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Slit cleavage is essential for producing an active, stable,
non-diffusible short-range signal that guides muscle migration
Elly Ordan1, Marko Brankatschk2,*, Barry Dickson2,‡, Frank Schnorrer2,§ and Talila Volk1,¶

ABSTRACT
During organogenesis, secreted signaling proteins direct cell
migration towards their target tissue. In Drosophila embryos,
developing muscles are guided by signals produced by tendons to
promote the proper attachment of muscles to tendons, essential for
proper locomotion. Previously, the repulsive protein Slit, secreted by
tendon cells, has been proposed to be an attractant for muscle
migration. However, our findings demonstrate that through tight
control of its distribution, Slit repulsion is used for both directing and
arresting muscle migration. We show that Slit cleavage restricts its
distribution to tendon cells, allowing it to function as a short-range
repellent that directs muscle migration and patterning, and promotes
their halt upon reaching the target site. Mechanistically, we show that
Slit processing produces a rapidly degraded C-terminal fragment and
an active, stable N-terminal polypeptide that is tethered to the
tendon cell membrane, which further protects it from degradation.
Consistently, the requirement for Slit processing can be bypassed by
providing an uncleavable, membrane-bound form of Slit that is stable
and is retained on expressing tendon cells. Moreover, muscle
elongation appears to be extremely sensitive to Slit levels, as
replacing the entire full-length Slit with the stable Slit-N-polypeptide
results in excessive repulsion, which leads to a defective muscle
pattern. These findings reveal a novel cleavage-dependent regulatory
mechanism controlling Slit spatial distribution, which may operate in
other Slit-dependent processes.

KEY WORDS: Slit, Slit cleavage, Muscle, Muscle migration, Tendon

INTRODUCTION
Muscle migration and adhesion to tendon cells represents a key
process that is essential for the establishment of functional
contractile tissues in vertebrate and invertebrate organisms
(Schejter and Baylies, 2010; Schnorrer and Dickson, 2004;
Schweitzer et al., 2010). To achieve precise encounter between
muscles and tendons, muscles communicate with tendon cells
during their elongation and adhesion (Bökel and Brown, 2002;
Schweitzer et al., 2010). The mechanism directing muscle
elongation and their further arrest is not clear.
Slit has been described previously to function in Drosophila

muscle migration (Kramer et al., 2001; Wayburn and Volk, 2009).
Slit is expressed by tendon cells and has been shown to exhibit dual
and opposite activities. At early developmental stages, it repels the

ventral longitudinal muscles at the ventral midline, whereas at later
developmental stages, it attracts these muscles at the segmental
borders (Kramer et al., 2001).

Slit is a large secreted multi-domain protein consisting of
leucine-rich repeats (LRR), followed by multiple EGF repeats and a
C-terminal cysteine knob. Structure-function analysis demonstrated
that the binding site for its receptor, Roundabout (Robo), resides in
the second LRR domain located at the N-terminal region (Brose
et al., 1999; Kidd et al., 1999; Rothberg and Artavanis-Tsakonas,
1992; Rothberg et al., 1988, 1990). In both flies and vertebrates, Slit
proteins undergo cleavage into a large N-terminal fragment, Slit-N,
which contains the Robo-binding site, and a shorter C-terminal
fragment (Slit-C) (Brose et al., 1999; Wang et al., 1999). The
contribution of Slit cleavage to its function as a guide molecule has
yet to be elucidated. Experiments in cultured rat dorsal root ganglia
and with olfactory bulb neurons suggested that Slit-N stimulates
axon branching, whereas full-length Slit (Slit-FL) inhibits
branching activity (Nguyen Ba-Charvet et al., 2001). In the
Drosophila CNS, both Slit-uncleavable (Slit-UC) and Slit-FL
were capable of rescuing the slit mutant phenotype (Coleman et al.,
2010); thus, the functional relevance of Slit cleavage is as yet
unclear.

We analyzed the contribution of Slit to muscle migration by
performing live imaging of embryos mutant for slit, as well as
embryos in which the uncleavable forms of Slit were knocked into
the slit locus. We demonstrate that Slit cleavage is essential for Slit-
mediated short-range repulsion and arrest of muscle migration, and
propose that this mechanism might be essential for Slit short-range
signaling in other tissues, including heart and blood vessels.

