRNA
expression is difficult to achieve, thereby resulting in uncontrolled
knockdown; (2) induction of shRNA rarely works in differentiated
derivatives. Indeed, very high and homogenous expression of both
the tetR and the inducible shRNA is required to obtain potent yet
controlled knockdown. However, transgene silencing is a recurring
problem in hPSCs (Ellis, 2005; Herbst et al., 2012; Yao et al., 2004),
and randomly integrated promoters are often subject to positional
effects that can strongly limit their activity (Zafarana et al., 2009).
Differentiation further increases the chances of silencing, as
transgenes can be located in regions where heterochromatin forms
following cell fate choices (Herbst et al., 2012; Raya et al., 2009).
As a consequence, inducible shRNA expression in both hPSCs and
a wide variety of their differentiated progenies has never been
reported.

More recently, CRISPR/Cas9-mediated gene knockout has
emerged as a powerful method to interrogate gene function
(Wright et al., 2016), and inducible manipulation of gene
expression in hPSCs using this approach has been reported
(Chen et al., 2015; González et al., 2014; Mandegar et al., 2016).
However, these methods are either very complex and time
consuming, as they involve multiple genome editing steps that
need to be individually tailored for each gene to be examined
(Chen et al., 2015), or are not widely applicable in multiple
differentiated cell types as they rely on inducible promoters that are
not stably and homogeneously expressed following hPSC
differentiation (González et al., 2014; Haenebalcke et al., 2013;
Mandegar et al., 2016; Ordovas et al., 2015). Overall, there are
currently no methods for inducible gene knockout in hPSCs that
fulfill all the criteria described above.

Here we describe novel platforms for single-step optimized
inducible gene knockdown or knockout (sOPTiKD or sOPTiKO)
that address all the limitations of current inducible shRNA or
CRISPR/Cas9 systems, thus providing powerful and scalableReceived 31 March 2016; Accepted 7 October 2016
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platforms that have the potential to greatly simplify the study of
human gene function.

RESULTS
Validation of the ROSA26 and AAVS1 loci as genomic safe
harbors in hPSCs and their differentiated derivatives
We aimed to develop optimal conditional loss-of-function platforms
using inducible shRNAs or guide RNAs (gRNAs) for CRISPR/
Cas9. We reasoned that inserting each element of the TET-ON
system into a different genomic safe harbor (GSH; Sadelain et al.,
2012) would maximize expression in hPSCs and their differentiated
progenies while avoiding potential promoter interference (Shearwin
et al., 2005). The AAVS1 and ROSA26 loci appeared particularly
suitable for this purpose as these GSHs have been suggested to

allow strong expression of various transgenes in hPSCs, including
constitutively expressed shRNAs (DeKelver et al., 2010;
Hockemeyer et al., 2009; Irion et al., 2007). We first improved the
targeting efficiency for both GSHs by developing a CRISPR/
Cas9n-based gene-trap strategy to target the human ROSA26 locus
(Fig. 1A,B, Fig. S1A) and by refining an existing zinc-finger
nuclease (ZFN)-based targeting strategy for the AAVS1 locus
(Hockemeyer et al., 2009) (Fig. 1A,B). In both cases, hPSC
targeting occurred with very high efficiency (59-100%; Table S1),
while neither ROSA26 nor AAVS1 modifications resulted in
chromosomal abnormalities (data not shown).

We then sought to identify the most efficient promoter to drive
constitutive transgene expression from GSHs. We tested the ability of
different promoter configurations to express an enhanced green
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Fig. 1. Validation of the ROSA26 and AAVS1 loci as bona fide genomic safe harbors. (A) Experimental approach behind the generation of genomic safe
harbor (GSH) EGFP reporter hPSCs to test GSH expression during differentiation. Neurons, oligodendrocytes and astrocytes were obtained in bulk cultures
containing a mixture of these cell lineages, whereas all other cell types were individually generated. (B) ROSA26 and AAVS1 EGFP reporter transgenic alleles.
R26-prom, ROSA26 locus promoter; AAV-prom, AAVS1 locus promoter; 5′-HAR/3′-HAR, upstream/downstream homology arm; SA, splice acceptor; T2A, self-
cleaving T2A peptide; Neo, neomycin resistance; Puro, puromycin resistance; pA, polyadenylation signal; CAG, CAG promoter. (C) Summary of EGFP flow
cytometry quantification experiments in the indicated cell types generated from GSH EGFP reporter hPSCs (abbreviations indicate the lineages described in A).
The percentage of EGFP-positive cells and the EGFP median fluorescence intensity (MFI) are reported. Wild-type hESCs (H9) were used as negative controls,
and results are from two independent cultures per lineage. (D) Representative immunofluorescent stainings for lineage-specific markers in three of themature cell
types analyzed. EGFP fluorescence from the reporter lines is in green, and DAPI (blue) shows nuclear staining. Scale bars: 200 μm.

4406

STEM CELLS AND REGENERATION Development (2016) 143, 4405-4418 doi:10.1242/dev.138081

D
E
V
E
LO

P
M

E
N
T

http://dev.biologists.org/lookup/doi/10.1242/dev.138081.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.138081.supplemental


fluorescent protein (EGFP) transgene from the ROSA26 locus in
hESCs (Fig. S1A,B). The highest and most homogenous EGFP
expression (100%) was achieved with the artificial CAG promoter
(Fig. S1C-E), which was stronger by an order of magnitude than the
endogenousROSA26promoter (Irion et al., 2007). Interestingly, and in
contrast to previous reports (Ramachandra et al., 2011), we observed
that the EF1α (EEF1A1) promoter was strongly silenced, as shown by
mosaic EGFP expression (Fig. S1C-E). Similar results were obtained
after EGFP targeting into the AAVS1 locus (data not shown), thereby
preventing the use of this promoter in subsequent experiments.
To further evaluate the robustness of theCAGpromoter activity, we

analyzed in detail hESCswith heterozygous or homozygous targeting
of a CAG-EGFP transgene in the ROSA26 orAAVS1 loci (Fig. 1A,B).
For both GSHs EGFP was homogeneously expressed at high and
comparable levels for more than 30 passages (Fig. S1F), and similar
results were obtained after differentiation of hESCs into the three
primary germ layers (Fig. S1G-M). Importantly, targeting did not
interferewith pluripotency or differentiation, as shown by appropriate
expression of lineage markers (Fig. S1N,O).We further differentiated
these EGFP-hESC lines into fifteen different cell types (Fig. 1A), and
both GSHs allowed homogeneous and strong EGFP expression in all
cell types analyzed (Fig. 1C,D, Fig. S2). Overall, these results validate
the ROSA26 and AAVS1 loci as suitable for robust transgene
expression in both hPSCs and their derivatives.

Development of an optimized inducible knockdown platform
in hPSCs
Having demonstrated the suitability of the ROSA26 and AAVS1 loci
for transgene expression, we developed a TET-ON inducible
knockdown system based on dual GSH targeting (Fig. 2A,
Fig. S3A). To simplify knockdown evaluation and method
optimization we generated hESC lines in which an EGFP
transgene could be silenced in an inducible fashion (Fig. 2B). To
achieve this we targeted: (1) a CAG-tetR expression cassette into the
ROSA26 locus; and (2) a CAG-EGFP transgene plus an inducible
EGFP shRNA cassette into the AAVS1 locus (Fig. 2A,B).
Interestingly, we observed a strong and homogeneous decrease in
EGFP fluorescence following tetracycline treatment for 5 days
(>95%; Fig. 2C), thereby confirming efficient knockdown.
However, a decrease in EGFP expression was also noticed in the
absence of tetracycline (Fig. 2C), suggesting a significant leakiness
in the expression of the shRNA and thus confirming previous
reports (Henriksen et al., 2007).
We then hypothesized that this limitation could be bypassed by

expressing higher levels of the tetR protein to more strongly repress
shRNA expression in the absence of tetracycline. We performed a
multi-parameter RNA and codon optimization of the bacterial tetR
cDNA (Fath et al., 2011) and used the resulting codon-optimized
tetR (OPTtetR) to generate new EGFP inducible knockdown hESC
lines (Fig. 2B). This modification achieved a tenfold increase in tetR
expression compared with the standard sequence (STDtetR;
Fig. 2D). Furthermore, homozygous expression of OPTtetR was
sufficient to completely prevent shRNA leakiness while fully
preserving efficient knockdown induction (Fig. 2C, Fig. S3B). Of
note, the inducible knockdown was rapid, reversible and dose
responsive (Fig. 2E,F, Fig. S3C-E). Finally, inducible hESCs
displayed a normal karyotype (data not shown), demonstrating that
the genome engineering necessary to create these lines did not alter
their genetic stability.
Based on these encouraging results, we further validated this

method in the context of endogenous genes by generating hESCs
carrying inducible shRNAs against OCT4 (POU5F1) or B2M

(Fig. S3F). Remarkably, all the sublines analyzed (six for each gene)
showed robust inducible knockdown with no significant shRNA
leakiness (Fig. S3G,H). Tetracycline titration identified optimal
concentrations to partially or fully knockdown OCT4 (Fig. 2G,
Fig. S3I,J). As expected, a strong decrease in OCT4 specifically
resulted in loss of pluripotency and induction of neuroectoderm and
definitive endoderm markers (Fig. 2H, Fig. S3I,J) (Thomson et al.,
2011; Wang et al., 2012). Similar results were obtained with 20
additional OCT4 inducible knockdown hESC sublines, confirming
the robustness and reproducibility of this method (Fig. S3K).
Importantly, the generation of hESCs with strong and tightly
regulated knockdown was so efficient that phenotypic analyses
could be performed immediately after antibiotic selection on a
mixed population of cells, thereby entirely bypassing the need to
pick individual colonies for clonal isolation (Fig. S3K).

Overall, these results establish that dual targeting of GSHs with
an optimized inducible knockdown system is a powerful method to
control gene expression in hPSCs. This approach is hereafter named
optimized inducible knockdown, or OPTiKD (Fig. 2A, Fig. S3F).

Single-step generation of optimized inducible knockdown
hPSCs
We then sought to further improve the OPTiKD system by
developing an all-in-one targeting approach that would facilitate
the rapid and scalable generation of inducible knockdown hPSCs.
We constructed a single AAVS1 targeting vector to carry both the
inducible shRNA and the CAG-tetR expression cassette (Fig. 3A),
and validated this approach by knocking down the expression of an
EGFP transgene targeted in the ROSA26 locus (Fig. S3L).
Remarkably, this method shared key properties with OPTiKD,
such as both the absence of shRNA leakiness (Fig. S3L,M) and
rapid, reversible and dose-responsive inducible knockdown
(Fig. S3N,O). Thus, this all-in-one strategy, which we named
single-step optimized inducible knockdown, or sOPTiKD (Fig. 3A),
is as efficient as our original dual targeting approach.

To further demonstrate the versatility of sOPTiKD, we generated
both hESC and hiPSC lines carrying an inducible shRNA against
OCT4 or B2M. Generation of sOPTiKD hPSCs following
lipofection was rapid (2 weeks) and extremely efficient, as all
the sublines generated showed robust inducible knockdown
(Fig. 3B,C). qPCR analyses confirmed that knockdown of OCT4
using sOPTiKD induced differentiation of both hESCs and hiPSCs,
whereas knockdown of B2M had no effect (Fig. 3D). Overall, these
experiments show that sOPTiKD provides an efficient system to
knock down gene expression that can be easily applied to a large
number of hPSC lines.

Finally, we explored whether sOPTiKD could enable
simultaneous knockdown of multiple genes (Fig. 3E). We focused
on the cyclin D family (CCND1, CCND2 and CCND3). These cell
cycle regulators are functionally redundant, and thus their study in
hESCs has previously required laborious multiple rounds of stable
shRNA transfection in order to achieve double or triple knockdown
(Pauklin and Vallier, 2013). We developed a method to easily
combine multiple shRNAs into the same targeting vector using a
one-step Gibson assembly, and generated sOPTiKD plasmids
carrying one, two or three shRNAs against cyclin D genes or
scrambled control shRNAs (Fig. 3E). These vectors were tested in
hESCs without isolation of clonal sublines, and inducible
knockdown proved highly efficient and comparable with single,
double and triple shRNA constructs (Fig. 3F). Interestingly,
prolonged knockdown of one or two cyclin Ds was compatible
with hESC self-renewal (Fig. 3G), whereas triple knockdown
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resulted in definitive endoderm differentiation (Fig. 3G,H), as
previously reported (Pauklin and Vallier, 2013; Pauklin et al.,
2016). Collectively, these results demonstrate that sOPTiKD can be
used to simultaneously decrease the expression of several genes
with redundant functions.

Validation of the optimized inducible knockdown platforms
in differentiated progenies of hPSCs
The capacity to knock down genes in a variety of differentiated cells
would represent a significant advance over existing systems for
inducible gene knockdown. To thoroughly test this possibility, we

analyzed the efficacy of the OPTiKD and sOPTiKD platforms to
knock down an EGFP transgene in hPSCs differentiated into the
three germ layers, as well as in a panel of 13 fully differentiated cell
types (Fig. 1A). For both methods, qPCR analyses demonstrated
strong and inducible knockdown of EGFP transcripts in all lineages
tested (Fig. 4A). Microscopy observations confirmed a robust
decrease in EGFP protein expression (Fig. 4B), and flow cytometry
showed a decrease in EGFP fluorescence of more than 70% for most
lineages (Fig. S4A-G).

Interestingly, EGFP was less reduced in cell types with slower
proliferation rates (Fig. S4A). Since EGFP has an extended half-life
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of more than 24 h, protein loss upon transcriptional or post-
transcriptional inhibition relies heavily upon its gradual dilution
following cell division (Li, 1998). Considering the strong decrease
in EGFP mRNA, we concluded that residual EGFP fluorescence

was likely to be a consequence of the relatively short tetracycline
treatment performed to trigger knockdown (5 days). To test this,
we induced prolonged EGFP knockdown in postmitotic
cardiomyocytes, and we indeed observed a slow but constant
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decrease in protein expression for up to 20 days, at which point the
EGFP was decreased by more than 75% (Fig. S4H,I). To reinforce
these observations, we performed similar experiments using a
ROSA26-targeted EGFP reporter transgene fused to a
destabilization domain (EGFPd2; Li et al., 1998), which avoids
confounding effects due to the long half-life of standard EGFP (Fig.
S4J-M) (Wahlers et al., 2001). Remarkably, EGFPd2 inducible
knockdown in cardiomyocytes using the sOPTiKD method resulted
in >90% protein knockdown after 5 days of tetracycline treatment
(Fig. S4N,O). Considered together, these results establish that
OPTiKD and sOPTiKD allow efficient manipulation of gene
expression even after differentiation of hPSCs.

Inducible knockdown of T (brachyury) during mesendoderm
differentiation of hPSCs
We then sought to exemplify the use of OPTiKD and sOPTiKD to
rapidly and efficiently evaluate endogenous gene function in a
variety of cell types and at different stages of hPSC differentiation
related to embryonic development. First, we focused on the master
developmental regulator T (brachyury), which plays an essential
role in mesoderm formation and, in particular, during the
development of posterior mesoderm, notochord and somites
(Martin, 2015; Papaioannou, 2014). Indeed, mice carrying a
heterozygous mutation in T exhibit a short tail phenotype, while
homozygous mutations are embryonic lethal at around 9.5 dpc
(Dobrovolskaia-Zavadskaia, 1927; Gluecksohn-Schoenheimer,
1944). T mutants also present severe cardiovascular and placental
defects (David et al., 2011; Inman and Downs, 2006; King et al.,
1998). Furthermore, T was recently shown to specifically regulate
mesoderm but not endoderm differentiation in hPSCs (Faial et al.,
2015).
To investigate the role of T during the differentiation of hPSCs we

combined T sOPTiKD sublines with culture conditions known to
drive the differentiation of hPSCs into subpopulations that
recapitulate different portions of the primitive streak and their
derived lineages (Fig. 5A) (Bernardo et al., 2011; Cheung et al.,
2012; Mendjan et al., 2014; Touboul et al., 2010). Inducible
knockdown of T was robust in all cell types analyzed (Fig. 5B,C,
Fig. S5A,B), confirming the efficiency of sOPTiKD to knock down
developmental genes. Decrease in T expression did not affect
definitive endoderm specification, while differentiation into
posterior primitive streak cells, cardiac mesoderm and lateral plate
mesodermwas mildly impaired (Fig. 5D, Fig. S5C). By contrast, the
generation of late primitive streak progenitors (recapitulating the
onset of somitogenesis) and their further specification into
presomitic mesoderm and chondrocytes were severely affected
following inducible knockdown of T (Fig. 5D-G). In particular,
induction of TBX6, MSGN1 and MEOX1 was nearly abolished, in
agreement with the established role of T in the expression of such
genes (Chapman et al., 1996; Faial et al., 2015; Martin, 2015).
Collectively, these results strikingly recapitulate the known role

of T during early embryonic development, thereby demonstrating
the versatility of OPTiKD platforms to study the mechanisms of
human development in vitro.

Inducible knockdown of DPY30 at various stages of hPSC
differentiation reveals stage- and lineage-specific functions
We then aimed to demonstrate the suitability of the OPTiKD
platforms to investigate the function of genes that are not only
expressed during early development, but also in differentiated cells.
We focused on DPY30, a ubiquitously expressed co-factor of the
COMPASS histone methyltransferase complexes required for

histone H3 lysine 4 trimethylation (H3K4me3) (Jiang et al.,
2011). This epigenetic modifier is necessary for mouse early
embryonic development, as its knockout leads to impaired
gastrulation associated with ectopic neuralization of the post-
implantation epiblast (Bertero et al., 2015). Similarly, DPY30 is
required for hESC pluripotency (Bertero et al., 2015), and this early
role had prevented further studies of its function during
differentiation. Finally, Dpy30 has been implicated in mouse
ESC differentiation and in the proliferation and differentiation of
hematopoietic progenitors (Jiang et al., 2011; Yang et al., 2014).
Consequently, we decided to employ our inducible knockdown
platform to bypass the early function of DPY30 in hPSCs and
specifically suppress its expression during differentiation
(Fig. 6A).

