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Reiterative expression of pax1 directs pharyngeal pouch

segmentation in medaka
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ABSTRACT

A striking characteristic of vertebrate development is the pharyngeal
arches, which are a series of bulges on the lateral surface of the head
of vertebrate embryos. Although each pharyngeal arch is segmented
by the reiterative formation of endodermal outpocketings called
pharyngeal pouches, the molecular network underlying the reiterative
pattern remains unclear. Here, we show that pax7 plays crucial roles
in pouch segmentation in medaka (Oryzias latipes) embryos.
Importantly, pax7 expression in the endoderm prefigures the
location of the next pouch before the cells bud from the epithelium.
TALEN-generated pax? mutants did not form pharyngeal pouches
posterior to the second arch. Segmental expression of tbx7 and fgf3,
which play essential roles in pouch development, was almost non-
existent in the pharyngeal endoderm of pax?7 mutants, with
disturbance of the reiterative pattern of pax? expression. These
results suggest that pax7 plays a key role in generating the primary
pattern for segmentation in the pharyngeal endoderm by regulating
tbx1 and fgf3 expression. Our findings illustrate the crucial roles of
pax1in vertebrate pharyngeal segmentation and provide insights into
the evolutionary origin of the deuterostome gill slit.

KEY WORDS: Pharyngeal arch, Pharyngeal pouch, Gill slit,
Segmentation, Evolution, Pax1

INTRODUCTION

The metamerism of vertebrate pharyngeal structures, such as the
skeletal elements of jaws, gills and cranial nerve projections,
originates from segmental development of the pharyngeal arches,
which are transient embryonic structures seen in all vertebrate
embryos (Graham and Richardson, 2012). The pharyngeal arches
are formed from all three germ layers, and the cranial neural crest
cells were traditionally thought to play a crucial role in arch
segmental development (Noden, 1988). However, experimental
ablation of the cranial crest cells does not affect segmental
development of the reiterative endodermal outpocketings (called
pharyngeal pouches) or the expression patterns of Bmp7, Fgf8, Shh
and Pax! in the pouches (Veitch et al., 1999).
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Numerous studies have reported the roles of different signaling
molecules and transcription factors in pouch segmentation. Retinoic
acid (RA), a morphogen that globally regulates vertebrate head
development, is required for posterior pouch segmentation in mice
(Wendling et al., 2000), quail (Quinlan et al., 2002), zebrafish
(Kopinke et al., 2006) and lamprey (Kuratani et al., 1998) (a jawless
vertebrate). FGF signaling also contributes to pouch segmentation
in both gnathostomes (jawed vertebrates) and lamprey (Abu-Issa
et al., 2002; Crump et al., 2004; Jandzik et al., 2014). In zebrafish,
pouch-specific expression of fgf3 is considered to be responsible for
endodermal pouch patterning as well as subsequent chondrogenesis
(David et al., 2002; Crump et al., 2004; Herzog et al., 2004). The
indispensable role of Thx/ in pharyngeal segmentation was revealed
through studies using mouse and zebrafish mutants that sought to
identify candidate genes involved in DiGeorge syndrome (Jerome
and Papaioannou, 2001; Piotrowski et al., 2003; Xu et al., 2005).
Thx1 is expressed in the pharyngeal ectoderm, endoderm and
mesoderm (Chapman et al., 1996; Vitelli et al., 2002; Piotrowski
et al., 2003). In mice, although mesodermal 7hx/ is required for
proper pouch development (Zhang et al., 2006), dynamic
expression of Ripply3, which encodes a Tbx1 repressor, regulates
the endodermal activity of Tbx1 to form pouches posterior to the
second arch (Okubo et al., 2011). In zebrafish, mesodermal 7bx/
drives endodermal pouch morphogenesis by upregulating the
expression of wntllr and fgf8 in a cell-autonomous manner
(Choe and Crump, 2014). It was also reported that the segmental
expression pattern of fgf3 is retained in the pharyngeal endoderm of
tbx1 mutants and that both mesodermal and endodermal Tbx1 play
roles ensuring proper pouch segmentation (Choe and Crump, 2014).
Therefore, the regulatory network for the endodermal expression
of tbx1 and fgf3 is crucial for generating the reiterative pattern of
pharyngeal segmentation. However, we know little about
the molecular mechanisms of segmental pattern formation in the
pharyngeal endoderm, especially regarding regulation of the
endodermal expression of thx/ and fgf3.

Endodermal pharyngeal pouches are not specific to vertebrates
but are common in deuterostome animals, including fossil
echinoderms (Clausen and Smith, 2005), as pharyngeal gill slits.
Previous studies demonstrated the remarkable conservation of
the expression patterns of genes governing the development of
vertebrate pharyngeal pouches and the gill slits of non-vertebrate
deuterostomes, clearly illustrating the homology between these
structures (Holland et al., 1995; Miiller et al., 1996; Wallin et al.,
1996; Ogasawara et al., 1999, 2000; Lowe et al., 2003; Gillis et al.,
2012). Therefore, revealing the mechanism of segmented
pharyngeal pouch formation is indispensable for shedding light
on not only vertebrate developmental principles but also the
evolutionary origins of the vertebrate body plan (Graham et al.,
2014).

In this study, we focused on pax!, which encodes a paired-box
transcription factor. Conserved expression of paxI/9 homologs in
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pharyngeal gill slits provides key evidence of the homology
between deuterostome gill slits and pharyngeal pouches (Holland
etal., 1995; Miiller et al., 1996; Wallin et al., 1996; Ogasawara et al.,
1999, 2000; Lowe et al., 2003; Gillis et al., 2012). Previous reports
clearly demonstrated the developmental functions of Pax/ in
organogenesis of the thymus and parathyroid glands, sclerotome
delineation, chondrogenesis and vertebral column formation
(Wallin et al., 1996; Peters et al., 1999; Su et al., 2001; Mise
et al., 2008). These studies were undertaken in mice, but no studies
have elucidated the function of Pax/ in pharyngeal pouch
segmentation, as the reiterative pouches are retained even in the
endoderm of Pax1,;Pax9 double-knockout mice (Zou et al., 2006).
Previously, we unexpectedly identified a crucial function of pax/ in
pouch segmentation in medaka (Mise et al., 2008). Here, we show
that the expression pattern of pax!/ is dynamic and prefigures the
future location of pouches. We analyzed pax! mutant medaka
generated by TALEN-mediated mutagenesis and reveal the
indispensable functions of pax/ in both the reiterative expression
of thx1 and fgf3 in the pharyngeal endoderm forming posterior to
the second arch and in subsequent pouch segmentation.