RESULTS AND DISCUSSION
Slit is essential for correct orientation of both DA3 and LT
muscles, and for arresting their elongation
To study the role of Slit in muscle migration, we analyzed individual
muscles with different orientations that can be visualized in live and
fixed Drosophila embryos. These included the three lateral
transverse (LT) muscles and the dorsal acute muscle 3 (DA3)
(Fig. 1). Results showed that the pattern of these muscles in slit
mutants was significantly aberrant. The LT muscles were oriented
diagonally instead of vertically and were closer to the segmental
border, where Slit is normally present (Fig. 1B,D). Quantification of
the distance between the LT3 muscle and the posterior segment
border (DLT3) relative to thewidth of the hemisegment (Ds) revealed
a 60% reduction in the mutant [DLT3/Ds=0.149±0.05 in slit relative
to 0.249±0.06 in wild type (WT), P=0.001]. The DA3 muscle often
splits into twomisoriented extensions in the slitmutants (Fig. 1B′,F)
and, importantly, it continued to elongate beyond its target tendons
(Fig. 1E,F).

Live imaging of wild-type GFP-labeled LTmuscles indicated that
they elongated in a dorsoventral direction, and often sent small
membrane extensions reaching laterally to the segmental borderReceived 26 October 2014; Accepted 3 March 2015
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(Fig. 1C; supplementary material Movie S1). Once the LT muscles
reached their target tendons, their surfaces became smooth (e.g. see
Fig. 1A, arrow). In vivo imaging of slit mutant embryos showed
that the LT muscles were often diagonally misoriented (Fig. 1D;
supplementary material Movie S2), a phenotype consistent with loss
of repulsion cues from the segment border cells. In vivo imaging of
slit mutant embryos expressing a GFP-labeled DA3 muscle and
stripe-RFP-labeled segment border cells indicated that in addition to
splitting, the muscle often failed to stop at the segment border,
crossing the Slit-expressing tendon cells (Fig. 1F, arrow;
supplementary material Movies S3 and S4). Notably, prior to their
migration, the pattern of these muscles appeared similar to that of
wild-type muscles (supplementary material Movies S1 and S2).
These results indicate that Slit is needed to direct the muscles to the
correct route and to arrest their extension once they reach the
attachment site, but it is not required for their initial patterning.

Slit cleavage is essential for the induction of normal muscle
pattern
In both flies and vertebrates, Slit proteins undergo cleavage into a
large N-terminal fragment termed Slit-N, which contains the Robo-
binding site, and a shorter C-terminal fragment (Slit-C) (Brose et al.,
1999; Wang et al., 1999). To address the contribution of Slit
cleavage to the induction ofmuscle extension, we used flies carrying
knock-in cleavable and uncleavable versions inserted into the
slit locus by homologous recombination (supplementary material
Fig. S1). In these mutants, all the DNA and RNA regulatory
sequences were present and only the cleavage site was replaced by
mutant sequences, and a myc tag was fused to the C-terminus.
Analysis showed that Slit-FL-myc rescued the LT muscle
phenotype, as 13% of affected segments were seen in the rescue
relative to 77% in slit mutant (P=0.0001, n=18). In addition, the
DLT3/Ds ratio improved to wild-type levels (DLT3/Ds=0.21±0.03 in

