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ABSTRACT
In the adult brain, subsets of astrocytic cells residing in well-defined
neurogenic niches constitutively generate neurons throughout life.
Brain lesions can stimulate neurogenesis in otherwise non-neurogenic
regions, but whether local astrocytic cells generate neurons in these
conditions is unresolved. Here, through genetic and viral lineage
tracing in mice, we demonstrate that striatal astrocytes become
neurogenic following an acute excitotoxic lesion. Similar to
astrocytes of adult germinal niches, these activated parenchymal
progenitors express nestin and generate neurons through the
formation of transit amplifying progenitors. These results shed new
light on the neurogenic potential of the adult brain parenchyma.
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INTRODUCTION
In adult neurogenic niches, astrocytic cells produce neurons
throughout life (Fuentealba et al., 2012). Parenchymal astrocytes
can become neurogenic in vitro when isolated from the lesioned
neocortex (Buffo et al., 2008; Sirko et al., 2013) or in vivo after
overexpression of specific transcription factors (Niu et al., 2013).
However, whether parenchymal astrocytes can spontaneously
generate neurons in vivo is unclear (Dimou and Götz, 2014). The
adult brain parenchyma has been generally considered gliogenic
and not permissive for the activity of neuronal progenitors (Lim
et al., 2000; Ninkovic and Götz, 2013; Shihabuddin et al., 2000).
Nonetheless, examples of parenchymal neurogenesis are emerging
(Bi et al., 2011; Luzzati et al., 2006, 2011b; Ohira et al., 2010). For
instance, we previously demonstrated that clusters of proliferating
cells with features of transient amplifying progenitors (TAPs)
produce neurons in the striatum of rabbits (Luzzati et al., 2006) and
in a mouse model of striatal degeneration (Luzzati et al., 2011b).
Here, we analysed striatal neurogenesis in the quinolinic acid

(QA) lesion mouse model of Huntington’s disease (Fan and
Raymond, 2007). We show that such a lesion activates striatal
astrocytes to produce neurons.

RESULTS AND DISCUSSION
At 5 weeks post-QA lesion (w.p.l.), numerous DCX+ neuroblasts
were present in the striatum and organised into clusters or as

individual cells (Fig. 1A-E). As in other models of striatal
neurogenesis (Liu et al., 2009; Luzzati et al., 2011b), these
neuroblasts expressed SP8, a transcription factor typical of lateral/
caudal ganglionic eminence-derived interneurons (Ma et al., 2012;
Waclawet al., 2006), and some of them expressedNeuN (RBFOX3 –
Mouse Genome Informatics; data not shown) and attained complex
morphologies (supplementary material Fig. S1). The clusters of
DCX+ cells were closely associated to clusters of cells expressing the
proliferation marker Ki67 (MKI67 – Mouse Genome Informatics),
with numerous cells colabelled for DCX (Fig. 1B,C,E).

Based on clustering and the differential expression of Ki67 and
DCX we could define four striatal cell types that were induced by
QA: clustered Ki67+/DCX− cells (cK), clustered Ki67+/DCX+ cells
(cKD), clustered DCX+/Ki67− cells (cD) and individual DCX+/
Ki67− cells (iD) (Fig. 1C-F). The cK, cKD and cD cells appeared
between 2 and 3 w.p.l. (2 versus 3 w.p.l., Tukey’s post-hoc test: cK,
P=0.010; cKD, P=0.005; cD, P=0.021; Fig. 1F) and, although their
number remained constant after 3 weeks (ANOVA: cK, F2,7=2.464,
P=0.155; cKD, F2,7=0.383, P=0.695; cD, F2,7=0.419, P=0.673), at
all time points a high proportion incorporated BrdU when injected 4
days before sacrifice (supplementary material Fig. S2A,D). This
indicates that cK, cKD and cD cells have a high turnover rate. By
contrast, iD cells showed a delayed increase that peaked at 4 w.p.l.
(Tukey’s post-hoc test: 2 versus 3 weeks, P=0.226; 3 versus
4 weeks, P=0.001; Fig. 1F) accompanied by a reduction in the
fraction of BrdU+ cells over time (Tukey’s post-hoc test: 3 versus
4 weeks, P=0.031; supplementary material Fig. S2C,D). Thus, this
latter population appears later and has a lower turnover rate.

Interestingly, most cK cells expressed the TAP markers ASCL1
(Parras et al., 2004) and SOX9 (Cheng et al., 2009) (Fig. 1G-I; data not
shown). Collectively, these data suggest that, as proposed in other
models of striatal neurogenesis (Luzzati et al., 2006, 2011b), QA
stimulates the appearance of TAP-like progenitors (cK cells) that give
rise toneuroblasts that initially cluster (cKD, cDcells) and subsequently
disperse as individual cells (iD cells). At 6 months after QA, striatal
TAPs and neuroblasts were still present and could incorporate BrdU
(supplementary material Fig. S3), suggesting that QA results in the
long-term establishment of an intrastriatal neurogenic niche.