RESULTS

Roles of pax1 in formation of the segmental structures of the
medaka pharynx

Teleost embryos develop seven pharyngeal arches. Starting from the
anterior end, the first (or mandibular) arch develops Meckel’s and
palatoquadrate mandibular cartilages (Fig. 1A). The second (or
hyoid) arch contributes to the basihyal, ceratohyal and
hyosymplectic cartilages, and the third to seventh arches give rise
to a series of ceratobranchial and basibranchial cartilages (Fig. 1A).
All pax! mutant larvae exhibited complete loss of the
ceratobranchial cartilages, except for the most posterior (seventh)
arch with pharyngeal teeth. The basibranchial cartilage of
pharyngeal arches 3-6 was highly deformed (Fig. 1B, Table S2).
Although other pharyngeal cartilages were retained, a hole in the
dorsal plate of the hyosymplectic cartilage was often lost in pax/
mutants (Fig. 1B, Table S2). In addition to such deformation, the
hyosymplectic and ceratohyal cartilages were sometimes fused
(Fig. 1B, Table S2). By contrast, the components of the mandibular
arch rarely exhibited abnormalities (Fig. 1B, Table S2).

The cranial nerve is another structure that exhibits segmental
organization, projecting itself into each pharyngeal arch (Fig. 1C).
Of the ten cranial nerves in teleosts, cranial nerves V (trigeminal),
VII (facial), XI (glossopharyngeal) and X (vagus) run into distinct
pharyngeal arches (Fig. 1C). In pax mutants, projections of cranial
nerves IX and X were specifically suppressed, whereas projections
of cranial nerves V and VII were unaffected (Fig. 1D). The
innervation of cranial nerve IX was less affected than the branches
of cranial nerve X, but its destination was the dorsal area of the
second arch rather than its normal projection into the third arch
(Fig. 1D, arrowhead and lower panel).

Additionally, we examined the expression of foxNI, which is
normally detected in the thymus primordium (Li et al., 2007)
(Fig. 1E). In pax! mutants, thymus-specific expression of foxN1 was
lost (Fig. 1F). As these mutant phenotypes are often associated with
pharyngeal pouch defects, we further investigated the expression
pattern and function of pax! during pharyngeal pouch segmentation.

Expression of pax1 prefigures the location of future pouches

In order to document the role of pax/ in the pharyngeal endoderm,
we examined a detailed temporal profile of pax/ expression. At
early stage 21 (corresponding to the 8-somite stage), pax/

expression was observed in the lateral cells of the anterior
pharyngeal endoderm (Fig. 2A). More posteriorly, expression was
also observed in bilateral spots of cells (Fig. 2A). Compared with
the endodermal expression of fox42, these posterior spots seemed to
mark locations for cells to bud off to form the following pouch
(Fig. 2A-E). We also detected endoderm-specific pharyngeal
expression of pax! by double-fluorescence in situ hybridization
for paxI and other marker genes (Fig. 3). At late stage 22 (the 10-
somite stage), pax] expression specifically marked the first and
second pouches (Fig. 2F,G). Notably, other bilateral spots of pax/
expression were detected in a posterior region relative to the second
pouch (Fig. 2F,H,I, arrowheads). As the pharyngeal pouches
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Fig. 1. Roles of pax17 in the gill cartilages, cranial nerve projections and
thymus primordium. (A,B) Flat-mount views of pharyngeal cartilages

(top row) and left-side views of mandibular and hyoid elements (bottom row) in
wild-type and pax7 mutant medaka larvae 2 days after hatching. The joint
between HS and CH cartilages is often fused in the mutant larvae

(B, arrowhead). (C,D) Whole-mount immunohistochemistry of medaka
embryos at 3 days postfertilization with anti-acetylated tubulin antibody. In
pax1 mutants, projections of cranial nerves V and Vll are present, but IX fails to
project to the correct position (D, arrowhead), and branches of cranial nerve X
do not exhibit the segmental trajectories (n=13). The boxed regions are shown
at higher magnification beneath. (E,F) Expression of foxN7 in the pharynx of
wild type and pax1 mutant. (E) In the wild type, foxN1 expression was present
in cells of the thymus primordium. (F) However, no pharyngeal expression of
foxN1 was detected in the pax? mutant (n=15). BB, basibranchial; BH,
basihyal; CB, ceratobranchial; CH, ceratohyal; HS, hyosymplectic; M,
Meckel’s; PQ, palatoquadrate; PP2, the second pharyngeal pouch; PA2, the
second pharyngeal arch. Scale bars: 100 ym in A-D; 50 ym in E,F.
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Fig. 2. Reiterative expression of pax7 and pharyngeal pouch segmentation. (A,C,F,H-J,L-N,P,Q) Expression of pax? during pouch development marks the
pharyngeal pouches and prefigures the endodermal positions where the next pouches will be formed. (B,D,E,G,K,0) foxA2 is expressed in the pharyngeal
endoderm and marks the pharyngeal pouches. Whole-mount embryos observed from the ventral (A,B,G,H,K,L,O,P and upper panels of F,J,N) and left side (I,M,Q
and lower panels of F,J,N). High-magnification images of the orange (H,L,P) and green (I,M,Q) boxed regions in F,J,N, respectively, are shown. Arrowheads (F-Q)
indicate PP3 or presumptive PP3. Arrows (N-Q) indicate presumptive PP4. (C-E) Transverse sections at the axial levels shown in A and B (dotted lines). These
sections show that pax1 is expressed in the pouch endoderm (arrowhead in C) and that foxA2 is expressed in the pouch (arrowhead in D) and non-pouch
endoderm (E). PP, pharyngeal pouch; sm, somite. Scale bars: 100 ym, except 50 pm in C-E.

develop in an oblique manner along the dorsoventral axis, the signal
appeared continuous from the second pouch in the ventral view
(Fig. 2F,H). A lateral view clearly indicated that the posterior paxI-
positive cells were separated from the pax-positive anterior pouch
cells (Fig. 2F,I, arrowheads). This posterior expression might mark
cells of the nascent third pouch, as at stage 23 (the 12-somite stage)
the most posterior expression of pax! was detected in the third
pouch (Fig. 2J-M, arrowheads). At stage 24 (the 16-somite stage),
the bilateral spots of pax/ expression appeared just posterior to the
third pouch (Fig. 2N-Q, arrows). This expression is presumed to
mark the next (fourth) pouch region (Fig. 2N,P,Q, arrows).
Continuous pax-positive domains ranging over the emerging
pouch were not observed at any stage. These results suggest that
pax] expression prefigures the position where the next pouch will be
formed during the serial reiteration of posterior pouch development.