Fig. 1. Slit is essential for correct patterning of both
DA3 and LT muscles. (A-B′) Orientation of LT muscles
visualized with anti-tropomyosin (A,B) or of DA3 muscle
visualized with Collier-GFP (A′,B′) in wild type
(WT, A,A′) or in slit mutant (B,B′) embryos at stage 16.
The outlines of the correspondingmuscles relative to the
segment borders are shown. Arrow in A indicates
smooth surfaces of the LT1 muscle. (C,D) Live imaging
of wild type (C) or slit mutant (D) of GFP-labeled LT
muscles during their elongation towards tendons
located at the center of the segment. Small membrane
extensions are marked by empty arrowheads or arrows
in C,D. (E,F) The DA3 muscle is marked by col>GFP
and Sr>DsRED. Arrows indicate a muscle that does not
stop when it reaches the targeted tendon cell. Scale
bars: 10 µm.
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Slit-FL-myc, relative to 0.149±0.03 in slit, P=0.008). Improvement
was also observed in the DA3 muscle of Slit-FL-myc embryos, as
4% affected segments were seen in the rescue relative to 50% in slit
mutant (P=0.00009, n=21) (Fig 2B,B′). By contrast, the
uncleavable form of Slit (Slit-UC-myc), which lacks the cleavage
site, did not rescue the phenotype of either the LT or DA3 slitmutant
muscles (Fig. 2C,C′), and its DLT3/Ds ratio was 0.107±0.06.
Notably, a membrane-bound version of the Slit-UC-myc (Slit-UC-
CD8-myc) carrying a CD8 domain at the Slit C-terminal did rescue
the LT muscle phenotype, as only 42% of the segments showed a
phenotype, relative to 77% in the slitmutant (P=0.0093, n=18). The
DLT3/Ds ratio in this case was 0.28±0.05, closely similar to control.
For the DA3 muscle, 5% of the segments were affected relative to
50% in slitmutants (P=0.00004, n=21) (Fig. 2D,D′). Slit cleavage is
therefore essential for guiding the elongation of the LT and DA3
muscles; however, it is dispensable once Slit is immobilized at the
tendon cell membrane.

Slit cleavage affects its distribution and stability
Next, we examined the distribution and stability of the Slit-myc
tagged knocked-in proteins using anti-myc antibodies. Analysis of
Slit-FL-myc embryos did not reveal specific labeling at the muscle
attachment sites, nor did it show a signal in western blotting
(Fig. 3A,F). This is consistent with Slit-FL-myc being cleaved,

and with degradation of the cleaved Slit-C-myc-tagged protein.
Notably, staining was apparent in other tissues, e.g. along the heart
cardioblasts, indicating that in these cells Slit-FL-myc is not
rapidly degraded, or that it is produced at higher levels
(supplementary material Fig. S2). Similarly, we did not detect
myc labeling in embryos expressing knocked-in Slit-FL-CD8-myc
(Fig. 3B), although it was clearly detected by western analysis
(Fig. 3F). It was concluded that Slit-FL-CD8-myc is more stable
than Slit-FL-myc; however, due to low expression levels by the
tendon cells, it is not detected at these sites by fluorescent labeling.

The uncleavable version of Slit (Slit-UC-myc) was also
undetectable at the tendon cell vicinity (Fig. 3C), and its overall
levels were relatively low (Fig. 3F), suggesting that it diffuses and is
rapidly degraded. Importantly, the uncleavable Slit that is
membrane-bound (Slit-UC-CD8-myc) was clearly detected along
the tendon cell membrane (Fig. 3D), in contrast to the cleavable
membrane-bound Slit (Slit-CD8-myc, Fig. 3C), although their
overall levels in the embryos are comparable (Fig. 3F). This confirms
that membrane binding protects Slit from degradation. Because Slit-
UC-CD8-myc rescued the slit mutant muscle phenotype (Fig. 2D),
these results indicate that Slit accumulation at the tendon cell
membrane is crucial for its function in proper guidance of LT and
DA3muscles. In addition, knock-in of the cleaved Slit-N-CD8-myc
showed considerably higher myc staining along the tendon cell

