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Tissue- and stage-specific Wnt target gene expression is
controlled subsequent to β-catenin recruitment to cis-regulatory
modules
Yukio Nakamura1, Eduardo de Paiva Alves2, Gert Jan C. Veenstra3 and Stefan Hoppler1,*

ABSTRACT
Key signalling pathways, such as canonical Wnt/β-catenin signalling,
operate repeatedly to regulate tissue- and stage-specific transcriptional
responses during development. Although recruitment of nuclear
β-catenin to target genomic loci serves as the hallmark of canonical
Wnt signalling, mechanisms controlling stage- or tissue-specific
transcriptional responses remain elusive. Here, a direct comparison
of genome-wide occupancy of β-catenin with a stage-matched Wnt-
regulated transcriptome reveals that only a subset of β-catenin-bound
genomic loci are transcriptionally regulated by Wnt signalling. We
demonstrate that Wnt signalling regulates β-catenin binding to Wnt
target genes not onlywhen theyare transcriptionally regulated, but also
in contexts in which their transcription remains unaffected. The
transcriptional response to Wnt signalling depends on additional
mechanisms, such as BMP or FGF signalling for the particular genes
we investigated, which do not influence β-catenin recruitment. Our
findings suggest a more general paradigm for Wnt-regulated
transcriptional mechanisms, which is relevant for tissue-specific
functions of Wnt/β-catenin signalling in embryonic development but
also for stem cell-mediated homeostasis and cancer. Chromatin
association of β-catenin, even to functional Wnt-response elements,
can no longer be considered a proxy for identifying transcriptionally
Wnt-regulated genes. Context-dependent mechanisms are crucial for
transcriptional activation of Wnt/β-catenin target genes subsequent to
β-catenin recruitment. Our conclusions therefore also imply that Wnt-
regulated β-catenin binding in one context can mark Wnt-regulated
transcriptional target genes for different contexts.
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INTRODUCTION
Key signalling mechanisms are deployed repeatedly during
embryonic development to regulate differential gene expression,
often in combination with each other and with other regulatory
mechanisms. Wnt/β-catenin signalling (hereafter referred to as Wnt
signalling) is an important, evolutionarily conserved cell-to-cell
signalling mechanism that regulates the transcription of specific

target genes (reviewed byCadigan andWaterman, 2012; Hoppler and
Nakamura, 2014). Wnt signalling operates repeatedly during
embryogenesis, in stem cell-mediated homeostasis and in cancer
(reviewed by Hoppler and Moon, 2014; Nusse et al., 2012). The
textbook view asserts that activation of the canonical Wnt signalling
pathway causes β-catenin stabilisation and nuclear localisation, where
β-catenin associates with TCF/LEF transcription factors bound to so-
called Wnt-response DNA regulatory elements (WREs) to activate
the transcription of nearby Wnt target genes (reviewed by Nusse,
2012). Recruitment of nuclear β-catenin to target chromatin regions is
therefore thought to be the critical step for Wnt-regulated target gene
regulation. However, the developmental, cellular and transcriptional
responses to Wnt signalling are often remarkably specific for
particular stages, tissues and cell lineages, and the molecular
mechanisms by which the specific Wnt/β-catenin target genes are
regulated in different cellular and developmental contexts are still
largely unknown. Characterising these context-specific mechanisms
is therefore important for understanding the specific functional roles
of Wnt signalling in embryonic development and disease.

Early embryos represent ideal experimentalmodels for studying the
fundamental molecular mechanisms by which Wnt signalling
regulates such context-specific responses, since there are rapid and
fundamental changes in the cellular and developmental response to
Wnt signalling (reviewed by Zylkiewicz et al., 2014). This is
particularly prominent in the early Xenopus embryo (Fig. S1):
maternally activated Wnt signalling before the general onset of
zygotic transcription at the mid-blastula transition (MBT) (Newport
and Kirschner, 1982) regulates specific genes that then function to
establish dorsal development (e.g. Funayama et al., 1995; Heasman
et al., 2000; McMahon andMoon, 1989); but, only shortly thereafter,
early zygoticWnt signalling promotes ventral development (Christian
and Moon, 1993; Hoppler et al., 1996); yet, both are mediated by the
β-catenin-dependent pathway (Hamilton et al., 2001). This radical
change in the stage-specific response to Wnt signalling makes
Xenopus embryos a unique model for dissecting the molecular
mechanisms that determine context-specific responses to Wnt
signalling. Direct target genes of maternally activated Wnt
signalling have been described (e.g. Blythe et al., 2010; Brannon
et al., 1997; Crease et al., 1998; Laurent et al., 1997); however, genes
specifically regulated by early zygotic Wnt signalling are much less
well understood. Identifying such direct Wnt target genes would not
only be informative concerning the gene regulatory network that
operates in the ventrolateral prospective mesoderm, but also more
generally concerning the fundamental molecular mechanisms of
context-specific Wnt target gene regulation.

Here, we report genome-wide identification of such stage-specific
Wnt target genes through β-catenin chromatin immunoprecipitation
followed by high-throughput sequencing (ChIP-seq) combined with
RNA sequencing (RNA-seq) analysis of the relevant Wnt-regulatedReceived 6 October 2015; Accepted 31 March 2016
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transcriptome. Although the early Xenopus embryo shows β-catenin
occupancy at many genomic loci, our analysis reveals that
transcriptional expression is Wnt regulated at only a subset of
these loci. Thus, Wnt-regulated β-catenin recruitment to gene loci is
required, but not sufficient, for Wnt target gene expression. We find
instead that the tissue- and stage-specific context can regulate Wnt
target gene expression subsequent to β-catenin recruitment to cis-
regulatory modules at these loci.

RESULTS
Genome-wide mapping of β-catenin association in Xenopus
early gastrulae
Nuclear localisation of β-catenin is the hallmark of canonical Wnt
signalling (Schneider et al., 1996; Schohl and Fagotto, 2002). In the
nucleus, β-catenin regulates target gene expression in associationwith
DNA-binding proteins, particularly those of the TCF/LEF family
(reviewed by Cadigan and Waterman, 2012; Hoppler and Waterman,
2014). β-catenin ChIP-seq analysis had been used to identify direct
transcriptional targets of Wnt signalling in cancer tissue and cultured
cells (Bottomly et al., 2010; Park et al., 2012; Schuijers et al., 2014;
Watanabe et al., 2014).We therefore reasoned that β-catenin ChIP-seq
analysis in intact gastrula stage Xenopus tropicalis embryos would
identify early gastrula-specific Wnt target genes.

We developed a reliable β-catenin ChIP protocol for analysis at
the early gastrula stage (stage 10.25, Fig. 1A, Fig. S2) by optimising
first chromatin shearing conditions for fragments of ∼200 bp
(Fig. S2A), then the immunoprecipitation of chromatin-associated
β-catenin protein with two different β-catenin antibodies, as well as
IgG as a negative control (see Materials and Methods). Specific
binding of β-catenin by the antibodies was validated by western
blotting and also by β-catenin ChIP-qPCR (Fig. S2B-D). In the
ChIP-qPCR validation, we analysed known WREs in genes known
to be Wnt regulated at this stage [hoxd1 (Janssens et al., 2010)
and msgn1 (Wang et al., 2007)] as positive controls, and
genomic regions not containing WREs (from odc1 and hoxd1) as
negative controls. ChIP DNA samples and input control DNA
samples were each pooled from three validated ChIP experiments
and sequenced.

Clear β-catenin ChIP-seq peaks (hereafter referred to as β-peaks)
were found at known direct Wnt target loci in the X. tropicalis
genome [e.g. the hoxd1 locus (Janssens et al., 2010), Fig. 1B]. The
β-catenin ChIP-seq also confirmed no β-catenin association at the
negative control odc1 locus (data not shown). Two independent
peak-calling algorithms followed by stringent irreproducible
discovery rate (IDR) analysis (Li et al., 2011) identified 10,638
reproducible β-peaks across the X. tropicalis genome (Fig. 1C),

Fig. 1. β-catenin ChIP-seq analysis of Xenopus early gastrulae. (A) Experimental design of β-catenin ChIP-seq analysis. Early gastrulae were collected
and fixed. Following chromatin shearing, β-catenin antibodies were used to selectively precipitate DNA fragments bound by β-catenin-containing protein
complexes. Subsequently, the precipitated DNA fragments were sequenced. (B) Genome view of example β-catenin target gene hoxd1. Note the clear β-catenin
ChIP-seq peaks (β-peaks) downstream (to the left) of the hoxd1 locus. (C) Scatter plot combining peak calling analysis by SPP [considering signal strength,
applying false discovery rate (FDR)≤0.1] and MACS2 (considering fold change, applying P≤0.01) software, with black dots indicating 10,638 β-peaks
reproducibly called [applying an irreproducible discovery rate (IDR)≤0.01]. (D,E) β-peaks are associated with sequences throughout the genome (D) but enriched
close to and just upstream (putative promoter) of the transcriptional start site (TSS) of nearby genes (E; analysed in 500 bp bins). Pie chart (D) shows the
percentage of β-peaks according to their location relative to TSS (within 1 kb, 1-5 kb, 5-10 kb, 10-50 kb, over 50 kb upstream or downstream of TSS). (F) Heatmap
illustrating genome-wide association of β-peaks with histone modifications and transcription co-factor binding sites indicative of cis-regulatory modules (CRMs;
such as promoters and enhancers) in patterns that can be clustered into ten groups. Each horizontal line represents the 5 kb downstream and upstream regions of
ChIP-seq data around a β-peak. (G) Enriched motifs from de novo motif search of sequences under β-peaks. Note the identification of consensus TCF/LEF
binding but also other known transcription factor binding motifs. Statistical significance (e-values) and the number of β-peaks are indicated below each motif logo.
The analysis of motif distribution shows central enrichment of motifs within β-peak regions (500 bp window).
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which can be assigned to 5193 genes (Table S1). β-peaks are widely
distributed throughout the genome, close to and further away from
the transcriptional start site (TSS) of annotated genes (Fig. 1D), but
we find an enrichment close to and just 5′ of the TSS of genes
(Fig. 1E) and also a genome-wide correlation with putative cis-
regulatory sequences, such as promoters, enhancers or silencers,
which are collectively referred to here as cis-regulatory modules
(CRMs) [Fig. 1F; data for H3K4me3 and H3K27me3 from Akkers
et al. (2009), representing active promoters and inactive chromatin
states, respectively; data for H3K27ac and H3K4me1 (both
indicating active enhancers), for the transcriptional co-activator
p300 and for the transcriptional co-repressor Transducin-like
enhancer of split (TLE; also known as Groucho in Drosophila)
from Yasuoka et al. (2014)]. For instance, correlation of β-catenin
with p300-associated and with TLE-associated sites was 47.4% and
86.4%, respectively. We sought to detect enriched DNA sequences
shared among the identified β-peaks by performing a de novomotif
search on all β-peaks (Fig. 1G). As expected, consensus TCF/LEF
core binding sequences were identified. Additionally, other known
transcription factor binding motifs were found, some of which had
also been identified in previous β-catenin ChIP-seq studies
(Schuijers et al., 2014; Zhang et al., 2013) (see Discussion).