The induction of neurogenic potential in resident parenchymal
cells was further supported by the appearance of self-renewing
multipotent neurospherogenic cells in the striatum at 5 w.p.l.
(supplementary material Fig. S4; data not shown). Interestingly,
clusters of cK, cKD and cD cells were generally closely associated
to GFAP+ astrocytes, which were occasionally proliferating, as
assessed through both Ki67 and BrdU (supplementary material
Fig. S5). Using hGFAP-GFP mice (Platel et al., 2009; Zhuo et al.,
1997) we could establish that GFP+/Ki67+ proliferating astrocytes
represented 8±3% of all cK cells at 5 w.p.l. (Fig. 1I-L). These
observations support the contention that cK cells and their progeny
originate from striatal astrocytes.Received 14 August 2014; Accepted 14 January 2015
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To explore this possibility further, we first performed cell fate-
mapping analysis using transgenic mice expressing the tamoxifen-
inducible recombinase CreERT2 under the control of diverse cell
type-specific promoters, namely Glast (Slc1a3 – Mouse Genome
Informatics), nestin (Nes) and Ng2 (Cspg4 – Mouse Genome
Informatics). GLAST is a pan-astrocytic marker (Dimou and Götz,
2014), whereas nestin more specifically associates with active
neurogenic astrocytes (Codega et al., 2014) and some
oligodendrocyte progenitors (Boda et al., 2015), while NG2 is
specifically expressed by oligodendrocyte progenitors (Zhu et al.,
2011). Accordingly, in intact animals 1 week after tamoxifen,
recombined YFP+ cells represented 44±3% of all S100b+ striatal
astrocytes in GLAST-CreERT2 mice and 10±6% in Nestin-CreERT2

animals. In the NG2-CreERT2 line, astrocytes were not targeted
(supplementary material Fig. S6).
To determine whether cells expressing these genes are the source

of intrastriatal TAPs and neuroblasts after lesion, tamoxifen was
administered 1 week before QA (bQA). In addition, for each
genotype a second group of animals was treated with tamoxifen at

4 w.p.l. (aQA) to identify possible injury-related changes in the
phenotype of the neurogenic progenitors after their activation. In all
cases animals were analysed at 5 w.p.l. (Fig. 2A). In NG2-CreERT2

animals, we never observed DCX+ neuroblasts expressing the
reporter YFP, either in the striatum or in the subventricular zone-
olfactory bulb (SVZ-OB) system (data not shown), indicating that
NG2+ cells are not neurogenic in our model. By contrast, in the
SVZ of GLAST-CreERT2 and Nestin-CreERT2 animals, YFP+ cells
included putative TAPs (Ki67+/DCX−), proliferating (DCX+/
Ki67+) and postmitotic (DCX+/Ki67−) neuroblasts (Fig. 2A-C).
The percentage of YFP+ cells did not differ between strains
(supplementary material Table S1), indicating similar efficiency of
nestin- or GLAST-driven recombination in SVZ neurogenic
astrocytes.

In the striatum of GLAST-CreERT2 bQA and aQA animals, YFP
was expressed by cK, cKD, cD and iD cells, indicating that these cells
originate from astrocytes that express GLAST both before and after
the QA lesion (Fig. 2A,D,E; supplementary material Fig. S7A,B).
YFP+ postmitotic neuroblasts (cD and iD) were less numerous in the

Fig. 1. Ki67+ and DCX+ cells in the 5 w.p.l. striatum. (A) Coronal section showing striatal Ki67+ (red) and DCX+ (white) cells densely packed at the lesion border
(yellow dashed line). (B-C″) z-projection (B-B″) and single confocal plane (C-C″) of a Ki67+ cluster partially overlapping with a DCX+ cluster. (D) iD cells.
(E) Each square represents the number of individual (bottom right) or clustered (top left) DCX+ (grey) and Ki67+ (red) cells in the striatum at 5 w.p.l. The overlap of
these populations is in dark red. (F) Number of cK, cKD, cD and iD cells in the striatum at 1, 2, 3, 4 and 5 w.p.l. A schematic view of the cell types is shown
in the inset. (G-H‴) z-projection (G), reslice (asterisk in Gmarks plane of section beneath) and single confocal plane (H-H‴) of a Ki67+ (violet) and DCX+ (orange)
cluster immunolabelled for ASCL1 (green). (I) Percentage of cK, cKD, cD and iD cells expressing GFAP-GFP, ASCL1 and SOX9. (J-L‴) z-projection (J-J‴),
reslice (K-K‴, at yellow dashed line in J) and single confocal plane (L-L‴) of a Ki67+ (violet) and DCX+ (orange) cluster showing cK cells labelled for GFAP-GFP
(green). Error bars indicate s.d. Scale bars: 200 µm in A; 10 µm in B-C″,G-H‴; 20 µm in D 10 µl in J-L‴.
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striatum of GLAST-CreERT2 aQA animals, but increased to levels
comparable to those of YFP+ proliferative cells (cK and cKD) in the
GLAST-CreERT2 bQA animals (Fig. 2A; supplementary material
Table S1A), further supporting that cK and cKD cells are early
stages of the striatal neurogenic lineage. Three-dimensional
reconstructions in GLAST-CreERT2 bQA animals indicated that
the morphology of the GFP+ iD cells was comparable to that of their
GFP− counterparts (supplementary material Fig. S8). Thus,
GLAST+ astrocytes are the source of QA-induced intrastriatal
TAPs and neuroblasts.
In Nestin-CreERT2 bQA mice, YFP+ cells corresponding to the