Fig. 2. Slit cleavage is essential for inducing the correct
migration of LT and DA3 muscles. LT visualized with anti-
tropomyosin (A,B,C,D) or DA3 muscles labeled with anti Collier
(A′,B′,C′,D′) in slit mutant embryo (A,A′), slit-FL knocked into the
slit locus (Slit-FL) (B,B′), slit-uncleavable knocked into the slit locus
(Slit-UC) (C,C′) and slit-uncleavable-membrane bound knocked
into the slit locus (Slit-UCmembrane bound) (D,D′). All embryos are
at stage 16. The corresponding schemes of Slit proteins are
presented to the left of panels B,C,D. Scale bars: 5 µm in A-D;
10 µm in A′-D′.
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membrane (Fig. 3E), as well as more than 10-fold elevation in its
protein levels relative to both Slit-FL-CD8 proteins (Fig. 3F). This
result implies that Slit-N is significantly more stable than Slit-FL
when both associate with the membrane. Interestingly, Slit-N-CD8-
myc accumulated asymmetrically along the tendon cells (e.g. arrow
in Fig. 3E′ and line scan in the inset). Such asymmetry may
contribute to a differential effect of Slit on muscles reaching the
tendon on both sides of the segmental border.
These experiments demonstrate that full-length Slit is an unstable

protein; however, its cleaved N-terminal fragment is extremely
stable. In addition, association with the membrane stabilizes both
full-length and cleaved Slit.
To further analyze the distribution of the cleaved Slit-N

polypeptide relative to uncleavable Slit, we overexpressed
Slit-N-GFP or Slit-UC-myc in tendon cells (using the sr-GAL4
driver) and compared their distributions. Whereas Slit-UC-
myc diffused outside the tendon cell territory (Fig. 3H,H′),
Slit-N-GFP remained associated with the tendon cell (Fig. 3G,G′),
demonstrating that Slit-N, but not full-length Slit, associates with
tendon cell surfaces. Taken together, these results demonstrate
that, once produced by the tendon cell, Slit-N does not diffuse but

rather associates with the cell membrane, consistent with short-
range Slit signaling by these cells.

Slit-N is a strong repellent signal
To address the outcome of accumulated active Slit-N on individual
muscle migration, we followed the path of the LT muscles in
embryoswith knocked-in Slit-N-CD8 by live imaging. Interestingly,
the mutant muscles lost the parallel dorsal-ventral orientation and
elongated towards each other, producing unoriented aggregates
(Fig. 4A-D; supplementary material Movie S5). Together with
previous results, this behavior suggests that excessive repulsion by
the segment borders from both sides pushes the muscles towards
each other, implying that only low levels of repellent Slit signal allow
the parallel dorsal-ventral extension of the LT muscles. Additional
support for the repulsion activity of Slit-N was deduced from
overexpression of Slit-N-GFP using two distinct drivers, atonal-
GAL4 and Hh-GAL4, in otherwise wild-type embryos. Muscles
proximal to the cells expressing Slit-N-GFP avoided these cells,
changing their orientation (Fig. 4, compare G,H with E,F and K,L
with I,J). In the case of atonal-GLA4, 85% of the segments showed
an aberrant pattern relative to 10% in control (P=0.00001).

Fig. 3. Cleaved Slit-N is a highly stable non-diffusing protein. (A-E′) Staining with anti-myc antibody (red in A′,B′,C′,D′,E′ or white in A,B,C,D,E) of knocked-in
slit-FL-myc (Slit-FL; A,A′), slit-FL-CD8-myc (B,B′), slit-uncleavable-myc (C,C′), slit-uncleavable-CD8 (D,D′) or slit-N′-CD8 (E,E′). Myc distribution, but not its
levels, are presented. Tendon cells are marked with anti-Stripe (green, A′-E′). All embryos are at stage 16. White arrows indicate the segmental boundary tendon
cells. The inset in E′ shows a line scan of Myc (red) and Stripe (green) profiles. (F) Immunoprecipitation of stage 16 embryo extract with anti-myc followed
by western blotting with anti-myc. The ∼52 kDa band represents the IgG heavy chain of the anti-myc antibody. Lower panel: western analysis of the embryo
extracts taken for the myc IP, reacted with anti-actin. (G,G′) UAS-Slit-N-GFP driven by stripe-GAL4 and stained with anti-Stripe (red) and GFP (green).
(H,H′) UAS-Slit-UC-myc driven by stripe-GAL4 and labeled with anti-Stripe (red) and myc (green). Arrows in G-H′ show regions devoid of tendon cells in which
Slit-UC, but not Slit-N, is detected. Such dots are never observed with anti Myc staining of control embryo. Scale bar: 10 µm.
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To conclude, our findings show that the cleavage of Slit provides
important regulation of its distribution, promoting its short-range
signaling that is essential for exclusive repulsion of closely
approaching muscles (see model in Fig. 4M,N). In contrast to a
previous report, Slit appears to repel muscles, similar to its function
in the nervous system. Whereas distinct muscles extend their
leading edge in a muscle-specific inherited direction, Slit prevents
mistaken routes and is essential for stopping muscles once they
reach the target tendon site (Fig. 4N). Mechanistically, Slit cleavage