RNA-seq analysis of the wnt8a-regulated transcriptome
Independently, we performed transcriptome analysis using RNA-
seq in order to identify Wnt-regulated transcripts at the early
gastrula stage. Early zygotic Wnt signalling is activated in
prospective ventral mesoderm by wnt8a, which is the
predominant Wnt gene expressed during later blastula stages
(Christian et al., 1991; Collart et al., 2014). We developed an
experimental design that allowed us to identify genes regulated by
Wnt8a signalling (wnt8a-regulated genes, Fig. 2A). We compared
the mRNA expression profile a few hours after the onset of zygotic
transcription at early gastrula (stage 10.25) in two control conditions
with that in two experimental conditions: embryos in which
endogenous wnt8a was knocked down with a previously validated
antisense morpholino oligonucleotide (MO) (Rana et al., 2006); and
the same wnt8a knockdown embryos but with experimentally
reinstated expression with an MO-insensitive, Wnt8a-expressing
DNA construct (Fig. S3A).
We initially optimised the experimental conditions so that the

wnt8a knockdown not only consistently caused the well-
established wnt8a loss-of-function morphological phenotype
(Hoppler et al., 1996; Rana et al., 2006), but also is then
substantially rescued to normal embryonic morphology by our
experimentally targeted reinstatement of stage-specific Wnt8a
expression (Fig. 2A) (Christian and Moon, 1993). We confirmed
that the morphological changes caused by the knockdown and
reinstatement of Wnt8a expression are accompanied by predicted
changes in the expression of previously reported wnt8a-regulated
genes (Fig. S3B,C). In addition, unaltered gene expression levels
of the well-known maternal Wnt target gene siamois (sia1)
(Fig. S3C) confirmed that our experimental manipulation at
cleavage stages (MO and DNA microinjection) does not affect
early gene regulatory and dorsal axis establishment processes
controlled by maternal Wnt signalling (see below).
Statistical analysis of the RNA-seq results, applying a generalised

linear model (GLM) (Anders and Huber, 2010), identified an initial
longlist of 274 genes potentially positively regulated and 193 genes
potentially negatively regulated by wnt8a (Fig. 2B, seeTable S2).
As expected, this list includes previously identified Wnt-regulated
genes, such as axin2/xarp (Hufton et al., 2006), hoxd1 (Janssens

et al., 2010), sp5 (Weidinger et al., 2005) and ventx1 (Hoppler and
Moon, 1998). However, also included are genes with relatively
subtle changes in gene expression, which might not be
physiologically relevant for embryonic development. In order to
create a more manageable shortlist for further detailed analysis we
decided to focus on genes that were significantly affected by both
knockdown and reinstatement of Wnt8a expression (Fig. 2B). This
resulted in a shortlist of 14 high-confidence wnt8a positively
regulated genes, which have reduced expression in wnt8a
knockdown and are increased upon Wnt8a reinstatement. This
included two uncharacterised genes (ENSXETG00000010483 and
ENSXETG00000030701), which showed strong sequence similar-
ity to each other and resembled Xenopus laevis marginal coil (xmc,
Fig. S4). We therefore named ENSXETG00000010483 xmc-like 1
(xmcl1) and ENSXETG00000030701 xmc-like 2 (xmcl2). Applying
the same restrictive criteria for shortlisting suggested only one gene,
apt12a, to be negatively regulated by Wnt8a signalling (Fig. 2B).

All 14 wnt8a positively regulated genes were successfully
validated (Fig. 2C). They were all shown to be expressed at the
early gastrula stage when assayed by quantitative reverse
transcription PCR (RT-qPCR) and, as expected, their expression
was dependent on wnt8a function, although clearly to different
degrees. However, the one gene that was apparently negatively
regulated could not be validated. Therefore, consistent with the
expected major role of Wnt signalling, we find that Wnt8a
signalling mainly positively controls gene expression in early
gastrula embryos and we proceeded to focus on wnt8a positively
regulated genes. Expression of ten of the wnt8a positively regulated
genes was detectable by whole-mount RNA in situ hybridisation in
a pattern consistent with the expected signalling range of wnt8a-
expressing cells mostly in the ventral and lateral prospective
mesoderm, and, additionally, this expression was confirmed to be
dependent on wnt8a function, but again clearly to varying degrees
(Fig. 2D).

Identification of direct wnt8a target gene loci
By combining the β-catenin ChIP-seq and the wnt8a-regulated
transcriptome datasets, we identified 13 from our shortlist of 14
and 179 from our longlist of 274 wnt8a-regulated genes among the
5193 genes associated with β-peaks (Fig. 3A; see also examples in
Fig. S5 and Table S3). By definition, we considered these 13 and
179 genes as our shortlist and longlist of direct Wnt8a/β-catenin
target genes, respectively (Table S3).

We performed ChIP-qPCR analysis to examine whether Wnt8a
signalling, as expected, controls β-catenin recruitment to the CRMs
of Wnt8a/β-catenin targets. Knockdown of endogenous wnt8a
resulted in reduction of β-catenin binding compared with the
control, confirming that β-catenin association with these 13
shortlisted wnt8a target gene loci was dependent on wnt8a
function (Fig. 3B). To assess the transcriptional activity of the
β-peaks, we selected five β-peak elements from proximal regions
just upstream of the TSS and seven from more distant regions, and
tested them in luciferase reporter assays (Fig. 3C). All β-peak
sequences from proximal regions strongly induced expression of the
luciferase reporter (greater than 10-fold compared with a control
vector), and four out of the seven distant β-peak sequences activated
a heterologous basal promoter driving luciferase expression with
weaker activity. Taken together, these results support the conclusion
that the identified β-peak genomic regions control β-catenin-
mediated transcription in response to Wnt8a signalling.

Approximately one-third of apparently wnt8a-regulated genes
were devoid of any identifiable associated β-peak. These 94 genes
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were found in the Wnt8a reinstatement condition and might
therefore be expressed due to Wnt8a overexpression. They might
represent genes indirectly regulated by Wnt/β-catenin signalling or
by β-catenin-independent Wnt signalling mechanisms, but we did
not analyse them further in the current study. Because Wnt8a
signalling in the prospective ventral mesoderm is mediated by the
β-catenin-dependent pathway (Hamilton et al., 2001), we instead
investigated two classes of β-catenin-associated genes: the direct
Wnt8a/β-catenin target genes described above (i.e. the 13 and
179 genes of the shortlist and longlist, respectively) and 5009
β-catenin-bound but non-wnt8a-regulated genes (see also
examples in Fig. S5E,F). We anticipated that comparing these
two classes of genes would provide additional insight into how
Wnt/β-catenin target genes are regulated.

First, we performed gene ontology (GO) analysis to identify
whether these different classes are predicted to function in different
biological processes (Fig. 3D).Our analysis showed, however, that the
different classes are enriched for similar developmental processes,
such as mesoderm development, and also that they both mainly
contain genes encoding transcription factors, such as homeobox
genes. Despite these similarities, they show some differences
(compare purple and amber with red bars in Fig. 3D); in particular,
the non-wnt8a-regulated genes show an even higher association with
metabolic and later developmental processes (e.g. muscle, neural and
non-neural ectoderm development) (see Discussion).

Next, in order to identify context-specific Wnt signalling
mechanisms, we characterised the genomic sequences under
the β-peaks of Wnt8a/β-catenin target genes when compared with

Fig. 2. RNA-seq analysis to identifywnt8a-regulated genes. (A) Experimental design to identifywnt8a-regulated genes.wnt8aMOand a standard control MO
(CoMO) were microinjected into the ventral marginal zone (VMZ) of four-cell stage embryos (prospective endogenous wnt8a-expressing and ventral mesoderm
tissue). For the reinstatement experiment, wnt8aMOwas co-injected together with a DNA construct driving exogenousWnt8a (CSKA-wnt8a) in the same tissue.
Three biological replicates per experimental sample were sequenced. The experimental conditions were optimised by comparing themorphology of (i) uninjected
embryos with the embryos injected with (ii) CoMO, (iii) wnt8a MO or (iv) wnt8a MO plus CSKA-wnt8a DNA, as well as expected changes in expression of
candidate genes (Fig. S3). (B) Venn diagrams of genes that are positively (top) or negatively (bottom) regulated by Wnt8a signalling identified by generalised
linear model (GLM) statistical analysis (FDR<0.1; see the supplementary Materials and Methods) of RNA-seq results. Forty-one genes were identified with
reduced expression in thewnt8a knockdown (KD; blue, compared with uninjected and CoMO-injected controls) and 274 genes with increased expression when
Wnt8a expression was reinstated (green, compared withwnt8a knockdown). A shortlist of 14wnt8a positively regulated genes (listed on the left) was selected for
further analysis by the overlap between these two groups of genes (see Table S2 for full gene lists). Eighteen genes with increased expression were identified in
the wnt8a knockdown (amber) and 193 genes with reduced expression when Wnt8a expression was reinstated (purple), with one gene (atp12a) in the overlap
and therefore apparently negatively regulated bywnt8a. (C) Validation of RNA-seq-discovered candidate genes by RT-qPCR. Transcripts collected from embryos
microinjected into all four blastomeres withwnt8aMO, or withwnt8aMO co-injected with CSKA-wnt8a DNA, were compared with control (CoMO injected). All 14
positively wnt8a-regulated candidate genes of the shortlist were confirmed; but not atp12a, which had been suggested to be negatively regulated. Note the
varying extent of dependence on wnt8a function for the different genes. *P<0.1, **P<0.05; ns, not significant (P≥0.1); two-tailed Student’s t-test. Error bars
represent s.d. of two biological replicates. (D) Vegetal view of early gastrulae (with dorsal up) of control (uninjected) and wnt8a MO-injected embryos. Note the
expression of wnt8a-regulated genes in a similar, but not always identical pattern, as wnt8a. Also note the reduced expression to varying extents in wnt8a MO-
injected embryos.
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β-catenin-bound but non-wnt8a-regulated genes. As shown above,
all β-peaks were generally found to be enriched around TSSs
(Fig. 1E); however, compared with non-wnt8a-regulated genes
(10.1%), we found that wnt8a-regulated genes (30.7%) and
particularly our shortlist (53.8%) exhibited an even higher
enrichment of β-peaks within 1 kb regions upstream of the TSS.
In addition, Wnt8a/β-catenin target genes tend to have more clearly
defined β-peaks than the non-wnt8a-regulated gene class (Fig. 3E;
see examples in Fig. S5A,B,E,F). Therefore, these two classes of β-
catenin-associated genes exhibit subtly different levels and relative
genomic locations of β-catenin recruitment. However, de novomotif
discovery among β-peaks associated with these wnt8a-regulated or
non-regulated genes uncovered essentially the same motifs among
their β-peaks (Fig. S6). Therefore, these other motifs in wnt8a-
regulated and non-regulated genes appear to exist more generally in
β-peaks, implying they are not involved in regulating context-
specific wnt8a target gene expression. Interestingly, the TCF/LEF
motif was the only shared sequence motif found among all 13 genes
of the shortlist (Fig. 3F), suggesting that TCF/LEF motif-dependent
actions might constitute the only shared mechanism regulating
context-specific wnt8a target gene expression (see below).
Together, this analysis suggests subtle quantitative, but no

obvious qualitative, differences between wnt8a-regulated and non-
wnt8a-regulated β-catenin-associated loci.

β-catenin-chromatin association is not sufficient for
transcriptional regulation of direct Wnt target genes
We had discovered β-catenin-associated loci in gastrula embryos
that were not transcriptionally regulated by wnt8a function. We
speculated whether these β-catenin-associated loci could represent
Wnt target genes regulated in other tissues and at other stages.
Conversely, we wondered whether our wnt8a target loci would bind
β-catenin yet remain refractive to transcriptional regulation by Wnt
signalling in a different developmental context. For that reason we
investigated whether the identified wnt8a target genes have any
potential to respond to earlier maternal Wnt signalling (see Fig. S1).