striatal cell types (cK, cKD, cD and iD) were very rare (Fig. 2A).
However, in Nestin-CreERT2 aQA animals, the levels of genetic
labelling of cK and cKD cells were greatly increased and reached
similar levels to those seen in GLAST-CreERT2 aQA animals
(Fig. 2A,F,G; supplementary material Table S1C). Interestingly,
although nestin was mostly absent from striatal astrocytes under
normal conditions, several YFP+ cells with astrocytic morphology
appeared in Nestin-CreERT2 aQA animals (supplementary material
Fig. S7C,D). These findings suggest that the resident GLAST+

striatal astrocytes upregulate the expression of nestin after lesion and
generate cK, cKD, cD and iD cells.
To directly confirm both the striatal origin of the neurogenic

progenitors and their astrocytic identity, we performed intrastriatal
injections of either a GFP-tagged lentiviral vector (VSVG-GFP;
n=3) or an adenoviral vector carrying Cre recombinase under the
control of the mouse Gfap promoter (Ad:GFAP-Cre; n=3; Merkle
et al., 2007) 1 week before QA lesion. Whereas VSVG-GFP

showed broad cellular tropism (data not shown), injection of Ad:
GFAP-Cre into the striatum of R26R reporter mice resulted in the
expression of YFP almost exclusively in astrocytes (supplementary
material Fig. S9). Only animals with no YFP staining in the SVZ-
OB systemwere analysed. In both cases, at 5 w.p.l. serial section 3D
reconstructions of the whole striatum revealed multiple examples of
YFP+ or GFP+ cK, cKD, cD and iD cells (Figs 3 and 4). The
morphology of these latter cells was consistent with that of GFP– iD
cells (Fig. 4B-E). These data indicate that striatal astrocytes generate
TAPs and neuroblasts after lesion.

Notably, in both our genetic and viral fate-mapping analyses about
85% of the striatal Ki67+ clusters exhibiting reporter expression were
entirely composed of cells expressing YFP or GFP (Fig. 2D-G,
Fig. 3C,D and Fig. 4F,G; see Materials and Methods for details),
indicating that proliferative clusters originate mostly from the clonal
expansion of a single striatal astrocytic progenitor.

SVZ progenitors have been shown to generate neuroblasts for
the lesioned striatum (Liu et al., 2009). To examine whether these
progenitors can further contribute to the intrastriatal TAPs, we
injected Ad:GFAP-Cre or a TAT-Cre to respectively target the
dorsolateral and the periventricular SVZofR26Rmice 1weekbefore
QA. In the striatum of these animals at 5 w.p.l. we observed only a
few iD cells expressing YFP (supplementary material Fig. S10),
suggesting that striatal TAPs originate only from local astrocytes.

Taken together, these results indicate that some striatal astrocytes
are quiescent neuronal progenitors that become activated after QA
lesion. Like neurogenic astrocytes of other neurogenic niches, these
cells upregulate nestin in their active state (Codega et al., 2014) and

Fig. 2. Genetic lineage tracing. (A) Fraction of SVZ and striatal (STR) putative TAP cells (Ki67+; K, cK), proliferating (Ki67+/DCX+; KD, cKD) and post-mitotic
(DCX+; D, cD, iD) neuroblasts that expressed YFP in 5 w.p.l. GLAST-CreERT2 (top row) and Nestin-CreERT2 (bottom row) animals that received TAM before
(bQA, left column) or after (aQA, right column) lesion. Error bars indicate s.d. (B-C′) Single confocal plane of the SVZ of a Nestin-CreERT2 bQA (B) and aQA (C)
labelled for Ki67 (violet), DCX (orange) and GFP (green). (D-G″) z-projections (D,F) and single confocal planes (E,G) of recombined Ki67+/DCX+ clusters. Scale
bars: 10 µm.
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produce neurons through ASCL1+ and SOX9+ TAPs (Dimou and
Götz, 2014; Fuentealba et al., 2012). However, striatal progenitors
and/or their microenvironment may possess unique features that
enable them to produce neurons in the brain parenchyma.Unravelling
these features might help to unleash the full neurogenic potential of
the adult brain, a fundamental prerequisite in order to design cell
replacement therapies for brain repair. Interestingly, while this study
was under revision the activation of neurogenic potential in striatal
astrocytes was also demonstrated in a model of stroke (Magnusson
et al., 2014) and under physiological conditions during guinea pig
development (Luzzati et al., 2014). Thus, in contrast to SVZ and
dentate gyrus neuronal progenitors, which are constitutively active,
other populations of neurogenic astrocytes are activated only under
specific conditions. The fate potential of these progenitors remains an
important issue. Most neuroblasts generated in both the normal and
lesioned striatum have a short life-span, but attain complex and
specificmorphologies (Luzzati et al., 2011a,b, 2014). These transient
neurons might sustain a new type of adult brain plasticity that merits
further exploration.

MATERIALS AND METHODS
Animals
All animal experiments were approved by the Italian Ministry of Health and
the Bioethical Committee of the University of Turin. Experiments were
performed on 8- to 12-week animals. C57BL/6 lesioned mice received two

intraperitoneal injections (6 h apart) of 5-bromo-2-deoxyuridine (BrdU,
Sigma-Aldrich; 50 mg/kg in 0.1 M Tris pH 7.4) 4 days before sacrifice.
Tamoxifen (TAM, Sigma-Aldrich T5648-1G) was dissolved in corn oil
(Sigma-Aldrich C8267) and 2.5 mg was administered by forced feeding
(oral gavage) twice with a 24 h interval.

