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ABSTRACT
Progress of development is commonly reconstructed from imaging
snapshots of chemical or mechanical processes in fixed tissues. As a
first step in these reconstructions, snapshots must be spatially
registered and ordered in time. Currently, image registration and
ordering are often done manually, requiring a significant amount of
expertise with a specific system. However, as the sizes of imaging
data sets grow, these tasks become increasingly difficult, especially
when the images are noisy and the developmental changes being
examined are subtle. To address these challenges, we present an
automated approach to simultaneously register and temporally order
imaging data sets. The approach is based on vector diffusion maps, a
manifold learning technique that does not require a priori knowledge
of image features or a parametric model of the developmental
dynamics.We illustrate this approach by registering and ordering data
from imaging studies of pattern formation andmorphogenesis in three
model systems. We also provide software to aid in the application of
our methodology to other experimental data sets.
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INTRODUCTION
In one of the common approaches to studies of developmental
dynamics, a group of embryos is fixed and stained to visualize a
particular biochemical or morphological process within a
developing tissue. The developmental dynamics must then be
reconstructed from multiple embryos, each of which contributes
only a snapshot of the relevant process along its developmental
trajectory (Jaeger et al., 2004; Fowlkes et al., 2008; Peter and
Davidson, 2011). Importantly, the ‘age’ of any given embryo
arrested in its development is often only approximately known.
Typically, what is known is a certain time window to which
a collection of embryos belongs (Castro et al., 2009; Ng et al.,
2012; Richardson et al., 2014). Furthermore, images are often
collected in different spatial orientations. In order to recover the
developmental dynamics from such data sets, snapshots of different
embryos must first be spatially aligned or registered, and then
ordered in time.

Temporal ordering and registration of images can be done
manually when the number of images is small and the differences
between them are visually apparent. Fig. 1 shows a caricature of
fish development that illustrates the processes of growth and
patterning. In this case, temporal ordering can be accomplished by
arranging the fish by size, which is monotonic with the
developmental progress. Image registration is based on obvious
morphological landmarks, such as the positions of the head and
the fins. In contrast to this example, real data pose nontrivial
challenges for both registration and temporal ordering. In general,
the landmarks needed for registration, as well as the attributes that
can be used to order the data, are not known a priori. Additional
challenges arise from embryo-to-embryo variability, sample size
and measurement noise.

We present a robust algorithmic approach to simultaneous
registration and temporal ordering. In contrast to a number of
previous methodologies (Greenspan et al., 1994; Rowley et al., 1998;
Zhao et al., 2003; Zitová and Flusser, 2003; Hajnal and Hill, 2010;
Dubuis et al., 2013), ours does not rely on the a priori knowledge of
landmarks for registration or markers of developmental progression.
The approach is based on vector diffusion maps (Singer and Wu,
2012), a manifold learning algorithm that simultaneously addresses
the problems of registration and temporal ordering. This algorithm is
one of several nonlinear dimensionality reduction techniques that
have been developed over the past decade (Roweis and Saul, 2000;
Tenenbaum et al., 2000; Belkin and Niyogi, 2003; Coifman et al.,
2005; Coifman and Lafon, 2006) for applications ranging from the
analysis of cryo-electronmicroscopy (cryo-EM) images of individual
molecules (Singer et al., 2011; Zhao and Singer, 2014) to face
recognition (Lafon et al., 2006) and the classification of CT scans
(Fernández et al., 2014).

Here, the vector diffusion maps algorithm is adapted for the
analysis of images of tissues in studies of developmental
dynamics, with the main objective of revealing stereotypic
developmental trajectories from fixed images. To illustrate our
approach, we analyze four experimental data sets. The first two
data sets come from live imaging studies of Drosophila and
zebrafish embryogenesis. In both of these examples, the correct
rotational orientation and temporal order are independently
known, and these data sets will be used to validate our approach.
Our third data set consists of images from fixed Drosophila
embryos, for which the correct orientation and order are unknown;
here, we will show how the algorithm can help uncover
developmental dynamics that are not readily apparent. Our final
data set consists of z-stacks of Drosophila wing discs, which we
will use to illustrate how our methods can be used to analyze
specific types of 3D imaging data. We also show how to compute
an average trajectory from a set of registered and ordered fixed
images to remove noise due to intersample variability and obtain a
smooth description of the underlying developmental dynamics.Received 3 November 2014; Accepted 4 March 2015
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RESULTS
Vector diffusion maps for registration and temporal ordering
Vector diffusion maps (Singer and Wu, 2012) is a manifold
learning technique developed for data sets that contain two sources
of variability: geometric symmetries, such as rotations of the
images, which one would like to factor out; and ‘additional’
directions of variability, such as temporal dynamics, which one
would like to uncover. Vector diffusion maps combine two
algorithms – angular synchronization (Singer, 2011) for image
registration, and diffusion maps (Coifman et al., 2005) for
extracting intrinsic low-dimensional structure in data – into a
single computation.Wewill use the algorithm to register images of
developing tissues with respect to planar rotations, as well as
uncover the main direction of variability after removing rotational
symmetries. Although, in general, images may contain variations
due to rotations, translations and scaling, we will remove the
relevant translations and/or scaling via relatively simple image
preprocessing, and focus only on factoring out rotations using the
vector diffusion maps algorithm. In the case that all relevant
symmetries can be removed with straightforward preprocessing,
our algorithms can extract the main direction of variability within
the imaging data set. We assume that this main direction of
remaining variability in these images is parametrized by the
developmental time of each embryo. As a consequence,
uncovering this direction should reveal the underlying dynamics.
Angular synchronization uses pairwise alignment information

to register a set of images in a globally consistent way. A
schematic illustration of angular synchronization is shown in
Fig. 2A, where each image is represented as a vector, and the
goal is to align the entire set of vectors given pairwise alignment
measurements. We first compute the angles needed to align pairs
of vectors (or images), which in general requires no notion of a
template function (Ahuja et al., 2007; Sonday et al., 2013). In
this work, we aligned pairs of images with respect to rotations by
exhaustively searching over a discretized space of rotation
angles to minimize the Euclidean distance between the pixels.
However, pairwise alignments can also be computed by aligning
appropriate image landmarks or features (Dryden and Mardia,
1998). When the data are noisy, these pairwise measurements
may be inaccurate, and so we utilize all pairwise measurements
to align the set of images robustly. Using the alignment angles
between all pairs of vectors, angular synchronization finds the set
of rotation angles (one angle for each vector) that is most

consistent with all pairwise measurements (see algorithms in the
supplementary material); this is illustrated in Fig. 2B. In this
schematic, registration via angular synchronization is trivial, as
the pairwise measurements contain no noise. However, the
algorithm can register data sets even when many of the pairwise
measurements are inaccurate (Singer, 2011).