Reiterative development of the third and posterior pouches
requires pax1

In order to determine the function of pax/ in pouch segmentation,
we examined the morphology of pharyngeal pouches and arches
in wild-type and pax/™~ medaka by analyzing marker gene
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expression patterns. First, we examined the endoderm by
monitoring foxA2. In wild-type embryos at stage 23, bilayered
outpocketings of endoderm epithelium were observed at the first,
second and third pouches (Fig. 4A). However, in pax] mutants, the
posterior epithelium of the second pouch failed to fold, and no
outpocketing was observed posterior to it (Fig. 4B). Consistently,
the expression pattern of dix2, which marks neural crest cells,
showed that neural crest cells failed to segregate into segments
posterior to the third arch in pax! mutants, perhaps owing to the
third pouch defect (Fig. 4C,D). The defects in pouch segmentation
were more evident at stage 27 (the stage of fifth pouch formation),
when pax! mutant embryos never exhibited segmental pouches at
the axial level of the third or posterior pouches (Fig. 4E,F). A few
irregular slits forming posterior to the second arch were found in
pax] mutants at stage 27 (Fig. S2A-F). Additionally, these mutants
exhibited the normal anterior epithelial sheet of the second pouch,
lining the second arch backward. However, these did not develop
the bilayered morphology of the second pouch but rather a
monolayer sheet (Fig. 4B,F,J, Fig. S2H). These abnormalities of
the second pouch might be caused by the failure of the posterior half
of the second pouch to develop. In concordance with the absence of
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Fig. 3. Double-fluorescence in situ hybridization for pax7 and marker
genes. Double-fluorescence in situ hybridization for pax1 and foxA2 (A-C),
dIx2 (D-F) and tcf21 (G-l) at stage 23. Images show the left side of embryos.
Expression of pax1 overlapped with the endodermal foxA2 expression domain
(C) but not with neural crest dIx2 (F) or mesodermal tcf21 (I). PA, pharyngeal
arch; PP, pharyngeal pouch. Scale bar: 50 pm.

the third to fifth pouches, the segmental distribution of neural crest
cells in the pharyngeal arches was disrupted in the pax/ mutants
(Fig. 4G,H). In pax ] mutants, the crest cells were distributed so as to
surround the unsegmented endodermal cells (Fig. 4G,H).

We also examined the expression patterns of other marker genes
at stage 27. The expression of nkx2.3, which is often used as a
pharyngeal pouch marker in zebrafish studies (Lee et al., 1996),
showed five pairs of segmental pouches in wild-type medaka
(Fig. 41). Similar to foxA2, the expression of nkx2.3 in pax! mutants
did not show any reiterative pouch pattern, except for the first two
pouches (Fig. 4J). As a mesodermal marker, we monitored the
expression of 7¢f21, which is also known as capsulin in zebrafish
(Lee et al., 2011). In pax] mutants, the expression of #cf21 marked
the mesodermal cores of the first and second arches, but the posterior
expression never exhibited the reiterative distribution of the arch
cores (Fig. 4K,L). The mesodermal distribution pattern was similar
to that of the neural crest cells, despite being sparser (Fig. 4L,H).
Because of the endoderm-specific expression of pax/ in the pharynx
(Fig. 3), the abnormal distribution patterns of neural crest cells and
mesoderm were likely to be secondary effects of the endodermal
pouch defects. These defects in pharyngeal segmentation were in
complete agreement with the results of genotyping analyses of our
pax] mutant allele (»=89/89, Fig. S1C). Additionally, a paxI-
specific morpholino (Mise et al., 2008) phenocopied the pax/
mutant phenotype (Fig. S3). These results rule out the possibility
that off-target effects associated with TALEN caused the pharyngeal
pouch defects. We therefore conclude that pax plays crucial roles in
the reiterative development of pharyngeal pouches forming
posterior to the second arch and in the segmentation of
subsequent pharyngeal pouches.

Loss of fgf3 and tbx 1 expression in the pharyngeal endoderm
of pax1 mutants

In order to elucidate the function of pax! in pouch segmentation, the
regulatory relationships with other segmentation genes known for
their function in pharyngeal development were investigated. We
first examined the effect of pax! on thx1, which is expressed in the
endoderm, mesoderm and perhaps the ectoderm of the pharynx
(Piotrowski et al., 2003). At stage 24, when pax! expression was
detected in the nascent fourth pouch endoderm (Fig. 2N-Q), tbx!
was also expressed in the pharyngeal pouches and the posterior

endoderm (Fig. 5A,C, arrowhead). In pax/ mutants, the expression
of thxI in the third pouch and the fourth pouch region was
dramatically reduced, although expression in the anterior pouches
was unaffected (Fig. 5F). Comparison of the expression patterns of
thx1 and endodermal foxA2 (Fig. 5E,J) and mesodermal #cf21
(Fig. 5B,D,G,]) revealed a clear endoderm-specific reduction in
thx1 expression (Fig. SF,H). At stage 27, endodermal expression of
thx1 was detected in five pairs of pharyngeal pouches in wild-type
embryos (Fig. SK,L,0). However, except for the first and anterior
half of the second pouch, almost no endodermal expression of tbx/
was observed in pax/ mutants (Fig. 5R,S,V). Notably, mesodermal
expression of thx! and #cf21 in the pax! mutants was stable,
indicating that the decline in #bx/ expression in the mutant embryos
was endoderm specific (Fig. 5S,T,V,W). These results suggest
that the segmental expression of thx/ in pharyngeal pouches
requires Pax1.

We also examined the expression of fgf3, as the skeletal pattern of
pax] mutant medaka was almost identical to that of fgf3-deficient
zebrafish (David et al., 2002; Herzog et al., 2004). In zebrafish, the
expression of fgf3 in the pharyngeal endoderm of thx/ mutants is
not affected, although they lack pouch segmentation (Choe and
Crump, 2014). At stage 23 in the wild type, expression of fgf3 was
detected in endodermal cells of the first, second and third pouches
as well as in the midbrain-hindbrain boundary, and fgf3 expression
in the first and third pouches was much weaker than in the second
pouch (Fig. 6A). In pax] mutants, almost no fgf3 expression was
observed in the pharyngeal pouches, including the anterior pouches
(Fig. 6B, asterisks and brackets). This pouch-specific disruption in

fgf3 expression was also observed in pax/ mutants at stage 27

(Fig. 6D, asterisks and brackets), suggesting that pax/ is necessary
for activation of the segmental expression of fgf3 in the pharyngeal
pouches. These results are consistent with our observation of
skeletal defects in pax/ mutant larvae and with the skeletal
phenotypes associated with the zebrafish fgf3 morphant and mutant
(David et al., 2002; Herzog et al., 2004). Importantly, our data
suggest that reiterative expression of pax/ is crucial for the
segmental expression of both 7bx/ and fgf3 in the endoderm.