First, we generated DPY30 OPTiKD hESC sublines (Fig. S6A),
and confirmed that inducibleDPY30 knockdown in undifferentiated
hESCs impaired the expression of pluripotency genes and triggered
neuroectoderm differentiation (Fig. 6B, Fig. S6B), as shown
previously (Bertero et al., 2015). We then analyzed the function
of DPY30 during lineage specification by differentiating DPY30
OPTiKD hESCs into five different cell types while inducingDPY30
knockdown from the induction, specification or maturation stages
(Fig. 6A). qPCR confirmed the decrease in DPY30 expression in all
the cells generated (Fig. S6C-H). Interestingly, phenotypic analyses
demonstrated that DPY30 knockdown from the early induction of
cardiac specification impaired cardiomyocyte differentiation, as
shown by the decrease in contractile markers (Fig. 6C). However,
knockdown at later stages had no significant effects (Fig. 6C). A
similar result was observed for the hepatocyte lineage, since
decrease of DPY30 expression in endoderm progenitors led to
extensive cell death at the anterior foregut stage thereby preventing
further differentiation (Fig. S6I). Similarly, specification of
pancreatic endocrine cells was also impaired by knockdown of
DPY30 in the initial stage of differentiation (Fig. 6D). However,
neither hepatocyte nor pancreatic endocrine cell specification was
significantly affected by knockdown of DPY30 in maturing
progenitors or differentiated cells (Fig. 6D,E, Fig. S6I). By
contrast, neuronal differentiation was promoted following DPY30
knockdown during the induction of neuroepithelial progenitors
(Fig. S6J). Finally, DPY30 knockdown at any stage during smooth
muscle cell differentiation had no effect on the expression of key
lineage markers (Fig. S6K).

Considered together, these data confirm a key role for DPY30
during germ layer specification while suggesting that the
requirement for DPY30 expression could vary during the
differentiation and maturation of specific lineages (Fig. 6E).
Overall, these experiments illustrate how the optimized inducible
knockdown platform can be easily applied to acquire novel
information about developmental mechanisms by performing
functional studies at different steps of hPSC differentiation into
multiple cell types.

Development of an optimized inducible CRISPR/Cas9
knockout platform in hPSCs
Having established an optimized inducible knockdown platform,
we turned our attention to developing a complementary inducible
knockout approach. Current inducible CRISPR/Cas9 methods rely
on conditional overexpression of Cas9 in the presence of a
constitutively expressed gRNA (González et al., 2014; Mandegar
et al., 2016). In this case, control of Cas9 overexpression is achieved
by a TET-ON method in which, following doxycycline treatment, a
tetracycline-controlled reverse transactivator (rtTA) activates a Pol

4411

STEM CELLS AND REGENERATION Development (2016) 143, 4405-4418 doi:10.1242/dev.138081

D
E
V
E
LO

P
M

E
N
T

http://dev.biologists.org/lookup/doi/10.1242/dev.138081.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.138081.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.138081.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.138081.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.138081.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.138081.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.138081.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.138081.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.138081.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.138081.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.138081.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.138081.supplemental
http://dev.biologists.org/lookup/doi/10.1242/dev.138081.supplemental


II-dependent tetracycline-responsive element (TRE) promoter (a
fusion between multiple TET operons and a minimal CMV
promoter). Although this TET-ON platform has been successfully
applied to certain human cell types (Qin et al., 2010), we observed

that this inducible system is silenced during hPSC differentiation
into multiple lineages (including cardiomyocytes, hepatocytes and
smooth muscle cells), even after targeting into the AAVS1 GSH
(Fig. S7). These observations reinforce previous reports
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(Haenebalcke et al., 2013; Mandegar et al., 2016; Ordovas et al.,
2015) and demonstrate that recently described systems for inducible
CRISPR/Cas9 (González et al., 2014; Mandegar et al., 2016) are
unlikely to work in a diversity of hPSC-derived cell types. For this
reason, we explored the possibility of developing an alternative and
improved method by combining a constitutively expressed CAG
promoter-driven Cas9 with an inducible gRNA cassette based on

that developed for inducible shRNA expression in sOPTiKD
(Fig. 7A,B).

We generated hESC lines in which a fluorescent reporter gene
could be knocked out in an inducible fashion (Fig. 7C). For this, we
targetedROSA26-EGFPd2 reporter hESCs (Fig. S4J,K)with both an
inducible EGFP gRNA and a constitutive Cas9 in the AAVS1
locus, each transgene being integrated into one of the two alleles
(Fig. 7C,D). This dual targeting approach was rapid (<2 weeks) and
efficient (>90% of lines containing both transgenes; Table S1).
Remarkably, when individual clonal sublines were grown in the
presence of tetracycline we observed decreased EGFPd2 expression
in all of the targeted lines, and EGFPd2 homozygous cells showed
near-homogeneous loss of at least one copy of the reporter gene as
early as 5 days following tetracycline induction (as demonstrated by
50% reduction in EGFPd2 fluorescence, Fig. S8A). Prolonged
treatment with tetracycline progressively led to the complete loss of
EGFPd2 fluorescence in up to 75% of EGFPd2 homozygous cells
(Fig. 7E,F, Fig. S8A,B). Interestingly, co-expression of either two or
three copies of the same EGFP gRNA cassette from the same AAVS1
locuswas sufficient to significantly increase the speed and efficiency
of inducible EGFPd2 knockout in all the clonal sublines analyzed
(Fig. 7H,I, Fig. S8A). For instance, simultaneous induction of three
copies of the same gRNA resulted in a remarkable 95% knockout
efficiency following tetracycline treatment (Fig. 7I). Importantly,
inducible EGFPd2 knockout hESCs did not show any significant
decrease in the proportion of EGFPd2-positive cells nor in their
fluorescence after prolonged culture in the absence of tetracycline,
even when several gRNA copies were used (Fig. 7G, Fig. S8C,D).
This demonstrated that the inducible gRNA expression was tightly
controlled. Finally, testing of additional gRNAs against EGFPd2
revealed that the speed and efficiency of the inducible knockout
strongly relied on the gRNA. Indeed, an optimal sequence allowed
up to 90%knockout after only 2 days of induction (Fig. S8E,F,K). Of
note, the most efficient gRNA also resulted in uncontrolled EGFPd2
knockout (Fig. S8G), but this limitation was avoided by simply
adding a second TET operon to the inducible H1 promoter to ensure
even more stringent transcriptional control (Fig. S8H-K).

Collectively, these results show that the sOPTiKD system could
be readily repurposed to support inducible gRNA expression and
allow tightly controlled activity of CRISPR/Cas9 over a broad range
of gRNA potency (Fig. S8L). To the best of our knowledge, this is
the first conditional CRISPR/Cas9 approach based on inducible
gRNA expression. We named this method single-step optimized
inducible gene knockout, or sOPTiKO.

Validation of the optimized inducible CRISPR/Cas9 platform
in differentiated progenies of hPSCs
Having demonstrated that sOPTiKO allows efficient control of
CRISPR/Cas9 activity in undifferentiated hPSCs, we thoroughly
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tested its performance following differentiation. We differentiated
homozygous EGFPd2 inducible knockout cells carrying a single
copy of inducible EGFP gRNA into the three primary germ layers

and into five cell types of clinical interest (neurons, cardiomyocytes,
smooth muscle cells, hepatocytes and endocrine pancreatic cells).
Immunostaining for lineage-specific markers demonstrated that
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treatment with tetracycline resulted in strong loss of EGFPd2
expression (Fig. 8A-F, Fig. S9A,B) in all these cell types. Moreover,
flow cytometry quantification confirmed that inducible knockout
in differentiated cells was tightly controlled and efficient
(Fig. S9C-H). For example, 85% of neuronal cells and 75% of
smooth muscle cells completely lost EGFPd2 expression following
tetracycline treatment (Fig. S9C,F). Considered together, these
results validate that sOPTiKO allows efficient control of CRISPR/
Cas9 activity not only in hPSCs, but also into a large panel of mature
cell types (Fig. 8G).

DISCUSSION
This report describes sOPTiKD and sOPTiKO – two novel
platforms for inducible knockdown or knockout of gene
expression that address the limitations of previous methods.
Compared with alternative approaches that rely on viral
transduction or random integration of inducible shRNAs
(Lambeth and Smith, 2013; Zafarana et al., 2009), sOPTiKD is
simpler to use (plasmid based), quicker (2 weeks or less to generate
stable lines following a single step of gene targeting by lipofection),
more efficient (>95% of the resulting cells show inducible
knockdown), more scalable (isolation of clonal sublines can be
entirely bypassed) and significantly more robust (due to the use of
GSHs and the lack of leakiness). Furthermore, sOPTiKO shares
these same advantages, thus outperforming recent inducible
CRISPR/Cas9 methods that rely on the conditional expression of
Cas9 (González et al., 2014) or of a fusion protein between a
catalytically inactive Cas9 and the transcriptional repressor KRAB
(Mandegar et al., 2016). Indeed, these systems rely on the TRE
promoter, which is heavily silenced upon hPSC differentiation into
multiple lineages. Furthermore, these are lengthy two-step methods,
and expression of the gRNA is achieved either by transient
transfection, which can be poor in efficiency, or by random
integration of the gRNA, which can result in mosaic expression.
Finally, whereas CRISPR interference can only efficiently control
gene promoter activity (Mandegar et al., 2016), sOPTiKO allows
the deletion of a broader range of genomic targets, including regions
outside of promoters that might not have a direct role in
transcriptional regulation. Overall, sOPTiKD/KO are the first
inducible shRNA and CRISPR/Cas9 technologies that enable
streamlined functional studies of multiple genetic variants in hPSCs
and in a diversity of differentiated cell types (Fig. 8G).
sOPTiKD and sOPTiKO each presents distinct advantages. On the

one hand, the ability to control the level of knockdown using
sOPTiKD allows the study of genes for which complete loss-of-
function induces cell death, and facilitates the examination of gene
dosage mechanisms. On the other hand, phenotypic studies following
full gene knockout using sOPTiKO are more relevant in the case of
genes that are still functional even when expressed at low levels.
Moreover, sOPTiKO is applicable not only to genes, but also to non-
coding genomic regulatory regions, which could represent a majority
of disease-associated genetic traits (Cooper and Shendure, 2011).
Aside from the examples reported in this manuscript, we envision

several other potential applications of the sOPTiKD/KO technologies.
With regard to cellular and developmental biology, we anticipate that
sOPTiKO could efficiently accommodate variants of the Cas9 gene
with catalytically inactive domains (Dominguez et al., 2015). For
instance, Cas9 fusion proteins with epigenetic modifiers could allow
functional validations of putative genomic regulatory regions.
Similarly, sOPTiKD could be repurposed to drive other types of
inducible non-codingRNAs, such as antagomir ormiRNA sponges to
probe microRNA function (Ebert and Sharp, 2010). Remarkably, the

high targeting efficiency and scalability of sOPTiKD/KO could allow
high-throughput screenings by targeting inducible shRNA or gRNA
pools. Compared with viral-based approaches (Chen et al., 2012), the
isogenic integration of inducible shRNAs/gRNAs would reduce
heterogeneity in the targeted population, hence increasing the
screening sensitivity and specificity. With regard to disease
modeling applications, sOPTiKD/KO could allow the simultaneous
targeting of several hiPSC lines to probe gene function in different
genetic backgrounds. Such an approach could facilitate the
identification of genetic disease modifiers and the discovery of
novel potential drug targets in the context of personalized medicine.
Multiplex inducible gene knockdown or knockout could also be used
to model complex genetic disorders. Finally, sOPTiKD/KO could be
easily transferred to other cell types amenable to geneticmanipulation,
including established cell lines and adult stem cells (Drost et al., 2015;
Mandal et al., 2014), thus allowing functional studies in amultitude of
systems. In conclusion, we expect that sOPTiKD/KO technologies
will have a broad impact on our ability to study human development,
physiology and disease.

MATERIALS AND METHODS
hPSC culture and differentiation
Feeder- and serum-free hESC (H9 line; WiCell) and hiPSC (A1ATR/R line;
Rashid et al., 2010) culture and differentiation were as previously described
(Vallier, 2011). Details of media compositions and protocols are provided in
the supplementary Materials and Methods.

Gene targeting
Sequences of all plasmids used in this study are provided in Appendix S1,
and all cloning procedures and targeting experiments are described in detail
in the supplementary Materials and Methods. Briefly, AAVS1 targeting for
OPTiKD and sOPTiKD was performed by lipofection, while AAVS1
targeting for sOPTiKO was performed by nucleofection (Bertero et al.,
2015; Vallier et al., 2004). Clonal lines were selected using 1 μg/ml
puromycin (Sigma; for OPTiKD and sOPTiKD) or 25 μg/ml geneticin
(G418 sulfate, Gibco) and 0.5 μg/ml puromycin (for sOPTiKO).

Inducible gene knockdown and knockout
Unless otherwise described in the results or figure legends, tetracycline
hydrochloride (Sigma-Aldrich) was used at 1 μg/ml to induce gene
knockdown or knockout. Refer to the supplementary Materials and
Methods for details on the timing of DPY30 inducible knockdown during
hESC differentiation.

Analysis of RNA and protein expression
Quantitative real-time PCR (qPCR), western blot, flow cytometry and
immunofluorescence were performed according to standard protocols as
previously described (Bertero et al., 2015). Details, including the primer
sequences and antibodies used, are provided in the supplementary Materials
and Methods.

Statistical analysis
Statistical analyses were performed using GraphPad Prism 6. The type and
number of replicates, the statistical test used, and the test results are
described in the figure legends. All statistical tests employed were two-
tailed. Unless stated otherwise in the figure legends, all graphical data are
presented as mean±s.e.m. No experimental samples were excluded from
the statistical analyses. Sample size was not pre-determined through power
calculations, and no randomization or investigator blinding approaches
were implemented during the experiments and data analyses. When
representative results are presented, the experiments were reproduced in at
least two independent cultures.
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Supplementary Figures 