Histology
Animals were anesthetised with a ketamine (100 mg/kg ketavet, Gellini) and
xylazine (33 mg/kg rompun, Bayer) solution and perfused with a solution of
4% paraformaldehyde (PFA) and 2% picric acid (AnalytiCals, Carlo Erba
409302) in 0.1 M sodium phosphate buffer (PB) pH 7.4. Brains were then
post-fixed for 3 h, cryoprotected in 30% sucrose (Fluka 84100) in 0.1 M PB
pH 7.4, embedded at −80°C in Killik/OCT (Bio-Optica 05-9801), and
cryostat sectioned in a series of 50 µm-thick sections.

Generation of viral vectors and TAT-Cre
VSVG-GFP vector stocks were produced by transient transfection of
the transfer plasmid expressing eGFP under the control of the CMV
promoter, the packaging plasmids pMDLg/pRRE and pRSV.REV, and the
VSV envelope plasmid pMD2.VSV-G in HEK293T cells as described
(Follenzi et al., 2000). Viral particles were purified and concentrated by
ultracentrifugation as described (Dull et al., 1998). Vector titre on HeLa cells
was 2×109 TU/ml. The virus was then diluted 1/20 in PBS containing 0.6%
glucose and frozen.

Generation of Ad:GFAP-Cre virus was described previously
(Merkle et al., 2014). Briefly, HEK293 cells were infected to produce
replication-defective adenovirus, which was purified using the Fast-Trap

Fig. 3. Viral lineage tracing. (A) 3D reconstruction of SVZ (grey), striatum (transparent grey) and GFP staining (green) of a 5 w.p.l. animal injected with
VSVG-GFP 1 week beforeQA. (B,B′) Coronal section at the level of the injection site labelled for DCX (orange), Ki67 (white) andGFP (green). (C-D‴) z-projection
(C), reslice (asterisk, at black dotted line) and single confocal plane (D-D‴) of a cluster (box in B) made by cK, cKD and cD cells reconstructed from two
successive 50 µm serial sections. (E) z-projection and reslices (asterisk and asterisk with prime) of GFP+ iD cells. Scale bars: 200 µm in B,B′; 10 µm in C-E.
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Adenovirus Purification and Concentration Kit (Millipore). The titre was
1×1010 infectious particles/ml. TAT-Cre recombinant protein was produced
as previously described (Peitz et al., 2002).

Stereotaxic injections
Mice were anesthetised with 0.3 ml/kg ketamine and 0.2 ml/kg xylazine,
positioned in a stereotaxic apparatus (Stoelting) and injected with a
pneumatic pressure injection apparatus (Picospritzer II, General Valve
Corporation). Injection coordinates: QA (Sigma-Aldrich P6,320-4; 1 µl
diluted to 120 mM in 0.1 M PB), +0.1 mm AP, −2.1 mmML and −2.6 mm
DV; VSVG-GFP and Ad:GFAP-Cre, 0.8 mm AP, −2.1 mm ML and
−3.2 mm DV (n=3 for each vector). Ad:GFAP-Cre virions driving Cre
recombinase expression in GFAP+ cells were injected into R26YFP reporter
mice. For both vectors, we analysed only animals in which the SVZ and OB
were entirely free of reporter-positive cells. To target the SVZ, VSVG-GFP
and TAT-Cre were injected respectively at +1.2 mm AP, −1 mm ML and
−1.3 mm DV and at +3 mm AP, −0.8 mm ML and −2.9 mm DV.

Immunofluorescence
Sections were incubated for 48 h at 4°C in 0.01 M PBS pH 7.4 containing
2% Triton X-100, 1:100 normal donkey serum and primary antibodies
(supplementary material Table S2). For BrdU staining, sections were pre-
incubated in 2 M HCl for 30 min at 37°C and then rinsed in 0.1 M borate
buffer pH 8.5. Sectionswere incubated overnightwith appropriate secondary
antibodies (supplementary material Table S2) and coverslipped with
antifade mounting medium Mowiol (4-88 reagent, Calbiochem 475904).

Image processing and 3D reconstructions
Images were processed using ImageJ (NIH) and Photoshop 7.0 (Adobe
Systems). Confocal microscopy serial section 3D reconstructions were
performed as described (Luzzati et al., 2011a). Briefly, images from each
section were stitched in Fiji (Preibisch et al., 2009), alignedwith Reconstruct
1.1 (Fiala, 2005) or with TracKEM2 (Cardona et al., 2010) and neurons were

traced in NeuronStudio (Wearne et al., 2005). 3D models were rendered in
Blender 2.6. (Blender Foundation) and Vaa3D (Peng et al., 2014).
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Supplementary Fig.1) Phenotypic analysis of DCX+ cells in the 5w.p.l striatum. a-c) 

Threedimensional reconstructions of DCX+ neuroblasts. According with their complexity and with 

the presence of processes in the grey (blue) and white (red) matter we divided these cells in three 

categories. a) Cells with short unbranched processes: most such cells were associated with the white 

matter and showed the characteristic bipolar morphology of migrating neuroblasts. b) Cells with 

long and branched processes running in both white and grey matter. c) Cells with long and branched 

processes running exclusively in the grey matter. It is to note that although most cells associated 

mainly with the white matter were bipolar, some showed a more elaborated morphology. However, 

these few cells were surrounded by a high density of cells and processes that hampered the 

complete reconstruction of their morphology. d) Single confocal slice showing the expression of 

SP8 (green) in DCX+ cells (orange). Note that this transcription factors is expressed in both cD 

(arrowhead) and iD (arrows) cells in both grey and white matter (dotted line). e) Z projection of part 

of the stack containing one of the reconstructed cells (arrow) shown in d. Scale Bars: 40μm in a-c, 

20 μm in d,e. 