After removing variability due to rotations, the developmental
dynamics may be revealed by ordering the data along the 1D curve
that parametrizes most of the remaining variability in the data. Such
a curve can be discovered using diffusion maps (Coifman et al.,
2005), a nonlinear dimensionality reduction technique that reveals a
parametrization of data that lies on a low-dimensional manifold in
high-dimensional space. The idea is illustrated in Fig. 2C, where the
data are 2D points that lie on a 1D (nonlinear) curve. We use local
information about the data to find a parametrization that respects the
underlying manifold geometry, so that points that are close in high-
dimensional space (e.g. images which look similar) are close in our
parametrization. This idea of locality is denoted by the weight of the
edges in Fig. 2C: data points that are close are connected by dark
edges and, clearly, the dark edges are more ‘informative’ about the
low-dimensional structure of the data. The color in Fig. 2D depicts
the 1D parametrization or ordering of the data that we can detect
visually. A detailed example of using vector diffusion maps to
register and order synthetic data is given in supplementary material
Fig. S2, and a step-by-step tutorial of the diffusion maps
implementation is provided with the software. In our working
examples, each data point will be of much higher dimension (e.g. a
pixelated image or 3D voxel data), and so we cannot extract this
low-dimensional structure visually. Instead, we will use diffusion
maps, which automatically uncovers a parametrization of our high-
dimensional data from the eigenvectors of the appropriate matrix
(see algorithms in the supplementary material). Furthermore, the

Fig. 1. Caricature illustrating the tasks of image registration and temporal
ordering. (A) Images of ‘samples’, each in a different orientation and at a
different stage of development. (B) Registered and ordered samples. For this
caricature, the registration and ordering is straightforward because the data set
is small, the landmarks are visually apparent, and the developmental changes
are easy to recognize.

Fig. 2. Schematic illustrating angular synchronization and diffusion
maps. (A) A set of vectors, each in a different orientation. The pairwise
alignment angles are indicated. (B) The vectors from A, each rotated about
their midpoint so that the set is globally aligned. Note that the chosen rotation
angles are consistent with the pairwise alignments in A: the difference between
a pair of angles in B is the same as the pairwise angle in A. (C) Data points
(black) that lie on a 1D nonlinear curve in two dimensions. Each pair of points is
connected by an edge, and the edgeweight is related to the Euclidean distance
between the points through a Gaussian kernel (see algorithms in the
supplementary material), so that pairs of data points that are close are
connected by darker (‘stronger’) edges. (D) The data in C, colored by the first
(non-trivial) eigenvector from the diffusion map computational procedure.
The color intensity is monotonic with the perceived curve arc length, thus
parametrizing the curve.
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corresponding eigenvalues will allow us to test our assumption that
our data approximately lie on a 1D manifold (see supplementary
material Figs S3-S6).

Method validation using live imaging
Drosophila gastrulation
To validate the proposed approach, we first applied our algorithm
to a data set where the true temporal order and rotational
orientation of the images were known a priori. This data set was
obtained through live imaging near the posterior pole of a
vertically orientedDrosophila embryo during the 20 min spanning
the late stages of cellularization through early gastrulation. During
this time window, the ventral furrow is formed where the ventral
side buckles towards the center of the embryo, internalizing the
future muscle cells and forming a characteristic ‘omega’ shape.
Germband extension then causes cells from the ventral side to
move towards the posterior pole of the embryo, and then wrap
around to the dorsal side (Leptin, 2005). At the end of this process,
cells that were originally on the ventral and posterior side of the
embryo find themselves on the dorsal side, causing a similar
omega to appear on the dorsal side.
Fig. 3A shows selected images from this live imaging data set,

which contains 40 consecutive frames taken at 30 s intervals at a
fixed position within a single embryo. Each image shows an optical
cross-section near the posterior pole of a vertically oriented
developing Drosophila embryo, with the nuclei labeled by
Histone-RFP. Each frame was arbitrarily rotated, and the order of
the frames was scrambled. The task is now to register these images
and order them in time to reconstruct the developmental trajectory.
We used vector diffusion maps to register and order the images.

Fig. 3B shows the images from Fig. 3A now registered and ordered;
the real time for each frame is also indicated.With a small number of
exceptions, the recovered ordering is consistent with the real-time
dynamics. Fig. 3C,D show the correlations between the recovered
and true angles and rank orders, respectively, for the entire data set.

Both the angles and the ranks are recovered with a high degree of
accuracy. We note that determining which end of the trajectory
corresponds to early in the developmental progression is a post-
processing task that requires some a priori information.

To assess the robustness of the proposed methodology, we
repeated this procedure with four additional data sets extracted from
independent live imaging studies spanning the same developmental
time period. The results are shown in Table 1. The errors in the
recovered angles are all less than 10°, and the rank correlation
coefficients are consistently greater than 95%, indicating that our
methodology can reproducibly order data of this type.

Zebrafish epiboly
As another validation for the proposed methodology, we applied our
algorithm to a time-lapsemovie of zebrafish embryogenesis.We used
publicly available live imaging data of zebrafish embryogenesis
[https://zfin.org/zf_info/movies/Zebrafish.mov (Karlstrom and Kane,
1996)]. Taken with a differential interference contrast (DIC)
microscope, the movie records the first 17 h of zebrafish
development, from the single-cell stage to 16-somite stage. We
selected 120 consecutive frames from this movie that capture 5.5 h
of epiboly (3.5-9 h after fertilization). In this experiment, embryos
were immobilized for imaging so that the position and orientation
remained fixed (Kane et al., 1996). At the start of the time
window, cells have divided 10-11 times and have accumulated in a
cell mass above the yolk. The cell mass is then compressed and
the animal-vegetal axis of the embryo (vertical axis in Fig. 4)
shortens to form a spherical embryo by the end of the fourth hour
of development. Then, the yolk syncytial layer, which forms the
boundary between the yolk and the cell mass, moves upward,
forming a dome-shaped structure. During this stage, the cells
rearrange to form a uniform layer about four cells thick. With time,
this cell layer then spreads across the yolk and expands toward the
vegetal pole. At the end of epiboly, the blastoderm completely
engulfs the yolk.

Fig. 3. Method validation using live imaging of Drosophila embryos. (A) Selected images from a live imaging study of a Drosophila embryo during
gastrulation. Scale bar: 50 μm. Each frame is in an arbitrary rotational orientation and the order of the frames has been shuffled. (B) Images from A registered and
ordered by vector diffusion maps. The dorsal side of each embryo now appears at the top of each image and the ventral side appears at the bottom. The real time
of each frame is also indicated, where t=0 corresponds to the initiation of ventral furrow formation. (C) The correlation between the recovered rotation angle (using
vector diffusion maps) and the true rotation angle. The average absolute error in the recovered angles is 8.37°. (D) The correlation between the recovered rank
(using vector diffusion maps) and the true rank. The rank correlation coefficient is 0.9989 (see also Table 1).
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As in the example of Drosophila embryo live imaging, the 2D
frames were randomly rotated and shuffled (Fig. 4A). We then used
vector diffusion maps to register and order the frames. The results
are shown in Fig. 4B. The recovered rotations and order are
consistent with the expected developmental dynamics, as shown
in the correlations between the recovered and true ranks (Fig. 4C).
Quantitatively, the rank correlation coefficient for this data set is
0.9954, and the average error in the recovered angle is 4.14°. Some
errors in ordering images of the early embryo result from slow cell
movement during the early developmental stage when cells divide
and accumulate above the yolk. During epiboly, cell movement is
more dynamic and the recovered ordering is more consistent with
the real dynamics.
In summary, we have shown that our approach to temporal

ordering performs very well on imaging data of two different
developmental processes (Drosophila gastrulation and zebrafish
epiboly) taken with two different imaging methods (fluorescent
microscopy and DIC), where the true temporal order is known a
priori. Provided that significant dynamics exist within the data set
and that the developmental trajectory is well sampled, the
developmental dynamics can be recovered.