Supplementary Figure 1. Generation of ROSA26 and AAVS1 EGFP reporter hESCs. 
(A) Schematic of the ROSA26 targeting approach and of the genotyping strategies used to identify correctly targeted lines 
(see Supplementary Methods for additional details). Cas9n: D10A nickase mutant Cas9 endonuclease from S. Pyogenes. 
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R26-prom: ROSA26 locus promoter (THUMPD3-AS1 gene); 5’-HAR/3’-HAR: upstream/downstream homology arm; 
Transgene: region integrated following gene targeting; Locus PCR: PCR product of wild-type ROSA26 locus (indicating a 
non-targeted allele); Locus PCR/Loss-of-allele: PCR product of targeted allele/PCR that fails if the transgene contains the 
GC-rich CAG promoter (indicative of expected transgene targeting); 5’ INT/3’ INT PCR: PCR product of transgene 5’-
end/3’-end integration region (indicative of expected transgene targeting); 5’ BB/3’ BB PCR: PCR product of vector 
backbone 5’-end/3’-end (indicative of non-specific off-target plasmid integration). Note that similar targeting and genotyping 
strategies were applied for the AAVS1 locus targeting. (B) Schematic of the ROSA26 transgenic alleles generated to test the 
best strategy for constitutive EGFP (enhanced green fluorescent protein) expression. ENDO-EGFP: EGFP driven by the 
endogenous ROSA26 promoter (R26-prom; targeting vector pR26-Puro_ENDO-EGFP); EF1α-EGFP: EGFP driven by the 
elongation factor 1α promoter (targeting vector pR26-Neo_EF1α-EGFP); CAG-EGFP: EGFP driven by the CAG promoter 
(targeting vector pR26-Neo_CAG-EGFP); SA: splice acceptor; Puro: puromycin resistance (puromycin N-acetyltransferase); 
Neo: neomycin resistance (neomycin phosphotransferase II); pA: polyadenylation signal. (C) Flow cytometry quantification 
of the percentage of EGFP positive cells (EGFP+; the gate is shown), and of the EGFP median fluorescence intensity (MFI) 
in representative ROSA26-EGFP reporter hESC clonal lines, or wild-type H9 hESCs. (D) Percentage of EGFP positive cells 
in ROSA26-EGFP reporter hESCs. Results are for 3 clones with heterozygous ROSA26 targeting per condition (see Table 
S1). (E) Representative images showing EGFP fluorescence for the same ROSA26-EGFP reporter hESC clonal lines from 
panel C. Cells were fluorescently immunostained for the pluripotency marker OCT4 (red), and DAPI (blue) shows nuclear 
staining. Scale bars: 200 µm. (F-I) Representative immunofluorescence of the indicated lineage-specific markers (red) in 
undifferentiated hESCs (F) and in the three germ layers (G-I) obtained from wild-type H9 hESCs and homozygous ROSA26 
and AAVS1 CAG-EGFP reporter hESCs (targeting vectors pR26-Neo_CAG-EGFP and pAAV-Puro_CAG-EGFP, 
respectively). EGFP fluorescence is in green, and DAPI (blue) shows nuclear staining. Scale bars: 200 µm. (J-M) 
Representative flow cytometry EGFP quantifications in ROSA26 (ROSA) and AAVS1 (AAV) CAG-EGFP reporter lines in 
undifferentiated conditions or following germ layer differentiation. H9 hESCs (H9) were used as negative control. HET: 
heterozygous targeting; HOM: homozygous targeting. (N-O) Characterization of the differentiation potential of ROSA26 
(R26) and AAVS1 (AAV) CAG-EGFP reporter hESCs by qPCR for lineage-specific markers in undifferentiated cells (N) 
and in the three germ layers (O). H9 PLURI: undifferentiated H9 hESCs. Results are for 2 independent cultures per 
condition. 
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Supplementary Figure 2. Validation of the ROSA26 and AAVS1 loci as bona fide genomic safe harbors. 
(A-L) Representative immunofluorescence of the indicated lineage-specific markers (red) in mature cells derived from 
ROSA26 and AAVS1 homozygous CAG-EGFP reporter hESCs, or wild-type H9 hESCs. EGFP fluorescence is in green, and 
DAPI (blue) shows nuclear staining. Scale bars: 100 µm for oligodendrocytes, intestinal epithelium and cholangiocytes, and 
200 µm for all other lineages. (M) Representative flow cytometry quantification of the percentage of EGFP positive cells 
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(EGFP+; the gate is indicated), and of the EGFP median fluorescence intensity (MFI) in mature cells derived from ROSA26 
(ROSA) and AAVS1 (AAV) homozygous CAG-EGFP reporter hESCs, or wild-type H9 hESCs. 
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Supplementary Figure 3. Development of optimized inducible knockdown systems based on double- or single-step 
GSH targeting.  
(A) Schematic of the cloning strategy to generate AAVS1 targeting vectors carrying inducible shRNAs. The vector contains 
a H1 Pol III promoter containing a single tet operon (TO). Following digestion with BglII and SalI, a double-stranded 
fragment is ligated to introduce the desired shRNA sequence. This fragment is obtained by annealing two single-stranded 
oligonucleotides, and includes the shRNA proper (sense target sequence, hairpin, and antisense target sequence) followed by 
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a Pol III terminator. (B) Representative images of EGFP fluorescence (green) in EGFP OPTimized inducible KnockDown 
(OPTiKD) hESCs (cells sequentially targeted with pR26-Neo_CAG-OPTtetR and pAAV-Puro_EGFPiKD, see Fig. 2B) in 
absence (CTR) or presence (TET) of tetracycline for 5 days. Cells were fluorescently immunostained for the pluripotency 
marker OCT4 (red), and DAPI (blue) shows nuclear staining. Scale bars: 200 µm. (C-D) Representative flow cytometry 
EGFP quantifications during knockdown and rescue kinetics in EGFP OPTiKD hESCs. Cells were exposed to tetracycline 
for 5 days, followed by tetracycline withdrawal for 7 days (day 5 of TET was considered as day 0 of the rescue kinetics). 
Samples were collected at the indicated time points. CTR: cells maintained in the absence of tetracycline throughout the 
experiment and collected at the indicated experimental day. Wild-type H9 hESCs were used as negative control. (E) 
Representative flow cytometry quantifications of EGFP knockdown dose-response to tetracycline in EGFP OPTiKD hESCs. 
Cells were cultured for 5 days with the indicated doses of tetracycline. CTR: no tetracycline. (F) Strategy for the generation 
of OPTiKD hPSCs by dual targeting of the ROSA26 and AAVS1 genomic safe harbors. Targeting vectors: pR26-Neo_CAG-
OPTtetR; pAAV-Puro_iKD. R26-prom: ROSA26 locus promoter; AAV-prom: AAVS1 locus promoter; 5’-HAR/3’-HAR: 
upstream/downstream homology arm; Neo: neomycin resistance; Puro: puromycin resistance; SA: splice acceptor; T2A: self-
cleaving T2A peptide; pA: polyadenylation signal; CAG: CMV early enhancer, chicken β-actin and rabbit β-globin hybrid 
promoter; OPTtetR: codon-optimized tetracycline repressor; H1: H1 Pol III promoter; TO: tet operon; shRNA: short hairpin 
RNA. (G-H) qPCR validation of OCT4 and B2M (negative control gene) OPTiKD hESCs (AAVS1 targeting vectors pAAV-
Puro_iKD-OCT4 and pAAV-Puro_iKD-B2M) in absence (CTR) or presence of tetracycline for 5 days (TET). Individual 
clones were analyzed in duplicate. The expression is shown as normalized on the average level in B2M or OCT4 OPTiKD 
hESCs in control conditions, as indicated. (I-J) Immunofluorescence for the pluripotency genes OCT4 and NANOG, and of 
the definitive endoderm marker SOX17 in undifferentiated OCT4 OPTiKD lines maintained in absence of tetracycline (CTR) 
or cultured for 5 days with different doses of tetracycline that induced intermediate (16 ng ml-1) or full (1000 ng ml-1) OCT4 
knockdown. DAPI (blue) shows nuclear staining. Scale bars: 200 µm. (K) qPCR validation of OCT4 OPTiKD hESCs in 
clonally- or non clonally-isolated gene targeted cells. Individual clones or pools were analyzed in duplicate. The expression 
is normalized on the average level in B2M OPTiKD hESCs in control conditions. (L) Quantification of EGFP mean 
fluorescence intensity (MFI) in EGFP inducible knockdown cells generated with a single gene targeting step. Homozygous 
ROSA26 CAG-EGFP hESCs were re-targeted in the AAVS1 locus with an inducible EGFP shRNA and CAG-tetR cassette 
(homozygous targeting). AAVS1 targeting vectors used: pAAV-Puro_EGFPsiKD-STD (STDtetR, or STD); pAAV-
Puro_EGFPsiKD-OPT (OPTtetR, or OPT). Cells were analyzed in absence (-) or presence (+) of tetracycline for 5 days. 
EGFP levels were compared to those in homozygous ROSA26 CAG-EGFP hESCs (NO shRNA). Results are from 2-3 
individual lines per condition (see Table S1). n.s.=p>0.05 (non-significant), *=p<0.05, ***=p<0.001 VS NO shRNA 
(ANOVA with post-hoc Holm-Sidak comparisons). The condition expressing the OPTtetR was named EGFP single-step 
OPTtimized inducible KnockDown (sOPTiKD). (M) Representative flow cytometry EGFP quantification in EGFP sOPTiKD 
hESCs treated as described in panel L. (N) EGFP mRNA knockdown and rescue kinetics in EGFP sOPTiKD hESCs. Results 
are from 2 independent cultures per time point. (O) Tetracycline dose-response curve for EGFP knockdown in EGFP 
sOPTiKD hESCs. The half-maximal inhibitory concentration (IC50) is reported. Results are from 2 independent cultures per 
dose, and the mean is shown. 
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Supplementary Figure 4. Validation of EGFP OPTiKD and sOPTiKD in hESCs-derived cells. 
(A) EGFP expression measured by flow cytometry in absence (CTR) or presence of tetracycline for 5 days (TET) in the 
indicated cell types derived from EGFP OPTiKD (iKD) or sOPTiKD (siKD) hESCs. EGFP levels are reported relative to 
control conditions in the same line for each individual lineage. Pluri: undifferentiated hESCs; Neuro: neuroectoderm; Meso: 
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lateral plate mesoderm; Endo: definitive endoderm; Osteo: osteocytes; Chondro: chondrocytes; SMC: smooth muscle cells; 
Epi: epicardium; Fibro: cardiac fibroblasts; Intestine: intestinal organoids; Panc: pancreatic cells; Chol: cholangiocytes; Hep: 
hepatocytes. (B-G) Representative flow cytometry EGFP quantification in the three germ layers derived from EGFP 
OPTiKD (iKD) and sOPTiKD (siKD) hESCs, and cultured in absence or presence of tetracycline for 5 days. H9 hESCs were 
used as a negative control. (H-I) Kinetics of EGFP loss following prolonged treatment with tetracycline of cardiomyocytes 
derived from EGFP OPTiKD and sOPTiKD hESCs. (J) Experimental approach to generate destabilized EGFP (EGFPd2) 
ROSA26 reporter hPSCs (targeting vector: pR26-Bsd_CAG-EGFPd2). (K) Representative flow cytometry EGFP 
quantification in heterozygous (HET) and homozygous (HOM) ROSA26 CAG-EGFPd2 reporter hESCs. H9 hESCs (H9) 
were used as negative control. (L) Representative flow cytometry EGFP quantification in homozygous ROSA26 CAG-
EGFPd2 hESCs re-targeted with pAAV-Puro_EGFPsiKD-OPT (EGFPd2 sOPTiKD, homozygous targeting). Cells were 
cultured in absence (CTR) or presence of tetracycline for 5 days (TET). Homozygous ROSA26 CAG-EGFPd2 hESCs and 
wild-type H9 hESCs were used as positive and negative controls, respectively. (M) EGFP knockdown and rescue kinetics in 
EGFPd2 sOPTiKD hESCs measured by flow cytometry (MFI) and qPCR (mRNA). (N-O) Flow cytometry quantification of 
EGFPd2 expression in cardiomyocytes generated from EGFPd2 sOPTiKD hESCs and cultured in absence (CTR) or presence 
of tetracycline for 5 days (TET). *=p<0.05 (t-test). For all the graphs in this figure results are from two independent cultures 
per condition. 
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Supplementary Figure 5. T sOPTiKD in hESCs and during mesendoderm differentiation. 
(A) qPCR validation of T sOPTiKD hESCs (AAVS1 targeting vector pAAV-Puro_iKD-T). Cells were cultured in absence 
(CTR) or presence (TET) of tetracycline both for 2 days in the pluripotent state and during differentiation into late primitive 
streak cells (Fig. 5A). Individual clones were analyzed in duplicate, and the expression is shown as normalized on the average 
level in undifferentiated hESCs. B2M sOPTiKD hESCs were compared as negative controls. (B) qPCR for B2M in the 
indicated lineages derived from T or B2M control sOPTiKD hESCs. Knockdown was induced for two days in the pluripotent 
state and maintained throughout the differentiation (Fig. 5A,B; CTR: no knockdown; TET: knockdown; Ant/Post/Late PS: 
anterior/posterior/late primitive streak; DE: definitive endoderm; CM: cardiac mesoderm; LPM: lateral plate mesoderm; 
PSM: presomitic mesoderm).	   *=p<0.05, ***=p<0.001 VS T in the same condition (2-way ANOVA with post-hoc Sidak 
comparisons), and results are from 3 independent clonal lines per condition. (C) qPCR results for lineage-specific markers in 
the indicated cell types from the experiment described in B. *=p<0.05 VS B2M in the same condition (2-way ANOVA with 
post-hoc Sidak comparisons), and results are from 3 independent clonal lines per condition. 
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Supplementary Figure 6. DPY30 OPTiKD in hESCs and during hESCs differentiation. 
(A) Western blots to determine the kinetics of DPY30 protein knockdown and rescue in DPY30 OPTiKD hESCs. Cells were 
exposed to tetracycline for 5 days, followed by tetracycline withdrawal for 5 days. Samples were collected at the indicated 
days (D1-D10). D0: cells maintained in the absence of tetracycline and collected at the start of the experiment. TUBA4A (α-
tubulin): loading control. (B) Heatmap summarizing qPCR results for DPY30 and B2M OPTiKD hESCs in control conditions 
(CTR) or following 10 days of knockdown (TET). Z-scores indicate differential expression measured in number of standard 
deviations from the average level. Three independent cultures per condition were analyzed, as indicated. (C-G) qPCR for 
DPY30 and the indicated lineage specific markers in maturing progenitors during specification of DPY30 OPTiKD hESCs 
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into differentiated cell types (see Fig. 6A). Cells were cultured in the absence (CTR) or presence of tetracycline (TET) from 
the third day before being analyzed at the indicated developmental stages (knockdown specifically in maturing progenitors). 
(H) DPY30 expression in differentiated cell types derived from DPY30 OPTiKD hESCs. Maturing cells were cultured in the 
absence or presence of tetracycline for 7 days before being analyzed. Refer to panels I-K and Fig. 6C,D for the expression of 
lineage markers specific for the cell types analyzed. NEURO: neurons; SMC: smooth muscle cells; CARDIO: 
cardiomyocytes; PANC: pancreatic endocrine cells; HEP: hepatocytes. For panels C-H:  *=p<0.05; **=p<0.01; ***=p<0.001 
VS CTR (t-test). (I-K) qPCR-based phenotypic analyses of DPY30 and B2M (negative control gene) OPTiKD hESCs after 
differentiation into the indicated mature lineages. Cross symbols indicate that cells died during the differentiation and could 
not be analyzed by qPCR. *=p<0.05; ***=p<0.001 vs B2M in the same condition (2way ANOVA with post-hoc Sidak 
comparisons). CTR: no knockdown; KD ind/spec/mat: knockdown from the induction, specification or maturation (see Fig. 
6A). For panels C-K, results are from 3 independent cultures per condition, and the expression is reported relative to the 
average level in undifferentiated hESCs. 
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Supplementary Figure 7. Efficiency of TRE-mediated inducible gene overexpression in hESCs-derived mature cells. 
(A) Schematic of the experimental approach. EGFP inducible overexpression (iOX) hPSCs were generated by two gene 
targeting steps: (1) in the ROSA26 (R26) locus, homozygous targeting of CAG-driven constitutive reverse tetracycline-
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controlled TransActivator (rtTA) protein; (2) in the AAVS1 locus, homozygous targeting of tet-responsive element (TRE)-
driven EGFP transgene (described in MP, DO, AB, et al., manuscript in revision). In the absence of the drug doxycycline, the 
rtTA is transcriptionally inactive and EGFP is not expressed. iOX hESCs were differentiated into several types of mature 
cells (see panels B-G), at which point cells were treated with 1 µg ml-1 doxycycline for 5 days. This induces transcriptional 
activity of the rtTA and EGFP overexpression (OX). (B-G) Representative immunofluorescent stainings for lineage specific 
markers (red) in the indicated cell types derived from EGFP iOX hESCs and cultured in absence (CTR) or presence of 
doxycycline (DOX) for 5 days. EGFP fluorescence is in green, and DAPI (blue) shows nuclear staining. Merged images 
facilitate identification of cells where inducible EGFP overexpression failed due to silencing of the TRE promoter. Scale bars: 
100 µm for cholangiocytes, and 200 µm for all other lineages. (H) Representative EGFP quantification by flow cytometry in 
the same cells described for panels B-G. Wild-type H9 hESCs were used as negative controls. The percentage of EGFP 
positive cells (%EGFP+, the gates are shown) and the EGFP median fluorescence intensity (MFI) are reported. Heavy 
silencing of the inducible EGFP transgene is evident in cardiomyocytes, smooth muscle cells, hepatocytes, and 
cholangyocytes, while inducible overexpression is only moderately heterogeneous in neurons and pancreatic cells. 
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Supplementary Figure 8. Development of an optimized inducible CRISPR/Cas9 knockout platform in hESCs. 
(A) Expression of EGFPd2 in homozygous (HOM) ROSA26-EGFPd2 hESCs gene targeted with EGFP inducible knockout 
systems (iKO, see Fig. 7) expressing one, two or three copies of the EGFP inducible gRNA 1 (targeting vectors: pAAV-
Neo_CAG-Cas9 in combination with either pAAV-Puro_siKO-EGFP-1, pAAV-Puro_MsiKO-EGFP-1x2, or pAAV-
Puro_MsiKO-EGFP-1x3, respectively). Cells were analyzed following tetracycline (TET) treatment for the indicated number 
of passages (every 5 days). The percentage of EGFP positive cells (%EGFP+) and the median fluorescence intensity (MFI) 
of EGFP positive cells are reported. (B) Representative flow cytometry for EGFPd2 expression in heterozygous ROSA26-
EGFPd2 sOPTiKO hESCs (iKO) following the indicated number of passages in the presence of tetracycline (TET). EGFPd2 
heterozygous cells not carrying the inducible CRISPR/Cas9 system (EGFPd2 HET) and wild-type hESCs (H9) were 
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analyzed as positive and negative controls for EGFPd2 expression, respectively. (C) As in panel B, but EGFPd2 
heterozygous sOPTiKO hESCs were analyzed following ten passages in absence of tetracycline to monitor the potential 
leakiness of the system. (D) As in C, but EGFPd2 homozygous sOPTiKO hESCs expressing 2 or 3 inducible gRNAs were 
analyzed. (E) EGFPd2 coding sequence showing the location of the three EGFP gRNAs tested in this study. (F-I) 
Representative flow cytometry for EGFPd2 expression in EGFPd2 homozygous sOPTiKO hESCs carrying the indicated 
combinations of gRNA (2 or 3) and inducible promoter (TO or 2TO, see panel J). Targeting vectors: pAAV-Puro_siKO-
EGFP-2 (F), pAAV-Puro_siKO-2TO-EGFP-2 (G), pAAV-Puro_siKO-EGFP-3 (H), pAAV-Puro_siKO-2TO-EGFP-3 (I). 
Cells were cultured in presence of tetracycline (TET) for 5 days, or maintained in control (CTR) conditions in the absence of 
tetracycline. Note that for panels B-D and F-I the histograms have been normalized so that the area under the curve equals to 
1 (100%) for all samples presented, in order to facilitate direct visual comparison. (J) Nucleotide sequences of inducible H1 
Pol III promoters for the sOPTiKO system containing one or two tet operons (H1-TO and H1-2TO, respectively). Key 
sequence features are highlighted with various colours. The restriction enzyme cut sites used for gRNA cloning are shown 
(Fig. 7B). DSE: distal sequence element; PSE: proximal sequence element; TETO2: tet operon; +1: start position of RNA 
transcription. (K) Flow cytometry quantification of EGFPd2 inducible knockout kinetics in sOPTiKO cells from panels F 
(gRNA 2 – TO) and I (gRNA 3 – 2TO). The percentage of EGFP positive cells was monitored daily following addition of 
tetracycline. Results are from 2 independent cultures. (L) Summary of the inducible H1 promoters for the sOPTiKD system 
recommended to obtain potent and tightly controlled inducible gene knockout according to the potency of a given gRNA. 
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Supplementary Figure 9. Validation of the optimized inducible CRISPR/Cas9 platform following hESCs 
differentiation. 
(A-B) Representative immunofluorescent staining for the indicated lineage specific markers in cells derived from EGFPd2 
homozygous sOPTiKO hESCs carrying a single inducible EGFP gRNA (EGFP gRNA 1). EGFPd2 fluorescence in control 
conditions (CTR) or after knockout (TET) is in green, and DAPI shows nuclear staining. Knockout was induced for 10 days. 
Merged images of the EGFPd2 and lineage specific markers are shown. Scale bars: 100 µm. (C-G) Representative flow 
cytometry quantifications for EGFPd2 expression in EGFPd2 homozygous sOPTiKD hESCs (iKO) differentiated into the 
lineages indicated, and treated as described for panels A-B. For each panel, the histogram on the left reports analysis of live 
cells, in which EGFPd2 expression was compared with ROSA26-EGFPd2 homozygous hESCs (EGFPd2 HOM, positive 
control) and wild-type H9 hESCs (H9, negative control). The percentage of EGFPd2 positive cells (%EGFP+, the gate used 
is indicated) and the median fluorescence intensity (MFI) of EGFPd2 positive cells are reported. Note that the histograms 
have been normalized so that the area under the curve equals to 1 (100%) for all samples, in order to facilitate direct visual 
comparison. For all panels but G, the plots on the right describe analysis of cells stained for the indicated lineage-specific 
markers. The FITC (EGFPd2) gating was set based on FITC autofluorescence in wild-type hESCs-derived cells, and the APC 
(lineage marker) gating was set based on secondary antibody-only staining. (H) Expression of EGFPd2 in EGFPd2 
homozygous sOPTiKD hESCs differentiated into pancreatic endocrine cells. Cells were stained for c-peptide (insulin) and 
gated according to secondary antibody-only staining. Due to the high autofluorescence of fixed c-peptide positive cells, 
EGFPd2 expression was measured by comparing fluorescence in the PE channel (indicative of non-specific 
autofluorescence) with the one in the FITC channel (indicative of specific EGFPd2 expression). C-peptide positive cells 
derived from wild-type H9 hESCs were used as negative control for this gating strategy, as indicated. 
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Supplementary Tables 