 

  

Development | Supplementary Material



Development 142: doi:10.1242/dev.116657: Supplementary Material 

 

 
 

Supplementary Fig.2) BrdU labelling among induced striatal Ki67+ clusters and DCX+ neuroblasts. 

a-b) Zprojection (b-b’’’) and single confocal plane (c-c’’’) of a Ki67+ (violet) cluster partially 

overlapped with a DCX+ (orange) cluster showing examples of cK (white arrow), cKD (white 

arrowhead) and cD (pink arrow) cells labelled by BrdU, four days after administration (green). The 

fragmented BrdU staining in the Ki67+ cells suggests that these cells are actively dividing. c) Some 

individual DCX+ cells (iD) are also labelled for BrdU (pink arrowhead). For two such cells a reslice 

along the plane indicated by a dotted line is indicated (*, *’). d) Percentages ±S.D. of BrdU+ cells 

among cK, cKD, cD and iD cells cells at 3, 4, 5w.p.l., n=4. Error bars indicate standard deviation. 

Scale bars: 10μm. 
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Supplementary Fig.3) The QA lesion induces a long lasting neurogenic response. a) Coronal section 

of an animal sacrificed 6 month after QA lesion showing striatal Ki67+ (violet) and DCX+ (orange) 

cells in the striatum, mostly located within the lesioned area (yellow dotted line). Several Ki67+ and 

DCX+ cells incorporated the BrdU (green) injected four days before the sacrifice. b-b’’) Confocal 

stack showing an higher magnification of Ki67 and DCX+ cells in the lesioned striatum. These cells 

include a cluster of cK (white arrow), cKD (white arrowhead) and cD (pink arrow) cells as well as 

iD (pink arrowhead) cells. Note that all cell types are partly labelled for BrdU. Scale bars: 200μm in 

a; 10μm in b-b’. 
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Supplementary Fig.4) Neurosphere assay. a-c) Representative images of primary neurospheres 

isolated from intact SVZ (a), lesioned striatum (STR les; b), and intact striatum (STR control; c). d) 

Number of primary neurospheres isolated from SVZ, lesioned striatum, striatum contralateral to the 

QA injection (STR contra) and intact striatum from non lesioned animals of a representative 

experiment. Bars indicate the mean values ±S.E.M. of the number of neurospheres for 10000 plated 

cells; n=4 dishes for each case). e) The number of SVZ and STR les derived neurospheres steeply 

increase during the first two in vitro passages while the neurospheres diameter remain constant (f). 

Scale bar: 150μm. 
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Supplementary Fig.5) Proliferation of striatal GFAP+ astrocytes. a) Coronal section of a 5w.p.l. 

striatum showing the staining of GFAP (green). In contrast to control animals, GFAP is strongly 

expressed by striatal astrocytes after lesion, particularly at the lesion border (dotted line). b) Single 

confocal plane showing a GFAP+ (green) cell labelled by Ki67+ (violet) but not DCX (red) nor 

BrdU (orange; white arrow). Note that this cell is close to a second Ki67+ cells in which the 

positivity for GFAP cannot be clearly established. c) Single confocal plane showing a GFAP+ cell 

labelled by Ki67+ in a cluster comprising cK (white arrow), cKD and cD cells. d) Single confocal 

plane showing a GFAP+ cell labelled by BrdU (pink arrow). This cell was closely associated to a 

cluster of cK cells (two of which are visible in this focal plane) that were also mostly labelled for 

BrdU. Scale Bars: 200 μm in a, 10μm in b-d. 
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Supplementary Figure 6) Phenotypic analysis of recombined cells in the intact striatum of GLAST, 

Nestin and NG2-CreERT2 animals. a) Percentage of YFP+ cells expressing markers of the astroglial 

(S100β, GFAP) or oligodendroglial (NG2, SOX10) lineages in the intact striatum of GLAST, 

Nestin and NG2-CreERT2 animals either one week (for GLAST-CreERT2 and Nestin-CreERT2) or 

two weeks (for NG2) after tamoxifen administration. Since part of the S100β cells co-expressed 

SOX10, only the S100β+/SOX10- cells were considered as astroglia. As expected, YFP+ cells were 

almost exclusively represented by astrocytes in GLASTCreERT2 animals, by a mixture of astroglial 

and oligodendroglial cells in Nestin-CreERT2 animals and exclusively by oligodendroglial cells in 