We experimentally induced ectopic and enhanced activation of
maternal Wnt signalling and examined the expression of several
wnt8a target genes by RT-qPCR in blastula embryos at the MBT
(Fig. 4A), as well as the known maternal Wnt targets sia1 (Brannon
et al., 1997) and nodal3.1 (also known as Xnr3; McKendry et al.,
1997) as controls. Enhanced activation of maternal Wnt signalling
significantly increased expression of the maternal targets, as
expected, but did not change expression of wnt8a target genes
(Fig. 4A). This is consistent with the established idea that thewnt8a
target genes represent ventral mesoderm-specific zygotic Wnt
targets. However, β-catenin ChIP analysis revealed that, remarkably,
β-catenin is associated with both maternal Wnt and wnt8a target
gene loci in pre-MBT embryos (100-cell stage), when β-catenin is

Fig. 3. Integrating β-catenin ChIP-seq and RNA-seq analysis to identify directWnt8a/β-catenin target genes. (A) Venn diagram illustrating overlap between
genes near β-peaks (red) and thewnt8a positively regulated genes (as in Fig. 2B). Note that from among the longlist of 274 potential wnt8a-regulated genes, 179
are associated with identified β-peaks (amber border around lens-shaped area), representing the longlist of probable direct Wnt8a/β-catenin target genes.
Also note that all but one (xmcl2) of the validated shortlist of wnt8a positively regulated genes are among these and therefore represent the shortlist of 13 direct
Wnt8a/β-catenin target genes (yellow). Also note that the majority of gene loci near β-peaks are not correlated with wnt8a-regulated genes and, conversely,
that more than one-third of wnt8a-regulated genes in the longlist are not associated with identified β-peaks (most likely representing indirect wnt8a targets).
(B) β-catenin ChIP-qPCRof identified β-peaks of our shortlist in chromatin extracted from control (uninjected) andwnt8aMO-injected embryos. Note that β-catenin
association is reduced in the wnt8a loss-of-function experiment for most of the 15 β-peaks analysed. IgG antibodies were used as control. Error bars represent
s.e.m. of three to five biological replicates. (C) Luciferase assays of reporter constructs containing sequences near identified β-peaks of wnt8a-regulated genes.
Error bars represent s.d. of three biological replicates. (D) GO analysis suggests that β-peak-associated genes tend to encode transcription factors and also
cell-to-cell signalling components, and to function in developmental processes, with different emphasis between wnt8a-regulated (purple and amber) and non-
regulated genes (red). (E) DNA occupancy level of β-catenin around the peak summit shows higher enrichment in direct Wnt8a/β-catenin target gene loci [shortlist
(purple) and longlist (amber)] compared with non-wnt8a-regulated genes (red). Read density was analysed using HOMER (bin size 100 bp). (F) TCF/LEF
consensus motif is enriched under all 58 β-peaks associated with all 13 shortlisted Wnt8a/β-catenin target genes.
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regulated by maternal Wnt signal and well before the onset of
zygoticWnt8a signalling (Fig. 4B, pink). Furthermore, the β-catenin
occupancy increased with enhanced maternal Wnt activity (Fig. 4B,
green). This observation was confirmed by pharmacological
activation of maternal Wnt signalling activity with BIO (Fig. S7).
β-catenin binding was reduced following experimental inhibition of
endogenous maternal Wnt signalling (Fig. 4B, purple). This result
clearly shows that maternal Wnt signalling controls β-catenin
recruitment before the MBT not only to maternal Wnt target genes
but also to wnt8a target loci. Thus, there appears no obvious
qualitative difference in β-catenin recruitment between maternal
Wnt target genes and wnt8a target genes.
Conversely, as expected, the transcription of genes known to be

regulated by maternal Wnt signalling (Brannon et al., 1997; Crease
et al., 1998; Wessely et al., 2001) remained unaffected by either
wnt8a knockdown or experimentally enhanced Wnt signalling
activity in gastrula embryos (Fig. 4C). However, β-catenin ChIP
analysis in the same experiment revealed differences among
maternal Wnt-regulated gene loci; for some (gsc, nog, chrd, fst
and frzb), levels of β-catenin binding were increased by
experimentally enhanced Wnt8a activity in gastrula embryos
(Fig. 4D, green), similar to wnt8a targets (e.g. ventx1.2); whereas
others (sia1 and nodal3.1) were neither associated with endogenous
β-catenin nor with experimentally activated β-catenin in gastrula

embryos (Fig. 4D; see Table S4 for β-peaks of maternal Wnt-
regulated gene loci). Together, these results demonstrate in two
different developmental contexts that Wnt-regulated β-catenin
association is not sufficient for transcriptional activation.

Context-specific expression of wnt8a target genes is
regulatedbyBMPandFGFsignalling subsequent to β-catenin
recruitment
Beyond the expected TCF/LEF motifs, de novo motif discovery
among wnt8a target genes failed to identify further shared enriched
motifs. We therefore sought to test earlier proposed hypotheses that
combinatorial signalling underlies the context-specific expression of
wnt8a-regulated genes. It has previously been suggested that, among
our wnt8a-regulated genes, ventx1.2 is co-regulated by BMP
signalling (e.g. Hoppler and Moon, 1998). To investigate whether
co-regulation by Wnt and BMP signalling represents a shared
mechanism for regulating context-specific expression of wnt8a
targets (reviewed by Itasaki and Hoppler, 2010), we examined the
requirement of BMP signalling for wnt8a target gene regulation by
blocking the BMP pathway while maintaining constant levels of
Wnt8a signalling. We found that the expression of another four
genes, in addition to ventx1.2, is dependent on BMP signalling
(Fig. 5A), but, importantly, not that of all 13 genes in the shortlist.
Thus, although decisive for context-specific expression of some

Fig. 4. β-catenin recruitment is not sufficient for transcriptional regulation. (A,B) Maternally activated Wnt/β-catenin signalling regulates transcription of
only context-specific maternal Wnt/β-catenin target genes. Experimental enhancement of maternal Wnt signalling, by injection ofwnt8amRNA at the two- to four-
cell stage, increases expression of the maternal Wnt targets sia1 and nodal3.1 when analysed at the MBT, compared with the uninjected control (A). By
contrast, expression levels of wnt8a target genes remain unchanged. However, β-catenin binding increases at both maternal Wnt target and zygotic wnt8a-
regulated target loci at the 1000-cell stage (B). Note that the reduction of β-catenin binding following injection of axin mRNA indicates that maternally regulated
endogenous β-catenin associates with not only maternal Wnt target genes but also zygotic wnt8a target genes. (C,D) Zygotically activated β-catenin controls the
expression of only zygotic wnt8a targets. wnt8a MO or CSKA-wnt8a DNA were injected at the two- to four-cell stage and gene expression and β-catenin
binding were analysed at the early gastrula stage. Knockdown of wnt8a reduces, and zygotic activation of Wnt8a signalling increases, expression of the wnt8a
target hoxd1, as a control. Whereas wnt8a knockdown or overexpression does not affect the expression of maternal Wnt-regulated genes (C), overactivation of
Wnt8a signalling increases β-catenin binding to somematernal Wnt-regulated loci (D) but not to the well-characterised direct maternal Wnt target genes sia1 and
nodal3.1. Error bars indicate s.d. and s.e.m. of three biological replicates for RT-qPCR and ChIP-qPCR, respectively.
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genes in this tissue, BMP signalling is not an indispensable element
of any general mechanism for context-specific regulation of wnt8a
target genes.
Among our other wnt8a targets, cdx4 had been shown to be co-

regulated by FGF signalling (Haremaki et al., 2003). To examine
whether other wnt8a targets are similarly co-regulated by FGF
signalling, we analysed wnt8a target gene expression while
inhibiting the FGF pathway under constant levels of Wnt8a
signalling. Interestingly, compared with the BMP experiments, a
largely distinct subset of wnt8a target genes was found to be FGF
dependent (Fig. 5B). These results suggest that wnt8a-regulated
genes can be categorised into at least two different groups based on
co-regulation by different signalling pathways (Fig. 5C), and that
there is therefore no collectively shared context-specific Wnt8a
signalling mechanism that prevails in the ventral prospective
mesoderm of gastrulae.
Since the BMP and FGF pathways are activated in different

regions of early gastrulae (Fig. S8A) (Schohl and Fagotto, 2002),
we examined whether contexts in which wnt8a target genes are

regulated by these two pathways are spatially restricted. We
performed whole-mount in situ hybridisation of several BMP-
dependent or FGF-dependent wnt8a targets. Expression of the
BMP-dependent wnt8a target gene msx1 was detected in the
prospective ectoderm and mesoderm and, as expected, it was
significantly reduced in both tissues when BMP signalling was
inhibited (Fig. 5D). Experimentally enhanced Wnt8a activity
increased the expression in both tissues only when endogenous
BMP signalling was active (similar results are shown for fzd10 in
Fig. S8B). On the other hand, the FGF-dependent wnt8a targets
hoxd1 (Fig. 5E) and cdx2 (Fig. S8C) are expressed more exclusively
in prospective mesoderm (the marginal zone). Blocking FGF
signalling decreased their expression in prospective mesodermal
cells. Activation of Wnt8a signalling did not reinstate their
expression when FGF signalling was blocked, but did cause
strongly induced expression of both genes when endogenous FGF
signalling was active, specifically in the marginal zone. These
results suggest that the BMP and FGF pathways provide different,
spatially restricted contexts where wnt8a target genes can be

Fig. 5. BMP or FGF signalling is required for wnt8a target gene expression but not for β-catenin recruitment. (A) BMP signalling is required for context-
specific transcriptional regulation by Wnt8a signalling, but only of some wnt8a target genes. Two- to four-cell stage embryos were injected with BMP antagonist
noggin (nog) mRNA. CSKA-wnt8a DNA was injected additionally to reinstate Wnt8a expression (as endogenous wnt8a expression is itself regulated by BMP
signalling). Expression was analysed by RT-qPCR at the early gastrula stage. When BMP signalling is blocked, expression of BMP-dependent genes remains
reduced even when Wnt8a expression is reinstated. (B) FGF signalling is required for context-specific transcriptional regulation by Wnt8a signalling, but only of
some wnt8a target genes. Embryos were treated with the FGFR inhibitor SU5402 from the 1000/2000-cell stage through the early gastrula and injected where
indicated with CSKA-wnt8a DNA at the two- to four-cell stages (to reinstate Wnt8a expression, as endogenous wnt8a expression is itself regulated by FGF
signalling).When FGFsignalling is inhibited, expression of FGF-dependent genes remains reduced, even whenWnt8a expression is reinstated. (C)wnt8a targets
can therefore be classified into BMP-dependent or FGF-dependent genes. Note that some genes belong to both groups and others are neither BMP nor FGF
dependent. (D,E) In situ hybridisation shows expression of msx1 (D) and hoxd1 (E) in sagittal sections and lateral views (insets) of control uninjected and
experimentally manipulated embryos as indicated (dorsal to the right). (F) BMP signalling is not required for wnt8a-regulated β-catenin recruitment to BMP-
dependent wnt8a target gene loci. Embryos were treated as in A and analysed by β-catenin ChIP-qPCR at the early gastrula stage. (G) FGF signalling is not
essential for wnt8a-regulated β-catenin recruitment to FGF-dependent wnt8a target gene loci. Embryos were treated as in B and analysed by β-catenin ChIP-
qPCR at the early gastrula stage. Uninjected, untreated embryos were used as controls in A,B,D-G. *P<0.1, **P<0.05; two-tailed Student’s t-test. Error bars
represent s.d. of four biological replicates (A,B) or s.e.m. of three biological replicates (F,G). Note thatwnt8a gene expression itself was decreased by BMPor FGF
pathway inhibition (wnt8a blue bars in A,B) but restored by co-injection of CSKA-wnt8a DNA (wnt8a orange bars in A,B) compared with controls (wnt8a yellow
bars in A,B), and that higher wnt8a expression levels with CSKA-wnt8a DNA (wnt8a green bars in A,B) reflect both expression of endogenous wnt8a and
expression from CSKA-wnt8a DNA, resulting in upregulation of several wnt8a target genes (in A,B).
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activated in response to Wnt8a signalling; however, their respective
spatially restricted contexts overlap in the prospective mesoderm.
We uncovered one shared aspect of gene regulation of these