Supplementary Table 1. Summary of gene targeting experiments 

Donor plasmid 
Picked 
clones 

Incorr. 
target.a 

Rand. 
Int.b 

Het 
+ 
extrac 

Homo 
+ 
extrac 

Het Homo

Correct 
targeting 
efficiency 
(%)d 

Total 
targeting 
efficiency 
(%)e 

pR26-Puro_ENDO-EGFP 12 0 0 9 0 3 0 25 100 
pR26-Neo_EF1a-EGFP 12 0 1 8 0 3 0 25 92 
pR26-Neo_CAG-EGFP 11/11f 3/1f 0/0f 2/2f 0/1f 6/5f 0/2f 54/64f 73/91f 
pR26-Neo_CAG-STDtetR 28 6 1 8 3 8 2 36 75 
pR26-Neo_CAG-OPTtetR 28/27f 3/11f 0/0f 12/9f 3/2f 10/4f 0/1f 36/19f 89/59f 
pR26-Bsd_CAG-EGFPd2 71 11 12 17 6 21 2 32 67 
pAAV-Puro_CAG-EGFP 8/4/8g 0/0/0g 0/0/1g 0/0/0g 3/1/2g 0/0/0g 5/3/5g 62/75/62g 100/100/87g 
pAAV-Puro_EGFPiKD 8/4/8g 0/0/0g 0/0/0g 0/0/0g 6/2/5g 0/0/0g 2/2/3g 25/50/37g 100/100/100g 
pAAV-Puro_iKD-OCT4 6 0 0 1 2 0 3 50 100 
pAAV-Puro_iKD-B2M 6 0 1 0 4 0 1 17 83 
pAAV-Puro_iKD-DPY30 6 0 1 0 4 0 1 17 83 
pAAV-Puro_EGFPsiKD-STD 6 0 0 0 3 0 3 50 100 
pAAV-Puro_EGFPsiKD-OPT 6/12h 0/1h 0/3h 0/0h 3/5h 0/1h 3/2h 50/25h 100/67h 
pAAV-Puro_siKD-OCT4 6/6i 0/0i 0/0i 1/5i 3/0i 1/1i 1/0i 33/17i 100/100i 
pAAV-Puro_siKD-B2M 6/6i 0/0i 0/0i 4/4i 2/0i 0/2i 0/0i 0/33i 100/100i 
pAAV-Puro_siKD-T 8 0 0 1 3 1 3 50 100 
pAAV_Neo_CAG-Cas9 
pAAV_Puro_siKO-EGFP-1j 11/13k 0/0k 0/1k 1/3k 6/8k 0/0k 4/1k 36/8k 91/69k 

pAAV_Neo_CAG-Cas9 
pAAV_Puro_MsiKO-EGFP-1x2j 

12 0 0 0 11 0 1 8 100 

pAAV_Neo_CAG-Cas9 
pAAV_Puro_MsiKO-EGFP-1x3j 

12 0 0 1 7 0 4 33 92 

pAAV_Neo_CAG-Cas9 
pAAV_Puro_siKO-EGFP-2j 

4 0 0 0 3 0 1 25 100 

pAAV_Neo_CAG-Cas9 
pAAV_Puro_siKO-2TO-EGFP-2j 7 0 0 0 5 0 2 29 100 

pAAV_Neo_CAG-Cas9 
pAAV_Puro_siKO-EGFP-3j 

6 0 0 0 3 2 1 17 67 

pAAV_Neo_CAG-Cas9 
pAAV_Puro_siKO-2TO-EGFP-3j 

15 0 0 0 10 0 5 33 100 

a Evidence of targeting, but incorrect size of 5’- or 3’-integration PCR (see Fig. S1A for a schematic of the PCR genotyping strategies used, 
and refer to Supplementary Methods). 
b No evidence of targeting (lack of bands in 5’- and 3’-integration PCR, and presence of WT band in locus PCR). 
c Correct targeting, but with additional random integration of the targeting plasmid (bands in 5’- and/or 3’-backbone PCR). 
d Het + homo only. 
e Including clones with additional random integration of the plasmid (het + extra and homo + extra). 
f The two figures are from two different targeting experiments in hESCs. 
g The three figures are from targeting in three different hESCs: ROSA26 HOMO STDtetR, ROSA26 HET OPTtetR, and ROSA26 HOMO 
OPTtetR, respectively. 
h The two figures are from targeting in two different hESCs: ROSA HOMO EGFP and ROSA HOMO EGFPd2, respectively. 
i The first figure is from hESCs targeting; the second figure is from hiPSCs targeting. 
j Simultaneous targeting of both vectors followed by Neo+Puro drug selection. For these experiments, het indicates that only one of the two 
vectors was correctly targeted, while hom clones were targeted with each vector in one of the alleles of the AAVS1 locus. Accordingly, 
both correct and total targeting efficiency was calculated only on hom and hom+extra clones. 
k The two figures are from targeting in two different hESCs: ROSA HOMO EGFPd2 and ROSA HET EGFPd2, respectively.	  
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Supplementary Material and Methods 

Differentiation of hESCs 

Differentiation was initiated in adherent cultures of hESCs 48 h following passaging. Unless otherwise specified, media 
changes were performed daily, and volumes were adjusted to cell density. See the below for media compositions not 
specified in the text. hPSCs were routinely monitored for absence of mycoplasma contamination and chromosomal stability. 

Composition of media used for hPSC culture and passaging 

Media Components Concentration Supplier 

CDM BSA/PVA 

IMDM : F-12 (1:1) - Gibco 
Chemically defined concentrated lipids 1% Gibco 
1-thioglycerol 450 mM Sigma-Aldrich 
Insulin 7 µg ml-1 Roche 
Transferrin 15 µg ml-1 Roche 
Penicillin-streptomycin (optional) 1% Gibco 
Bovine serum albumin (BSA) 5 mg ml-1 Europa Bio Product 
OR polyvinyl alcohol (PVA) or 1 mg ml-1 Sigma-Aldrich 

KSR 

Advanced DMEM F12 - Gibco 
Knockout Serum Replacer 20% Gibco 
L-Glutamine 1% Gibco 
B-mercaptoethanol 100 µM Sigma-Aldrich 
Penicillin-streptomycin (optional) 1% Gibco 

MEF Media 

Advanced DMEM F12 - Gibco 
Fetal bovine serum 10% Biosera 
L-glutamine 1% Gibco 
β-mercaptoethanol 100 µM Sigma-Aldrich 
Penicillin-streptomycin (optional) 1% Gibco 

Gelatine 
Embryo transfer water - Gibco 
Gelatine from porcine skin 0.1% Sigma-Aldrich 

Collagenase 
Advanced DMEM F12 - Gibco 
Knockout serum replacer 20% Gibco 
L-Glutamine 1% Gibco 

Dispase 
DMEM/F12 - Gibco 
Dispase 1 mg ml-1 Gibco 

Germ layers: neuroectoderm was induced for 6 days in CDM-BSA with 12 ng ml-1 FGF2 (Dr. Marko Hyvonen, University of 
Cambridge) and 10 µM SB-431542 (Activin/Nodal/TGFβ signalling inhibitor; Tocris), as described previously (Vallier et al., 
2009). Mesoderm specification was obtained in two steps: (1) induction of early mesoderm/primitive streak-like cells (late 
streak, posterior streak, and anterior streak, respectively for presomitic, lateral plate, and cardiac mesoderm) for 36 h, a single 
media change; (2) mesoderm patterning for 3.5 days, two media changes. Presomitic mesoderm: (1) CDM-BSA with 40 ng 
ml-1 FGF2 and 8 µM CHIR99021 (WNT signalling activator; Tocris); (2) CDM-BSA with 4 ng ml-1 FGF2, 1 µM Retinoic 
Acid (Sigma-Aldrich), 0.1 µM LDN193189 (BMP signalling inhibitor; Biovision), 10 µM SB-431542, and 1 µM 
Purmorphamine (SHH signalling activator; Tocris; Mendjan et al., 2014). Lateral plate mesoderm: (1) CDM-PVA with 20 ng 
ml-1 FGF2, 10 µM LY294002 (PI3K inhibitor; Promega), and 10 ng ml-1 BMP4 (R&D); (2) CDM-PVA with 20 ng ml-1 
FGF2, and 50 ng ml-1 BMP4 (Cheung et al., 2012). Cardiac mesoderm: (1) CDM-BSA (without insulin) with 20 ng ml-1 
FGF2, 10 µM LY294002, 50 ng ml-1 Activin-A (Dr. Marko Hyvonen, University of Cambridge), and 10 ng ml-1 BMP4; (2) 
CDM-BSA (without insulin) with 8 ng ml-1 FGF2, 10 ng ml-1 BMP4, 1 µM IWR1 (WNT signalling inhibitor, Sigma-
Aldrich), and 0.5 µM Retinoic Acid (Mendjan et al., 2014). Definitive endoderm was differentiated for 3 days in CDM-PVA 
(without insulin) with 20 ng ml-1 FGF2, 10 µM LY294002, 100 ng ml-1 Activin-A, and 10 ng ml-1 BMP4, as previously 
described (Touboul et al., 2010).  
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Neural cells: neural cell types were obtained using two different protocols. For experiments presented in Fig. 1, Fig. 4, Fig. 8, 
Fig. S2, Fig. S4, Fig. S7 and Fig. S9 (GSH EGFP reporter and EGFP inducible knockdown/knockout validation), a mixed 
bulk culture of neurons, astrocytes and oligodendrocytes were obtained according to a published protocol (Douvaras et al., 
2014), with minor modifications. hESCs were cultured in CDM-BSA with 10 µM SB431542, 0.1 µM LDN193189 for 8 days 
to generate neuroepithelial cells. During this stage, 0.1 µM Retinoic Acid and 1 µM purmorphamine were respectively added 
from day 2 and day 4 onwards to promote neuroepithelial patterning towards a caudal and ventral fate. From day 8 to 12, 
media was switched to N2 media (Thermo) with 0.1 µM Retinoic Acid and 1 µM Purmorphamine (SHH agonist). At day 12, 
adherent neural progenitors were mechanically lifted and transferred into low-attachment plates to form neurospheres. 
During this stage, cells were initially cultured in N2B27 media (Thermo) supplemented with 0.1 µM Retinoic Acid and 1 µM 
Purmorphamine for 8 days. Subsequently, neuronal and glial specification was initiated at day 20 of differentiation by 
culturing neurospheres in differentiation medium consisting of N2B27 media (Thermo) supplemented with 60 ng ml-1 T3 
(Sigma-Aldrich), 100 ng ml-1 biotin (Sigma-Aldrich), 1 µM dbcAMP (Sigma-Aldrich), 10 µg ml-1 insulin (Roche), 10 ng ml-1 
FGF2, 10 ng mlv PDGF-AA (Peprotech), and 10 ng ml-1 NT3 (R&D). From this point onwards media changes were 
performed every other day. At day 30, spheres were plated onto poly-D-lysine(PDL)/laminin-coated dishes to promote 
neuronal and glial outgrowth, and cultured in differentiation medium without FGF2. From day 70 onwards, the concentration 
of PDGFaa and NT3 was reduced to half of the previous levels to promote cell maturation. Differentiation concluded at day 
95, and resulted into a mixed culture of mostly astrocytes and neurons, and a minority of oligodendrocytes. 

For the experiments presented in Fig. 6 and Fig. S6 (DPY30 inducible knockdown during neuronal differentiation) we used a 
shorter differentiation protocol modified from that described above. This resulted in a culture containing predominantly 
(>70%) neurons, but not astrocytes or oligodendrocytes. Neuroepithelial induction was initiated in CDM-BSA supplemented 
with 20 ng ml-1 FGF2, 100 nM LDN193189, 10 µM SB431542 and 3 µM CHIR99021. The medium was refreshed with the 
same composition after 1 day. From day 2 onwards, the medium was changed to N2B27, a 1:1 mixture of DMEM/F12 and 
Neurobasal medium that contained 1% B27 and 0.5% N2 supplements, 1% Glutamine, 1% Penicillin/Streptomycin and 100 
µM β-mercaptoethanol. From day 2 to day 4 SB431542 was added to this medium. Thereafter, the differentiation was 
continued without the addition of  SB431542. After 10 days of differentiation neural rosettes containing progenitors of the 
neural lineages were obtained. These differentiated into neurons over the following days, and cultures were analyzed after 21 
days of differentiation. DPY30 inducible knockdown (KD) was induced from: (1) three days before the start of 
differentiation, KD induction (in neuroepithelium); (2) day 7, KD specification (in neural progenitors); (3) day 14, KD 
maturation (in neurons). 

Osteocytes: neural crest differentiation was performed following modifications of a previously published protocol for 
neuroectoderm differentiation (Cheung et al., 2014; Felipe Serrano, William G. Bernard, et al., manuscript in preparation). 
Briefly, cells were differentiated into neuroectoderm as described earlier, and neural crest were enriched and expanded from 
this population. Additional details of this method are available upon request to Dr. Sanjay Sinha. Osteocytes were 
differentiated from neural crest cells using StemPro Osteogenesis Differentiation Kit (Gibco) according to manufacturer’s 
instructions. Cells were cultured in these conditions for two weeks performing media changes every other day. 

Chondrocytes: chondrocyte differentiation was performed as previously described (Mendjan et al., 2014). Following 
presomitic mesoderm differentiation for 5 days as described above, chondrogenic specification was induced in CDM-BSA 
with 8 ng ml-1 FGF2 and 10 ng ml-1 BMP4 for 10 days and performing media changes every other day. 

For alcian blue staining, chondrocytes were fixed in 100% methanol at -20°C for 15 minutes, washed twice with ice-cold 
PBS, once with 0.5 N HCl, and finally stained overnight (16 h) in alcian blue solution (0.25% alcian blue in 0.5 N HCl) at 
room temperature and under gentle shaking. Cells where then washed 3 times for 15 minutes at room temperature with PBS 
before phase-contrast imaging of the staining. Alcian blue staining was then quantified by extracting the dye overnight (16 h) 
in 8 M guanidine-HCl (1 ml for a well of a 12-well tissue culture plate) at room temperature and under gentle shaking. The 
absorbance at 595 nm was then measured using a NanoDrop 1000 (NanoDrop). Undifferentiated hESCs were used as 
negative controls for the staining, and the alcian blue absorbance observed in such controls was subtracted from that of 
chondrocytes to quantify specific staining. 

Smooth muscle: smooth muscle cells were obtained as previously reported (Cheung et al., 2012; Cheung et al., 2014). 
Following lateral plate mesoderm differentiation for 5 days as described above, cells were dissociated in TrypLE Express 
(Gibco) for 5 minutes at 37°C, washed with CDM-PVA and centrifuged at 200 g for 3 minutes at room temperature, and 
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seeded at a density of 20,000 cells per cm2 onto gelatin/MEF media-coated plates in CDM-PVA supplemented with 10 ng ml-

1 PDGF-BB (Peprotech) and 2 ng ml-1 TGFβ (Peprotech). Cells were cultured in these conditions for 12 days to generate 
smooth muscle cells. Media was changed every other day, and cells were split after the first 6 days of culture as just 
described, but seeded at a 1:2 ratio. 

DPY30 inducible knockdown (KD) during smooth muscle differentiation was induced from: (1) three days before the start of 
differentiation, KD induction (in posterior primitive streak-like cells, also referred to as posterior early mesoderm in the text 
and figures); (2) day 2, KD specification (in lateral plate mesoderm); (3) day 10, KD maturation (in smooth muscle cells). 