NG2-CreERT2 animals. It is to note that only a small percentage of YFP+ cells co-express GFAP, 

and this is consistent with the low expression of this protein in the intact parenchyma. b) Fraction of 

recombined S100β+/SOX10- astrocytes in GLAST-CreERT2 and Nestin-CreERT2 animals. c-d) 
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Confocal stacks of the intact striatum of GLAST-CreERT2 (c), NestinCreERT2 (d) and NG2-

CreERT2 mice (e) showing the expression YFP (green) in S100β+ (orange, *) or SOX10+ (violet, **) 

cells. Note that the expression of SOX10 or S100β in YFP+ cells closely correlate with the 

occurrence of morphological features characteristic of the oligodendroglial or astroglial lineages, 

respectively. Error bars indicate standard deviation. Scale bars: 20μm in b, c, d; 10μm in higher 

magnifications 
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Supplementary Fig.7) Distribution of YFP+ cells in the striatum of fate mapped animals. ad) YFP 

(green) Ki67 (violet) and DCX (orange) staining in representative 50μm coronal sections of 5w.p.l. 

striatum at the level of the lesion border (dotted line) of GLAST-CreERT2 bQA (a,a’), GLAST-

CreERT2 aQA (b,b’), Nestin-CreERT2 bQA (c,c’) and Nestin-CreERT2 aQA animals. Note that 

numerous GFP+ cells can be observed at the lesion border of both GLAST-CreERT2 bQA and aQA 

animals. By contrast, in Nestin-CreERT2 bQA animals only few YFP+ cells can be observed, and 

according to their characteristic morphology these elements represent mostly oligodendrocytes and 

to a lesser extent neurons. Similar cells can be observed also in Nestin-CreERT2 aQA animals 

together with numerous cells with astrocytic morphology mostly distributed at the lesion border, 

where most Ki67+ and DCX+ clusters were located. In a’-d’ also note that only a fraction of Ki67+ 

clusters contains GFP+ cells (arrowhead and arrow indicate respectively recombined and non 

recombined Ki67+ clusters). Scale bar: 100μm. 
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Supplementary Figure 8) Three dimensional reconstruction of DCX+/YFP+ cells in the 5w.p.l 

striatum of GLAST-CreERT2 bQA animals a-c) Three-dimensional reconstructions of DCX+ 

neuroblasts that expressed YFP in the 5w.p.l striatum of GLAST-CreERT2 animals treated with 

tamoxifen one week before QA lesion. The morphology of these cells were consistent with the 

categories of DCX+ neuroblasts previously described in supplementary Fig.1 d-f) Z projection of 

part of the stack containing some of the reconstructed cells shown in a-c. Scale Bars: 40μm in a-c, 

20 μm in d, e. 
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Supplementary Fig.9) Phenotypic analysis of recombined cells in the intact striatum of R26R 

animals receiving Ad:GFAP-Cre injections. a) Coronal section at the level of the striatum labelled 

for GFAP (orange) and GFP (green). Note that the GFP+ cells are restricted to the ventro-lateral 

striatum and that the injection of the viral vector consistently induced the expression of GFAP at the 

level of the injection site and surrounding area of the striatum. The reactivity of astrocytes is 

consistent with previous work showing that intracerebral injections of adenoviral vectors induce an 

inflammatory response (Lowenstein and Castro, 2003). b) Z-Projection of a confocal stack at the 

level of the injection site showing that recombined cells expressing YFP (green) co-express GFAP 

(orange, arrowhead) but not NG2 (violet, arrow). Quantitative analyses indicated that no YFP+ cells 

in the striatum of these animals expressed NG2 and the 93±5% (n=3) expressed GFAP. Scale Bars: 

200 μm in a, 20 μm in b. 
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Supplementary Fig.10) SVZ contribution to QA lesion induced neurogenesis. a-f) Coronal sections 

at the level of the central striatum (a, and higher magnifications in b-d) and olfactory bulb (f) of a 

5w.p.l R26R reporter mice injected with Ad:GFAP-Cre one week before QA. g-l) coronal sections 

at the level of the anterior striatum (g, and higher magnifications in h-j) and olfactory bulb (l) of a 

5w.p.l R26R reporter mice injected with TAT-Cre one week before QA. The injection of the 

Ad:GFAP-Cre and TAT-Cre induced widespread expression of YFP (green) respectively in in the 

dorso-lateral parts of the SVZ (dSVZ, a) and its peri-ventricular regions (pvSVZ, g). As shown by 

higher magnification of single confocal planes, YFP+ cells in both the dSVZ (b) and pvSVZ (c,h) 

include putative TAPs expressing Ki67 (violet) but not DCX (orange, white arrow), as well as 

proliferating (white arrowhead) and post-mitotic (pink arrow) DCX+ neuroblasts. In addition for 

both injection protocols many YFP+ cells could be observed in the OB (white arrows) f,l). 

Collectively these observations indicate that our approach consistently labelled longlasting primary 

neuronal progenitors of all SVZ sub-regions. Nonetheless in the striatum of these animals we could 

identify only few YFP+ iD cells (d, e and j, k) and these cells were generally located within 200μm 

from the SVZ. It is to note that a few clusters of Ki67+ and YFP+ cells were occasionally observed 

in TAT-Cre injected animals (i), particularily at anterior levels of the striatum. However these 

clusters were mostly made by cKD cells and were always located at less than 50μm from the SVZ. 