Data sets with intersample variability
Fixed images of Drosophila gastrulation
We have analyzed how our algorithm performs on two model data
sets where all images come from a single embryo. In practice, we are
interested in cases in which each image comes from a different
embryo, and the largest source of noise in the considered data set
arises from embryo-to-embryo variability. To demonstrate that our
methods are robust to such variations, we constructed a synthetic
timecourse data set by selecting a random image from one of five
Drosophila live imaging data sets (those data sets used in Fig. 3) at
each time point. The resulting data set is spatially unregistered,
scrambled in time, and reflects embryo-to-embryo variability. The
median rank correlation coefficient when ordering such a synthetic
timecourse using our methodology was 0.77, indicating that the
algorithm can recover the temporal order even under noisy conditions.
We then applied our approach to a data set where the true

rotational orientation and temporal order were not known a priori.

Fig. 5A shows selected images from a set of 120 images of
developing Drosophila embryos that cover a 30 min interval
spanning late cellularization through gastrulation. This data set is
more complex than the live imaging data sets in that it contains
significantly more images, each of which provides information
about tissue morphology and the spatial distribution of two
regulatory proteins. Each image shows an optical cross-section of
the posterior view of a different embryo at a different rotational
orientation and fixed at a different (and unknown) developmental
time. The nuclei (gray) were labeled with the DNA stain DAPI.
Embryos were stained with an antibody that recognizes Twist (Twi,
green), a transcription factor that specifies the cells of the future
muscle tissue. Another signal is provided by the phosphorylated
form of the extracellular signal regulated kinase [dpERK (ERK is
also known as Rolled in Drosophila), red], an enzyme that, in this
context, specifies a subset of neuronal cells (Lim et al., 2013).

Fig. 5B shows the selected images in Fig. 5A now registered and
ordered using vector diffusion maps. Registered and ordered images
of individual embryos can then be used to construct a representative
average trajectory. Each snapshot in the average trajectory is the
(weighted) average of a group of successive images from the
registered and ordered data set (see smooth trajectories from
registered and ordered images in the supplementary material).
Averaging successive images removes some of the interembryo
variability, so that sequential snapshots of this averaged trajectory,
as shown in Fig. 5C, serve as a summary of the stereotypic
developmental dynamics.

From this average trajectory, we can now easily see the
developmental progression consistent with the known dynamics:
dpERK first appears as two lateral peaks at the ventrolateral side of
the embryo, and a third dpERK peak then appears at the dorsal side
of the embryo. During mesoderm invagination, the two ventrolateral
dpERK peaks merge together, eventually forming, together with
Twi, the omega shape. The dorsal dpERK peak then disappears
during germband extension as cells from the ventral side wrap
around to the dorsal side. At the end of this process, similar omegas
formed by Twi and dpERK appear on the dorsal side of the
embryo; these patterns are most readily seen in the last image of
Fig. 5C. Thus, vector diffusion maps can accomplish the tasks
presented in the caricature in Fig. 1, even in the absence of
information about image landmarks and without a priori knowledge
of developmental features.

To evaluate the quality of our registration and ordering, we can
use prior knowledge about the developmental system. The Twi
signal is known to form a single peak at the ventralmost point of
the embryo. We found that the standard deviation in the location
of this peak in the set of registered images was ∼8°, indicating
that the algorithm successfully aligns the ventralmost points of
the images. Because the developmental time of each embryo

Fig. 4. Method validation using live imaging of a zebrafish embryo. (A) Selected images from a movie of zebrafish epiboly. Scale bar: 200 μm. Each frame is
in an arbitrary rotational orientation and the order of the frames has been shuffled. (B) Images from A after registration and ordering using vector diffusion maps.
The real time of each frame is also indicated. (C) Correlation between the rank recovered using vector diffusion maps and the true rank. The rank correlation
coefficient is 0.9954. The larger errors in the recovered ranks towards the beginning of the trajectory are due to slow cell movement within that time window.

Table 1. Average error in the recovered angle and the rank correlation
coefficient (ρ) for five independent Drosophila live imaging studies

Movie index Angle error (°) ρ

1 8.37 0.9989
2 4.98 0.9994
3 6.47 0.9795
4 7.03 0.9953
5 3.04 0.9959

See also Fig. 3.
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cannot be easily estimated, we have few options for evaluating
the quality of our temporal ordering. We compared the ordering
obtained from vector diffusion maps with the ordering provided
by a trained embryologist who is knowledgeable about the
developmental progression and the important image features.
The ranks from the ordering provided by the embryologist, which
we will refer to as the ‘expert rank’, are indicated for the images
in Fig. 5B, and the rank correlation (Fig. 5D) shows that our
ordering is consistent with the expert ordering.

Fixed z-stacks of Drosophila wing discs
In this section we show that the approach can readily be applied to
3D data. We restrict ourselves to the case in which an obvious fixed
axis exists, so that only rotations of the 3D data around this axis need
be taken into account. This does not constitute an inherent limitation

for vector diffusion maps. Although, for simplicity, here we will not
discuss the general case, incorporating general 3D symmetries is
possible (Arie-Nachimson et al., 2012; Cucuringu et al., 2013;
Wang and Singer, 2013).

To demonstrate this approach, we used an existing 3D data set
of fixed Drosophila wing imaginal discs (Hamaratoglu et al.,
2011). Imaginal discs are groups of progenitor cells in fly larva
that will transform into specific organs during metamorphosis.
The wing disc is an imaginal disc that gives rise to the wing,
thorax and hinge. The data set is composed of 46 fixed wing discs
with developmental times that range from 72 to 112 h after
fertilization. Each disc contains 21 z-slices taken at 1 μm
intervals. The discs were dissected from larvae expressing the
Dad-GFP reporter construct (green) and stained with antibodies
that recognize Spalt (red), Wingless (gray) and Patched (gray), the

Fig. 5. Analysis of images of fixed Drosophila embryos. (A) Images of Drosophila embryos stained for nuclei (gray), Twi (green) and dpERK (red). Scale bar:
∼50 μm (images have been rescaled to remove slight interembryo size variations). Each image is of a different embryo arrested at a different developmental time
and in a different rotational orientation. (B) Data from A, registered and ordered using vector diffusion maps. The ‘expert rank’ for each image is indicated.
(C) A representative developmental trajectory obtained from local averaging of the entire set of registered and ordered images (see smooth trajectories from
registered and ordered images in the supplementary material). (D) Correlation between the image ranks calculated from the vector diffusion maps algorithm and
the ranks obtained from ordering by an expert. The rank correlation coefficient is 0.9716.