Cardiac fibroblasts: differentiation into epicardium and cardiac fibroblasts was done as previously reported (Iyer et al., 2015). 
Following lateral plate mesoderm differentiation for 5 days as described above, cells were dissociated in TrypLE Express 
(Gibco) for 5 minutes at 37°C, washed with CDM-PVA and centrifuged at 200g for 3 minutes at room temperature, and 
seeded at a density of 25,000 cells per cm2 onto gelatin/MEF media-coated plates in CDM-PVA supplemented with 25 ng ml-

1 WNT3A (R&D), 50 ng ml-1 BMP4 and 4 µM Retinoic Acid. Cells were cultured in these conditions for 10 days with media 
changes every 4 days to generate epicardial cells. Following this, cells were dissociated in TrypLE Express for 5 minutes at 
37°C, washed with CDM-PVA by centrifuging at 300 g for 3 minutes at room temperature, and seeded at a density of 30,000 
cells per cm2 onto gelatin/MEF media-coated plates in CDM-PVA supplemented with 50 ng ml-1 VEGF-B (Peprotech) and 
50 ng ml-1 FGF2. Cells were cultured in these conditions for 12 days with media changes every other day to generate cardiac 
fibroblasts. 

Cardiomyocytes: cardiac differentiation was performed as previously described (Mendjan et al., 2014). Following cardiac 
mesoderm differentiation for 5 days as described above, cardiac maturation was initiated by culturing cells in CDM-PVA 
(without insulin) with 8 ng ml-1 FGF2 and 10 ng ml-1 BMP4 for 2 days (one media change). Following this, cells were 
cultured in CDM-PVA (without insulin) until beating clusters appeared (between day 8 and 10 of differentiation). 
Cardiomyocytes were then matured in CDM-PVA containing insulin. Media changes were performed every other day. Cells 
were analyzed at day 17 for all experiments apart from the prolonged EGFP inducible knockdown treatment (Supplementary 
Fig. 4H-I), for which knockdown was induced starting from day 15 (D0 of tetracycline treatment), and cells were collected at 
different time points until day 35 (D20 of tetracycline treatment). 

DPY30 inducible knockdown (KD) during cardiac differentiation was induced from: (1) three days before the start of 
differentiation, KD induction (in anterior primitive streak-like cells, also referred to as anterior early mesoderm in the text 
and figures); (2) day 2, KD specification (in cardiac mesoderm); (3) day 10, KD maturation (in cardiomyocytes). 

Intestine: intestinal organoids generation followed a previously published method (Fordham et al., 2013; Hannan et al., 
2013a), with some minor changes. Following definitive endoderm differentiation for 3 days as described above, cells were 
cultured in RPMI/B27 media (consisting of RPMI Medium 1640 with GlutaMAX, 2% B27 supplement, 1% non essential 
amino acids, 100 U ml-1 penicillin, and 100 µg ml-1 streptomycin; all from Gibco). This was first supplemented with 50 ng 
ml-1 Activin-A for 1 day, then with 6 µM CHIR99021 and 3 µM Retinoic Acid for 4 days, in order to pattern definitive 
endoderm into a posterior fate and obtain hindgut cells. Monolayer cultures were then transferred to three-dimensional 
conditions. For this, cells were dissociated to small clumps using collagenase IV for 20 minutes at 37°C, washed twice with 
basal growth medium (consisting of Advanced DMEM/F12, 10 mM HEPES pH 7.4, 2% B27 serum-free supplement, 1% N2 
serum-free supplement, and 20 mM L-Glutamine) by centrifuging at 200 g for 3 minutes at room temperature, and finally 
resuspended at a density of 100,000 cells per ml in a mixture of 70% Matrigel (BD Biosciences) and 30% basal growth 
medium supplemented with 500 ng ml-1 R-Spondin 1 (R&D), 3 µM CHIR99021, 100 ng ml-1 Noggin (BMP signalling 
inhibitor, R&D), 2.5 µM Prostaglandin E2 (Cayman Chemicals), 100 ng ml-1 EGF (R&D), and 0.5 µM A83-01 (TGFβ 
signalling inhibitor, Tocris). The cell-medium-matrigel solution was distributed in 50 µl droplets, one for each well of 24-
well plates. The droplets were allowed 30 minutes for the gel to solidify, following which 1 ml of basal media with growth 
factors was added per well. 10 µM Y-27632 was also added only for the first 24 h to promote cell survival. Cells were 
cultured in these conditions for 10 days with media changes every other day to generate intestinal organoids. 

Pancreas: pancreatic differentiation was done according to what previously reported (Cho et al., 2012), with minor changes. 
Following definitive endoderm differentiation for 3 days as described above, cells were cultured in Adv-BSA media 
(consisting of Advanced DMEM/F12, 5 mg ml-1 BSA, 20 mM L-Glutamine, 100 U ml-1 penicillin, and 100 µg ml-1 
streptomycin). This was supplemented with 3 µM Retinoic Acid, 50 ng ml-1 FGF10 (Autogen Bioclear), 150 ng ml-1 Noggin, 
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and 10 µM SB431542 for 3 days to generate dorsal foregut, then with 3 µM Retinoic Acid, 50 ng ml-1 FGF10, 150 ng ml-1 
Noggin, and 0.25 µM KAAD-Cyclopamine (SHH signalling inhibitor, Toronto Research Chemicals) for 3 days, and finally 
with 3 µM Retinoic Acid, 50 ng ml-1 FGF10, and 0.25 µM KAAD-Cyclopamine for 3 days. Pancreatic progenitors were 
obtained at this stage (day 12 of differentiation). Pancreatic specification was then initiated in Adv-BSA with 3 µM Retinoic 
Acid, 1% B27 supplement, and 1 µM DAPT (Notch signalling inhibitor, Sigma-Aldrich) for 3 days. During this stage, 0.1 
mM 6-Bnz-cAMP (PKA activator, Sigma-Aldrich) was also added only for the first 48 h. Cells were then cultured in Adv-
BSA with 3 µM Retinoic Acid, 1% B27 supplement, and 0.25 µM KAAD-Cyclopamine for 3 days (one media change) in 
order to obtain immature pancreatic endocrine cells. These were further matured for 6 days (media changes every 72 h) under 
the same culture conditions to generate mature pancreatic endocrine cells (predominantly β-cells, some α-cells, and few δ-
cells) at day 24 of differentiation. 

DPY30 inducible knockdown (KD) during pancreatic differentiation was induced from: (1) three days before the start of 
differentiation, KD induction (in definitive endoderm); (2) day 9, KD specification (in pancreatic progenitors); (3) day 17, 
KD maturation (in pancreatic endocrine cells). 

Hepatocytes: hepatocytes were generated according to previous reports (Hannan et al., 2013b; Touboul et al., 2010), with 
minor modifications. Following definitive endoderm differentiation for 3 days as described above, cells were cultured in 
RPMI/B27 media supplemented with 50 ng ml-1 Activin-A for 5 days to generate anterior foregut cells. Cells were then 
cultured in Hepatozyme (Gibco) supplemented with 2% non essential amino-acids, 2% chemically defined concentrated 
lipids (Gibco), 20 mM L-Glutamine, 14 µg ml-1 insulin, 15 µg ml-1 transferrin (Roche), 100 U ml-1 penicillin, 100 µg ml-1 
streptomycin, 50 ng ml-1 HGF (R&D), and 20 ng ml-1 Oncostatin M (R&D), with media changes performed every other day. 
After 3 days into these conditions (day 11 of differentiation), hepatic progenitors were obtained. These were further matured 
under the same culture conditions for 11 more days to generate mature hepatocytes at day 22. 

DPY30 inducible knockdown (KD) during hepatic differentiation was induced from: (1) three days before the start of 
differentiation, KD induction (in definitive endoderm); (2) day 8, KD specification (in hepatocyte progenitors); (3) day 15, 
KD maturation (in hepatocytes). 

Cholangiocytes: cholangiocytes generation was previously described (Sampaziotis et al., 2015). Following definitive 
endoderm differentiation for 3 days as described above, cells were cultured in RPMI/B27 media. This was first supplemented 
with 50 ng ml-1 Activin-A for 5 days to generate foregut progenitors, then with 10 µM SB431542 and 50 ng ml-1 BMP4 for 4 
days to obtain bipotent hepatoblasts, and finally with 50 ng ml-1 FGF10 (Peprotech), 50 ng ml-1 Activin-A, 3 µM Retinoic 
Acid for 4 days to derive cholangiocyte progenitors. Monolayer cultures were then transferred to three-dimensional 
conditions. For this, cells were incubated with cell dissociation buffer (Gibco) for 10 minutes at 37°C, mechanically 
dissociated into small clumps, washed twice with RPMI medium by centrifuging at 200 g for 3 minutes at room temperature, 
and finally resuspended at a density of 200,000 cells per ml in a mixture of 60% Matrigel and 40% William’s E Medium 
(Gibco) supplemented with 10 mM nicotinamide (Sigma-Aldrich), 17 mM sodium bicarbonate (Sigma-Aldrich), 0.2 mM 2-
Phospho-L-ascorbic acid trisodium salt (Sigma-Aldrich), 6.3 mM sodium pyruvate (Invitrogen), 14 mM glucose (Sigma-
Aldrich), 20 mM HEPES pH 7.4 (Invitrogen), ITS+ premix (BD Biosciences), 0.1 uM dexamethasone (R&D Systems), 2 
mM Glutamax (Invitrogen), 100 U ml-1 penicillin, 100 µg ml-1 streptomycin and 20 ng ml-1 EGF.  The cell-medium-matrigel 
solution was distributed in 50 µl droplets, one for each well of 24-well plates. The droplets were allowed 30 minutes for the 
gel to solidify, following which 1 ml of William’s E medium with supplements was added per well. 10 µM Y-27632 was also 
added only for the first 24 h to promote cell survival. Cells were cultured in these conditions for 10 days with media changes 
every other day to obtain cholangiocytes. 

Lung: generation of lung epithelium was recently described (Hannan et al., 2015). Following definitive endoderm 
differentiation for 3 days, cells were cultured in RPMI/B27 media supplemented with 50 ng ml-1 Activin-A for 5 days to 
generate anterior foregut cells. These cells were cultured in RPMI which was first supplemented with 100 ng ml-1 FGF10, 
and 1 µM Retinoic Acid for 5 days to pattern lung endoderm, then supplemented with 100 ng ml-1 FGF10 and 50 ng ml-1 
HGF for 10 days to generate lung progenitors, and finally supplemented with 100 ng ml-1 FGF10 for 15 days, in order to 
mature lung epithelial cells. 
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Molecular cloning 

Unless otherwise indicated, traditional cloning was performed using restriction enzymes from NEB and T4 DNA ligase from 
Promega, and Gibson cloning was performed using Gibson Assembly Master Mix (NEB). PCR were performed using Q5 
Hot Start High-Fidelity DNA Polymerase (NEB), DNA blunting was done with DNA Polymerase I, Large (Klenow) 
Fragment (NEB), and site-directed mutagenesis was achieved using QuickChange II XL Site-Directed Mutagenesis Kit 
(Agilent Technologies). Whenever possible, vectors were dephosphorylated before ligation using Alkaline Phosphatase Calf 
Intestinal (CIP) from NEB. All oligonucleotides were ordered from Sigma-Aldrich as desalted lyophilized products. QIAEX 
II Gel Extraction Kit and QIAquick PCR Purification Kits (QIAGEN) were used for DNA extraction from agarose gels and 
purification of PCR products, respectively. Recombinant plasmids were transformed into DH5α E. Coli (Alpha-Select Gold 
Efficiency, Bioline). QIAGEN Plasmid Mini, Midi and Maxi Kits were used for plasmid preparations. All these procedures 
were performed according to manufacturer’s instructions. Additional molecular biology procedures (such as DNA 
electrophoresis and E. Coli culture) were performed according to standard protocols. All the plasmids were sequence verified 
by Sanger sequencing through Beckman Coulter Genomics. 

ROSA26 CRISPR/Cas9n (pSpCas9n(BB)_R26-L and pSpCas9n(BB)_R26-R): the pSpCas9n(BB) (a gift of Feng Zhang, 
Addgene plasmid  #48873) was used to generate two plasmid each expressing a small guide RNAs (gRNAs) and the Cas9n 
(D10A nickase mutant) from S. Pyogenes. Left and right guide RNAs specific for the human ROSA26 locus were designed 
using the online CRISPR Design Tool from the Zhang-lab, MIT, Boston, MA (http://tools.genome-engineering.org): gRNA-
L 5’-GTCGAGTCGCTTCTCGATTA(TGG)-3’; gRNA-R 5’-GGCGATGACGAGATCACGCG(AGG)-3’ (PAM sites are 
reported in parenthesis). The score of the resulting pair of gRNAs was 97 (high quality), with no predicted off target effects. 
The gRNAs were cloned as previously described (Ran et al., 2013) using the following single stranded oligonucleotide pairs: 
gRNA-L-top 5’-CACCGTCGAGTCGCTTCTCGATTA-3’; gRNA-L-bot: 5’-AAACTAATCGAGAAGCGACTCGAC-3’; 
gRNA-R-top 5’-CACCGGCGATGACGAGATCACGCG-3’; gRNA-R-bot 5’-AAACCGCGTGATCTCGTCATCGCC-3’. 
The combination of the two resulting plasmids (pSpCas9n(BB)_R26-L and pSpCas9n(BB)_R26-R) is predicted to induce a 
specific double strand break in the intron between exons 1 and 2 of THUMPDS3-AS1 on chromosome 3 (ROSA26 locus). 

pR26-Puro_ENDO-EGFP: the targeting vector for the human ROSA26 locus was constructed starting from a pUC plasmid. 
First, left (5’, 904bp) and right (3’, 869bp) homology arms (HAR) were generated by PCR from H9 hESCs genomic DNA 
using primers that inserted restriction sites on the 5’ and 3’ ends of each amplicon (MfeI/KpnI for 5’-HAR, and SalI/HindIII 
for 3’-HAR): 5’-HAR_fw 5’-GACTCAATTGGCTCGAAACCGGACGGAGCCATTGCTC-3’; 5-HAR_rev 5’-GCATGGT-
ACCGATCACGCGAGGAGGAAAGGAGGGAGG-3’; 3’-HAR_fw 5’-GACTGTCGACGCTTCTCGATTATGGGCGGG-
ATTCTTTTGC-3’; 3’HAR_rev 5’-GCATAAGCTTGGAAGCTATCACACAGGCATCTGAGATCAG-3’, These amplicons 
were inserted sequentially into the multiple cloning site of the pUC19 by restriction digestion: first, the 5’-HAR was ligated 
into the EcoRI/KpnI sites; secondly, the 3’-HAR was ligated into the SalI/HindIII sites. The resulting vector was termed 
pR26. Next, a promoterless gene-trap vector was constructed in which expression of a bicistronic SA-puromycin-T2A-
EGFP-pA cassette is under control of the endogenous ROSA26 promoter (THUMPD3-AS1 gene) following correct genomic 
integration. For this a Gibson Assembly was performed in which three inserts were cloned into the KpnI/SalI sites of pR26. 
The first insert encoded for the adenoviral splice acceptor (SA), which was first synthesised de novo and cloned into an in 
house shuttle vector. The Gibson Assembly fragment was produced from this by PCR amplification using primer fw 5’-
TTTCCTCCTCGCGTGATCGGTACCTAGGGCGCAGTAGTCCAGG-3’ and primer rev 5’-CTCGGTCATGGT-
GGCCGGTCCGGGATTCTCCTC-3’). The second insert encoded for the puromycin resistance gene, which was PCR 
amplified from pTRE-TIGHT-EGFP (a gift from Rudolf Jaenisch. Addgene plasmid #22074) using primer fw 5’-
TCCCGGACCGGCCACCATGACCGAGTACAAGCCCACGGTG-3’ and primer rev 5’-CTCCACTGCCCTTAAGGGCA-
CCGGGCTTGCGGGT-3’. The third insert encoded the T2A-EGFP-pA cassette, which was PCR amplified from 
pSpCas9n(BB)-2A-GFP (a gift from Feng Zhang, Addgene plasmid #48140) using primer fw 5’-
GCCCGGTGCCCTTAAGGGCAGTGGAGAGGGCAGA-3’ and primer rev 5’-CCGCCCATAATCGAGAAGCGT-
CGACCCCCAGCATGCCTGCTAT-3’. The resulting vector was termed pR26-Puro_ENDO-EGFP. 

pR26-Neo_EF1α-EGFP: a gene-trap vector was constructed in which expression of EGFP was under control of an exogenous 
EF1a promoter. For this, a Gibson Assembly was performed in which three inserts were cloned into the BglII/SacI sites of 
pR26-Puro_ENDO-EGFP (thus substituting the puromycin-2A-EGFP sequence). The first insert encoded for the neomycin 
resistance gene and was PCR amplified using primer fw 5’-CTTTCCAGTTTCGAACGGGAG-
ATCTGCCACCATGGGATCGGCCATTGAA-3’ and primer rev 5’-CGGAGCCAATCCATAGAGCCCACCGCAT-3’. The 
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second insert encoded the EF1α promoter which was PCR amplified from pLVX-EtO (a gift from Oliver Brüstle; Ladewig et 
al., 2012) using primer fw 5’-GGCTCTATGGATTGGCTCCGGTGCCCGT-3’ and primer rev 5’-ATGGTGGCG-
GCGGATCCGGGTCGAAATTCC-3’. The third insert encoded the ORF of EGFP and was PCR amplified from pTRE-
TIGHT-EGFP (see above) using primer fw 5’-ACCCGGATCCGCCGCCACCATGGTGAGCA-3’ and primer rev 5’-
TCGAGGCTGATCAGCGAGCTACGCGTTTATCTAGACTTGTACAGCTCGTCCATGCCG-3’. The resulting vector was 
termed pR26-Neo_EF1α-EGFP. 