context-specific wnt8a targets. Since BMP and FGF signalling are
required for normal wnt8a target gene regulation, we wondered
whether these signalling mechanisms would regulate β-catenin
recruitment to these wnt8a target loci. We observed, however, that
β-catenin is still able to bind to wnt8a target loci at comparable
levels to controls even when BMP or FGF signalling is inhibited,
provided constant levels of Wnt8a signalling are maintained
(Fig. 5F,G). This demonstrates that neither BMP nor FGF
signalling restricts β-catenin recruitment to WREs. Rather, our
results suggest that context-specific transcriptional regulation of
wnt8a targets by the BMP or FGF pathway takes place in addition,
and subsequent, to Wnt-regulated β-catenin binding to cis-
regulatory sequences associated with these genes.

DISCUSSION
β-catenin is required but not sufficient for Wnt-regulated
transcriptional activation
The interaction of nuclear β-catenin with target genomic loci has
been shown to be sufficient to activate target gene transcription for
many specific examples studied in a variety of tissues and
experimental systems (recently reviewed by Zhang and Cadigan,
2014). Our results, however, demonstrate that chromatin association
of β-catenin does not necessarily imply transcriptional activation.
This is also consistent with data from a cell culture model of
colorectal cancer demonstrating chromatin association of β-catenin
near to many genes that are not regulated by β-catenin function
(Watanabe et al., 2014). Our study is the first to investigate this
phenomenon and to provide evidence that β-catenin binding to
target loci can be Wnt regulated even in embryonic contexts, in
which these genes are not transcriptionally Wnt responsive (Fig. 4).
Furthermore, we uncover that molecular mechanisms (e.g. BMP or
FGF pathways) required for context-specific transcriptional
regulation of direct target genes do not influence the Wnt-
regulated chromatin association of β-catenin (Fig. 5).
These unexpected mechanistic findings suggest a more general

paradigm for Wnt-regulated transcriptional mechanisms. Thus,
chromatin association of β-catenin, even to functional WREs, is
only productive for Wnt signalling-regulated transcriptional
activation in the appropriate developmental context (Fig. 6). This
new insight helps explain why we identify chromatin association of
β-catenin near many genes that are not overtly transcriptionally
regulated by the Wnt signalling mechanism operating at this stage
(Fig. 3). Taken at face value, this would suggest that β-catenin ChIP-
seq analysis is not of sufficient use on its own for detecting direct
transcriptionally Wnt-regulated target genes, and it raises questions
about the biological significance of apparently widespread
β-catenin binding across the genome.

Molecular mechanisms regulating context-specific Wnt/β-
catenin target gene expression
Identifying direct Wnt8a/β-catenin targets was motivated by our
ambition to uncover a unifying mechanism for context-specific
Wnt/β-catenin target gene regulation in the ventrolateral prospective
mesoderm. We wondered whether it would be possible to predict
Wnt-regulated target genes from many β-catenin-bound loci. We
found that wnt8a targets tend to show stronger and clearer β-catenin
binding than non-wnt8a-regulated loci (Fig. 3E). While β-peaks
generally appear to be enriched close to TSSs (as previously
observed by Watanabe et al., 2014), this enrichment is even higher

in confirmed wnt8a targets. These observations are consistent with
the notion that transcriptionally regulated direct target genes
exhibit high levels of transcription factor occupancy at nearby
binding sites (Biggin, 2011). Although we anticipated that wnt8a-
regulated genes would share specific DNA sequences under their β-
catenin-bound regions, which we hoped would reveal a shared
tissue-specific molecular regulatory mechanism, our sequence
motif analysis suggested that only TCF/LEF-mediated
mechanisms are shared (Fig. 3F). Individual β-catenin-associated
genomic sequences contain consensus binding sequences for other
transcription factors; however, such sequences are found both in the
Wnt8a/β-catenin target genes that we identified and in non-wnt8a-
regulated loci, and as such are not informative in the context of a
shared tissue-specific molecular regulatory mechanism for Wnt/β-
catenin target genes in the ventrolateral mesoderm. The presence of
regulatory sequences for other transcription factors in some wnt8a
target loci could indicate additional regulation of these genes,
particularly by T-box transcription factors driving mesoderm
induction and development in this tissue and at this stage
(Gentsch et al., 2013). Overall, these trends do not add up to
reliable criteria for predicting wnt8a-regulated genes from among
all β-catenin-bound genomic loci, let alone Wnt transcriptionally
regulated genes more generally.

Since direct target genes ofmaternalWnt/β-catenin signallingwere
shown to be regulated by combinatorial Wnt and Smad2 (Activin/
Nodal/TGFβ) signalling (Crease et al., 1998; Laurent et al., 1997), we
hypothesized that context-specific wnt8a target genes shared an
analogous common regulatory mechanism, possibly involving
combinatorial signalling with another signalling mechanism.
Indeed, we find that combinatorial signalling is important; however,
more gene-specific mechanisms are unearthed: some wnt8a target
genes are co-regulated by BMP, some by FGF signalling. The
discoveryof several classes ofwnt8a target genes confirmed that there
is no single, collectively shared tissue-specific mechanism for
restricting Wnt/β-catenin target gene regulation in the context that
we have investigated, and therefore studying these molecular
mechanisms would not reveal shared ventral mesoderm-specific
processes. This explains our inability to identify any shared motifs
beyond potential TCF/LEFbinding sequences.However, as expected,
all wnt8a target genes co-regulated by BMP signalling contain
potential Smad1 and Smad4 binding sequences, and allwnt8a targets
co-regulated by FGF signalling contain potential ETS bindingmotifs.

β-catenin binding toWnt target genes in alternative contexts
Our β-catenin ChIP-seq analysis at the early gastrula stage found
β-peaks at gene loci known to be transcriptionally regulated by
maternal Wnt signalling at an earlier stage. However, when zygotic
Wnt8a signalling is experimentally activated, β-catenin occupancy
increases at these gene loci, but not gene expression. Conversely, we
can detect β-catenin binding to wnt8a target loci even before the
onset of endogenous wnt8a expression (Fig. 4). This precocious β-
catenin binding to wnt8a target loci is regulated by maternal Wnt
signalling, but this binding does not cause increased transcriptional
expression. These results support our conclusion that chromatin
association of β-catenin does not imply Wnt-regulated
transcriptional activation and are therefore also consistent with
context-specific regulatory mechanisms acting subsequent to Wnt-
regulated β-catenin binding, as discussed above.

Widespread distribution of β-catenin binding
Widespread binding to the genome is common for some DNA-
binding transcription factors and is thought to be mediated via
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low-affinity sites (Biggin, 2011;MacQuarrie et al., 2011). However,
β-catenin association does not, on the whole, result from
indiscriminate binding across the genome but rather β-catenin
tends to be recruited to putative CRMs (promoter and enhancer
sequences). In particular, we find a significant level of overlap
between our β-peaks and TLE ChIP-seq peaks, which have recently
been found to be indicators of tissue-specific CRMs (Yasuoka et al.,
2014).
β-catenin is reported to be predominantly associated with TCF/

LEF motif-containing chromatin, both in cancer cells with activated
Wnt signalling (Schuijers et al., 2014; Watanabe et al., 2014) and
Wnt-induced embryonic stem cells (Zhang et al., 2013). Our
analysis also identified TCF/LEF as the only shared sequence motif
among the validated 13 direct wnt8a target genes, suggesting that
positive gene regulation by Wnt/β-catenin signalling is mediated by
TCF/LEF-dependent mechanisms. However, our de novo motif
search revealed that non-wnt8a-regulated, yet β-catenin-bound, loci
also contain consensus binding sequences for transcription factors
other than TCF/LEF, suggesting that some β-catenin protein may
interact with those transcription factors when associated with
genomic sequences of non-wnt8a-regulated genes. In fact, such
interactions have previously been reported for OCT4 (POU5F1)
(Kelly et al., 2011), TBX5 (Rosenbluh et al., 2012), SOX proteins
(Kormish et al., 2010) and FOX proteins (Zhang et al., 2011); and,
among them, OCT4 (Abu-Remaileh et al., 2010) and SOX proteins
(Kormish et al., 2010) are known to negatively regulate β-catenin-
dependent transcriptional regulation. Thus, the β-catenin-bound yet
non-wnt8a-regulated gene loci identified in our analysis might be
deliberately repressed by these transcription factors. Alternatively,
chromatin association of β-catenin via these transcription factors
might act as part of a buffering system to fine-tune the availability of
β-catenin for transcriptional regulation at Wnt/β-catenin target

genes, similar to that previously suggested for fine-tuning the
availability of functional DNA-binding transcription factors
(MacQuarrie et al., 2011). In particular, our analysis of motifs
enriched in β-peaks close to non-wnt8a-regulated loci identifies the
same combined SOX and OCT4 motif that has previously been
reported in embryonic stem cell studies (Zhang et al., 2013).
Although technical bias cannot currently be excluded, the β-catenin
chromatin association observed in our Xenopus embryos seem more
similar to that of embryonic stem cells than cancer cells (Schuijers
et al., 2014; Watanabe et al., 2014). Future analysis might confirm
that β-catenin association with chromatin containing the combined
SOX and OCT4 motif in particular is specifically prevalent in
embryonic cells.

Wnt/β-catenin target genes in the genome
Our results do not allow us to rule out the possibility that low levels
of nuclear β-catenin associate with chromatin to mediate other, as
yet undiscovered functions for β-catenin in the genome or to be part
of a buffering system to fine-tune the availability of β-catenin for
transcriptional regulation, as mentioned above. β-catenin-bound,
yet non-wnt8a-regulated, gene loci in our analysis could more
generally represent real Wnt target genes, but those that are
regulated by Wnt signalling in other tissues and at other stages.
Consistent with this idea, the GO analysis suggests that such genes
are more associated with functions at later stages of development,
after the stage of our analysis in early gastrulation, such as neural
development, and also with metabolism (Fig. 3D). As a particular
example, sall4, which is among our β-catenin-bound but not our
wnt8a-regulated genes, has recently been identified as a direct
wnt3a target gene during neural development (Young et al., 2014).
In addition, our wnt8a targetmsx1 showed a β-peak (msx1_U2) that
is located at a conserved limb bud-specific enhancer (Miller et al.,

Fig. 6. Model for context-specific Wnt/β-catenin target gene
regulation. (A) In the previous concept established from studies of
individual genes, Wnt signalling specifically controls β-catenin
recruitment to theWnt-response element (WRE) of context-specific
target genes and leads to their transcription (e.g. gene B in the
context-X). (B) In the revised concept from our studies, Wnt-
regulated β-catenin recruitment takes place at numerous loci.
Transcriptional activation at those loci is conditional on context-
specific mechanisms (e.g. a context-X-specific mechanism for
gene B in context-X).
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2007), consistent with our hypothesis that β-catenin recruitment
already occurs during early embryonic stages to cis-regulatory
elements responsible for Wnt-mediated regulation in other tissues at
later stages. Furthermore, ∼60% of orthologues of the Wnt target
genes listed at the curated Wnt homepage (http://web.stanford.edu/
group/nusselab/cgi-bin/wnt/) are represented in our list of
β-catenin-bound genes. Likewise, our list contains 70% of
homologues of direct β-catenin-regulated target genes identified
in a colorectal cancer cell line (Watanabe et al., 2014). Therefore,
many potential direct Wnt targets in the genome could be associated
with β-catenin, even if their expression is not Wnt regulated in the
tissue analysed.