Fig. 6. Analysis of 3D Drosophila wing disc z-stacks. (A) Maximum projections of an example 3D Drosophila wing disc z-stack. The anterior-posterior
(A-P) and dorsal-ventral (D-V) axes are indicated. Discs express the Dad-GFP reporter construct (green) and are stained for Spalt (red), Wingless (gray) and
Patched (gray). Projections along the x, y and z axes are shown. (B) Example 3D images, ordered using diffusion maps. The time cohort, as assessed by an
expert, is indicated for each image, and the rank correlation coefficient between the diffusion maps ordering and the expert timing is 0.9427. (C) The average
developmental trajectory for the registered and ordered images.
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factors that play important roles in disc patterning and growth
(Fig. 6A).
In the wing disc, the anterior-posterior and dorsal-ventral axes

are significantly longer than the third principal axis (see Fig. 6A).
Therefore, we need not consider registration in all three dimensions,
and can instead focus on registering the wing discs with respect to
rotations only in the x-y plane. To register the data, we first aligned
the maximum intensity projections using angular synchronization.
We then used these rotations to register the full 3D data in the x-y
plane. Because the maximum intensity projections are 2D images,
this step is no more computationally intensive than in the previous
examples. Such an approach is possible when there are distinct
major and minor axes within a 3D sample, which reduces the
rotational degrees of freedom.
We then used diffusion maps to order the registered 3D data.

Fig. 6B shows selected images from the data set ordered by
diffusion maps. In the original data set, each disc was assigned to
one of six time classes (72-73, 76.5-77.5, 79-80, 89-90, 100-101
and 110.5-111.5 h after fertilization, Fig. 6B) by an expert. In the
ordered set, the size of the wing disc grows, and the intensity of the
Dad-GFP signal increases as a function of time. The rank correlation
coefficient based on the time class is 0.9436. The registration errors
are primarily due to some wing discs having extra tissue attached to
them (such as the image in Fig. 6A and the fourth image in Fig. 6B).
Even with such obstructions, we can accurately order the images and
extract a stereotypical developmental trajectory, as shown in
Fig. 6C, by averaging (see smooth trajectories from registered and
ordered images in the supplementary material). We can now clearly
see the growth of the wing disc, even though averaging somewhat
blurs some finer scale structures.

Computational requirements
The computational costs for our methodology are outlined in Fig. 7
and Table 2. The computational time is a function of the number of
images in the data set, the number of pixels in each point, and the
angular resolution to compute the pairwise rotations (see

registering images in the supplementary material). Furthermore,
the computation of the pairwise rotational alignments, which
accounts for the majority of the computational time, can be easily
parallelized, and only a subsample of the pairwise alignments need
be computed for larger data sets for accurate recovery of the
underlying rotations (Singer, 2011). Because the computational
cost increases with the image resolution, we chose to subsample all
of our data sets to 100×100 pixels. This resolution allowed us to
rapidly analyze our data sets while retaining all of the relevant
developmental features. However, as can be seen from the
computational costs in Fig. 7 and Table 2, it is feasible to use
our algorithms to analyze higher-resolution images.

The requisite user intervention and parameter tuning required for
our method is relatively minor. As a first step, images must be
preprocessed so that the Euclidean distance between the pixels is
informative. Our software provides several preprocessing options
(such as blurring, rescaling and mean-centering), as well as some
guidance for what options to select depending on the system of
interest. Two algorithmic parameters – the angular discretization to
compute the pairwise alignments, and the diffusion maps kernel
scale that determines which data points are ‘close’ (see Fig. 2 and
algorithms in the supplementary material) – must also be defined.
We also provide some guidance on selecting these parameters, and
we find that the results are robust to both of these parameters.
Overall, the tasks of image preprocessing and parameter selection
are relatively simple compared with the manual registration and
ordering of images, and so this methodology is promising for much
larger imaging data sets that are impractical to evaluate manually.

DISCUSSION
Temporal ordering of large-scale data has been performed in the
context of molecular profiling studies, in which data points are
vectors describing the expression levels of different mRNAs (Gupta
and Bar-Joseph, 2008; Anavy et al., 2014; Trapnell et al., 2014).
At the same time, temporal ordering of imaging data sets was
undertaken with a significant amount of manual intervention and

Fig. 7. Computational requirements for the presented methodology. (A) CPU time as a function of the number of images in the data set (for 100×100 pixel
images and 10° angular discretization). Empirically, the CPU time scales as ∼n1.33 in number of images. (B) CPU time as a function of the number of pixels in
the images (for 120 images and 10° angular discretization). Empirically, the CPU time scales as ∼n1.83 in the number of pixels. (C) CPU time as a function of the
number of rotations (for 120 images of 100×100 pixels). Empirically, the CPU time scales as ∼n−0.77 in the angular discretization.

Table 2. The algorithm settings and computational requirements for the data sets analyzed in Figs 3-6

Data set Data type
Number of
channels

Number of
images

Number of
pixels

Angular
discretization (°) CPU time (s)

Drosophila gastrulation (live) 2D 1 40 100×100 10 3.2
Zebrafish epiboly 2D 1 120 100×100 10 13
Drosophila gastrulation (fixed) 2D 3 120 100×100 10 29
Drosophila wing discs 3D 3 46 100×100×21 10 12

All times are reported for an Intel Core i7 2.93 GHz processor.
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using registered images as a starting point (Fowlkes et al., 2008;
Surkova et al., 2008; Yuan et al., 2014), or using some a priori
knowledge of the developmental processes under examination
(Dubuis et al., 2013). In contrast to most of the existing registration
approaches, which rely on a knowledge of appropriate landmarks in
the images (Dryden and Mardia, 1998), such as the eyes in face-
recognition applications (Zhao et al., 2003), algorithms based on
angular synchronization can register images even in the absence of
such information, making them relevant for a wide variety of
applications.
Angular synchronization and vector diffusion maps have been

used to reconstruct molecular shapes from cryo-electron
microscopy images (Singer et al., 2011; Singer and Wu, 2012;
Zhao and Singer, 2014). Because of high levels of instrument noise
in these data, thousands of images were needed for successful shape
reconstruction. Based on the results presented here, we expect that
much smaller data sets will be sufficient for successful
reconstruction of developmental trajectories from snapshots of
fixed tissues. In general, the size of the data set required for accurate
registration and ordering is a function of the instrument noise,
interembryo variability, and the complexity of the developmental
dynamics.
The benefits of our approach to image data mining are twofold.