pR26-Neo_CAG-EGFP: a gene-trap vector was constructed in which expression of EGFP was under control of an exogenous 
CAG promoter. For this the EF1α promoter in pR26-Neo_EF1α-EGFP was removed with SacI and BamHI and exchanged 
with the CAG promoter from an in house vector (pAAV-Neo_CAG) cut by a SacI-digestion, following blunt-ending of both 
the backbone and insert. The resulting vector was termed pR26-Neo_CAG-EGFP. 

pR26-Neo_CAG-STDtetR: the wild-type bacterial tetR sequence containing a 5’-terminus SV40 nuclear localization 
sequence (tetR-nls, which we named standard tetR, or STDtetR) was amplified by PCR from pCAGTetRnls (a gift of Peter 
Andrews, Addgene plasmid #26599)  using primers fw 5’-CATTTTGGCAAAGAATTAATTCGGATCCACCATGCC-
AAAAAAGAAGAGGAAGGTATC-3’ and rev 5’- CGAGGCTGATCAGCGAGCTACGCGTTTACCGCGGAGACCCAC-
TTTCAC-3’. The resulting product was cloned by Gibson Assembly into pR26-Neo_CAG-EGFP following EGFP removal 
by BamHI-MluI digestion. 

pR26-Neo_CAG-OPTtetR: the STDtetR cDNA sequence was used as template for gene synthesis following multi-parameter 
codon and RNA optimization (Fath et al., 2011) (GeneArt GeneOptimizer service, Invitrogen; refer to the plasmid sequences 
in Appendix S1 for details of the resulting cDNA). The resulting synthetic gene (which we named optimized tetR, or OPTtetR) 
was amplified by PCR using primer fw 5’-CATTTTGGCAAAGAATTAATTCGGATCCACCATGCCCAAG-
AAAAAGCGG-3’ and rev 5’-CGAGGCTGATCAGCGAGCTACGCGTTCATCTGGGGGAGCCGC-3’). The resulting 
product was cloned by Gibson assembly into pR26-Neo_CAG-EGFP following EGFP removal by BamHI-MluI digestion. 

pR26-Bsd_CAG-EGFPd2: first, pR26-Neo_CAG-EGFP was digested with BglII and SpeI in order to remove the Puro-
polyA, and ligated via Gibson assembly with a Bst-polyA fragment. This last was obtained as synthetic double-stranded 
DNA from Integrated DNA Technologies, and amplified by PCR using primers fw 5’-	   CCAGTTTCGA-
ACGGGAGATCTGCCACCATGGCCA-3’ and rev 5’-	   GTAATTGATTACTATTAATAACTAGTCCAGCTGGTTCTT-
TCC-3’. The resulting product (pR26-Bsd_CAG-EGFP) was then digested with BamHI and MluI to remove the EGFP, and 
ligated via Gibson assembly with an EGFPd2 cDNA. This last was obtained by PCR from pHes1-GFPd2 (a gift from Connie 
Cepko, Addgene plasmid #14808) following PCR using primers fw 5’-TAATTCGGATCCCGCCACCATGGTGAGCAAG-
3’ and rev 5’-	  AGCTAGACGCGTCTACACATTGATCCTAGCAGAAGCACAG-3’. 

AAVS1 ZFN (pZFN_AAVS1-L-ELD and pZFN_AAVS1-R-KKR): these plasmids were a generous gift of Dr. Kosuke Yusa 
(Wellcome Trust Sanger Institute, Hinxton, UK). Previously described AAVS1 left and right ZFNs amino acid sequences 
(Hockemeyer et al., 2009) were used as basis for artificial gene synthesis following codon optimization for mammalian 
expression (GeneArt, Invitrogen; refer to the plasmid sequences in Appendix S1 for details of the resulting cDNA), and with 
insertion of a 5’ EcoRI site and a 3’ XhoI site. Following digestion with these two enzymes, the ZFNs were cloned into 
pVAX1 (Invitrogen) using EcoRI-XhoI (generating pZFN_AAVS1-L and pZFN_AAVS1-R). These plasmids were then 
modified to generate obligate heterodimer ZFNs by introducing mutated FokI domains (Doyon et al., 2011). The FokI-ELD 
and FokI-KKR domains amino acid sequences were used as basis for artificial gene synthesis following codon optimization 
for mammailian expression (GeneArt, Invitrogen; refer to the plasmid sequences in Appendix S1 for details of the resulting 
cDNA), and with insertion of a 5’ BamHI site and a 3’ XhoI site. Following digestion with these two enzymes, the mutated 
FokI domains were cloned in ZFNs plasmid in which the normal FokI domains had been removed by BamHI-XhoI digestion. 
FokI-ELD was used for AAVS1 left ZFN (pZFN_AAVS1-L-ELD) and FoKI-KKR was used for AAVS1 right ZFN 
(pZFN_AAVS1-R-KKR). The combination of these two plasmids is predicted to induce a specific double strand break 
between exons 1 and 2 of PPR1R12C on chromosome 19 (AAVS1 locus). 

pAAV-Puro_iKD (and related shRNA-containing plasmids): AAVS1 SA-2A-puro-pA donor (a gift from Rudolf Jaenisch, 
Addgene plasmid # 22075) was used to construct these plasmids. First, the single BglII site was removed by site-directed 
mutagenesis using top primer 5’-CACAGGGCCTCGAGAGTTCTGGCAGCGGAGAGG-3’ and bottom primer 5’-
CCTCTCCGCTGCCAGAACTCTCGAGGCCCTGTG-3’. This step was required as BglII had to be subsequently used to 
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clone the shRNAs. Secondly, the H1-TO promoter from pSUPERIOR_Neo (Oligoengine) was inserted in the HincII site 
following EcoRI-KpnI digestion and blunt-ending. The resulting plasmid was named pAAV-Puro_iKD. Finally, shRNAs 
were inserted to generate the final targeting vectors. For this last step, pAAV-Puro_iKD was digested with 25 U µg-1 of BglII 
and SalI-HF in 1x NEB3.1 at 37°C for 3 h, gel extracted following DNA electrophoresis, and reconstituted at 50 ng µl-1 for 
subsequent ligations. Validated shRNA sequences were obtained either from published reports (Zafarana et al., 2009; 
OCT4/POU5F1 and B2M shRNAs), from the RNAi Consortium TRC library (Moffat et al., 2006; DPY30: clone 
TRCN0000131112; CCND1: clone TRCN0000010317; CCND2: clone TRCN0000045294; CCND3: clone 
TRCN0000003828; T: clone TRCN0000005484), or from Sigma-Aldrich (EGFP: vector SHC005; SCR: vector SHC016). A 
single G (guanine) was added at the 5’ end of the shRNAs not starting with G or A, as the H1 promoter is more effective for 
sequences starting with such nucleotides. All other sequences were used without any modification. Complementary single-
stand oligonucleotides containing the shRNAs, the Pol III terminator sequence, and appropriate overhangs (see table below) 
were mixed at a 50 µM concentration of each oligo in a 20 µl reaction containing 10 mM Tris-HCl pH8, 1 mM EDTA, 100 
mM NaCl (annealing buffer), and annealed in a thermocycler with the following protocol: (1) 94°C for 5’; (2) 93°C for 20’’, 
reduce by 1°C/cycle and repeat for 12 cycles; (3) 80°C for 4’; (4) 79°C for 20’’, reduce by 1°C/cycle and repeat for 3 cycles; 
(5) 75°C for 4’; (6) 74°C for 20’, reduce by 1°C/cycle and repeat for 3 cycles; (7) 70°C for 4’; (8) 69°C for 20’’, reduce by 
1°C/cycle and repeat for 60 cycles; (9) hold at 10°C. Annealed oligos were diluted 1:500 in annealing buffer, and 4 µl were 
used for ligation with 50 ng of pAAV-Puro_iKD (prepared by restriction digestion as described above) for 2 h at room 
temperature. Following transformation, bacterial colonies were screened by colony PCR using primers fw 5’-
GTGTCATTCTATTCTGGGGGGTG-3’ and rev 5’-GTGGGGGTTAGACCCAATATCAG-3’, in a 12.5 µl mix containing 
400 nM of each primer, 400 µM dNTPs, 3 mM MgCl2, 1 x NH4 Reaction Buffer, and 0.625 U of BIOTAQ DNA Polymerase 
(Bioline), and using the following PCR program: (1) 95°C for 5’; (2) 95°C for 30’’; (3) 60°C for 30’’; (4) 72°C for 1’; (5) 
repeat steps 2 to 4 for 34 times; (6) hold at 10°C. Positive clones carrying a band of approximately 500 bp (depending on the 
size of the shRNA) instead of the 464 bp band from the parental pAAV-Puro_siKD vector were expanded, and the shRNA 
sequence was confirmed by Sanger sequencing of isolated plasmids using the same primers employed for colony PCR. 

Oligonucleotide sequences used for shRNAs cloning 

Gene Top oligod Bottom Oligod 

OCT4/POU5F1a GATCCCGGATGTGGTCCGAGTGTGGTTCAAGAGA 
CCACACTCGGACCACATCCTTTTTTG

TCGACAAAAAAGGATGTGGTCCGAGTGTGGTCTCTTGAA 
CCACACTCGGACCACATCCGG 

B2Ma GATCCCGGACTGGTCTTTCTATCTCTTCAAGAGA 
GAGATAGAAAGACCAGTCCTTTTTTG 

TCGACAAAAAAGGACTGGTCTTTCTATCTCTCTCTTGAA 
GAGATAGAAAGACCAGTCCGG 

SCRb GATCCCGCGCGATAGCGCTAATAATTTCTCGAG 
AAATTATTAGCGCTATCGCGCTTTTTTG 

TCGACAAAAAAGCGCGATAGCGCTAATAATTTCTCGAG 
AAATTATTAGCGCTATCGCGCGG 

EGFPb GATCCCGTACAACAGCCACAACGTCTATCTCGAG 
ATAGACGTTGTGGCTGTTGTATTTTTTG 

TCGACAAAAAATACAACAGCCACAACGTCTATCTCGAG 
ATAGACGTTGTGGCTGTTGTACGG 

DPY30c GATCCCGTCTCACAGACAACGTTGAGACTCGAG 
TCTCAACGTTGTCTGTGAGACTTTTTTG 

TCGACAAAAAAGTCTCACAGACAACGTTGAGACTCGAG 
TCTCAACGTTGTCTGTGAGACGG 

CCND1c GATCCCGATTGGAATAGCTTCTGGAATCTCGAG 
ATTCCAGAAGCTATTCCAATCTTTTTTG 

TCGACAAAAAAGATTGGAATAGCTTCTGGAATCTCGAG 
ATTCCAGAAGCTATTCCAATCGG 

CCND2c GATCCCGTCACCAACACAGACGTGGATTCTCGAG
AATCCACGTCTGTGTTGGTGATTTTTTG 

TCGACAAAAAATCACCAACACAGACGTGGATTCTCGAG 
AATCCACGTCTGTGTTGGTGACGG 

CCND3c GATCCCGCACATGATTTCCTGGCCTTCCTCGAG 
GAAGGCCAGGAAATCATGTGCTTTTTTG 

TCGACAAAAAAGCACATGATTTCCTGGCCTTCCTCGAG 
GAAGGCCAGGAAATCATGTGCGG 

T c GATCCCGCGAGGAGATCACAGCTCTTAACTCGAG
TTAAGAGCTGTGATCTCCTCGTTTTTTG 

TCGACAAAAAACGAGGAGATCACAGCTCTTAACTCGAG 
TTAAGAGCTGTGATCTCCTCGCGG 

a shRNA from (Zafarana et al., 2009). 
b shRNA from Sigma-Aldrich. 
c shRNA from the RNAi Consortium TRC library; Moffat et al., 2006; https://www.broadinstitute.org/rnai/public/). 
d Sense and anti-sense shRNA strands are underlined; the hairpin loop is in bold; Pol III terminator is in italic; the remaining sequences 
provided the necessary overhangs for cloning into pAAV-Puro_iKD or pAAV-Puro_siKD. Note that the 5’ BglII site is purposely lost after 
cloning of the shRNA to facilitate potential screening of recombinant bacteria by restriction digestion. 
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pAAV-Puro_CAG-EGFP: AAVS1-CAGGS-EGFP (a gift from Rudolf Jaenisch, Addgene plasmid # 22212) was renamed 
pAAV-Puro_CAG-EGFP to provide consistent nomenclature with the rest of the plasmids used in the study. 

pAAV-Puro_EGFPiKD: a fragment containing the CAG-EGFP-pA cassette was cut from pR26-Neo_CAG-EGFP with SpeI 
and HincII, blunt-ended, and inserted in pAAV-Puro_iKD-EGFP following digestion with PspXI and blunt ending. 

pAAV-Puro_EGFPsiKD-STD: a fragment containing the CAG-STDtetR-pA cassette was cut from pR26-Neo_CAG-
STDtetR with SpeI and HincII, blunt-ended, and inserted in pAAV-Puro_iKD-EGFP following digestion with PspXI and 
blunt ending. 

pAAV-Puro_EGFPsiKD-OPT: a fragment containing the CAG-OPTtetR-pA cassette was cut from pR26-Neo_CAG-
OPTtetR with SpeI and HincII, blunt-ended, and inserted in pAAV-Puro_iKD-EGFP following digestion with PspXI and 
blunt ending. 

pAAV-Puro_siKD (and related shRNA-containing plasmids): a fragment containing the CAG-OPTtetR-pA cassette was cut 
from pR26-Neo_CAG-OPTtetR with SpeI and HincII, blunt-ended, and inserted in pAAV-Puro_iKD following digestion 
with PspXI and blunt ending to generate the pAAV-Puro_siKD vector. This plasmid was used to clone shRNAs as described 
above for pAAV-Puro_iKD (see table above for the sequences used), with the exception that colony PCR screening of the 
recombinant bacteria was performed using primers fw 5’-CGAACGCTGACGTCATCAACC-3’ and rev 5’-
GGGCTATGAACTAATGACCCCG-3’ with a PCR annealing temperature of 60°C and generating a band of 350 bp (instead 
of 295 bp in the parental pAAV-Puro_siKD vector). 

pAAV-Puro_MsiKD plasmids: vectors carrying multiple inducible shRNAs were generated by Gibson assembly of PCR 
products of individual shRNA cassettes that had previously been cloned in pAAV-Puro_iKD. For this, primers were designed 
to introduce short spacers to separate the shRNA cassettes, with each spacer ending with a unique sequence to allow for 
directional Gibson assembly (see table below). The 5’-most cassette included an overlap (named L, for left hand side overlap) 
to the 3’-end of the linearized vector, and the 3’-most cassette included an overlap (named R, for right hand side overlap) to 
the 5’-end of the linearized vector. For double shRNA assembly, the cassettes were linked to each other by overlap BL1 (for 
block 1), while three shRNA cassettes were orderly linked by overlap BL1 and BL2 (for block 2), used in this order from the 
5’- to 3’- end. As a result, the PCR products for a double shRNA assembly were constructed as: 5’-L_shRNA1_BL1-3’ and 
5’-BL1_shRNA2_R-3’, while PCR products for triple shRNA assembly were: 5’-L_shRNA1_BL1-3’, 5’-
BL1_shRNA2_BL2-3’, and 5’-BL2_shRNA3_R-3’ (see table below and Figure 8G for a visual representation). PCR were 
performed using KAPA HiFi HotStart (Kapa Biosystems) according to manufacturer’s instructions and using the following 
protocol: (1) 95°C for 3’; (2) 98°C for 20’’; (3) 72°C for 30’’; (4) repeat steps 2-3 for 24 cycles; (5) 72°C for 1’. PCR 
products were gel extracted, and 20 ng of each fragment were assembled with 100 ng of linearized pAAV_siKD following 
sequential digestion with BstBI (2 h at 50°C) and HincII (2 h at 37°C) to remove the pre-existing inducible H1 promoter. For 
this, Gibson Assembly Master Mix (NEB) was used according to manufacturer’s instructions. Following transformation, 
bacterial colonies were screened by colony PCR as described above for pAAV_Puro_siKD, with the exception that the 
extension time was increased to 1’30” to accommodate for the larger insert, and that the screening generated bands of 
approximately 730 bp and 1080 bp for double and triple shRNA constructs, respectively. Correct assembly was confirmed by 
Sanger sequencing of isolated plasmids using the same primers employed for colony PCR, plus primers specific for BL1 (5’-
GCTGTGTCTTGACAGCAGAC-3’) and BL2 (5’-ACACAAGTACTGTCGGCAAC-3’). pAAV-Puro_MsiKD plasmids 
were generated for shRNAs against CCND1 and CCND2 (pAAV-Puro_MsiKD-D1-D2); CCND1 and CCND3 (pAAV-
Puro_MsiKD-D1-D3); CCND1, CCND2 and CCND3 (pAAV-Puro_MsiKD-D1-D2-D3); and 2 or 3 scramble controls 
(pAAV-Puro_MsiKD-SCRx2 and pAAV-Puro_MsiKD-SCRx3, respectively). 