Conclusions
Our investigation challenges the fundamental concept that β-catenin
recruitment to individual Wnt target genes predictably drives
transcriptional expression (Fig. 6); instead, it introduces a more
general paradigm for Wnt-regulated transcriptional mechanisms,
which ismore relevant for the repeated and tissue-specific functions of
Wnt/β-catenin signalling in embryonic development, stem cell-
mediated homeostasis and cancer. We discovered that chromatin
association of β-catenin, even to functional WREs, does not imply
transcriptional activation. Wnt signalling regulates β-catenin binding
to target loci even in embryonic contexts, in which these gene loci
are not transcriptionally Wnt responsive. Chromatin association of
β-catenin is only productive for Wnt signalling-regulated
transcriptional activation in the appropriate developmental context.
Mechanisms regulating this developmental context therefore do not
necessarily influence the Wnt-regulated association of β-catenin with
chromatin. Our findings will also be relevant beyond early
embryogenesis, with implications for cancer research and other
Wnt-related diseases, where an abnormal subtle change in cellular
context may induce the anomalous expression of genes, with
deleterious consequences.

MATERIALS AND METHODS
Embryo experiments
Xenopus tropicalis (Gray, 1864) embryos were obtained by natural mating of
adultmales and females or by in vitro fertilisation as described by del Viso and
Khokha (2012) and staged according to Nieuwkoop and Faber (1967). The
fertilised embryos were injected with MOs and mRNAs, and treated with
chemical inhibitors as indicated, and then cultured in 0.1× Marc’s Modified
Ringer (MMR) at 28°C. MOs (Gene Tools) were: CoMO, 5′-CCTCTTAC-
CTCAGTTACAATTTATA-3′ (Heasman et al., 2000); wnt8a MO,
5′-GGAGACTGCTATCCAGGGTAATGCT-3′ (Rana et al., 2006).
pCSKA-wnt8a was created as a wnt8a MO-insensitive wnt8a gene by
introducing nucleotide substitutions (Fig. S3A). Capped mRNA was
synthesized using the mMESSAGE mMACHINE Kit (Ambion) and the
following linearised DNA templates were used: pCS2+ Xwnt-8, Axin/CS2mt
and pCS2+ noggin. SU5402 (SML0443) was purchased from Sigma. See the
supplementaryMaterials andMethods for further details ofXenopus embryos
and treatment with MOs, mRNAs and chemical inhibitors.

Whole-mount RNA in situ hybridisation
Digoxigenin-labelled antisense RNA probes were synthesized from
linearised template plasmids (see the supplementary Materials and
Methods) using the MEGAscript Transcription Kit (Life Technologies)
for use in whole-mount RNA in situ hybridisation as described by Lavery
and Hoppler (2008).

RT-PCR
Total RNAwas isolated from whole embryos as described by Lee-Liu et al.
(2012). cDNAwas synthesized using the QuantiTech Reverse Transcription
Kit (Qiagen).

qPCR
qPCR was performed using a LightCycler 480 and SYBR Green I Master
reagents (Roche). For RT-qPCR, relative expression levels of each gene to
odc1 were calculated and then normalised to the control. For primer
sequences for RT-qPCR and ChIP-qPCR, see the supplementary Materials
and Methods.

ChIP
ChIP analysis was carried out as described (Akkers et al., 2012; Blythe et al.,
2010; Janssens et al., 2010) with slight modifications: after homogenisation,
embryos were sonicated with a Bioruptor Plus (Diagenode). Two β-catenin
antibodies, namely anti-Xenopus β-catenin antibody (1:28; Blythe et al.,
2009) and anti-β-catenin antibody [1:28 (2 µg); H-102; sc-7199, Santa Cruz
Biotechnology], and normal rabbit IgG [1:56 (2 µg); sc-2027, Santa Cruz
Biotechnology] were used for immunoprecipitation. For optimised
conditions of the β-catenin ChIP experiment, see Fig. S2 and the
supplementary Materials and Methods.

ChIP-seq
β-catenin ChIP was performed using anti-β-catenin antibody (H-102) as
described above. Two Illumina TrueSeq ChIP libraries were constructed
from ChIP and input control DNA and sequenced using Illumina HiSeq
2500 at The Genome Analysis Centre (TGAC, Norwich, UK). Sequenced
reads were mapped to the X. tropicalis genome assembly JGI 4.2. Briefly,
MACS2 (Zhang et al., 2008) and SPP (Kharchenko et al., 2008) were used
for peak calling. Reproducible peaks were identified using the IDR method
(Li et al., 2011). Peaks were assigned to closest genes using the
distanceToNearest function [rtracklayer (Lawrence et al., 2009) and
GenomicRanges (Lawrence et al., 2013)]. Heat maps were created using
HOMER, Cluster 3.0, and Java Treeview. Histograms were visualised using
HOMER and Excel.De novomotif discovery was performed usingMEME-
ChIP. ChIP-seq and RNA-seq data were visualised on the UCSC genome
browser. GO analysis was performed using the PANTHER classification
system (Mi et al., 2013). We carried out statistical over-representation tests
using PANTHER GO annotations (PANTHER GO-Slim Biological
Process, PANTHER Protein Class, PANTHER Pathways). See the
supplementary Materials and Methods for details. The ChIP-seq data sets
are available in GEO under the accession number GSE72657.

RNA-seq
Total RNA was extracted as described by Lee-Liu et al. (2012). Illumina
TruSeq RNA libraries were constructed and sequenced using Illumina
HiSeq 2000 at TGAC. Sequenced reads were aligned to the X. tropicalis
genome JGI 4.2 with gsnap. Aligned reads were counted using HTSeq
(Anders et al., 2015) and further differential gene expression analysis was
carried out using DESeq2. See the supplementary Materials and Methods
for details. The RNA-seq data sets are available in GEO under the accession
number GSE72657.