First, the algorithm can accomplish the tasks of registration and
ordering in a single step. Furthermore, because our methodology is
nonlinear, it can successfully order data sets that contain complex
dynamics (see supplementary material Table S1 for a comparison of
ordering using linear principal component analysis versus vector
diffusion maps for the data sets presented in this paper). We expect
nonlinear techniques to be necessary for larger data sets that span a
wider dynamic range. The main utility of our proposed
methodology lies in the analysis of data sets containing hundreds
of images from systems that have not been well studied. For such
data sets, manual ordering of the images can be nontrivial, and our
algorithms can clearly accelerate uncovering of the underlying
developmental dynamics.
We acknowledge that our methods, although general, do have

limitations. The first is that we require enough data to sufficiently
sample the developmental trajectory. Therefore, for very small and/
or very noisy data sets, our algorithms might fail. Second, the
pertinent image features need to be large compared with the noise
and the image resolution. In all of our examples, the relevant
expression patterns and morphological structures span several
pixels and are large compared with both the instrument noise and
embryo-to-embryo variability, making the Euclidean distance
between pixels a good measure of image similarity.
Vector diffusion maps allow us to automatically register images,

which is an essential task for many applications. Simultaneously,
the algorithm provides us with parameters to describe each image.
In the examples presented here, we have focused on ordering the
images in time using the first vector diffusion maps coordinate. In
general, we can recover several coordinates that concisely and
comprehensively describe the data set. This parametrization can
then be used for typical data analysis tasks, such as outlier detection
and model fitting. Furthermore, images taken from different
viewing directions can be analyzed, as the vector diffusion maps
parametrization will organize the images according to the viewing
angle (Singer et al., 2011). Another direction for future work is
related to the joint analysis of data sets provided by different
imaging approaches, such as merging live imaging data of tissue
morphogenesis with snapshots of cell signaling and gene expression
from fixed embryos (Rübel et al., 2010; Krzic et al., 2012; Dsilva

et al., 2013; Ichikawa et al., 2014). It would also be interesting to
explore the connections between our proposed approach and
recently developed methods for the ordering and classification of
face images (Kemelmacher-Shlizerman et al., 2011, 2014). Given
the rapidly increasing volumes of imaging data from studies of
multiple developmental systems, we expect that the dimensionality
reduction approaches discussed in this work will prove increasingly
useful for biologists and motivate future applications and
algorithmic advances.

MATERIALS AND METHODS
Drosophila embryo experiments
Oregon-R was used as the wild-type Drosophila strain. Embryos were
collected and fixed at 22°C. Monoclonal rabbit anti-dpERK (1:100, Cell
Signaling, cat. 4370) and rat anti-Twist (1:500; a gift from Eric Wieschaus,
Princeton University) were used to stain proteins of interest; DAPI
(1:10,000, Vector Laboratories) was used to visualize nuclei, and Alexa
Fluor secondary antibodies (1:500, Invitrogen) were used. The Histone-RFP
strain (Bloomington Stock Center) was used to obtain time-lapse movies of
gastrulating embryos at 22°C. Live embryos were loaded to the microfluidic
device with PBST (PBS with 0.02% Triton X-100) to keep them oxidized,
and fixed embryos were loaded with 90% glycerol.

Drosophila embryo microscopy
A Nikon A1-RS scanning confocal microscope and Nikon 60× Plan-Apo
oil objective were used to image Drosophila embryos. Embryos were
collected, stained, and imaged together under the same microscope
settings. End-on imaging was performed using the microfluidics device
described previously (Chung et al., 2011). Images were collected at the
focal plane ∼90 μm from the posterior pole of the embryo (see
supplementary material Fig. S1).

Image preprocessing
Images were subsampled, normalized, blurred and centered prior to
diffusion maps analysis to remove any variations due to the experimental
and imaging framework. Details of the specific preprocessing operations
applied to each imaging data set are given in the image preprocessing section
in the supplementary material.

Software and imaging data
All algorithms and analysis were implemented in MATLAB (R2013b,
MathWorks) and are described further in the methods in the supplementary
material. Software, including documentation and tutorials, along with the
full imaging data sets used in this paper are available at genomics.princeton.
edu/stas/publications.html under ‘Code for the temporal ordering and
registration of images in studies of developmental dynamics’.
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(2013). Kinetics of gene derepression by ERK signaling. Proc. Natl. Acad. Sci.
USA 110, 10330-10335.

Ng, L. L., Sunkin, S. M., Feng, D., Lau, C., Dang, C. and Hawrylycz, M. J. (2012).
Large-scale neuroinformatics for in situ hybridization data in the mouse brain. Int.
Rev. Neurobiol. 104, 159-182.

Peter, I. S. and Davidson, E. H. (2011). A gene regulatory network controlling the
embryonic specification of endoderm. Nature 474, 635-639.

Richardson, L., Stevenson, P., Venkataraman, S., Yang, Y., Burton, N., Rao, J.,
Christiansen, J. H., Baldock, R. A. and Davidson, D. R. (2014). EMAGE:
electronic mouse atlas of gene expression. In Mouse Molecular Embryology (ed.
M. Lewandoski), pp. 61-79. Springer.

Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality reduction by locally
linear embedding. Science 290, 2323-2326.

Rowley, H. A., Baluja, S. and Kanade, T. (1998). Rotation invariant neural network-
based face detection. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition 1998, pp. 38-44.
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Supplemental Information

Materials and Methods

Image preprocessing

Before applying vector diffusion maps, images must be
preprocessed so that the Euclidean distance between the
image pixels is informative: we need images who are de-
velopmentally similar to have relatively small Euclidean
distances, and images who are at disparate developmental
time points to have relatively large distances. We must
preprocess images to remove any experimental and imag-
ing artifacts, so that most of the variation is relevant to
the developmental dynamics.

The relevant image operations are listed below for our
general purposes, along with the relevant MATLAB func-
tions.

Intensity normalization Contrast-limited adaptive
histogram equalization (using the adapthisteq

function with an 8 × 8 tile grid, and a uniform dis-
tribution for the intensities with a clip limit of 0.01)
is used to normalize the intensities of signals whose
absolute intensity is not meaningful/informative.

Blur The imfilter function with a disc filter is used to
blur signals whose small-scale structure is not infor-
mative.

Intensity scaling (multichannel images only) The
immultiply function is used to scale signal inten-
sities. This is important for multichannel images,
as it determines the (relative) contributions of the
various signals.

Mean-centering The Canny method (Canny, 1986) is
used to detect the edges of the object in each im-
age (using the edge function). The image is then
translated so that the object (as determined by ex-
tremeties of the detected edges) is centered.

Size scaling For images whose relative size is unimpor-
tant to the developmental dynamics, the images are
rescaled/dialated so that the object size (as deter-
mined by extremeties of the detected edges) is con-
stant (we set this to be 80% of the total image).

Removing corners The image is cropped/filtered using
a disc centered in the middle of the image and whose
diameter is equal to the number of pixels; any pixels
outside of this disc are set to 0 (no intensity). This
removes any corner effects under rotations.

Drosophila gastrulation (live)

The original image resolution is 512 × 512 for the live
Drosophila embryo images. All images were subsampled
to 100 × 100 pixels for analysis, as this was found to be
a sufficient resolution to retain all of the major develop-
mental features within the data set. Images were normal-
ized, and then blurred with a filter of radius 5% of the
total image (5 pixels). Images were not mean-centered or
rescaled, as the entire live imaging data set was approxi-
mately centered already.