transforms the protein into an active, stable polypeptide, which is
tethered to the tendon cell, further protecting it from degradation and
restricting its distribution. Whereas the nature of the protease that
cleaves Slit has yet to be elucidated, the tendon-specific surface
proteoglycans syndecan (Chanana et al., 2009; Coleman et al.,
2010) and multiplexin (Harpaz et al., 2013; Meyer and Moussian,
2009; Momota et al., 2011, 2013), shown previously to bind Slit in
the CNS or in the heart, respectively, might tether the cleaved Slit-N
to the tendon cell membrane. This novel regulatory mechanism

Fig. 4. Slit functions as a repellant for muscle elongation. (A,B) Live imaging of the LT muscles in wild type (A) or in embryos with knocked-in Slit-N-CD8 (B).
(C,D) LT muscles in wild type (C) or in embryos expressing Slit-N-CD8 (D) after fixation. (E-H) Embryos overexpressing either UAS-RFP (green, E,F) or
UAS-Slit-N-GFP (green, G,H) driven by ato-GAL4 (arrows indicate the LT muscles). (I-L) Embryos overexpressing either UAS-GFP (green, J,L) or UAS-Slit-N-
GFP (green, G,H) driven by Hh-GAL4. (M) Schematic representation of Slit cleavage. (N) A model describing how the repulsion by Slit-N produced by tendons
orients muscle elongation. Scale bars: 10 µm.
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controlling Slit distribution may also operate in other tissues, such as
the heart and blood vessels, where Slit appears to be active between
neighboring cells.

MATERIALS AND METHODS
Fly strains
Wild-type flies were yw. mef2-GAL4, 69b-GAL4, sli2/CyO,Yfp, Yfp strains
were purchased from Bloomington Stock Center. Collier-GFP flies were a
gift from Dr Alan Vincent (Centre de Biologie du Développement, UMR
5547 and IFR 109, CNRS and Université Paul Sabatier, France).
Homozygous embryos were recognized by the lack of either CyO, YFP or
CyO wg-lacZ. UAS-Slit-N-GFP and UAS-Slit-UC-Myc flies were a gift
from Greg J. Bashaw (University of Pennsylvania, Philadelphia, USA).
Ap-Me580-GFP flies were a gift from Mary Baylies (Memorial Sloan
Kettering Cancer Center, New York, USA) (Folker et al., 2012, 2014). Slit
knock-in lines included: Slit full-length, Slit-FL/CyO wg-lacZ; Slit-
uncleavable, Slit-UC/CyO wg-lacZ; Slit-membrane bound Slit, CD8/CyO
wg-lacZ; Slit-membrane bound uncleavable, Slit-UC-CD8/CyO wg-lacZ;
and Slit-N terminal fragment, Slit-N/CyO wg-lacZ.

Antibodies
Mouseanti-Collier (1:200) (Dubois et al., 2007)was agift fromDrAlanVincent
(Centre de Biologie du Développement, Toulouse, France). Other antibodies
included rat anti-tropomyosin (1:400, Abcam), chicken anti-β-galactosidase
(1:400, Abcam), chicken anti-GFP (Aves Labs), guinea pig anti-Stripe (1:400)
(our lab), chicken anti-HA (1:400), mouse anti-HA (Covance MMs-101p,
1:400), mouse anti-myc and mouse anti-Slit (1:30, Hybridoma Bank).
Secondary fluorescent antibodies were purchased from Jackson Laboratories.

Immunostaining
Staged embryos were collected and fixed as previously described
(Ashburner et al., 2005). Embryos were visualized with a Zeiss LSM710
confocal system, and images were processed using Adobe Photoshop.