In zebrafish, wntl I is reported to be expressed in the pharyngeal
mesoderm in a segmental manner, and its signaling initiates
the epithelial destabilization of the endoderm to form pouches
(Choe et al., 2013; Choe and Crump, 2014). We therefore examined
whether wnt1 1r regulates the reiterative expression of pax/ in medaka
endoderm. However, except in the mandibular arch mesoderm, no
expression of wntl Ir was detected in the pharyngeal arches of either
wild-type or pax] mutant medaka (Fig. S4).

Loss of the reiterative pattern of pax1 expression in the pax1
mutant

The mutant phenotypes described above indicate that pax! plays a
key role in establishing the primary reiterative pattern in the
pharyngeal endoderm. We therefore examined the self-regulation of
pax] expression during pharyngeal pouch segmentation. Although
the expression of pax! in wild-type and pax/ mutant embryos
was equivalent at stage 23, remarkably, the reiterative pattern of
expression changed to a continuous pattern in the pax/ mutant while
retaining independent expression in the first pouch (Fig. 7A,B). In
pax] mutants, the expression of pax/ in the lateral endoderm
remained continuous posterior to the second arch at stage 27
(Fig. 7C,D). Examination of a horizontal section of the pax/ mutant
embryo clearly showed the continuous expression of pax/ in the
lateral endoderm where the posterior pouches failed to form
(Fig. 7F).
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Fig. 4. Roles of pax1 in development of the third and posterior pouches of the pharyngeal arch. (A-D) Expression of foxA2 and dIx2 in wild-type and pax1
mutant embryos at stage 23. (E-L) Expression patterns of foxA2, dix2, nkx2.3 and tcf21 in wild-type and pax 7 mutant embryos at stage 27. Upper and lower panels
show the left side and ventral views, respectively. (A,B,E,F,l,J) The pharyngeal endoderm of the pax 1 mutant failed to form pharyngeal pouches, except for PP1
and the anterior half of PP2, as shown by the foxA2 and nkx2.3 expression patterns (B, n=4; F, n=18; J, n=4). (C,D,G,H,K,L) Expression patterns of dIx2 and tcf21
showed that neural crest cells (C,D,G,H) and mesodermal cells (K,L) are not divided into PA3-6 owing to the absence of PP3-5 (D, n=10; H, n=11; L, n=20).
Asterisks and brackets indicate regions of pouch (B,F,J) or arch (D,H,L) defects associated with pax7 deficiency. OV, otic vesicle; PA, pharyngeal arch; PP,

pharyngeal pouch. Scale bar: 100 ym.

We quantified apoptotic cells in pax/ mutants to determine
whether the continuous expression of pax/ was due to cell death in
the endoderm. At stage 26, TUNEL-positive cells were found in the
pharyngeal regions of both wild-type and pax/ mutant embryos;
however, no significant increase in the number of TUNEL-positive
cells in the pharyngeal region was detected in the pax/ mutants
(Fig. 7G-I). Notably, continuous pax! expression extended to the
posterior pharynx in the pax/ mutants, where the fifth pouch forms
in wild-type embryos (Fig. 7C,D). The distance from the second to
the posterior end of the fifth pouch did not differ significantly
between wild-type and pax/ mutant embryos (Fig. 7J). These results
indicate that pax/ regulates its own reiterative expression pattern
and that signals for the activation of pax!/ transcription might be
constitutively active, with a progression to the posterior pharynx.

We also examined the expression pattern of pax9, a paxI paralog.
Expression of pax9 was detected throughout the whole area of the
pharyngeal endoderm posterior to the second arch in both wild-type
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and in pax/ mutant embryos (Fig. S5). Therefore, of two pax1/9
cognates in medaka, the segmental expression pattern is specific
to paxl.

DISCUSSION

Impact of pax1 on pharyngeal segmentation and derivatives
Our analysis of pax/ mutant medaka revealed the significant roles of
paxl in the development of the pharyngeal derivatives and pouches.
The severe defects in the gill cartilages and the cranial nerve
branches are thought to result from the loss of fgf3 in the pharyngeal
endoderm. In zebrafish, both the fgf3 morphant and mutant cause
defects in the ceratobranchial cartilages, as seen in the pax/ mutant
medaka (David et al., 2002; Herzog et al., 2004). In zebrafish, fgf3 is
also thought to be required for cranial nerve development, as fgf3
knockdown causes the loss of epibranchial placodes (Nechiporuk
etal., 2005). Therefore, defects in the cartilages and cranial nerves in
pax] mutant medaka are generally thought to be due to the loss of
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Fig. 5. Pax1 is required for endodermal expression of thx1. (A-J) Expression of tbx71 (A,C,F,H), tcf21 (B,D,G,l) and foxA2 (E,J) in the pharyngeal regions of
wild-type (A-E) and pax 1 mutant (F-J) embryos at stage 24. (C-E,H-J) Transverse sections around the axial level of the developing fourth pouch (arrowhead in A).
Endodermal expression of tbx1 was specifically reduced in pax1 mutant embryos, whereas mesodermal expression was retained (F,H, n=7). (K-W) Expression of
tbx1 (K,L,O,R,S,V), tcf21 (M,P,T,W) and foxA2 (N,Q,U) in the pharyngeal regions of wild-type (K-Q) and pax7 mutant (R-W) embryos at stage 27. (K,R) Upper and
lower panels show left side and ventral views, respectively. (L-N,S-U) Horizontal sections of the pharyngeal region. (O-Q,V,W) Transverse sections around the
axial level of the pharynx posterior to the otic vesicle. In pax? mutants, endodermal expression of tbx71 was specifically reduced posterior to PP2, whereas
mesodermal expression was retained (R,S,V, n=18). Asterisks and brackets indicate regions affected by the loss of pax7. OV, otic vesicle; PA, pharyngeal arch;
PP, pharyngeal pouch; me, mesoderm; en, endoderm; NT, neural tube. Scale bars: 50 pm, except 100 um in K,R.

endodermal fgf3. In addition to the function of paxI in the pouch-
specific activation of fgf3, our results revealed another role of pax/ in
the activation of endodermal rbx/ segmental expression.
Furthermore, pax/ mutant medaka failed to develop the segmental
pouches posterior to the second arch. Although considerable
evidence demonstrates the requirement for tbx/ and fgf3 in pouch
segmentation, the regulatory network of these genes is poorly

understood. We propose a model in which the reiterative expression
of pax1 initiates segmental pouch formation by regulating tbx/ and
fef3 expression in the pharyngeal endoderm (Fig. 8). Importantly,
paxl is reiteratively expressed in the nascent pouch endoderm, and
the segmental expression pattern of pax/ depends on the activity of
Pax1 protein. Therefore, the reiterative pattern of pax/ expression is
probably the primary pattern for pharyngeal segmentation.
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Fig. 6. Pax1 is required for endodermal expression of fgf3.