Zebrafish epiboly

The original image resolution was 320 × 288 for the ze-
brafish images. A 16-pixel border was removed from the
left and right sides to make the images square, and all im-
ages were then subsampled to 100× 100 pixels for analy-
sis, as this was found to be a sufficient resolution to retain
all of the major developmental features within the data
set. Images were not normalized or blurred. Images were
mean-centered so that the embryo in each frame was (ap-
proximately) centered. Images were not rescaled for size,
as changes in overall size are important.

Drosophila gastrulation (fixed)

The original image resolution was 1024 × 1024 for the
fixed Drosophila images. All images were subsampled to
100 × 100 pixels for analysis, as this was found to be a
sufficient resolution to retain all of the major develop-
mental features within the data set. The nuclei channel
was normalized, and all channels were blurred with a fil-
ter of radius 5% of the total image (5 pixels) to remove
the effects of individual nuclei. The nuclei channel was
scaled by half; because this signal occupies a larger frac-
tion of the image relative to the other signals, its overall
contribution is large, and so we downscaled it so that
each signal would have more comparable weight in the
algorithm. The images were mean-centered and scaled to
have a constant size using the nuclei signal to detect the
edges of the embryo within the frame.

Drosophila wing discs

The original image resolution was 1024 × 1024 for the
wing disc z-stacks. Each of the original wing disc z-stacks
contains 30–40 images. All images were subsampled to
100×100 pixels for analysis, as this was found to be a suf-
ficient resolution to retain all of the major developmental
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features within the data set. Each wing disc z-stack was
reduced to a 21-image stack, consisting of the brightest
image and the 10 images above and below. No channels
were normalized or blurred in the images, and the chan-
nel intensities were kept at their imaging values. Images
were mean-centered using the Wingless/Patched signal to
detect the edges of the sample. Images were not rescaled
for size, as changes in overall size are important.

Algorithms

We demonstrate the algorithms for registration and tem-
poral ordering using a synthetic data set. The relatively
simple dynamics of this data set allows us to easily visu-
alize and illustrate the main features of the different al-
gorithms. Motivated by the geometry of our Drosophila
embryo images, we construct a sequence of concentration
profiles defined on a ring, and rotate each ring randomly
around its center; an example is shown in Fig. S2A. Ro-
tation of the ring corresponds to shifting (with periodic
boundary conditions) the one-dimensional concentration
profile shown at the bottom of Fig. S2A (the symmetry
group is SO(2), the group of all two-dimensional proper
rotations). Each concentration profile is a noisy Gaus-
sian (shown in Fig. S2B), and the Gaussians increase in
intensity as a function of “time”. We discretize the pro-
files into 100 points, so our numerical data will be 100-
dimensional vectors (the corresponding symmetry group
for the discretized profiles is Z100, the group of integers
modulo 100). Fig. S2C shows the entire data set; the
concentration profiles have been stacked in an array, so
that each row corresponds to a single profile. Because
the profiles are unregistered and unordered, the underly-
ing dynamics (a Gaussian whose amplitude grows in time)
are not readily apparent.

Angular synchronization (Singer, 2011)

Let x1, . . . , xm denote the signals that we wish to align
with respect to rotations; each signal is a function defined
on the unit circle (on the plane). First assume that each
signal xi is a noisy rotated copy of the underlying signal
xtrue (which we are not given), such that

xi = f(xtrue, θi) + ξi (1)

where the function f(xtrue, θi) rotates the signal xtrue by
θi degrees, and ξi is a (typically Gaussian) noise term.
Our goal is to recover θ1, . . . , θm. Up to noise,

xi ≈ f(xj , θi − θj); (2)

note that (2) does not require knowledge of xtrue. We can
obtain an estimate of θi − θj by computing the rotation
that optimally aligns xj to xi, i.e.,

θi − θj ≈ θij = arg min
θ
‖xi − f(xj , θ)‖2. (3)

Practically, the signals are discretized in a n-long vector
(the local intensity at n equidistant points around the cir-
cle); rotating the function by an angle θ then corresponds
to cyclically shifting the elements of xi by θi

2πn (rounded
to the nearest integer to obtain a valid shift). For the
one-dimensional discretized profiles shown in Fig. S2, we
exhaustively search over all n = 100 possible shifts of the
signals to obtain the optimal angles in (3). Alternatively,
for continuous signals, an optimization algorithm can be
used (Ahuja et al., 2007).

Rather than work with the angles θij directly, it is more
convenient to consider the rotation matrices,

R(θij) =

[
cos(θij) − sin(θij)
sin(θij) cos(θij)

]
, (4)

which we can think of as operating on the points of
the unit circle (on the plane) on which our signal is de-
fined. Successive rotations correspond to multiplication
of the corresponding rotation matrices: R(α1 + α2) =
R(α1)R(α2). Due to the orthogonality of rotation matri-
ces, R(−α) = R(α)T .

Let d denote the dimension of the rotation matrices we
are considering (for planar rotations, R(θij) ∈ R2×2 and
d = 2). We construct the matrix H ∈ Rmd×md, where H
is an m×m matrix of d× d blocks, with the i, jth block
of H, Hij , defined as

Hij = R(θij). (5)

Under our assumption that θij ≈ θi − θj , Hij ≈
R(θi)R(θj)

T and

H ≈


R(θ1)
R(θ2)

...
R(θm)

 [R(θ1)TR(θ2)T . . . R(θm)T
]
. (6)

It follows directly from (6) that the top block
eigenvector of H contains our best estimates of
R(θ1), R(θ2), . . . , R(θm). Let φ1, φ2, . . . , φmd denote the
eigenvectors of H ordered so that |λ1| ≥ |λ2| ≥ · · · ≥
|λmd|, where λi is the eigenvalue corresponding to φi.
Then,

R̂ =


R̂1

R̂2

...

R̂m

 =

 | | |
φ1 φ2 . . . φd
| | |

 , (7)

where R̂i ∈ Rd×d is (nearly) the estimate for R(θi). To
obtain our estimate of R(θi), denoted Ri,est, we project

R̂i onto the closest orthogonal matrix,

Ri,est = UiV
T
i , (8)

where Ui and Vi are the left and right singular vectors,
respectively, of R̂i. We adjust the sign of φ1 so that
det(Ri,est) = +1, ensuring proper rotations (note that
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systematically incorporating improper rotations is also
possible (Goemans and Williamson, 1995; Bandeira et al.,
2013)). We estimate θi by inverting (4), and register the
signals by rotating signal i by −θi. We note that, in
our actual computations, the pairwise rotations θij are
computed in a discrete setting, then the overall synchro-
nization is performed in the continuum context to obtain
θi, and the results are rounded to give the closest discrete
shift.