Scale Bars 200μm in a-g, 50 μm in 

d, f, j, l, 10 μm in b, c, ,h, l, 5 μm in e-k. 
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Supplementary Table 1) Analysis of YFP expression in Ki67+ and DCX+ cells in the SVZ and 

striatum of GLAST and Nestin-CreERT2 animals, in bQa and aQA condition.  

In the table are reported the values of statistical tests performed on the percentage of YFP+ cells 

among different striatal (STR) and SVZ cell types shown in Fig.2a. For ANOVA analyses that 

returned statistically significant values, tukey post-hoc tests are also shown. a) Within region 

comparisons. Percentage of YFP+ cells among distinct cell types is compared within the SVZ and 

STR. Note that in both GLAST-CreERT2 bQA and Nestin-CreERT2 bQA animals the fraction of 

YFP+ elements among the considered cell types in each region is not statistically different. By 

contrast, in GLAST-CreERT2 aQA animals, in both SVZ and STR, the proliferating cells (SVZ: 

Ksvz, KDsvz; STR: cK, cKD) show a higher value of YFP coexpression in respect to postmitotic 

elements (SVZ: Dsvz; STR: cD, iD; see Fig.2A). Nestin-CreERT2 aQA animals show a similar 

trend, although in both SVZ and STR only the Ki67+/DCX cells (SVZ: Ksvz; STR: cK) contain a 

significantly higher fraction of YFP+ cells. b) Between regions comparisons. The different cell 

types are compared between SVZ and STR. Note that in GLAST-CreERT2 bQA animals cK, cKD 

and cD cells show lower percentage of recombination in respect to the corresponding cell types in 

the SVZ (Ksvz, KDsvz and Dsvz). possibly due to different efficiency of GLAST-driven 

recombination among SVZ and striatal astrocytes. c) Between groups comparisons. The fraction of 

YFP+ cells for all considered cell types is compared before and after tamoxifen among different 

strains (GLAST-CreERT2 bQA vs Nestin-CreERT2 bQA; GLAST-CreERT2 aQA vs Nestin-CreERT2 

aQA), or in the same strain (Nestin-CreERT2 bQA vs Nestin-CreERT2aQA; GLAST-CreERT2 bQA 

vs GLAST-CreERT2 aQA). Note that in the SVZ the percentage of YFP+ cells does not differ 

between strains, indicating similar efficiency of Nestin- or GLAST-driven recombination in primary 

progenitors. By contrast, in the striatum all cell types show higher level of recombination in 

GLAST-CreERT2 bQA than in Nestin-CreERT2 bQA animals. This difference is lost in the aQA 

condition, accordingly to the significant increase of cK and cKD cells in Nestin-CreERT2 aQA, 

in respect to Nestin-CreERT2 bQA animals. 

 

Development | Supplementary Material



Development 142: doi:10.1242/dev.116657: Supplementary Material 

 

Development | Supplementary Material



Development 142: doi:10.1242/dev.116657: Supplementary Material 

Table S2. Antibodies 

ANTIGEN NAME  HOST DILUTION SOURCE STOCK NUMBER 

Primary antisera 
ASCL-1  Mouse 1:500 BD Pharmingen 556604 

BrdU  Rat 1:3000 AbD Serotec OBT0030CX 

DCX  Goat 1:1500 Santa Cruz Biotechnology  Sc-8066 

GFAP  Rabbit 1:2000 Dako  Z 0334 

GFP  Chicken 1:1000 Aveslab GFP-1020 

Ki67  Rabbit 1:1000 Novocastra  NCL-Ki67p 

Ki67  Mouse 1:500 BD Pharmingen  550609 

NeuN  Mouse 1:1000 Chemicon MAB377 

NG2 Rabbit 1:500 Chemicon AB5320 

O4  Mouse 1:200 Millipore MAB345 

S100β Rabbit 1:10000 Swant 37A 

SOX-10 Goat 1:1000 Santa Cruz Biotechnology Sc-17342 

SOX-9  Rabbit 1:1000 Millipore AB5535 

Sp8 Rabbit 1:10000 Millipore AB15260 

Tuj1  Mouse 1:1500 Sigma  T8660 

Secondary antisera 
Cy3 Anti-Rb Donkey 1:800 Jackson ImmunoResearch 711-165-152 

Cy3 Anti-Ms Donkey 1:800 Jackson ImmunoResearch 715-165-151 

Cy3 Anti-Gt Donkey 1:800 Jackson ImmunoResearch 705-165-147 

Cy3 Anti-Rt Donkey 1:800 Jackson ImmunoResearch 712-165-153 

AlexaFluor488 Anti-Rb Donkey 1:400 Jackson ImmunoResearch 711-545-152 

AlexaFluor488 Anti-Ms Donkey 1:400 Jackson ImmunoResearch 715-545-151 

AlexaFluor488 Anti-Gt Donkey 1:400 Jackson ImmunoResearch 705-545-147 

AlexaFluor488 Anti-Rt Donkey 1:400 Jackson ImmunoResearch 712-545-153 

AlexaFluor488 Anti-Ck Donkey 1:400 Jackson ImmunoResearch 703-545-155 

AlexaFluor647 Anti-Rb Donkey 1:600 Jackson ImmunoResearch 711-605-152 

AlexaFluor647 Anti-Ms  Donkey 1:600 Jackson ImmunoResearch 715-605-151 

AlexaFluor647 Anti-Gt Donkey 1:600 Jackson ImmunoResearch 705-605-147 

AlexaFluor647 Anti-Rt Donkey 1:600 Jackson ImmunoResearch 712-605-153 

Biotynilated Anti-Rat  Rabbit 1:150 Vector Laboratories BA-4001 

AMCA-avidinD   1:100 Vector Laboratories A-2008 
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Supplementary materials and methods 