Reporter constructs and luciferase assay
Genomic fragments of β-peaks were amplified by PCR and subcloned into
the pGL4.10 vector (Promega) or a derivative vector pβ-actin-luc carrying a
heterologous basal promoter. Embryos were injected with 40 pg reporter
plasmid DNA together with 40 pg pRL-CMV (Promega) at the two- to
four-cell stage, collected at the early gastrula stage, and assayed for
luciferase activity. For cloning into luciferase reporter constructs, see the
supplementary Materials and Methods.
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Fig. S1. Wnt/β-catenin target genes change during early development.  
Embryonic development from early (left) to late (right) is illustrated. Maternal gene 
products (mRNA and protein) sustain the earliest embryonic development until 
Mid-Blastula Transition (MBT), when zygotic transcription is initiated to regulate 
further development. Maternal Wnt/β-catenin signalling localises β-catenin protein to 
nuclei of prospective dorsal cells (orange) (Schohl and Fagotto, 2002). After the 
MBT, wnt8a is expressed in ventral and lateral prospective mesoderm (green) 
(Christian et al., 1991) causing nuclear β-catenin localisation in ventrolateral cells 
(Schohl and Fagotto, 2002). Maternally regulated nuclear β-catenin initiates poised 
transcription in specific maternal Wnt/β-catenin target genes (blue), which are 
transcribed after MBT (Blythe et al., 2010) in dorsal mesoderm. wnt8a-regulated 
nuclear β-catenin is expected to initiate transcription of different specific zygotic 
Wnt/β-catenin target genes (violet) in ventrolateral embryonic cells. 
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Fig. S2. β-catenin ChIP experimental condition. 
(A) Chromatin shearing with optimised condition. Chromatin was extracted from 50 
early gastrula embryos that were fixed for 30 minutes, and were sheared during 2.5 
rounds of 10 cycles of 30 seconds ON/30 seconds OFF at high power setting using the 
Bioruptor Plus Instrument. After de-crosslinking and purification, the sheared DNA 
from 2.3 embryos was analysed by agarose gel electrophoresis. The sheared 
chromatin was enriched around 200 bp. (B) Immunoprecipitation for 
chromatin-associated β-catenin protein with optimised condition. Chromatin extract 
from approximately 42 embryos was incubated with 10 µg of either IgG (negative 
control) or β-catenin antibodies overnight at 4°C and subsequently precipitated with 
50 µl of Dynabeads Protein G for 1 hour, followed by washing and de-crosslinking. 
Input chromatin extracts before antibody incubation (Input), flow-through supernatant 
after antibody incubation (FT), and immunoprecipitated samples following 
immunoprecipitation and elution (IP) were analysed for β-catenin protein by western 
blotting with β-catenin antibody. β-catenin protein was efficiently 
immunoprecipitated with β-catenin antibody (see lanes 3 and 5), while significant 
amount of β-catenin protein remained in supernatant after incubation with IgG (lane 
2). Heavy chain indicates denatured IgG and β-catenin antibodies after heat 
incubation during elution. (C) Schematic diagrams of the sia1, msgn1, and hoxd1 
genomic loci. Known Wnt-response-elements (WREs, yellow boxes) are shown with 
the positions relative to the translation start site (ATG). The locations of amplicons 
(double-headed arrows) analysed by ChIP-qPCR are shown above the corresponding 
WREs. (D) Validation of β-catenin ChIP by qPCR. Co-immunoprecipitation of 
β-catenin protein with predicted genomic regions containing target WREs was 
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analysed by qPCR. Genomic regions of known WREs at the msgn1 and hoxd1 loci 
were detected at greater levels in β-catenin ChIP sample than in the IgG ChIP control 
sample. Negative control sites [odc1 and hoxd1(nc)] and a WRE site of the maternal 
Wnt target sia1 were not efficiently co-immunoprecipitated with β-catenin protein (at 
gastrula stage). Note that a significant difference in β-catenin ChIP recovery between 
hoxd1 (3134/3181) and a genomic region only 759 bp downstream of it [hoxd1(nc)] 
demonstrates a high resolution of chromatin shearing. *p < 0.01; **p < 0.00001 
(two-tailed Student’s t-test). The error bars represent s.d. of three technical replicates. 
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Fig. S3. RNA-seq experiment for identifying wnt8a-regulated genes. 
(A) wnt8a MO and CSKA-wnt8a DNA construct. CSKA-wnt8a was created as a 
wnt8a MO-insensitive rescue DNA construct (see Supplementary Materials and 
Methods for details). Note that CSKA-wnt8a lacks nucleotide sequences targeted by 
previously validated wnt8a MO (Rana et al., 2006). A yellow box shows sequence 
homology between wnt8a MO and its target sequence of wnt8a. The start codons are 
shown in red. (B) Optimisation of wnt8a knockdown. Different amounts of wnt8a 
MO were injected into embryos at the two- to four-cell stage, and expression levels of 
known wnt8a-regulated genes were compared. Note that 10 ng of wnt8a MO is 
adequate to knockdown wnt8a activity resulting in downregulation of the known 
wnt8a target genes. Error bars represent s.d. of three technical replicates. (C) 
Validation of positive control wnt8a-regulated gene expression in samples for 
subsequent RNA-seq analysis. Embryos at the four-cell stage were injected at the 
marginal zone of both ventral blastomeres with either control MO (CoMO, 2.5 ng per 
blastomere), wnt8a MO (2.5 ng per blastomere), or a combination of wnt8a MO (2.5 
ng per blastomere) and CSKA-wnt8a DNA (6.25 pg per blastomere). mRNA was 
extracted at the early gastrula stage and analysed by RT-qPCR. Expression levels 
were normalised to odc1 and to uninjected control. Expression of known 
wnt8a-regulated genes such as ventx2.1, ventx1.2, post, and hoxd1 decreased with 
wnt8a MO, and increased with wnt8a MO and CSKA-wnt8a DNA. In contrast, the 
known maternal Wnt target sia1 did not show significant difference in gene 
expression in these experiments. *p < 0.1; **p < 0.05; ns, not significant (p ≥ 0.1); 
two-tailed Student’s t-test. Error bars represent s.e.m. of three biological replicates. 
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Fig. S4. Sequence similarity of xmc genes. 
ClustalW2-based multiple sequence alignment of DNA sequences of the Xenopus 
tropicalis homologue of Xenopus laevis marginal coil (xmc) [GenBank: 
XM_002944874.1] and of two xmc-like genes (ENSXETG00000010483 and 
ENSXETG00000030701). ENSXETG00000010483 and ENSXETG00000030701 show 
97% and 98% identities with the Xenopus tropicalis xmc gene, respectively. 
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Fig. S5. Genome browser representation of ChIP-seq and RNA-seq data in 
exemplary genes. 
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Genomic loci of wnt8a-regulated target genes hoxd1 (A), msx1 (B), maternal 
Wnt/β-catenin target sia1 (C), maternal Wnt regulated gene gsc (D), 
non-wnt8a-regulated gene neurod1 (E) and transcriptionally silent gene oxt (F) are 
visualised as indicated with RNA transcript profiles of four experimental samples 
from RNA-seq analysis (Uninjected, CoMO-, wnt8a MO-, and wnt8a MO + 
CSKA-wnt8a DNA-injected), β-catenin ChIP-seq data (β-catenin ChIP and Input), 
ChIP-seq data of histone marks (H3K27ac, H3K4me1, H3K4me3, and H3K27me3) 
and RNA polymerase II (RNAPII), and of transcriptional co-factors (p300 and TLE). 
*denotes β-peak position identified by peak calling with the IDR method. Note 
β-peaks correlate with the histone mark and transcriptional co-factor peaks. hoxd1 
and msx1 show RNA transcript profiles that correlate with RNA-seq experimental 
conditions where they are expressed at low levels in wnt8a MO but expressed in the 
re-instatement wnt8a MO + CSKA-wnt8a at comparable levels to the Uninjected and 
CoMO controls. There is no β-peak in the proximal promoter of the sia1 locus, which 
has been shown to contain functional TCF/LEF-binding sequences mediating 
response to maternal Wnt/β-catenin signalling. The gsc locus contains multiple 
β-peaks that correlate with p300 and TLE peaks. The neurod1 and oxt loci associate 
with two β-peaks (-4 kb and -5kb regions) and one β-peak (-3 kb region), 
respectively, but mRNA expression levels are low and remain unaffected by change 
in Wnt8a activity. 
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Fig. S6. De novo motif discovery on β-peaks in comparing non-wn8a- and 
wnt8a-regulated genes. 
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De novo motif search was performed on β-peaks of 5,009 non-wnt8a regulated genes 
(A) and 179 wnt8a-regulated genes (B), using the MEME-ChIP software with MEME 
and DREME search functions. De novo motif logo, e-value, the number of sites 
containing the motif, and transcription factor names having similar target motif are 
indicated. Top eleven motifs are shown for non-wnt8a-regulated genes. 
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Fig. S7. Maternal Wnt signalling regulates β-catenin recruitment to both 
maternal Wnt target and zygotic wnt8a target loci. 
In order to experimentally activate maternal Wnt/β-catenin signalling, embryos were 
treated with the glycogen synthase kinase-3 inhibitor BIO at the four-cell stage until 
the 1000-cell stage, when the embryos were collected for β-catenin ChIP analysis to 
compare β-catenin occupancy levels with untreated control embryos. Enhanced 
activity of maternal Wnt signalling with BIO increased β-catenin binding levels at 
both maternal Wnt target sia1 and zygotic wnt8a target gene loci. Error bars represent 
s.d. of two biological replicates. 
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Fig. S8. BMP or FGF signalling is required for context-specific regulation of 
wnt8a target gene expression. 
(A) Schematic diagrams of fate map in early gastrula and of Wnt/β-catenin, BMP, and 
FGF signalling pathway activities (Schohl and Fagotto, 2002). Regions with higher 
pathway activities are shown in darker colours. (B,C) In situ hybridisation shows 
expression of fzd10 (B) and cdx2 (C) in sagittal sections and lateral views (insets) of 
control uninjected, untreated embryos and experimentally manipulated embryos as 
indicated, with dorsal right. 
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Click here to Download Table S1 

Click here to Download Table S2 

Table S1. β-peaks identified in β-catenin ChIP-seq data. 
Sheet 1: 68,045 peaks called by MACS2 (version 2.0.10)(p-value cutoff of 0.01) 
using β-catenin ChIP-seq data. “fold-change” was used for IDR analysis. Sheet 2: 
60,888 peaks called by SPP (version 1.10.1)(FDR cutoff of 0.1) using β-catenin 
ChIP-seq data. “signalValue” was used for IDR analysis. Sheet 3: 10,638 β-catenin 
ChIP-seq peaks (β-peaks) identified by the irreproducible discovery rate (IDR) 
method (IDR threshold of 0.01) using the MACS2 and SPP peaks. The position of 
each β-peak (“peakname”) is indicated by “scaffold”, “matchstart” and “matchend”, 
with “summit” of the peak. The nearest genes of β-peaks were annotated using 
distanceToNearest function (rtracklayer version 1.2.26 and GenomicRanges version 
1.12.5). The nearest genes are indicated by “gene” and “gene name” with their start 
(“genestart”) and end (“geneend”) positions, and direction of gene-encoding 
(“genestrand”) on the scaffold. “genedistance” indicates the distance of a β-peak from 
the transcriptional start site of the nearest gene. “IDR” shows IDR of each β-peak. 

Table S2. Identification of wnt8a-regulated genes from RNA-seq analysis data. 
Sheet 1: 14 wnt8a-regulated target genes (shortlisted). The identified wnt8a targets 
are indicated with their “Gene ID”, “Gene Name”, and “Gene Function” using the 
Xenbase annotation. “Fold change” and “FDR” indicate those values of “wnt8a 
knockdown” experiments (compared CoMO control) or of “Wnt8a re-instatement” 
experiments (compared wnt8a MO) obtained from GLM analysis. Sheet 2: gene list 
from GLM analysis of wnt8a knockdown, including Uninjected, CoMO, and wnt8a 
MO samples (FDR < 0.1). “Down” and “Up” indicate decreased and increased 
expression of corresponding gene in wnt8a MO against CoMO condition, 
respectively. Sheet 3: gene list from GLM analysis of Wnt8a re-instatement, including 
Uninjected, CoMO, wnt8a MO, and wnt8a MO + CSKA-wnt8a samples (FDR < 0.1). 
“Down” and “Up” indicate negative and positive regulation of expression of 
corresponding gene in wnt8a MO + CSKA-wnt8a against wnt8a MO condition, 
respectively. Sheet 4: pair-wise analysis of Uninjected and CoMO (FDR < 0.1). 
“Down” and “Up” indicate downregulation and upregulation of corresponding gene in 
CoMO against Uninjected condition, respectively. These genes affected by CoMO 
injection were excluded from analysis identifying wnt8a-regulated genes. 
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Click here to Download Table S3 

Click here to Download Table S4 

Table S3. β-peaks of wnt8a-regulated genes. 
Sheet 1: a list of 179 genes that are positively regulated by Wnt8a signalling and that 
are associated with β-peaks. The 179 wnt8a-positively regulated genes contain 624 
β-peaks (see also Table S1 for details). Sheet 2: a list of β-peaks associated with 13 
shortlisted Wnt8a/β-catenin target genes. The β-peaks were named as U (upstream) or 
D (downstream) plus a number corresponding to the position of the peak relative to 
the transcriptional start site. 

Table S4. β-peaks of maternal Wnt-regulated genes. 
A list of β-peaks associated with genes that are transcriptionally regulated by 
maternal Wnt signalling (see text for detail). The β-peaks were named as U 
(upstream) or D (downstream) plus a number corresponding to the position of the 
peak relative to the transcriptional start site. 
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Supplementary Materials and Methods: 
 
Embryo experiments 
Xenopus tropicalis (Gray) were purchased from Nasco 
(http://www.enasco.com/xenopus/) and the European Xenopus Resource Centre 
(EXRC)(http://www.port.ac.uk/research/exrc/). Adult female and male X. tropicalis 
were primed with 10 units of human chorionic gonadotropin (HCG) 12 hours before 
boosting. 5 hours before embryo collection, female and male frogs were boosted with 
200 units and 100 units of HCG, respectively. For natural mating, single pairs of 
female and male frogs were placed together, and embryos were harvested 
approximately every 1 hour after the onset of egg laying. For in vitro fertilisation, 
testes were dissected from euthanized male frogs and kept in 1x Modified Barth’s 
Saline (MBS) + 0.1% BSA on ice. The testes were subsequently minced and used to 
fertilise eggs. Fertilised embryos were dejellied in 3% cysteine/0.1x Marc’s Modified 
Ringer (MMR), washed with 0.1x MMR, and kept at 18°C until they developed to 
desired stages. Injection experiments were performed by microinjecting the following 
reagents (MOs, mRNA, and DNA) into the marginal zone of two ventral blastomeres 
of four-cell-stage embryos for the RNA-seq, and into the marginal zone of each 
blastomere of embryos at the two- to four-cell stage for other experiments: 

• CoMO and wnt8a MO, 2.5 ng per blastomere: 5 ng per embryo for the 
RNA-seq analysis (Fig. 2A; Fig. S3C) and 10 ng per embryo for the other 
experiments; 

• CSKA-wnt8a DNA, 6.25 pg per blastomere: 12.5 pg per embryo for the 
RNA-seq analysis (Fig. 2A; Fig. S3C) and 25 pg per embryo for the 
re-instatement experiments (Fig. 2C) and 100 pg for the overexpression 
experiments (Figs. 4C,D, 5; 

• wnt8a mRNA, 40 pg per embryo; 
• axin mRNA, 2 ng per embryo; 
• nog mRNA, 500 pg per embryo. 

 
SU5402 
SU5402 (Sigma, SML0443) stock was made in DMSO and freshly diluted to 50 µM 
in 0.1x MMR before use. 
 