Importantly, this formulation also considers higher-
order consistency information. For example, given our
pairwise estimates Rij , we know that relationships of the
form

R(θik)R(θkj) ≈ R(θi)R(θk)TR(θk)R(θj)
T = R(θi)R(θj)

T

(9)
should also hold. Note that

(H2)ij =
∑
k

R(θik)R(θkj); (10)

therefore, all information of the form in (9) is contained
in the matrix H2 (and higher order consistency informa-
tion in its higher powers). Because H and H2 have the
same eigenvectors, our problem formulation accounts for
not only pairwise alignment information, but also these
higher-order considerations.

Diffusion maps (Coifman et al., 2005)

Given m data points x1, . . . , xm (typically vectors in a
high-dimensional vector space), we want to find a coordi-
nate transformation y(x) that preserves local geometry:
points that are “close” in the original space should also be
“close” in the coordinates y. The first step is to construct
the matrix W ∈ Rm×m, where Wij is large if points xi
and xj are “close.” We use a diffusion kernel,

Wij = exp

(
−d

2(xi, xj)

ε2

)
, (11)

where d(xi, xj) is a pairwise distance between xi and xj
(often the Euclidean distance), and ε is a characteristic
scale. Points less than ε apart are thus considered “close”
and points farther than ε apart are considered “far away”.
ε can be chosen using several techniques (see, for example
(Coifman et al., 2008; Rohrdanz et al., 2011)); here, we
take ε to be 1/4 of the median of the pairwise distances
for the two-dimensional images, and 1/2 of the median of
the pairwise distances for the three-dimensional z-stacks.

To find the coordinate y, we want solve the following
optimization problem (Belkin and Niyogi, 2003)

arg min
y

∑
ij

Wij(y(xi)− y(xj))
2. (12)

We first compute the diagonal matrix D, where Dii =∑m
j=1Wij , and the matrix A, where

A = D−1W. (13)

We calculate the eigenvectors φ1, φ2, . . . , φm, ordered
such that |λ1| ≥ |λ2| ≥ · · · ≥ |λm|. Because the matrix
A is similar to the symmetric matrix D−1/2WD−1/2, A
is guaranteed to have real eigenvalues and real, orthogo-
nal eigenvectors. Because the matrix A is row-stochastic,
λ1 = 1 and φ1 is a constant vector; this is a trivial solution
to (12). The next eigenvector, φ2, is the (non-trivial) so-
lution to (12), so that φ2(j), the jth entry of φ2, gives the
“new” coordinate for data point xj (i.e., φ2(j) = y(xj)).
In our application, we have assumed that this single di-
rection of variability, parameterized by φ2, is one-to-one
with time. Ordering the data by φ2(j) will then, effec-
tively, order them in time. The procedure generalizes
when the data lie on higher-dimensional manifolds (not
just curves) in data space, where leading eigenvectors can
give subsequent embedding coordinates for the data.

Vector diffusion maps(Singer and Wu, 2012)

In vector diffusion maps, given data points x1, . . . , xm,
one first constructs the matrix S ∈ Rmd×md, with the
i, jth block of S, Sij , defined as

Sij = AijHij (14)

where Aij ∈ R (defined in (13)) pertains to the diffu-
sion kernel between data points, and Hij ∈ Rd×d (defined
in (5)) pertains to the pairwise alignment between data
points. It is important to note that distance d(xi, xj) used
in the diffusion kernel in (11) is the distance between data
points after after pairwise alignment, i.e., the minimum
distance between all possible shifts of the two data points
(which is obtained in (17)). In the language of symme-
try groups, this distance is a metric between the orbits
induced by the relevant symmetry group.

One then computes the eigenvalues λ1, λ2, . . . , λmd
and eigenvectors φ1, φ2, . . . , φmd of S, ordered such that
|λ1| ≥ |λ2| ≥ · · · ≥ |λmd|. These eigenvectors contain
information about both the optimal rotations (the “syn-
chronization” component) and the variation of the data
after the spatial symmetries have been factored out (in
our case, their temporal variation). Assuming that the
data (after symmetries have been factored out) are rela-
tively closely clustered, it is reasonable to expect, as in
angular synchronization, that the top (block) eigenvector
of S contains approximations of the optimal rotations,
which can be computed in the same way from (8). We
then expect subsequent eigenvectors to contain informa-
tion about the main direction(s) of data variability mod-
ulo the geometric symmetries.

In general, the embedding coordinates are given by

ψk,l(i) = 〈φk(i), φl(i)〉, (15)

where φk(i) ∈ Rd denotes the ith block of φk, If we assume
that the rotations and the dynamics are uncoupled and
therefore separable, then the eigenvectors of S have the
following structure: each block eigenvector contains esti-
mates of the optimal rotations (up to a constant rotation)
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multiplied by the corresponding embedding coordinate (a
scalar) As the first diffusion maps coordinate is constant
over the data, the first block eigenvector contains only the
optimal rotations. The second block eigenvector (eigen-
vectors d+ 1 through 2d) contains the optimal rotations,
each multiplied by their second diffusion maps coordinate.
We can therefore recover this diffusion maps coordinate
by taking inner products of the columns of the second
block eigenvector with columns of the first block eigen-
vector. The jth embedding coordinate will be given by
ψk,l, where jd + 1 < k ≤ (j + 1)d and 1 ≤ l ≤ d, and
we select k, l such that the coordinate ψk,l has the largest
variability, i.e., the jth coordinate is ψk,l, where k, l is the
solution to

max
jd+ 1 ≤ k ≤ (j + 1)d

1 ≤ l ≤ d

∑
i

ψk,l(i)
2. (16)

Registering images

To register sets of images, the first step is to compute the
optimal alignments between pairs of images. Practically,
we have square images discretized as pixels (rather than
continuous functions on the plane). For each image pair
Ii and Ij we compute

θij = arg min
0◦≤θ<360◦

‖g(Ij , θ)− Ii‖2. (17)

where g(Ij , θ) is image Ij rotated around the center of
the square by θ degrees. The norm, ‖ · ‖, is the Euclidean
norm between the pixel intensities of the channels. The
domain of the image (a square) is not invariant to our ro-
tations; however, the pixels near the corners of the square
are preprocessed to have zero intensity, and so the norm
can be meaningfully computed as long as the main image
does not “move out of” the original square. Image rota-
tion is performed with the imwarp function in MATLAB,
using linear interpolation to estimate the pixel intensi-
ties after rotation. The missing pixels in the corners of
the rotated image are taken to have zero intensity. The
solution to (17) is not easily computed, as the objective
function will most likely be nonconvex. Therefore, in-
stead of using an optimization procedure, we discretize
the search space and exhaustively search to find the so-
lution (for the results presened, we use 10◦ discretization
steps). Although computationally demanding, this “em-
barrassingly parallelizable” direct enumeration approach
is not prohibitive here. Once we have computed θij for
all image pairs, we can proceed with the vector diffusion
maps procedure. The rotation matrices returned from
vector diffusion maps can be used to calculate the an-
gle of rotation for each image (by inverting (4)), and the
function g as described previously is then used to rotate
the images.