Spacers used for Gibson assembly of multiple shRNA vectors 

Spacer Primer FW Primer REV 
5’-L_shRNA1_BL1-3’ TGCGGTGGGCTCTATGGGTCAATTCGAACGCTG

ACGTCATCAAC
GTCTGCTGTCAAGACACAGCATAGTCCTAGTAA
AGCTTAGTACTGTCCG

5’-BL1_shRNA2_R-3’ GTCTGCTGTCAAGACACAGCATAGTCCTAGTAA
AGCTTAGTACTGTCCG

ATTGATTACTATTAATAACTAGTCGAGGTCATC
CCTAGTAAAGCTTAGTACTGTCCG

5’-BL1_shRNA2_BL2-3’ GTCTGCTGTCAAGACACAGCATAGTCCTAGTAA
AGCTTAGTACTGTCCG

GTTGCCGACAGTACTTGTGTGTCCACCTAGTAA
AGCTTAGTACTGTCCG

5’-BL2_shRNA3_R-3’ ACACAAGTACTGTCGGCAACCACACCGAACGCT
GACGTCATCAAC

ATTGATTACTATTAATAACTAGTCGAGGTCATC
CCTAGTAAAGCTTAGTACTGTCCG
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pAAV-Neo_Cas9: the RTTA3 cDNA in AAVS1-SA-2A-NEO-CAG-RTTA3 (a gift of Paul Gadue, Addgene plasmid 
#60431) was removed by digestion with MluI and AflII, and replaced with the Cas9 cDNA from pSpCas9(BB)-2A-Puro 
(PX459) V2.0 (Addgene #62988). For this, Cas9 was amplified by PCR using primers fw 5’-‐CTCATCATTTTGGCA-
AAGAATTCCGCCACCATGGACTATAAGGACCACGA-3’ and 5’-AGCCTGCACCTGAGGAGTGAATTCATTACTT-
TTTCTTTTTTGCCTGGCCG-3’, and cloned by Gibson assembly. 

pAAV-Puro_siKO (and related gRNA-containing plasmids): pAAV-Puro_siKD was used as starting material. First, the only 
AarI site on this plasmid was removed to allow later introduction of twin AarI sites to facilitate tracer RNA cloning. pAAV-
Puro_siKD was digested with AarI and MreI to relase a short fragment containing the AarI site, which was replaced exactly 
but with a single point mutation disrupting the AarI site (note that AarI is a type II restriction enzyme that cuts outside of its 
recognition sequence). For this, a double stranded DNA fragment was generated by annealing oligos 5’-
CCGGCGCTCCGGGGGCCGCCGCGCCCCTCCCCCGAGCCCTCCCCGGCCCGAGGCGGCCCCGCCCCGCCCGGCA
CCCCCACCAGCCGCC-3’ and 5’- GGGTGGCGGCTGGTGGGGGTGCCGGGCGGGGCGGGGCCGCCTCGGGCC-
GGGGAGGGCTCGGGGGAGGGGCGCGGCGGCCCCCGGAGCG-3’, and then ligated. The resulting vector was digested 
with BglII and SalI, and ligated to a fragment containing twin AarI sites followed by a gRNA scaffold, so that this was placed 
following the H1-TO promoter. This fragment was obtained by annealing oligos 5’-GATCCCTGGTGCAGGTGG-
ACTGACTCACCTGCACCTGTTTTAGAGCTAGAAATAGCAAGTTAAAATAAGGCTAGTCCGTTATCAACTTGAAA
AAGTGGCACCGAGTCGGTGCTTTTTTG-3’ and 5’-TCGACAAAAAAGCACCGACTCGGTGCCACTTTTTCAAGT-
TGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAACAGGTGCAGGTGAGTCAGTCCACCTG-
CACCAGG-3’. The resulting vector was named pAAV-Puro_siKO. Finally, tracer RNA sequences were cloned between the 
twin AarI sites to generate a full gRNA. For this,  pAAV-Puro_siKO was digested with 2 U of AarI (Thermo Fisher 
Scientific) per µg of plasmid in 1x AarI buffer supplemented with 0.5 µM AarI oligo at 37°C for 16 h (overnight), gel 
extracted following DNA electrophoresis, and reconstituted at 50 ng µl-1 for subsequent ligation. Validated EGFP tracer RNA 
sequences were previously described (Shalem et al., 2014), and complementary single-stand oligonucleotides containing the 
tracer and appropriate overhangs (see table below) were mixed, annealed, and ligated to the prepared pAAV-Puro_siKO as 
described above for the generation of pAAV-Puro_iKD vectors. Following transformation, bacterial colonies were screened 
by colony PCR using the forward primer 5’-CGAACGCTGACGTCATCAACC-3’, and the bottom tracer RNA oligo as 
reverse primer. This reaction was performed as described above for pAAV-Puro_iKD vectors, and resulted in a band of 
approximately 250 bp in correct cloning products. These were expanded, and the gRNA sequence was confirmed by Sanger 
sequencing of isolated plasmids using the same forward primer employed for colony PCR. 

pAAV-Puro_siKO-2TO: the H1-2TO promoter was designed by replacing the 19bp sequence before the TATA box of the 
H1-TO promoter with an additional tet operon (see Fig. S8J), as previously described (Henriksen et al. 2007). This sequence 
was obtained as double a stranded synthetic DNA molecule also containing the gRNA cloning site, the gRNA scaffold 
(Integrated DNA Technologies), and up- and downstream homology regions to allow subsequent Gibson cloning (5’-
GTGGGCTCTATGGGTCAATT-3’ and 5’-GACCTCGACTAGTTATTAATAGTAA-3’, respectively). The resulting 
product was Gibson cloned in the pAAV-Puro_siKO following BstBI and HincII digestion. This pAAV-Puro_siKO-2TO 
vector was then used to clone the EGFP gRNAs exactly as just described for pAAV-Puro_siKO.  

Oligonucleotide sequences used for gRNA cloning 

gRNA Top oligoa Bottom Oligoa 
EGFP-1 TCCCGAGCTGGACGGCGACGTAAA AAACTTTACGTCGCCGTCCAGCTC
EGFP-2 TCCCGAAGTTCGAGGGCGACACCC AAACGGGTGTCGCCCTCGAACTTC
EGFP-3 TCCCGGGCGAGGAGCTGTTCACCG AAACCGGTGAACAGCTCCTCGCCC

a The 20 base-pairs gRNA sequence is in bold, while other sequences provide the necessary overhangs for the cloning. 

pAAV-Puro_MsiKO plasmids: vectors carrying multiple inducible gRNAs were generated by Gibson assembly of PCR 
products of individual gRNA cassettes that had previously been cloned in pAAV-Puro_siKO. This was performed using a 
strategy analogous to the one described above for pAAV-Puro_MsiKD vectors, with the following few exceptions. First, 
some of the primers used to generate fragments for Gibson assembly were different (see table below). Second, pAAV-
Puro_siKO was used for cloning following sequential digestion with BstBI (2 h at 50°C) and HincII (2 h at 37°C) to remove 
the pre-existing inducible H1 promoter and scaffold RNA. Finally, colony PCR was performed using primers fw 5’-
GTGTCATTCTATTCTGGGGGGTG-3’ and rev 5’-GGGCTATGAACTAATGACCCCG-3’ and resulted in bands of 
approximately 890 bp and 1288 bp for vectors containing 2 or 3 gRNAs, respectively. 
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Spacers used for Gibson assembly of multiple gRNA vectors 

Spacer Primer FW Primer REV 
5’-L_gRNA1_BL1-3’ TGCGGTGGGCTCTATGGGTCAATTCGAACGCTG

ACGTCATCAAC 
GTCTGCTGTCAAGACACAGCATAGTCCTAGTAA
AGCTTAGTACTGTCCGGGCCCCCCCTCGAGGTC
GACAAAAAAGCACCGACTCGG 

5’-BL1_gRNA2_R-3’ GCTGTGTCTTGACAGCAGACCTCGTCGAACGCT
GACGTCATCAAC 

ATTGATTACTATTAATAACTAGTCGAGGTCGAC
AAAAAAGCACCGACTCGG 

5’-BL1_gRNA2_BL2-3’ GCTGTGTCTTGACAGCAGACCTCGTCGAACGCT
GACGTCATCAAC 

GTTGCCGACAGTACTTGTGTGTCCACCTAGTAA
AGCTTAGTACTGTCCGGGCCCCCCCTCGAGGTC
GACAAAAAAGCACCGACTCGG 

5’-BL2_gRNA3_R-3’ ACACAAGTACTGTCGGCAACCACACCGAACGCT
GACGTCATCAAC 

ATTGATTACTATTAATAACTAGTCGAGGTCGAC
AAAAAAGCACCGACTCGG 

Gene targeting 

For OPTiKD and sOPTiKD, AAVS1 targeting was performed by lipofection as previously described (Bertero et al., 2015; 
Vallier et al., 2004). Briefly, hPSCs were seeded feeder-free in 6-well plates, and transfected 48 h following cell passaging 
with 4 µg of DNA (equally divided between the two AAVS1 ZFN plasmids and the targeting vector) using 10 µl per well of 
Lipofectamine 2000 in Opti-MEM media (Gibco) for 24 h, all according to manufacturer’s instructions. After 4 days, 1 µg 
ml-1 of Puromycin was added to the culture media, and individual clones were picked and expanded following 7-10 days of 
selection. 

For sOPTiKO, AAVS1 targeting was performed by nucleofection. hESCs pre-treated for 16 h with 10 µM Y-27632 (Tocris) 
were dissociated to clumps of 2-8 cells using Accutase (Gibco), and 2 x 106 cells were nucleofected in 100 µl with a total of 
12 µg of DNA (4 µg each for the two ZFN plasmids, and 2 µg each for the two targeting vectors) using the Lonza P3 Primary 
Cell 4D-Nucleofector X Kit and the cycle CA-137 on a Lonza 4D-Nucleofector System, all according to manufacturer’s 
instructions. Nucleofected hESCs were plated onto a feeder layer of irradiated DR4 (puromycin and neomycin resistant) 
mouse embryonic fibroblasts and cultured in KSR media supplemented with 4 ng ml-1 FGF2 and 10 µM Y-27632 (this last 
only for the first 24 h). After 4 days, hPSC colonies carrying both puromycin and neomycin resistance gene were selected for 
7-10 days with 25 µg ml-1 of Geneticin (G418 Sulfate, Gibco) and 0.5 µg ml-1 Puromycin. Individual clones were then picked 
and expanded in feeder-free conditions as described above. 

AAVS1-EGFP, ROSA26-EGFP, ROSA26-STDtetR, ROSA26-OPTtetR, and ROSA26-EGFPd2 hESCs were generated by 
lipofection (AAVS1 locus) or nucleofection (ROSA26 locus) of the targeting vectors with AAVS1 ZFN or ROSA26 
CRISPR/Cas9n pairs (as described above). 2 µg ml-1 Blasticidin S-HCl (Gibco) was used for pR26-Bsd_CAG-EGFPd2 
plasmid. Generation of inducible EGFP overexpression hESCs carrying ROSA26-rtTA and AAVS1-TRE-EGFP transgenes 
is described in detail elsewhere (MP, DO, AB, et al., manuscript in revision). Briefly, cells were sequentially gene targeted 
first by nucleofection of pR26-Neo_CAG-rtTA with ROSA26 CRISPR/Cas9n plasmids, then by lipofection of pAAV-
Puro_TRE-EGFP with AAVS1 ZFN plasmids. 

Gene targeted hPSC clonal lines were screened by genomic PCR to verify site-specific targeting, determine the number of 
alleles targeted, and exclude off-target integrations of the targeting plasmid (see Fig. S1A). The following section will clarify 
the primer combinations and PCR conditions used for the various targeting vectors. The results of all targeting experiments 
are summarized in Table S1, and only fully correctly targeted lines (no off target integrations) were used for the experiments 
presented. Karyotype analysis was performed by standard G banding techniques to confirm euploidy of targeted lines 
(Medical Genetics Service, Cambridge University Hospitals). 
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Genotyping 

The three tables below show the primer pairs and PCR conditions used for genotyping of targeted hPSCs. 
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a Result of PCR on targeting vector (positive control for off-target plasmid integration). 
b Variable parameters in PCR program: (1) 94° 5’; (2) 94° 15’’; (3) Temp. ann. 30”; (4) 65° Ext. time; (5) Repeat 2 to 4 
for 34 cycles; (6) 65° 5’; (7) 10° hold. 
c Size depending on transgene size; the extension time was set accordingly. For CAG promoter-containing transgenes 
the PCR failed due to high GC-content and resulted in loss-of-allele (loA). 

Development 143: doi:10.1242/dev.138081: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



E
xt

. 
 ti

m
eb 

> 
3’

c 

1’
30

” 

1’
30

” 

2’
 

1’
 

1’
 3

0”
 

2’
 

2’
30

” 

T
em

p.
an

n.
b 

(°
C

) 

65
 

65
 

60
 

60
 

60
 

60
 

60
 

60
 

 A
m

pl
ic

on
 

 p
la

sm
id

a 

(b
p)

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

 A
m

pl
ic

on
 

 tr
an

sg
en

e 
(b

p)
 

V
ar

ia
bl

ec 

(c
an

 b
e 

lo
A

) 

11
03

 

10
32

 

16
56

 

88
4 

14
47

 

16
05

 

21
51

 

 A
m

pl
ic

on
 

 w
ild

-t
yp

e 
(b

p)
 

16
92

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

 P
ri

m
er

 se
qu

en
ce

 

 C
TG

TT
TC

C
C

C
TT

C
C

C
A

G
G

C
A

G
G

TC
C

 

 T
G

C
A

G
G

G
G

A
A

C
G

G
G

G
C

TC
A

G
TC

TG
A

 

 C
TG

TT
TC

C
C

C
TT

C
C

C
A

G
G

C
A

G
G

TC
C

 

 T
C

G
TC

G
C

G
G

G
TG

G
C

G
A

G
G

C
G

C
A

C
C

G
 

 C
TG

TT
TC

C
C

C
TT

C
C

C
A

G
G

C
A

G
G

TC
C

 

 G
TG

C
C

C
A

G
TC

A
TA

G
C

C
G

A
A

T 

 G
G

A
TC

A
C

TC
TC

G
G

C
A

TG
G

A
C

 

 T
G

C
A

G
G

G
G

A
A

C
G

G
G

G
C

TC
A

G
TC

TG
A

 

   
G

C
C

C
G

G
A

C
A

G
TA

C
TA

A
G

C
TT

TA
C

TA
G

G
G

 

 T
G

C
A

G
G

G
G

A
A

C
G

G
G

G
C

TC
A

G
TC

TG
A

 

 C
C

A
C

C
G

A
G

A
A

G
C

A
G

TA
C

G
A

G
 

 T
G

C
A

G
G

G
G

A
A

C
G

G
G

G
C

TC
A

G
TC

TG
A

 

 C
G

A
C

G
C

C
TT

A
G

C
C

A
TT

G
A

G
A

 

 T
G

C
A

G
G

G
G

A
A

C
G

G
G

G
C

TC
A

G
TC

TG
A

 

 A
A

A
C

G
G

C
C

G
G

A
A

G
A

G
A

A
TG

 

 T
G

C
A

G
G

G
G

A
A

C
G

G
G

G
C

TC
A

G
TC

TG
A

 

 P
ri

m
er

 lo
ca

tio
n 

 G
en

om
ic

; 5
' t

o 
5'

-H
A

R
 

 G
en

om
ic

; 3
' t

o 
3'

-H
A

R
 

 G
en

om
ic

; 5
' t

o 
5'

-H
A

R
 

 P
ur

om
yc

in
 

 G
en

om
ic

; 5
' t

o 
5'

-H
A

R
 

 N
eo

m
yc

in
 

 E
G

FP
 

 G
en

om
ic

; 3
' t

o 
3'

-H
A

R
 

 A
fte

r H
1 

pr
om

ot
er

 

 G
en

om
ic

; 3
' t

o 
3'

-H
A

R
 

 O
PT

te
tR

 

 G
en

om
ic

; 3
' t

o 
3'

-H
A

R
 

 S
TD

te
tR

 

 G
en

om
ic

; 3
' t

o 
3'

-H
A

R
 

 C
as

9 

 G
en

om
ic

; 3
' t

o 
3'

-H
A

R
 

 P
C

R
 

 ty
pe

 

LO
C

U
S 

5’
-I

N
T 

5’
-I

N
T 

3’
-I

N
T 

3’
-I

N
T 

3’
-I

N
T 

3’
-I

N
T 

3’
-I

N
T 

T
ar

ge
tin

g 
ve

ct
or

(s
) 

A
ll 

pA
A

V
 v

ec
to

rs
 

A
ll 

pA
A

V
-P

ur
o 

ve
ct

or
s 

pA
A

V
-N

eo
_C

A
G

-C
as

9 

pA
A

V
-P

ur
o_

C
A

G
-E

G
FP

 
pA

A
V

-P
ur

o_
EG

FP
iK

D
 

A
ll 

pA
A

V
-P

ur
o_

iK
D

 v
ec

to
rs

 

A
ll 

pA
A

V
-P

ur
o_

si
K

D
 v

ec
to

rs
 

pA
A

V
-P

ur
o_

EG
FP

si
K

D
-O

PT
 

A
ll 

pA
A

V
-P

ur
o_

si
K

O
 v

ec
to

rs
 

A
ll 

pA
A

V
-P

ur
o_

M
si

K
O

 v
ec

to
rs

 

pA
A

V
-P

ur
o_

EG
FP

si
K

D
-S

TD
 

pA
A

V
-N

eo
_C

A
G

-C
as

9 

Development 143: doi:10.1242/dev.138081: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



 E
xt

. 
 ti

m
eb 

1’
30

” 

1’
30

” 

2’
 3

0”
 

1’
 3

0”
 

2’
 

2’
 

2’
30

” 

T
em

p.
an

n.
b 

(°
C

) 

60
 

60
 

60
 

60
 

60
 

60
 

60
 

 A
m

pl
ic

on
 

 p
la

sm
id

a 

(b
p)

 

12
27

 

12
49

 

20
11

 
(E

G
FP

) 
15

26
 

12
39

 

18
02

 

19
60

 

25
00

 

 A
m

pl
ic

on
 

 T
ra

ns
ge

ne
 

(b
p)

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

 A
m

pl
ic

on
 

 w
ild

-t
yp

e 
(b

p)
 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

N
o 

ba
nd

 