(A,B) Expression of fgf3 in wild-type and pax? mutant embryos at stage 23.
(A) Expression of fgf3 was detected in the PP1-3 endoderm and the MHB.
(B) In pax1 mutants, expression of fgf3 in PP1-3 was barely detected, even
though expression in the MHB was retained (n=5). (C,D) Expression of fgf3 in
wild-type and pax 1 mutant embryos at stage 27. (C) In wild-type embryos, fgf3
was expressed in the PVH, PA2 mesenchyme and PP2-4. (D) Similar to the
situation at stage 23, expression of fgf3 in the pharyngeal pouches was almost
non-existent in the pax7 mutant (n=13). Top and bottom rows show left side
and ventral views, respectively. Arrowheads indicate the anterior walls of PP2.
Asterisks and brackets mark regions of reduced fgf3 expression. PA,
pharyngeal arch; PP, pharyngeal pouch; MHB, midbrain-hindbrain boundary;
QV, otic vesicle; PVH, posterior-ventral hypothalamus. Scale bar: 100 ym.

In the pharyngeal endoderm of the pax/ mutant, we also observed
loss of expression of foxNI, a gene normally expressed in cells of
the thymus primordium (Li et al., 2007), indicating that pax/ is
indispensable for thymus development in medaka. Although mouse
Pax]1 is necessary for proper development of the thymus epithelium,
it is not sufficient for thymus development, as Foxn I expression was
observed in Pax] single-mutant mice (Su et al., 2001). Even though
indirect effects of the pax/ mutation on pouch defects must be
considered, our results nevertheless shed light on the significant
roles of pax! in the development of the pharyngeal derivatives and
pouches in medaka.

Reiterative endoderm expression of pax1 in the segmental
development of pouches

Compared with segmentation of the somitic mesoderm and
hindbrain, there is little information about segmentation of the
pharyngeal arches (Graham et al., 2014; Choe and Crump, 2015).
Even though previous studies have underscored the importance of
the endoderm and mesoderm for pharyngeal segmentation, there is
limited information on how segmentation is brought about in the
endoderm (Graham et al., 2005; Choe and Crump, 2015). In this
study, we found that medaka pax/ expression is activated
reiteratively in cells where the next pouches will be formed.
Additionally, we showed that endodermal pax! plays an
indispensable role in segmental pouch formation, except for the
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first pouch and anterior wall of the second pouch. Importantly, pax/
is required for the endodermal activation of tbx/ and fgf3
transcription, the functions of which in the development and
patterning of endodermal pouches were described previously
(Piotrowski et al., 2003; Crump et al., 2004; Herzog et al., 2004;
Choe and Crump, 2014). The results of our TUNEL assay did not
suggest an increase in apoptosis in the pharyngeal endoderm of the
pax] mutants. The size of the pharyngeal endoderm in the wild-type
and pax] mutant embryos did not differ significantly, suggesting
that the loss of Pax1 does not cause developmental delay or loss of
endoderm. These results indicate that pax/ is required for primary
reiteration in pharyngeal pouch segmentation.

How does paxI generate its reiterative expression pattern? The
uniform pattern of pax/ expression seen in the pax/ mutant
indicated that the reiterative pattern of paxl/ expression in the
endoderm requires Pax1 function. The transcription of pax! is active
throughout the pharyngeal endoderm in the absence of functional
Pax1, suggesting that some form of negative regulation sets a pax!-
negative region in the interpouch endoderm. In the vertebrate
somite, Hes genes, which encode transcriptional repressors
displaying an oscillatory expression pattern, play a role in the
molecular clock through direct negative-feedback transcription
loops (Hirata et al., 2002, 2004). Because Pax genes are basically
transcription activators (Chalepakis et al., 1991; Noll, 1993), an
indirect pathway might act to repress pax/ transcription. In contrast
to the transient expression of Hes genes in somites through cell-
autonomous repression, pax/ expression in pouches is retained after
pouch segmentation and, therefore, repression of pax/ may function
in a non-cell-autonomous manner (Fig. 8).

Previous studies showed that Fgf and RA signaling pathways are
required for pharyngeal pouch segmentation, and phenotypes
associated with Fgf and RA deficiencies are similar to the pax/
mutant phenotype in the endoderm (Wendling et al., 2000; Abu-Issa
et al., 2002; Crump et al., 2004; Kopinke et al., 2006). In these
previous studies, the expression patterns of pax/9 cognates were
affected, corresponding to defects in the posterior pouches caused
by the lack of RA (Wendling et al., 2000). Additionally, Tbx1
reportedly modulates the dynamics of RA signaling in the
developing vertebrate head by regulating Cyp26 genes, which
encode RA-degrading enzymes (Roberts et al., 2006; Bothe et al.,
2011). Regarding the function of Fgf signaling in pouch formation,
it has been shown that its inhibition causes complete loss of the
pharyngeal pouches forming posterior to the second arch (Abu-Issa
et al., 2002; Crump et al., 2004). Even though the complete picture
remains obscure, our results highlight the novel role of pax/ in
activating the expression of #bx/ and fgf3. Therefore, the role of
paxl in pouch segmentation is probably tightly connected with the
regulation of RA and Fgf signal transduction in the pharyngeal
endoderm. Further investigations of the interplay and genetic
relationships among relevant genes, including pax/ and signaling
pathway genes, will contribute to a deeper knowledge of the
mechanism of pharyngeal segmentation.