Transgenic Mouse lines 

Experiments were performed on 8-12 weeks animals of the following mouse lines: 

C57BL/6 mice (Harlan laboratories), GLAST-CreERT2 (Mori et al., 2006), Nestin-

CreERT2 (Corsini et al., 2009), NG2-CreERT2 (B6.Cg-Tg/Cspg4-Cre/Esr1*/BAkik/J; 

Jackson Labs; Zhu et al., 2011), R26R-YFP (Srinivas et al., 2001) and hGFAP-GFP 

(Zhuo et al., 1997); FVB/N-TgGFAPGFP14Mes/J; Jackson Labs) animals . Nestin-

CreERT2, GLAST-CreERT2 and NG2-CreERT2) were crossed to R26R-YFP mice to 

produce: Nestin-CreERT2/R26R-YFP and NG2-CreERT2/R26R-YFP mice 

hemizygous for both genes and GLAST-CreERT2/R26R-YFP mice heterozygous for 

GLAST-CreERT2 and homozygous for R26R:YFP. 

Neurosphere assay 

Lesioned striatum, healty striatum and subventricular zone (SVZ; n=4 per 

experiment) were dissected, dissociated and cultured (10000 cells/mL) in a standard 

neurosphere assay (Pastrana et al., 2009). For each group the rate of neurosphere 

generation was determined as the number of primary neurospheres by the number 

of viable seeded cells. Self-renewal of SVZ and STR-les was determined as the 

number of neurospheres/number of viable seeded cells derived from spheres of the 

previous passage. The number of neurospheres was determined after 7 days of 

culture. Diameters of living neurospheres were measured using ImageJ software. 

Three replicates were performed. For assessment of differentiation, neurospheres 

were plated onto polyD-lysine coated coverslip coated in differentiation medium. 

Plated cells were processed 7 days later using immunocytochemistry: we used anti-

GFAP, anti-βIIItubulin and anti-O4 to determine astroglial, neuronal and 

oligodendroglial differentiation, respectively 

Quantifications and statistical analyses 

All countings were performed in ImageJ on sections acquired at the confocal 

microscope (voxel size: 0.35µm x 0.35µm x 1.50µm). 

Stereological evaluation of the number, organization and BrdU labelling of DCX+ 

and Ki67+ cells. This analysis was performed in the six central focal planes of two 

non-consecutive 50µm thick slices. The DCX+ and Ki67+ clusters were defined as 
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groups of at least four cells with closely contacting cell bodies and expressing the 

same marker. For double-labelled cells, clustering has been evaluated separately 

for each marker. 

Expression of ASCL1 (n=2), SOX9 (n=2) and GFAP-GFP (n=3) in striatal cK, cKD, 

cD, iD cells was evaluated in 3-4 slices. The number of counted cell per animal 

ranged from 55 to 100 cells for cK, 182 to 206 for cKD. For iD and cD 100 cells per 

animal were counted. 

Genetic fate-mapping analysis of SVZ and striatal cells: Analyses were performed 

in Nestin-CreERT2 (Nestin-CreERT2 bQA n=4, Nestin-CreERT2 aQA n=5) and 

GLAST-CreERT2 animals (GLAST-CreERT2 bQA n=3, GLAST-CreERT2 aQA n=3). 

In the SVZ, the percentage of recombined Ki67+/DCX- (KSVZ), Ki67+/DCX+ (KDSVZ), 

and Ki67+/DCX+ (DSVZ) were counted at the level of the rostral migratory stream 

(RMS) in hemispheres ipsilateral to the lesion. Counted cells ranged from 64 to 165 

for KSVZ cells; from 54 to 144 for KDSVZ cells and from 332 to 888 for DSVZ cells). In 

the striatum, fractions of GFP+ cK, cKD, and iD cells were counted over the entire 

thickness of 2-4 sections while cD cells were counted in two non-consecutive focal 

planes. Counted cells ranged from 77 to 473 for cK cells, from 85 to 474 for cKD 

cells, from 82 to 192 for cD cells and from 460 to 1160 for iD cells.  

Cell composition of reporter+ Ki67+ clusters in fate-mapped animals. This analysis 

was performed on randomly selected Ki67+ clusters that contained at least a single 

reporter+ cell. Selected clusters were entirely reconstructed from subsequent 

sections and the number of reporter+ and reporter- cells were counted. The number 

of Ki67+ clusters that were composed by 100% reporter+ cells over the total number 

of analyzed clusters were as follows: GLAST-CreERT2 bQA, 35/39; GLAST-

CreERT2 aQA 21/24 Nestin-CreERT2 bQA 8/8, Nestin-CreERT2 aQA 20/31; VSVG-

GFP 17/18; Ad:GFAP-Cre 11/12. 

Statistical analyses were performed in SPSS 19. Anova analyses that returned 

significant F values were followed by Tukey’s post hoc tests. 
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