BIO 
BIO (Tocris Bioscience, 3194) stock was made in DMSO and freshly diluted to 20 
µM in 0.1x MMR before use. 
 
pCSKA-wnt8a construct 
pCSKA-wnt8a plasmid DNA construct was created by introducing nucleotide 
substitutions and Kozak consensus sequence into the Xenopus laevis (Daudin) wnt8a 
(Xwnt8) gene. A Xwnt8 DNA fragment was PCR-amplified from pCSKA-Xwnt-8 
(Christian and Moon, 1993) as a template, using the following forward and reverse 
primers (restriction enzyme sites are underlined and Kozak consensus sequence is 
italic and bold): 
5’-CCATCGATGCCGCCACCATGCAGAATACTACCCTTTTTATCCTTGCAAC
TCTTCTG-3’ and 5’-GGAATTCTCATCTCCGGTGGCCTC-3’. The resulting PCR 
product was digested with ClaI and EcoRI and subcloned into pCSKA digested with 
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ClaI and EcoRI, which resulted in the rescue construct carrying wnt8a coding 
sequence that is not recognised by the wnt8a MO. 
 
ChIP 
Embryos were harvested at the developmental stage of interest and fixed at room 
temperature with 1% formaldehyde in phosphate-buffered saline (PBS) for 45 
minutes (1000-cell stage embryos) or for 30 minutes (early gastrulae). Immediately 
after fixation, the embryos were incubated with 125 mM glycine/PBS for 10 minutes 
and washed three times with ice-cold PBS for 5 minutes. Batches of 50 embryos were 
snap-frozen in liquid nitrogen and stored at -80°C for future use. For the following 
method, all solutions and samples were kept on ice. RIPA buffer (50 mM Tris pH 7.4, 
150 mM NaCl, 1 mM EDTA, 1% IGEPAL CA-630, 0.25% Sodium deoxycholate, 
0.1% SDS, 0.5 mM DTT) supplemented with Protease Inhibitor Cocktail (Sigma, 
P8340) was added to frozen embryos. Embryos were thawed on ice for 10-15 minutes, 
homogenised, and then kept on ice for 10 minutes. After re-homogenisation, the 
embryo extracts were transferred to TPX microtubes (Diagenode) and sonicated 
during 2.5 rounds of 10 cycles with 30 seconds ON/30 seconds OFF at high power 
setting using the Bioruptor Plus Instrument (Diagenode). The sonicated samples were 
centrifuged at 14,000 rpm for 10 minutes at 4°C, and the supernatant was transferred 
to a 1.5ml tube for subsequent use for ChIP and input samples. A small aliquot of the 
supernatant was used for checking chromatin shearing. The input samples were stored 
at -20°C for later usage. The supernatant for ChIP were incubated for 1 hour at 4°C 
with Dynabeads Protein G (Life technologies) that had been blocked with 5% 
BSA/PBS for 1 hour at 4°C. After snap-spin, the supernatant was transferred to a 
1.5ml safe-lock tube and incubated with antibodies (2 ug) overnight at 4°C. On the 
following day, chromatin was precipitated with 5% BSA/PBS-blocked Dynabeads 
Protein G for 1 hour at 4°C and then the beads were successively washed with ChIP 
buffer 1 (20 mM Tris pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.1% 
SDS), ChIP buffer 2 (20 mM Tris pH 8.0, 500 mM NaCl, 2 mM EDTA, 1% Triton 
X-100, 0.1% SDS), ChIP buffer 3 (10 mM Tris pH 8.0, 250 mM LiCl, 1 mM EDTA, 
1% IGEPAL CA-630, 1% Sodium deoxycholate), ChIP buffer 4 (10 mM Tris pH 8.0, 
1 mM EDTA) for 5 minutes each. Chromatin was eluted from the beads with elution 
buffer (50 mM Tris pH 8.0, 10 mM EDTA, 1% SDS) for 20 minutes in a 
thermoshaker (65°C, 900 rpm). At this stage, the frozen input samples were 
supplemented with elution buffer. ChIP and input samples were incubated with 
RNase A at 37°C for 30 minutes. The samples were then added with NaCl and 
incubated for over 16 hours in a thermoshaker (65°C, 900 rpm). The samples were 
further treated with proteinase K for 2 hours in a thermoshaker (65°C, 900 rpm). 
Eventually, the de-crosslinked DNA fragments were purified with 
phenol:chloroform:isoamylalcohol and precipitated in ethanol for qPCR or using 
MinElute Reaction Cleanup Kit (QIAGEN) for sequencing. 
 
ChIP-seq 
Three independent β-catenin ChIP experiments were performed as described above, 
and sheared chromatin was collected from approximately 750 early gastrula embryos 
(stage 10.25) in total. Each ChIP DNA and input control DNA was purified using 
MinElute Reaction Cleanup Kit (QIAGEN) and pooled to one sample. The purified 
DNA was quantified using Qubit dsDNA HS Assay Kits (Life technologies) by Qubit 
2.0 Fluorometer (Life technologies). Two Illmina TrueSeq ChIP libraries were 
constructed from the ChIP DNA and the input control DNA samples and sequenced 
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using 50 bp single-end reads by Illumina HiSeq 2500 at The Genome Analysis Centre 
(TGAC, Norwich, UK). After quality control using FasQC, sequenced reads were 
mapped to the X. tropicalis genome assembly JGI 4.2/xenTro3 using bwa (version 
0.7.5a) (Li and Durbin, 2009). Multi-mapped reads were filtered with samtools 
version 1.1.19 (Li et al., 2009). In order to focus our analysis on a set of highly 
reliable peaks we performed peak calling using two different methods [SPP (version 
1.10.1)(Kharchenko et al., 2008) and MACS2 (version 2.0.10.20120913)(Zhang et al., 
2008)] and then used IDR (Li et al., 2011) to identify the peaks, which were 
reproducible using the two methods. This approach has an advantage over using the 
overlap of the peaks obtained using the two methods since IDR quantitatively 
assesses when the f ndings are no longer consistent across replicates. The ranked list 
of peaks for both methods was generated with a low confidence threshold, which is 
necessary for IDR to separate signal from noise. We used p ≤ 0.01 for MACS2  and 
FDR ≤ 0.1 for SPP  resulting in 68,045 and 60,088 peaks respectively, which include 
both high and low quality peaks. These were used as input for IDR with threshold of 
0.01 and resulted in 10,638 peaks. Peaks were assigned to closest genes using 
distanceToNearest function (rtracklayer version 1.2.26 and GenomicRanges v 1.12.5). 
For visualising heat maps, in addition to β-catenin ChIP-seq data, ChIP-seq data were 
used of H3K27ac, H3K4me1, p300 and TLE (all of these from X. tropicalis early 
gastrula whole embryos at stage 10.5) from Yasuoka et al. (2014) and of H3K4me3 
and H3K27me3 (each of these from X. tropicalis gastrula whole embryos at stage 
11-12) from Akkers et al. (2012). The coverage for each base was divided by the total 
number of all bases of ChIP-seq data, and then normalised by multiplying a million. 
Using the normalised ChIP-seq data, a heatmap data matrix files were generated using 
HOMER (Heinz et al., 2010), clustered using Cluster 3.0 with k-means clustering 
(k=10)(de Hoon et al., 2004), and visualised using Java Treeview (version 
1.1.6r4)(Saldanha, 2004). Histograms of β-catenin occupancy level around the peak 
summit were generated using HOMER with bin size in 100 bp and visualised in 
Excel. For de novo motif discovery, DNA sequences of 100 bp regions centred on the 
peak summit were analysed using MEME-ChIP with MEME and DREME algorithms 
coupled with CentriMo and Tomtom algorithms to find the motif width from 5 to 10 
nucleotides (Ma et al., 2014). Genome browser representation files were generated by 
converting ChIP-seq data to bigWig format. This was done using 
genomeCoverageBed from bedtools v 2.17.0 to generate a bed file then UCSC 
bedGraphToBigWig to convert the bed to bigWig format. 
 
RNA-seq 
X. tropicalis embryos were injected into both ventral blastomeres at the four-cell 
stage. Total RNA was extracted as described in Lee-Liu et al. (2012) from stage 10.25 
uninjected embryos and embryos that had been injected with MOs (2.5 ng per 
blastomere) or together with pCSKA-wnt8a (6.25 pg per blastomere). The quality of 
total RNA was assessed using Agilent 2100 Bioanalyzer whether the RNA integrity 
number was 7 or higher. Illumina TruSeq RNA libraries were constructed from 12 
total RNA samples (biological triplicates of each experimental conditions: uninjected, 
CoMO-injected, wnt8aMO-injected, wnt8aMO and pCSKA-wnt8a-coinjected). The 
libraries were sequenced using 100 bp paired-end reads on Illumina HiSeq 2000 at 
TGAC. Sequenced reads were checked for base qualities, trimmed where 20% of the 
bases were below quality score 20, and filtered to exclude sequences that were shorter 
than 20 bp using Fastx (Version 0.0.13). Sequences were aligned to the X. tropicalis 
genome JGI 4.2/xenTro3 with gsnap (Wu and Watanabe, 2005) with parameters -B 4 
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-E 100 -N 1. Aligned reads were counted using HTSeq (version 0.5.4p2) with 
parameters -m intersection-strict -s no -a 20 and further differential gene expression 
analysis was carried out using DESeq2 (version 1.0.19)(Love et al., 2014) with 
defaults. To identify genes that are differentially expressed in wnt8a knockdown or 
Wnt8a re-instatement, we used generalised linear model (GLM) analysis as follows. 
Differentially expressed genes for wnt8a knockdown were obtained using a GLM 
with explanatory variables “CoMO control”, “wnt8a knockdown” and tested against 
the null hypotheses where the “wnt8a knockdown” variable was excluded. 
Differentially expressed genes for Wnt8a re-instatement were obtained using a GLM 
with explanatory variables “CoMO control”, “wnt8a knockdown”, “Wnt8a 
re-instatement” and tested against the null hypotheses where the “Wnt8a 
re-instatement” variable was excluded. DESeq2 was used to normalise the counts by 
size factor, estimate dispersions and perform Wald test on a negative binomial model. 
The p-values were adjusted for multiple testing with the Benjamini-Hochberg 
procedure using DESeq2’s default setting. RNA-seq profiles was displayed on the 
UCSC genome browser as described above for ChIP-seq data.  
 