Evolution of the mechanism of pharyngeal segmentation:
from gill slits to pharyngeal arches

That pax! mutant medaka exhibit serious pouch defects is rather
surprising, given that Pax] knockout mice reportedly show minimal
defects in pharyngeal segmentation and, even in PaxI,;Pax9 double-
homozygous mutant mice, no defects in pharyngeal segmentation
have been reported (Su et al.,, 2001). This discrepancy in Pax!
knockout phenotypes between mice and medaka might be due to
evolutionary changes in the genetic hierarchy of pax1/9 cognates,
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Fig. 7. Pax1 is required for the reiterative pattern of pax? expression in the pharyngeal endoderm. (A,B) Expression pattern of pax7 in wild-type

(A) and pax 1 mutant (B) embryos at stage 23. In pax1 mutants, the reiterative pattern of pax1 expression was disturbed, showing a continuous pattern posterior to
PA2 (B, n=8). (C-F) Expression pattern of pax7 in wild-type (C,E) and pax7 mutant (D,F) embryos at stage 27. In pax1 mutants, the reiterative pax? pattern
observed in the wild-type embryos (C,E) was changed to a continuous pattern (D,F, n=9). (E,F) Horizontal sections of wild-type and pax? mutant embryos stained
with pax1 probe. (G,H) DAPI staining and TUNEL signals (arrowheads) in wild-type (G) and pax7 mutant (H) embryos at stage 26. White dotted lines delineate
endodermal regions. (I) Quantification of apoptotic cells (TUNEL signals) in the pharynx of wild-type (n=14) and pax 1 mutant (n=8) embryos in each region of the
endoderm (endo, P=0.776), other regions (non-endo, P=0.297) and total (P=0.598) at stage 26. (J) Quantification of the size of the pharyngeal endoderm at
stage 27. In wild type, the distance from the anterior epithelium of PP2 to the posterior epithelium of PP5 was measured (x,,, n=12). Because PP3-5 were not
formed, the distance from the anterior epithelium of PP2 to the posterior limit of pax 1 expression was measured in pax 1 mutant embryos (x,,,, n=9). x,, and x,,, were
not significantly different (P=0.413). Data represent meanzts.e.m. OV, otic vesicle; PP, pharyngeal pouch; en, endoderm; n.s., not significant. Scale bars: 100 pm

in A-F; 50 pm in G,H.

thx1, and other genes, and as such might constitute an example of
developmental system drift (True and Haag, 2001). Previous studies
in mouse reported that Pax//Pax9 regulate later organogenesis, such
as that of the thymus and parathyroid gland, and palate skeletogenesis,
rather than pouch segmentation (Peters et al., 1998, 1999; Su et al.,
2001). The evolution of the pharyngeal derivatives seems to be
closely related to adaptation to a terrestrial lifestyle. During vertebrate
evolution, degeneration of the posterior gill skeleton and a reduction
in pouch number are evident, and a pouch-derived parathyroid gland
would be necessary for control of calcium homeostasis in the
terrestrial as opposed to aquatic environment (Okabe and Graham,
2004; Graham and Richardson, 2012).

Regarding the function of PaxI/Pax9 in pouch development in
mice, one can consider the functional transition of Pax/Pax9 from
segmentation to later organogenesis, such as that of the thymus.
Accompanying such functional transition, alternative factors might
have been recruited to the pouch segmentation regulatory network.
Ripply3, which encodes a repressor of Tbxl, is a conceivable
candidate, as this gene is expressed in the mouse pharyngeal

endoderm in a similar fashion to medaka pax!, and its function is
necessary for the segmentation of the third and posterior pouches
(Okubo et al., 2011). Interestingly, the pouch defects that we found
in pax mutant medaka are almost identical to those seen in Ripply3
mutant mice. We could not identify the sequence of ripply3 in the
whole-genome databases of medaka (Kasahara et al., 2007),
stickleback (Jones et al., 2012), cod (Star et al., 2011), platyfish
(Schartl et al.,, 2013), tilapia (http:/ensembl.org/Oreochromis_
niloticus/Info/Index), Amazon molly (http:/ensembl.org/Poecilia_
formosa/Info/Index) or puffer fish (Aparicio et al., 2002). In
medaka, only one Ripply gene, annotated as ripply2, was found in
the genome, but its expression was detected in paraxial mesoderm
and not the pharynx (Fig. S6). However, we found a ripply3 gene in
the genome of the following fish species: coelacanth (Amemiya
et al., 2013), spotted gar (http:/ensembl.org/Lepisosteus_oculatus/
Info/Index), cavefish (McGaugh et al., 2014), rainbow trout
(Berthelot et al., 2014) and zebrafish (Kettleborough et al., 2013).
Considering the phylogenetic relationships among fish species
(Nearetal., 2012), loss of the ripply3 gene is likely to have occurred
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Fig. 8. Model of the genetic networks regulating pouch segmentation.
In wild-type embryos, functional Pax1 specifically activates tbx7 and fgf3
expression in the pharyngeal pouches (purple). Downstream targets of Pax1
inhibit pax 1 transcription to create the interpouch endodermal regions (orange)
in a non-cell-autonomous manner. Reiteration of these bifacial (pax7*/pax1~)
endoderm patterns gives rise to the segmental pharyngeal pouches. In pax1
mutants, negative regulation of pax? expression by Pax1 has no effect (pale
purple). This results in no endodermal expression of tbx71 and fgf3 and
continuous expression of pax1 in the posterior pharynx, whereas expression in
PP1 and the anterior wall of PP2 is almost normal. OV, otic vesicle; PP,
pharyngeal pouch.

once among the common ancestors of the Neoteleostei clade.
Although the function of teleost ripply3 in pharyngeal segmentation
is intriguing, surprisingly we did not find any abnormalities in
pharyngeal segmentation in ripply3~~ zebrafish generated by
TALEN-mediated mutagenesis (our unpublished data). In contrast
to the highly conserved morphologies of vertebrate pharyngeal
arches, our study reveals a striking difference in pharyngeal pouch
segmentation between mammals and teleosts, serving as an
additional example of developmental system drift. Careful analyses
in each animal system will be required in order to obtain a more
comprehensive understanding of vertebrate pharyngeal development.

The original function of paxI/9 might be related to gill slit
segmentation itself, as evidenced by the highly conserved
expression patterns of the cognates in deuterostome pharyngeal
endoderm (Holland et al., 1995; Miiller et al., 1996; Wallin et al.,
1996; Ogasawara et al., 1999, 2000; Lowe et al., 2003; Gillis et al.,
2012). Recent pax1/9 knockdown experiments in amphioxus
revealed a role in gill slit segmentation and that pax//9 deficiency
leads to a reduction in thx1/10 expression (Liu et al., 2015). The
present study shows that the genetic regulation of pax/ and tbx1 and
the function of pax/ in gill slit segmentation are conserved among
aquatic chordates. Furthermore, our model provides a reasonable
explanation for gill slit development in hemichordates, which lack
tbx1/10 expression in the pharynx (Gillis et al., 2012). Regarding
the origin of the deuterostome gill slit, pax /9 might have acquired a
reiterative expression pattern in the pharyngeal endoderm, which
may then have facilitated the segmental development of endodermal
outpocketings. Subsequently, tbx1/10 might have participated in
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pharyngeal segmentation under the control of pax/ in the common
ancestors of chordates.