The eigenvalue spectrum

We can use the eigenvalues from (vector) diffusion maps
to help deduce the dimensionality of the data. In dif-
fusion maps, the largest eigenvalue will always be 1 and
correspond to the trivial (constant) eigenvector, and |λk|
gives a measure of the importance of coordinate φk. We
therefore expect to see a “spectral gap” in the eigenvalues
which separates the meaningful coordinates from those
corresponding to noise. However, some embedding coor-
dinates which appear meaningful according to the eigen-
values may be harmonics of previous coordinates (Fergu-
son et al., 2010), and one must visually check for cor-
relations among potential embedding coordinates before
deducing the true dimensionality of the data.

In vector diffusion maps, the importance of each coor-
dinate is measured by the product of the corresponding
eigenvalues (i.e., the importance of ψk,l is given by |λkλl|).
We again expect to see a “spectral gap” in these eigen-
value products between those corresponding to meaning-
ful coordinates (modulo higher harmonics) and those cor-
responding to noise.

Smooth trajectories from registered and
ordered images

Once we have registered and ordered the images, we can
smooth the resulting trajectory to obtain a “stereotypic”
developmental trajectory. Let I1, . . . , Im denote the set
of registered and ordered images (so Ij is the jth image in
the ordered set). We define the average image at time τ ,
denoted Iτ (where 1 ≤ τ ≤ m), as a (Gaussian) weighted
average of the images,

Iτ =

∑
j exp

(
− |j−τ |

2

σ2

)
Ii∑

j exp
(
− |j−τ |

2

σ2

) (18)

where σ is the scale of the Gaussian filter. For the im-
ages in Fig. 5 and 6, we take σ = 2. See (Kemelmacher-
Shlizerman et al., 2011) for a more detailed discussion.
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Outline of algorithm used to register and or-
der images

1. Compute the alignments for each pair of im-
ages, as described in (17). Retain both the
optimal pairwise rotations as well as the min-
imum distances obtained when pairs are opti-
mally aligned.

2. Compute the corresponding rotation matrices
R(θij) from (4).

3. Select ε for use in the diffusion maps kernel.
Taking ε to be 25 − 50% of the median of the
pairwise distances often yields good results.

4. Compute the matrix S in (14). Aij is computed
from (11) and (13), using the pairwise distances
from step 1, and Hij = R(θij) are computed in
step 2.

5. Compute the eigenvalues λ1, λ2, . . . , λ2m and
eigenvectors φ1, φ2, . . . , φ2m of S, ordered such
that |λ1| ≥ |λ2| ≥ · · · ≥ |λ2m|.

6. Estimate the optimal three-dimensional rota-
tion for each image: stack the first two eigen-
vectors φ1, φ2 into a 2m × 2 matrix, and
then divide this matrix into m 2 × 2 blocks,
R̂1, . . . , R̂m. Compute the estimated rotations
for each of these m blocks as in (8). If most of
the rotations are improper (det(R) = −1), flip
the sign of one of the eigenvectors.

7. Multiply each estimated rotation Ri,est by
RT1,est (so that R1,est will become the identity
matrix).

8. For each image i, compute the optimal rotation
to align the image by converting RTi,est (note
the transpose) to the corresponding angle using
(4).

9. Compute the first embedding coordinate
ψk,1(i) as described in (15) and (16), where
3 ≤ k ≤ 4.

10. To order the images, sort them by the values
of this embedding coordinate ψk,l(i).
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Data set VDM Rank Correlation PCA Rank Correlation
Drosophila gastrulation (live) 0.9989 0.8137

Zebrafish epiboly 0.9955 0.6351
Drosophila gastrulation (fixed) 0.9716 0.8658

Drosophila wing discs 0.9436 0.9381

Table 1: Comparison between rank correlation coefficients when ordering using the first vector diffusion maps (VDM)
embedding coordinate, and rank correlation coefficients when ordering by the first principal component analysis
(PCA) (Shlens, 2005) projection coefficient. For ordering using PCA, we computed the first principal component
of the registered images, and then ordered the images by the projection coefficients onto this first mode. The PCA
ordering is always less accurate than the vector diffusion maps ordering. In the zebrafish data set, the ordering is
much less accurate using PCA, as the dynamics of the morphing and spreading of the cell mass are highly nonlinear.
The PCA and VDM orderings are comparable for the wing disc data; this is to be expected, as the tissue simply
grows in time.
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Fig. S1: (Left) A lateral view of a Drosophila em-
bryo stained with DAPI (gray), dpERK (red), and Twi
(green). The embryo is presented so that the anterior (A)
side is to the left and the posterior (P) side is to the right.
The arrow indicates the position where the cross-section
of an embryo is imaged. (Right) A dorsoventral view of
the cross-section of the Drosophila embryo. The dorsal
(D) side is up and the ventral (V) side is down. Images
were collected at the focal plane ∼ 18% from the posterior
pole of an embryo (arrow in the left image).
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Fig. S2: Synthetic data set used to illustrate the data
processing algorithms. (A) One-dimensional concentra-
tion profile on a ring (top), and the corresponding profile
on a line (bottom). (B) Intensity corresponding to the
profile in A. (C) An ensemble of concentration profiles,
each of the form described in A. Each row in the array
corresponds to a single profile. (D) The profiles in C, now
registered using angular synchronization. (E) The profiles
in D, now temporally ordered using diffusion maps. (F)
The profiles in C, registered and temporally ordered in a
single step using vector diffusion maps.
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Fig. S3: Eigenvalue spectra for the Drosophila live imag-
ing data set presented in Fig. 3. Note that there is a
gap after the fourth eigenvalue product. Below are the
second, third, and fourth embedding coordinate plotted
versus the first embedding coordinate. Note that coor-
dinates 2–4 are higher harmonics (and thus simple func-
tions) of coordinate 1, and are therefore not informative
about structure in the data set. We can conclude that
the data set is effectively one-dimensional and can be pa-
rameterized/ordered by coordinate 1.
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Fig. S4: Eigenvalue spectra for the zebrafish data set pre-
sented in Fig. 4. Note that there is a gap after the fourth
eigenvalue product. Below are the second, third, and
fourth embedding coordinate plotted versus the first em-
bedding coordinate. Note that coordinates 2–4 are higher
harmonics (and thus simple functions) of coordinate 1,
and are therefore not informative about structure in the
data set. It is not immediately obvious that coordinate 3
is a harmonic of coordinate 1; the distortion in the plot
is due to density effects in the data (the developmental
changes are slower towards the beginning of the trajec-
tory, and so there is a higher density of images in this
portion of the one-dimensional curve), We can conclude
that the data set is effectively one-dimensional and can
be parameterized/ordered by coordinate 1.
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Fig. S5: Eigenvalue spectra for the fixed Drosophila im-
ages presented in Fig. 5. Note that there is a gap after
the first eigenvalue product. We can conclude that the
data set is effectively one-dimensional and can be param-
eterized/ordered by coordinate 1.
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Fig. S6: Eigenvalue spectra for the wing disc data set
presented in Fig. 6. Note that there is a gap after the
first eigenvalue product. We can conclude that the data
set is effectively one-dimensional and can be parameter-
ized/ordered by coordinate 1.
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