RT-qPCR primers 
 
odc1: F: TTTGGTGCCACCCTTAAAAC 
 R: CCCATGTCAAAGACACATCG 
 
hoxa1: F: ACCAACTTCACCACCAAACAGC 
 R: AGAGCAGCAGCAATTTCTACCC 
 
hoxd1: F: CAAGTATCTCACCAGGGCAAG 
 R: GAGTTTTTACGCAGATACTGGATG 
 
sp5: F: ACTCAGATTGCTGCACTACTGC 
 R: ACCACTGGAAGTTTGGCAGTTG 
 
msgn1: F: AACCTTCCATGACAGTCCAACG 
 R: AAATTGTTGCGCAGGGTGTG 
 
cdx2: F: AATCTGGGGCTTTCGGAGAGAC 
 R: ATTTTGGCCAGTCTGAGTCTGC 
 
msx1: F: TTTAGGTTTGGGGAGCTTGGC 
 R: AACGCAAACAGACAGTGCTG 
 
cdx4: F: TTTGTCTCACACAGCTGCCAAC 
 R: AAGTCGATTGCACGGTTTTCCC 
 
fzd10: F: ATTTAGCAGCCTGGGCAATTCC 
 R: ATTGACATCCATGCTGCCAACG 
 
xarp: F: ACGCTTTTCCGCATGTACTTGG 
 R: TTGATGTCTTGGGTTCCAACGG 
 
xmcl1: F: ACAATTCAGACCGCCAGAAAGG 
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 R: TGGGGAAAGGGTATCCAAGTTC 
 
xmcl2: F: ACTTGGATACCCTTTCCCCAAC 
 R: AAGAGGGGCACGCCTTAATTTG 
 
ventx1.2: F: GGATTCTCTATTGACCTCATTC 
 R: CTTTCTCCTTGGTATCTCCTTG 
 
gbx2.2: F: TGCATTCTGTTCCAGCCTTGC 
 R: TTTTCAAAGGCCCCATGCAGAC 
 
neurog1: F: AGTAAAGAATGACGCCGTGCTG 
 R: TTGTGCATTCGGTTCCTTTCCC 
 
atp12a: F: AAGCAATTGCACGGTGTGTAGG 
 R: TTCACCACACAAGCACATGC 
 
sia1: F: TTGACCCCCTAGTCAACAGC 
 R: ACCAGCGGCCTCTTACATT 
 
nodal3.1: F: AGGAAGGTGGACATGTTTGTGG 
 R: GCATCGTCCGTCTCATTCAGTGG 
 
gsc: F: GTTGCACGTACAGACGCCTA 
 R: TAAGGGAGCATTTGGTGAGG 
 
chrd: F: TGAAGCAGTGGGATTCTAGAGG 
 R: GGCAGGATTTAGAGTTGCTTC 
 
nog: F: AGGTTTTGGCCTCGCTATGTG 
 R: TGGCAGCTTTGCAAACCATG 
 
fst: F: AAGAAGAACAAGCCGAGGTGTG 
 R: TTTGCCATCTATTCCGCACACG 
 
frzb: F: AACGCTCACTGTGCTTCATGTG 
 R: AATGGCATTGGCTTGAGTGC 
 
wnt8a: F: CTGCAGTGATAATGCAGAATTTG 
 R: TGCAAGTCTTCCTGCTTCATTG 
 
ventx2.1: F: GGCTTCTGAGAGACGGAAAC 
 R: TTGTATTTCATCCTGCGGTTC 
 
post: F: AAGCAAGGTGGGATACAGTGAG 
 R: CTGATTGGGGGCTAAAGAGAG 
 
   
ChIP-qPCR primers 
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odc1 F: GTGCACGCCTGAATTCTTTCT 
 R: GGCTCAGCAATGATGGTCACT 
 
ventx1.2_U1 F: GCCCATTCTGATAGCTATTATCCA 
 R: AGTTGTGTGTACACAAAGCCTATG 
 
msx1_U1 F: CGCTCCTATTAAACCGGCTTAGC 
 R: GCTCTTGTTGTTGACTCGCTTC 
 
msx1_U2 F: TGCGAGTTAACCTCCTCAATGG 
 R: GCGCCTGCATTGCTAATTGC 
 
msgn1_U1 F: GACCAGTCCATTTTCCATGTTGA 
(-186) R: GGCCCTTTTATACAGACCTGCTAA 
 
neurog1_D1 F: GAAGCTGAAACAAGCAAGCC 
 R: TTACGGGCAGCCAATCACAG 
 
cdx4_D3 F: GCTCATTGTCTTCTCCTAGCTCAG 
 R: TCCATCTCCCTTTGATCCTTCC 
 
cdx2_U1 F: AGGGGGTCTTTGTTCTTCCTTG 
 R: AGGGGCAGATGTATAGGCACTG 
 
hoxd1_D1 F: TGTTGTAGATGCTGATGCTTATCG 
(3134/3181) R: AACAGAAAATCAAAGGCTTGCA 
 
hoxa1_D1 F: TCTAAAGAAACACGGCGGAGTC 
 R: TAAGCCGTGCCACCATTTAC 
 
gbx2.2_D3 F: TCCTCTCCAGGCAACAATTAGG 
 R: ACAACCTCTTCCTGCACTGTTC 
 
sp5_U1 F: AAGTTTGCCGCTGCCCAATC 
 R: CACTCCATGAGGGCTTTGTACATTC 
 
xmcl1_D1 F: CATCAAACAGTATCCAGCCCATTG 
 R: AGAGGGAGAGGTGTTGGATGTTG 
 
fzd10_U1 F: AGTGCCACAATCCCACACTTTC 
 R: ACAGTGAGCAATAACGGCCAAG 
 
fzd10_U2 F: AACCAAACAGACCCAACGTG 
 R: AAAAAGAGCTCAGGGGTCCATC 
 
xarp_U1 F: CCCCCTCTGGTTAAGAAAAAGAG 
 R: GGGATGAAAGGAATAGCTGCTG 
 
sia1 F: AAGATCAAGGGAACCAGGTG 
(-221) R: TTGCACCCTACAAACATGGG 
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nodal3.1 F: ATAGCTTCAATGTACCACAGTGCA 
 R: AGAGTCTGGCAGGTCCCTG 
 
gsc_U1 F: ACCATTTCTTACCCAGAGAAACG 
 R: TCCTTGCTCTCAATCCCAATCC 
 
nog_D1 F: TTGGCAATCTCTCCTCTGATGTCC 
 R: AGGGGCCATTCAAAAGGTGTC 
 
chrd_U1 F: TGGGACTAGCGCAGGATTTATAGG 
 R: ACTCATCAACTCCCAGAGTGAGTG 
 
fst_D2 F: ACAGGACCAGTGTAGGTAAACG 
 R: AAATTGGCCGACCCTTTCACAC 
 
frzb_U1 F: AAATCCACAGGAGGGACGTTTC 
 R: AGCCCAGAGATACAAGAGTGTCAC 
 
hoxd1(nc) F: GTACCACATAGCAACCAATCAG 
 R: GGCTGCATGCATGGCAAATC 
 
cDNA plasmid clone for in situ hybridisation 
cDNA was amplified by PCR using primers described below, from first-strand cDNA 
synthesized from mRNA extracted from X. tropicalis gastrula embryos. The amplified 
DNA fragments were subclonced into pGEM-T vector (Promega). For making 
digoxigenin-labelled antisense RNA probes, the following restriction enzymes (RE) 
and RNA polymerases (RNA pol) were used. 
 
Gene Plasmid Primer RE RNA pol 
wnt8a pYNX22 CCATCGATTGGCTGAGGATACTGTTCAAGCATTAC ApaI SP6 
  CCATCGATGTCTCCGGTGGTGGCCTCTGTTCTTC   
hoxd1 pYNX27 CACGTGACCGCCACTCTATATTAGG NcoI SP6 
  CTAGCTGTGAGTCTTTATACTTAAACGTCC   
sp5 pYNX36 AGGGGAGGCTACCTCACTAACTG NotI T7 
  AGTATGAAAACAAGGTATCCTCTCCAAG   
msgn1 pYNX35 GAAGCTCCTGGTTGGAACCATTTAG NotI T7 
  ATATACACAAACCATGGGGTATTTACAG   
cdx2 pYNX39 ACAGGATTATGCAGCTAGCTGGCAC SphI SP6 
  ATTGCCGACCCGAACAATGTGCAC   
msx1 pYNX44 TTCCCAGCTCGGATATCTCTGTATG NcoI SP6 
  CATACAATCCCTTCCAAAGGGATTATTG   
cdx4 pYNX56 GTAGCATCAAGGCACCGGCCTAAC NotI T7 
  GCAGTGCCCCAGACATAAGGATTTAC   
fzd10 pYNX43 CTGGAGCAAGGATGACAAGAAGTTTG NotI T7 
  ACCTTAGCATGCAGTCTCTGGTTTG   
xarp HAR-199 (obtained from EXRC)  EcoRI T7 
     
xmcl1 pYNX34 ATGGCTTTAGTCAGTGGTAATAGCAC NcoI SP6 
  GGGCACGCCTTAATTTGGAAAGTTC   
ventx1.2 HAR-56 (obtained from EXRC) EcoRI T7 
      
 
Luciferase reporter constructs and assay 
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Genomic fragments of β-peaks were amplified from X. tropicalis genomic DNA by 
PCR using primers described below and cloned into pGEM-T (Promega). Luciferase 
reporter constructs for β-peaks in the proximal regions were created by introducing a 
genomic fragment of the β-peak region into the pGL4.10 vector (Promega). For 
β-peaks in distant regions, corresponding genomic fragments were subclonced into 
pβ-actin-luc, which contains a chicken β-actin basal promoter in front of the 
luciferase reporter gene. pβ-actin-luc was generated by subcloning a chicken β-actin 
basal promoter as a SmaI-HindIII fragment from pBSSK2+ βEGFP (Ogino et al., 
2008) into the EcoRV and HindIII sites of pGL4.10. Reporter plasmid DNA (40 pg 
per embryo) was injected together with pRL-CMV (40 pg per embryo, Promega) into 
the marginal zone of both dorsal and ventral blastomeres at the two- to four-cell stage. 
Embryos were collected at the early gastrula stage (stage 10.25) and assayed for 
luciferase activity. Primers used for cloning are as follows (restriction enzyme sites 
are underlined with their names on the right side): 
 
msx1-U1-luc GGAAGATCTAGCAGATTTATTTATATGGATAACAGG BglII 
 CCCAAGCTTACAGAGATATCCGAGCTGGGAA HindIII 
fzd10-U1-luc CCGCTCGAGACACAAAATACACAACAGTGAGC XhoI 
 CCCAAGCTTGCCCGCAGCCCAACTCG HindIII 
ventx1.2-U1-luc CGGGATCCATGGGATTCAGTGCCGGCCAATG BamHI 
 CCCAAGCTTCTGAAGGGAAACCTGCTCTGG HindIII 
sp5-U1-luc GGAAGATCTTACAGTGTGTGGCCACCTTAG BglII 
 CCCAAGCTTAGTCCAGCTCCTACAGGTGC HindIII 
cdx4-U1-luc GGAAGATCTGGTTGGGTAGTTGTTAGTGGATG BglII 
 CCCAAGCTTTCCTAGGCGAGATCCTTGGTG HindIII 
hoxd1_D1-luc CTAGCTAGCGGCCAATTGAATGAAGGA NheI 
 CCGCTCGAGACAAAATGTCACTGATAGGA XhoI 
hoxd1_D2-luc CTAGCTAGCGGCTAATCAGAGCTCACTTGAAC NheI
 CCGCTCGAGTTACAGACACGTTAATGCAATTATC XhoI 
msx1-U2-luc CTAGCTAGCGGTTGGAAAGCAGCAAAGCTTTG NheI 
 CCGCTCGAGAAAGTGGAGAGTGGTGCATGAAG XhoI 
cdx4p_D1-2-luc CTAGCTAGCTATGCCTGCATTTTGTCATCAATG NheI 
 CCGCTCGAGTGCCACTCTTATTACCATACCTG XhoI 
cdx4p_D3-luc CTAGCTAGCGAGGACAGTAATTATGCCTTATAC NheI 
 CCGCTCGAGTTAAACATGACTGAGCATTTGTATG XhoI 
cdx2p_U1-2-luc CTAGCTAGCTGACTCCATTAGGGCATATTCTG NheI 
 CCGCTCGAGTTTGCTAAATACAAGTGCTATACAG XhoI 
hoxa1_D1-luc CTAGCTAGCTGCGCCAACGTTTCGTTTTTATTC NheI 
 GCGTCGACATTTTTGTGATACAGTATGGAACTG SalI 
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