MATERIALS AND METHODS

Medaka

Mature adult wild-type medaka were kept in fresh water in plastic aquaria
under artificial reproductive conditions (10 h dark, 14 h light; 26°C).
Developmental stages were determined as previously outlined (Iwamatsu,
2004). This study was performed in accordance with the Guidelines for
Animal Experimentation of the National Institutes of Natural Sciences, with
approval of the Institutional Animal Care and Use Committee of the
National Institutes of Natural Sciences.

TALEN-mediated mutagenesis of pax1 and morpholino
knockdown

The medaka pax/ mutant was established using the TALEN method (Joung
and Sander, 2013). The TALENSs were designed in the paired domain of the
paxl gene and constructed as previously reported (Ansai et al., 2014). A
medaka pax/ mutant with a 7 bp deletion in the paired domain was obtained.
Details of TALEN-mediated mutagenesis of pax/ and fish genotyping are
shown in Fig. S1. The pax! and control morpholinos are described in the
supplementary Materials and Methods.

Staining

Whole-mount skeletal staining with Alcian Blue (Sigma, A5268) was
performed using a modified protocol (Yasutake et al., 2004). Details are
provided in the supplementary Materials and Methods.

Whole-mount immunostaining of medaka embryos was performed as
previously described (Sakai et al., 2007). Neural axons were visualized
using an anti-acetylated tubulin monoclonal antibody (Sigma, T6793;
1:800) and Alexa 546 rabbit anti-mouse IgG secondary antibody
(ThermoFisher, A-11060; 1:600). Images were acquired using a TCS SP8
inverted confocal laser scanning microscope (Leica).

Whole-mount in situ hybridization was performed as previously
described (Yasutake et al., 2004). In double-fluorescence in situ
hybridization experiments, anti-DIG-POD (Roche) and anti-FITC-POD
(Dako) were used to detect each hapten in RNA probes. Fluorescent signals
were detected with a TSA Plus Cy3/fluorescein system (PerkinElmer).
Primers for gene cloning are listed in Table S1. The probes for pax/ and
pax9 were reported previously (Mise et al., 2008). The plasmid encoding
foxNI was provided by Dr Norimasa Iwanami (Li et al., 2007). Gene
expression patterns were examined by observing whole-mount specimens or
cryostat sections.

TUNEL assay

The mean number of apoptotic cells, as determined by TUNEL assay, in the
pharyngeal region was calculated and subject to statistical analysis as
detailed in the supplementary Materials and Methods.
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Supplementary Materials and Methods

Morpholino knockdown

Morpholino antisense oligonucleotide (MO) was purchased from Gene Tools. The
target of pax/-MO (5’-CCT CTC CAT AGG TTT GCT CCA TTT G-3’) was the
sequence at the translation start site of pax] mRNA (Mise et al., 2008). As a control
experiment, Standard Control MO (5’-CCT CTT ACC TCA GTT ACA ATT TAT
A-3’) was used, as recommended by Gene Tools. These MOs were dissolved in
RNase-free water to a final concentration of 0.5 mM and injected into one-cell-stage

embryos.

Skeletal staining

For the visualization of cartilage structures, larvae at 2 days after hatching were fixed
overnight in 4% paraformaldehyde at 4°C and then washed two times in
phosphate-buffered saline containing 0.1% Tween-20 (PBST). The larvae were stained
overnight in alcian blue solution (10% alcian blue, 65% ethanol, 25% glacial acetic
acid). After gradual transfer to PBST through an ethanol series, the specimens were
bleached with hydrogen peroxide (3% hydrogen peroxide, 1% potassium hydroxide) for
2 hours and washed two times in PBST. Next, the larvae were treated with 1% trypsin
in a saturated 30% sodium borate solution at room temperature for 3 hours. Stained
larvae were gradually transferred to glycerol. The pharyngeal cartilages were dissected

for observation using fine forceps.

TUNEL assay, measurement of the pharynx size and statistics

Apoptotic cells were examined by TUNEL assay. Embryos were fixed with 4%
paraformaldehyde overnight at 4°C and then washed three times in PBST. Manually
dechorionized embryos were dehydrated with methanol at —-20°C. After gradual
rehydration, the embryos were permeabilized with 10 pg/ml of proteinase K for 20
minutes at room temperature, followed by 4% paraformaldehyde. After three washes
with PBST, the embryos were incubated with 18 pl of labeling solution plus 2 ul of
enzyme solution (In Situ Cell Death Detection Kit-TMR Red, Roche) at room
temperature for 3 hours. Subsequently, the embryos were washed with PBST three

times and stained with DAPI to visualize nuclei and define the endodermal

[
9
s}

©

S

-
'_9
£

o)

C

©
-

C

(0]

S
Q

Q

Q

3
(7p]

L]
-

C

(0]

£

Q
o

(]

>

(]
(@)



Development 143: doi:10.1242/dev.130039: Supplementary information

morphologies. Stained embryos were scanned on an AXIO Imager Z1 with ApoTome
(Zeiss). Horizontal Z sections of 1.4-um thickness, representing a central cross section
of the gut tube, were obtained. Within the Z sections, all TUNEL signals distributed in
the pharyngeal region posterior to the second arch were counted. The lengths of the
pharyngeal regions, from the second pouch to the fifth pouch (in wild type) or the
second pouch to the posterior end of the paxI-positive endoderm (in pax/ mutant), were
measured on an AXIO Imager Z1 with AxioVision (Zeiss). The mean number of
TUNEL-positive cells and mean length of the pharyngeal region were calculated and
graphed in Microsoft Excel. Significance was evaluated by a two-tailed Student’s #-test.
Data are presented as mean + s.e.m., and differences were considered significant at P <
0.05.

Mise, T., Iijima, M., Inohaya, K., Kudo, A. and Wada, H. (2008). Function of PaxI
and Pax9 in the sclerotome of medaka fish. Genesis 46, 185-192.
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Figure S1. Generation of pax7 mutants by TALEN.

(A) Schematic representation of the genomic structure of the medaka pax/ gene and the
TALEN target sites. A Pvull restriction site (green) is flanked by the left (blue) and
right (red) TALEN target sites in the second exon of pax].

(B) A 7-bp deletion induced by TALEN resulted in significant truncation of the Pax1
protein. Sequencing analysis of the pax/ mutant showed that the 7-bp deletion
contained the Pvull site. This frameshift mutation results in an abnormal amino acid
sequence (red SLMAA) and a C-terminal truncation that includes a large part of the
paired domain.