 P
ri

m
er

 se
qu

en
ce

 

 A
TG

C
TT

C
C

G
G

C
TC

G
TA

TG
TT

 

 T
G

A
G

G
A

A
G

A
G

TT
C

TT
G

C
A

G
C

TC
 

 A
TG

C
TT

C
C

G
G

C
TC

G
TA

TG
TT

 

 G
TG

C
C

C
A

G
TC

A
TA

G
C

C
G

A
A

T 

 G
G

A
TC

A
C

TC
TC

G
G

C
A

TG
G

A
C

 

 A
TG

C
A

C
C

A
C

C
G

G
G

TA
A

A
G

TT
 

   
G

C
C

C
G

G
A

C
A

G
TA

C
TA

A
G

C
TT

TA
C

TA
G

G
G

 

 A
TG

C
A

C
C

A
C

C
G

G
G

TA
A

A
G

TT
 

 C
C

A
C

C
G

A
G

A
A

G
C

A
G

TA
C

G
A

G
 

 A
TG

C
A

C
C

A
C

C
G

G
G

TA
A

A
G

TT
 

 C
G

A
C

G
C

C
TT

A
G

C
C

A
TT

G
A

G
A

 

 A
TG

C
A

C
C

A
C

C
G

G
G

TA
A

A
G

TT
 

 A
A

A
C

G
G

C
C

G
G

A
A

G
A

G
A

A
TG

 

 A
TG

C
A

C
C

A
C

C
G

G
G

TA
A

A
G

TT
 

 P
ri

m
er

 lo
ca

tio
n 

 B
ac

kb
on

e;
 5

' t
o 

5’
-H

A
R

 

 P
ur

om
yc

in
 

 B
ac

kb
on

e;
 5

' t
o 

5’
-H

A
R

 

 N
eo

m
yc

in
 

 E
G

FP
 

 B
ac

kb
on

e;
 3

' t
o 

3'
-H

A
R

 

 A
fte

r H
1 

pr
om

ot
er

 

 B
ac

kb
on

e;
 3

' t
o 

3'
-H

A
R

 

 O
PT

te
tR

 

 B
ac

kb
on

e;
 3

' t
o 

3'
-H

A
R

 

 S
TD

te
tR

 

 B
ac

kb
on

e;
 3

' t
o 

3'
-H

A
R

 

 C
as

9 

 B
ac

kb
on

e;
 3

' t
o 

3'
-H

A
R

 

 P
C

R
 

 ty
pe

 

5’
-B

B
 

5’
-B

B
 

3’
-B

B
 

3’
-B

B
 

3’
-B

B
 

3’
-B

B
 

3’
-B

B
 

T
ar

ge
tin

g 
ve

ct
or

(s
) 

A
ll 

pA
A

V
-P

ur
o 

ve
ct

or
s 

pA
A

V
-N

eo
_C

A
G

-C
as

9 

pA
A

V
-P

ur
o_

C
A

G
-E

G
FP

 
pA

A
V

-P
ur

o_
EG

FP
iK

D
 

A
ll 

pA
A

V
-P

ur
o_

iK
D

 v
ec

to
rs

 

A
ll 

pA
A

V
-P

ur
o_

si
K

D
 v

ec
to

rs
 

pA
A

V
-P

ur
o_

EG
FP

si
K

D
-O

PT
 

A
ll 

pA
A

V
-P

ur
o_

si
K

O
 v

ec
to

rs
 

A
ll 

pA
A

V
-P

ur
o_

M
si

K
O

 v
ec

to
rs

 

pA
A

V
-P

ur
o_

EG
FP

si
K

D
-S

TD
 

pA
A

V
-N

eo
_C

A
G

-C
as

9 

Development 143: doi:10.1242/dev.138081: Supplementary information

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Quantitative real-time PCR (qPCR) 

Analysis of gene expression was performed as previously described (Bertero et al., 2015). Briefly, RNA was extracted using 
GenElute Mammailan Total RNA Miniprep Kit and the On-Column DNAse I Digestion Set (Sigma-Aldrich) and used for 
cDNA synthesis with SuperScript II (Invitrogen), all following manufacturer’s recommendations. SensiMix SYBR low-ROX 
(Bioline) was used for qPCR, and reactions were run on a Stratagene Mx-3005P (Agilent). See the table below for primer 
sequences. Results were analyzed with the ΔΔCt method (Schmittgen and Livak, 2008) using RPLP0 as housekeeping gene. 
Perseus software (MaxQuant) was used to generate heatmaps summarizing the qPCR data. 

Primers used for quantitative PCR 

Gene Primer Sequence 

ACTA2 
FW GTGTTGCCCCTGAAGAGCAT 

REV GCTGGGACATTGAAAGTCTCA 

ACTN2 
FW CAAACCTGACCGGGGAAAAAT 

REV CTGAATAGCAAAGCGAAGGATGA 

AFP 
FW AGAACCTGTCACAAGCTGTG 

REV GACAGCAAGCTGAGGATGTC 

B2M 
FW ATGTCTCGCTCCGTGGCCTTAGCT 

REV CCTGAATCTTTGGAGTACGCTGGATAGC 

CCND1 
FW GATGCCAACCTCCTCAACGA 
REV TCTGTTCCTCGCAGACCTCC 

CCND2 
FW AGCTGTCTCTGATCCGCAAG 
REV TGGCAAACTTAAAGTCGGTGG 

CCND3 
FW GGCCCTCTGTGCTACAGATTA 
REV CAGTCCACTTCAGTGCCAGT 

CDX2 
FW GGCAGCCAAGTGAAAACCAG 
REV TTCCTCTCCTTTGCTCTGCG 

CER1 
FW TTCTCAGGGGGTCATCTTGC 
REV ATGAACAGACCCGCATTTCC 

CXCR4 
FW CACCGCATCTGGAGAACCA
REV GCCCATTTCCTCGGTGTAGTT

DPY30 
FW TGCTGGAGGGACAAACGCAGG 
REV AGGCACGAGTTGCAAAGACTGG 

EGFP 
FW CCCGACAACCACTACCTGAG 

REV GTCCATGCCGAGAGTGATCC 

EOMES 
FW ATCATTACGAAACAGGGCAGGC 

REV CGGGGTTGGTATTTGTGTAAGG 

FOXA2 
FW GGGAGCGGTGAAGATGGA 

REV TCATGTTGCTCACGGAGGAGTA 

GATA4 
FW TCCCTCTTCCCTCCTCAAAT 

REV TCAGCGTGTAAAGGCATCTG 

GCG 
FW AAGCATTTACTTTGTGGCTGGATT 

REV TGATCTGGATTTCTCCTCTGTGTCT 

GSC 
FW GAGGAGAAAGTGGAGGTCTGGTT 

REV CTCTGATGAGGACCGCTTCTG 

HEX 
FW CTGCAGCTCAGCGAGAGACA 

REV CAGGGGAGGGCGAACATGGA 

HFN4A 
FW CATGGCCAAGATTGACAACCT 

REV TTCCCATATGTTCCTGCATCAG 

HLXB9 
FW CACCGCGGGCATGATC 

REV ACTTCCCCAGGAGGTTCGA 

HNF1B 
FW GCACCCCTATGAAGACCCAG 

REV GGACTGTCTGGTTGAATTGTCG 

INS 
FW CAGGAGGCGCATCCACA 

REV AAGAGGCCATCAAGCAGATCA 
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Gene Primer Sequence 

ISL1 
FW GCAAATGGCAGCGGAGCCCA 

REV AGCAGGTCCGCAAGGTGTGC 

KDR 
FW TTTTTGCCCTTGTTCTGTCC 

REV TCATTGTTCCCAGCATTTCA 

MAP2 
FW AGACTGCAGCTCTGCCTTTAG 

REV AGGCTGTAAGTAAATCTTCCTCC 

MEF2C 
FW CAGACATCGTGGAGGCATT 

REV GGGGTGAGTGCATAAGAGGA 

MESP1 
FW GAAGTGGTTCCTTGGCAGAC 

REV TCCTGCTTGCCTCAAAGTGT 

MEOX1 
FW AAAGTGTCCCCTGCATTCTG 

REV CACTCCAGGGTTCCACATCT 

MHY6 
FW CTCCCGCTTTGGGAAATT 

REV GGACTTCTCCAGCAGGTAGGT 

MIXL1 
FW GGTACCCCGACATCCACTTG 

REV TAATCTCCGGCCTAGCCAAA 

MSGN1 
FW GGAGAAGCTCAGGATGAGGA 

REV GTCTGTGAGTTCCCCGATGT 

NANOG 
FW CATGAGTGTGGATCCAGCTTG 

REV CCTGAATAAGCAGATCCATGG 

NKX2.5 
FW GAGCCGAAAAGAAAGCCTGAA 

REV CACCGACACGTCTCACTCAG 

NGN2 
FW TGTTCGTCAAATCCGAGACCT 

REV CGATCCGAGCAGCACTAACA 

NODAL 
FW TGAGCCAACAAGAGGATCTG 

REV TGGAAAATCTCAATGGCAAG 

OCT4/POU5F1 
FW AGTGAGAGGCAACCTGGAGA 

REV ACACTCGGACCACATCCTTC 

PAX3 
FW GTGCCGTCAGTGAGTTCCATC 

REV AAGTCACCCAGCAAGTGCG 

PAX6 
FW CTTTGCTTGGGAAATCCGAG 

REV AGCCAGGTTGCGAAGAACTC 

PDGFRA 
FW TTTTGTTGTAGAGGTGCGGG 

REV TCCTTAGCACGGATCAGCTT 

PDX1 
FW GATTGGCGTTGTTTGTGGCT 

REV GCCGGCTTCTCTAAACAGGT 

RPLP0 
FW GGCGTCCTCGTGGAAGTGAC 

REV GCCTTGCGCATCATGGTGTT 

SOX1 FW+ REV Quantitec primers (Qiagen): QT00215299 

SOX17 
FW CGCACGGAATTTGAACAGTA 

REV GGATCAGGGACCTGTCACAC 

SOX2 
FW TGGACAGTTACGCGCACAT 

REV CGAGTAGGACATGCTGTAGGT 

SOX9 FW+ REV Quantitec primers (Qiagen): QT00001498 

SST 
FW CCCCAGACTCCGTCAGTTTC 

REV TCCGTCTGGTTGGGTTCAG 

T 
FW TGCTTCCCTGAGACCCAGTT 

REV GATCACTTCTTTCCTTTGCATCAAG 

TAGLN 
FW TCTTTGAAGGCAAAGACATGG 

REV TTATGCTCCTGCGCTTTCTT 

TBX5 
FW GCTGGAAGGCGGATGTTT 

REV GATCGTCGGCAGGTACAATG 

TBX6 
FW AAGTACCAACCCCGCATACA 

REV TAGGCTGTCACGGAGATGAA 

tetR 
FW CGACGCCTTAGCCATTGAGA 

REV TTTCTGTAGGCCGTGTACCT 
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Gene Primer Sequence 

TNTT2 
FW ACAGAGCGGAAAAGTGGGAAG 

REV TCGTTGATCCTGTTTCGGAGA 

VGLUT2/SLC17A6 
FW GTAGACTGGCAACCACCTCC 

REV CCATTCCAAAGCTTCCGTAGAC 

Flow cytometry 

For EGFP quantification in live cells, cultures were incubated with TrypLE Select (Gibco) for 5-20 minutes at 37° C to 
obtain a single cell suspension. Following a wash in PBS, cells were resuspended in ice-cold PBS 1% BSA with 5 µg ml-1 
DAPI, incubated for 5 minutes on ice, and filtered through a 100 µm cell strainer. Cells were analyzed using a Cyan ADP 
flow cytometer to determine the EGFP median fluorescence intensity (MFI) of viable cells (DAPI negative). Flow cytometry 
analysis was performed using FlowJo. 

For intracellular staining, single cell suspensions were prepared as described above, washed and then fixed for 20 minutes at 
4°C with PBS 4% PFA. After three washes with PBS, cells were first permeabilized for 20 minutes at room temperature with 
PBS 0.1% Triton X-100, then blocked for 30 minutes at room temperature with PBS 10% Donkey Serum. Primary antibodies 
(see table below) and Alexa Fluor 647 Donkey secondary antibodies were incubated for 1 hour each at room temperature in 
PBS 1% Donkey Serum 0.1% Triton X-100, and cells were washed three times with this same buffer after each incubation. 
Flow cytometry was performed using a Cyan ADP flow cytometer and at 10,000-50,000 events were recorded. Secondary 
only stains were used as negative controls for all experiments. 

Western blot 

Analysis of protein expression was performed as previously described (Bertero et al., 2015). Briefly, protein lysates were 
prepared using CellLyitic M (Sigma-Aldrich) supplemented with cOmplete Protease Inhibitor (Roche), and quantified using 
Protein Quantification Kit-Rapid (Sigma-Aldrich), all according to manufacturer’s instructions. Protein electrophoresis was 
performed using NuPAGE LDS Sample Buffer and 4-12% NuPAGE Bis-Tris Precast Gels (Invitrogen). Following proteins 
transfer on PVDF using NuPAGE Transfer Buffer (Invitrogen), membranes were blocked with PBS 0.05% Tween (PBST) 
4% milk for 1 h at room temperature, and incubated overnight with primary antibodies (see table below) in PBST 4% milk. 
Membranes were washed three times with PBST, incubated with HRP-conjugated secondary antibodies (Sigma-Aldrich) in 
PBST 4% milk, further washed three times with PBST, incubated with Pierce ECL2 Western Blotting Substrate (Thermo), 
and exposed to X-Ray Super RX Films (Fujifilm).  

Immunofluorescence 

For most cell types analyzed, immunostaining was performed as previously described (Bertero et al., 2015). Briefly, cells 
were fixed in PBS 4% PFA for 20 minutes at room temperature, rinsed three times with PBS, blocked and permeabilized 
with PBS 10% Donkey Serum (Biorad) 0.1% Triton X-100 for 30 minutes at room temperature, and incubated with primary 
antibodies diluted in PBS 1% Donkey Serum 0.1% Triton X-100 overnight at 4°C (see table below). Following three washes 
for 5 minutes with PBS at room temperature, cells were incubated with appropriate Alexa Fluor 568 and/or 647 Donkey 
secondary antibodies diluted in PBS 1% Donkey Serum 0.1% Triton X-100 for 1 h at room temperature, and finally further 
washed three times for 5 minutes with PBS at room temperature (5 µg ml-1 DAPI was added to the first wash to stain nuclei). 
The immunostaining protocol was modified for cells growing in three-dimensional cultures (cholangiocytes and intestinal 
organoids) by extending each wash step to 1 h and by performing the incubation with secondary antibodies overnight at 4°C. 
For all cell types analyzed, EGFP expression could be monitored directly and without the use of antibodies, as the 
immunostaining procedure largely preserved EGFP fluorescence. Immunostainings were imaged using an LSM 700 confocal 
microscope (Leica). 
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Antibodies 

Antigen Supplier Product WB IF Flow 
ACAN/aggrecan R&D AF1220 - 1:50 - 
ACTN2/cardiac alpha actinin Sigma-Aldrich A7811 - 1:500 - 
AFP/alpha fetoprotein Dako A0008 - - 1:100 
ALB Bethyl Laboratories A80-229A-3 - 1:100 - 
BGLAP/osteocalcin R&D MAB1419 - 1:25 - 
Cas9 Cell Signalling 14697 - 1:50 - 
CDX2 BioGenex MU392A-UC - 1:200 - 
CNN1/calponin Sigma C2687 - - 1:5000 
DDR2 Santa Cruz sc-7555 - 1:50 - 
DPY30 Sigma-Aldrich HPA043761 1:100 1:200 - 
GFAP DAKO Z0334 - 1:1000 - 
HNF4A Santa Cruz sc-8987 - 1:100 - 
INS/c-peptide (pro-insulin) Acris BM270S - 1:300 1:200 
ISL1 Abcam ab23345 - - - 
KRT19/citokeratin 19 Abcam ab7754 - 1:100 - 
MAP2 Sigma-Aldrich M4403 - 1:200 - 
NGFR/p75 Santa Cruz sc-6188 - 1:100 - 
NKX2.5 Santa Cruz sc-14033 - 1:200 - 
O4 Sigma-Aldrich O7139 - 1:250 - 
OCT4/POU5F1 Santa Cruz sc-5279 - 1:200 1:200 
SFPTC/Surfactant protein c Santa Cruz sc-7705 - 1:50 - 
SOX1 R&D AF3369 - 1:100 - 
SOX17 R&D AF1924 - 1:100 1:200 
TAGLN/SM22 alpha Abcam ab14106 - 1:1000 - 
T/Brachyury R&D AF2085 - 1:200 - 
tetR Clonetech 631131 1:1000 - - 
tetR Mobitec TET01 - 1:4000 - 
TNTT2/cardiac troponin T Abcam ab45932 - 1:500 1:300 
TUBA4A/alpha 4 tubulin Sigma-Aldrich T6199 1:10000 - - 
TUBB3/beta 3 tubulin Millipore MAB1637 - 1:1000 1:200 
VIL1/villin Santa Cruz sc-58897 - 1:100 - 
WT1 Abcam ab89901 - 1:50 - 
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Click here to Download Supplemental Archive.zip

Appendix S1. Sequences of plasmids used in this study
Nucleotide sequences are provided (supplemental archive.zip) in each of two formats. (1) Genbank, 
which can be opened with virtually any nucleotide sequence analysis software (e.g. SnapGene 
Viewer, http://www.snapgene.com/products/snapgene_viewer/). The user will be able to visualize a 
number of features associated with the sequences. (2) Raw sequence in FASTA format, which can be 
opened with any text editor (but does not contain feature annotation).

http://www.biologists.com/DEV_Movies/DEV138081/SupplementalArchive.zip