Live imaging
Staged embryos were dechorionated, selected using a fluorescent
stereoscope, arranged, covered with Halocarbon oil 700 (H8898, Sigma-
Aldrich, USA) and visualized with a Zeiss LSM710 confocal system. The
time series were transformed into a film using ImageJ software.

Western blot and immunoprecipitation
Staged embryos were collected and protein extract was produced in RIPA
buffer. The soluble extract was separated on a 7% denaturing gel, blotted onto
nitrocellulose and reacted with mouse anti-Slit (1:1000, Hybridoma Bank)
and HRP-conjugated anti-mouse. The signal was visualized using Thermo
Scientific Supersignal. For immunoprecipitation, embryo protein extracts
containing equivalent amounts of protein were reacted with beads conjugated
with anti-myc antibodies, washed and then boiled in sample buffer.

Statistical analysis
Segments were scored separately and the fraction of mutant segments for
each genetic background was calculated. The significance of the effect was
calculated using the following test:

z ¼ p̂1 � p̂2

sp̂1�p̂2

;

where sp̂1�p̂2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ 1

n1
þ 1

n2

� �s
:

Acknowledgements
We thank A. Vincent, M. Baylies and G. Bashaw for valuable gifts of antibodies and/or
flies; the Bloomington Stock Center for fly lines; and the Developmental Studies
Hybridoma Bank for antibodies. We also thank N. Konstantin for manuscript
corrections.

Competing interests
The authors declare no competing or financial interests.

Author contributions
E.O. and T.V. developed the concepts, E.O. performed the experiments and data
analysis, T.V. prepared the manuscript, M.B., B.D. and F.S. provided the Slit
knock-in flies.

Funding
This study was supported by a grant from the Israeli Science Foundation [ISF 71/12]
to T.V.

Supplementary material
Supplementary material available online at
http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.119131/-/DC1

References
Ashburner, M., Golic, K. G. and Hawley, R. S. (2005). Drosophila: A Laboratory

Handbook, 2nd edn.ColdSpringHarbor, NY: Cold SpringHarbor LaboratoryPress.
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Supplemental Figures 

 

 

 

Figure S1: The production of Slit knocked-in constructs (related to Figure 2) 

Five new slit alleles were generated using the “hands in” homologous recombination 

technique. Shown is the annotated position (in bp) of the endogenous slit locus; blue arrow 

indicates the slit reading frame (A). slitMYC (B), slitTM (C), uslitMYC (D), uslitTM (E) and 
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slitNMYC (F) loci are depicted as grey lines or grey-labeled sequence blow-ups; coding exons 

are marked with green bars. Black-labeled sequences indicate in-frame fusions with a MYC 

tag tetramer (B,D,F) or a 2xMYC-cd8TM-2xV5 membrane anchor (C,E), respectively. The 

red-labeled (D,E) or red-boxed sequences (F) indicate deleted endogenous slit sequence 

sections.  
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Figure S2: Staining of Slit-FL-myc (related to Figure 3) 

(A) Dorsal view of an embryo carrying Slit-FL-myc and labeled with anti-myc antibody. The 

entire dorsal vessel is clearly labeled (arrows mark its beginning and end). (B) Ventral view 

of a similar embryo showing labeling of the midline glia (arrow marks a single midline glia 

cell). 
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Supplemental Movies 

 

 

 

 

Movie S1: Migration of fluorescently-labeled LT muscles in WT embryo. Related to 

Figure 1. 
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Movie S2: Migration of fluorescently-labeled LT muscles in slit mutant embryo. 

Related to Figure 1. 
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Movie S3: Migration of the DA3 muscle (labeled with GFP) relative to the tendon 

cells (labeled with RFP) in WT embryos. Related to Figure 1. 
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Movie S4: Migration of the DA3 muscle (labeled with GFP) relative to the tendon 

cells (labeled with RFP) in slit mutant embryos. Related to Figure 1. 
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Movie S5: Migration of fluorescently-labeled LT muscles in Slit-N-CD8 knock-in 

embryo. Related to Figure 4. 
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