(C) Gel image of PCR products for pax/ genotyping. A fragment of pax/ was amplified
from wild-type and pax/-mutant embryos and digested with Pvull, which cleaves the
wild-type allele but not the mutant allele. Sequences of the primers for the genotyping
were 5’-AGC AAA CCT ATG GAG AGG TG-3’ and 5’-GCT GAT CGA ACT AAC
AGA CG-3".
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pax1” (st. 27)

Figure S2. Second pharyngeal pouches in pax7 mutants.

(A-F) Various morphologies of irregular slits forming posterior to the second arch. The
pharyngeal endoderm of pax/ mutants at stage 27 was visualized using paxI expression.
Although the positions of the anterior walls of PP2 (arrowheads) were fixed in standard
positions, those of the posterior ends of slit openings (arrows) were irregularly set in the
mutants.

(G, H) High-magnification flat-mount images focused around PP2 at stage 27. The
pharyngeal pouches or endodermal cells were visualized using pax/ expression.
Normally, PP2 (as well as other pouches) exhibited a bilayered morphology, composed
of AE and PE. In pax] mutants, however, PP2 was composed of monolayer AE, and the
PE structure was not found. PP, pharyngeal pouch; AE, anterior epithelium; PE,
posterior epithelium. Scale bars, 50 um in A-F, 25 pm in G and H.
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PP1

Figure S3. Phenocopy of pax1 mutants by the pax17-specific morpholino.

(A-D) Expression of foxA2 (A, A’,B,B’) and dix2 (C,C’, D, D’) was observed at stage
27 to reveal the distribution of neural crest cells and the endoderm, respectively.
Whole-mount embryos were observed from the ventral (A-D) and left (A’-D’) sides. In
paxl morphants, although neural crest cells migrated to the ventral side, these cells were
not divided into PA3-5 (n = 20/20, D, D’) due to defects of PP3-5 (n = 24/27, B, B’), as
seen in the pax/-mutant embryos.

(D, F) Expression of fgf3 in control (E) and pax! morphant (F) embryos. The
pharyngeal expression of fgf3 was absent in the morphants (n = 8/8, F).

(G, H) Ventral whole-mount views showing alcian blue—stained pharyngeal cartilages
of control (G) and paxI-morphant (H) larvae at 2 days after hatching. In pax/
morphants, CB1-4 were lost (n = 18/25, H).

MHB, mid-hindbrain boundary; PA, pharyngeal arch; PP, pharyngeal pouch; PVH,
paraventricular hypothalamic nucleus; BB, basibranchial; BH, basihyal; CB,
ceratobranchial; CH, ceratohyal; HS, hyosymplectic; M, Meckel’s; PQ, palatoquadrate.
Scale bars; 100 um in A and E, 250 pm in G.
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wnt11r

Figure S4. Expression pattern of wnt17rin medaka embryos at stage 27.

(A-D) Expression pattern of wntlIr in the pharynx of medaka at stage 27. In both
wild-type and pax/-mutant embryos, wntllr was not expressed in the pharyngeal
mesoderm, except for PA1 (n = 19). Mesodermal expression was observed in the LPM
surrounding the GE, just posterior to the pharynx, as shown by the high-magnification
images of the boundary between the pharynx and the foregut (C, D). In A and B, upper
and lower panels show left side and flat-mount views of the embryos, respectively. PA,
pharyngeal arch; PP, pharyngeal pouch; LPM, lateral plate mesoderm; GE, gut
endoderm. Scale bars: 100 um in A and B, 25 pm in C and D.
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pax9
A wr B
. K

PP2 PP3 PP4
PP2 PP3 PP4

st. 24 (PP4)

PP2 PP3 PP4

Figure S5. A wide range of pax9 expression in pharyngeal endoderm.

(A, B) Expression pattern of pax9 in the pharyngeal endoderm of wild-type (A) and
paxI-mutant (B) embryos at stage 24. From medial to lateral, pax9 was widely
expressed in the pharyngeal endoderm posterior to the second arch. The pax9
expression pattern was different from the pouch-specific pattern of pax/ expression (A).
In paxl mutants, although the third and fourth pouches were not formed, pax9 was
expressed in the pharyngeal endoderm posterior to the second arch (n = 16, B).

PP, pharyngeal pouch. Scale bar; 100 um in A.
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Figure S6. Expression pattern of ripply2 in the medaka embryo.
The only ripply gene in the medaka genome is ripply2. At stage 24, expression of
ripply2 was detected in the presomitic mesoderm and in the posterior somites, but not in

the pharyngeal region. Scale bar: 200 um.
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Supplementary Tables

Table S1. The list of primers for PCR to amplify cDNA fragments of genes

Gene Forward primer sequence Reverse primer sequence

dix2 5’- GAA CCT AAA CAC CGA TAT GCA TTC CAA CCA -3° 5’- CTA AAA TAT CGT CCC GGC GCT TAT TGC AG -3’
fef3 5’- CGC TCA GCA TTC ACA CTT TGG ATG G -3’ 5’- GCC TCT CTC TTC CTG CCT CGC TTG C -3’

foxA2  5°- GCA GTT AAA ATG GAA GGA CAC GAA CAC AC-3 5’- GTA GTA GGA TGT GTC GGG TAT AGA TGC AGA -3’
nkx2.3  5°- ACA ATG ATT CCA AGT CCG ATT CTA GCT TCC -3’ 5°- TTA CCA TGC CCT GAT CCC CTG CAG AGT TCC -3’

tbx1 5’- ATA CCT ACA ACT ATC CGG GAT CCA ATT CGG -3’ 5’- ATT CAT GTG GTG ATG ATA CGT GTG TCC TCT -3’
tef21 5’- AGT GAG GTT TCC ATG AGC GCA CAG GCG TAT -3’ 5’- ATA AAA CAA ACA GGA ACC CGA ATG AAGTAC -3’
ripply2  5°- CAG ACT TTA CGA AGA GCT AAT CAG CGC AAG -3’ 5’- CAA TGC TGC TAG TAG AAA TGA GTG CTC TGT -3’
wntllr 5°- ATG AAG AGC CGC TCT CAC ATC CTG CCT GTT -3’ 5’- GGT TGC TGG CAG GAG CAC AGG CCT ATT TGC -3’

Table S2. Defects of pharyngeal cartilages in pax?1 mutants (n=28)

Cartilage phenotype CBl1-4 CB5 CH HS PQ BB
Absent 28 0 0 0 0 0
Shape change - 9 4 27 2 28
Fusing to other cartilage - 2 (to BB) 13 (to HS) 13 (to CH), 2 (to PQ) 2 (to HS) 2 (to CB)

BB, basibranchial; CB, ceratobranchial; CH, ceratohyal; HS, hyosymplectic; PQ, palatoquadrate.
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