
RESEARCH ARTICLE

Neuropilin 1 balances β8 integrin-activated TGFβ signaling to
control sprouting angiogenesis in the brain
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ABSTRACT
Angiogenesis in the developing central nervous system (CNS) is
regulated by neuroepithelial cells, although the genes and pathways
that couple these cells to blood vessels remain largely
uncharacterized. Here, we have used biochemical, cell biological
and molecular genetic approaches to demonstrate that β8 integrin
(Itgb8) and neuropilin 1 (Nrp1) cooperatively promote CNS
angiogenesis by mediating adhesion and signaling events between
neuroepithelial cells and vascular endothelial cells. β8 integrin in the
neuroepithelium promotes the activation of extracellular matrix
(ECM)-bound latent transforming growth factor β (TGFβ) ligands
and stimulates TGFβ receptor signaling in endothelial cells. Nrp1 in
endothelial cells suppresses TGFβ activation and signaling by
forming intercellular protein complexes with β8 integrin. Cell
type-specific ablation of β8 integrin, Nrp1, or canonical TGFβ
receptors results in pathological angiogenesis caused by defective
neuroepithelial cell-endothelial cell adhesion and imbalances in
canonical TGFβ signaling. Collectively, these data identify a paracrine
signaling pathway that links the neuroepithelium to blood vessels and
precisely balances TGFβ signaling during cerebral angiogenesis.
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INTRODUCTION
During CNS development, neuroepithelial cells interact with
angiogenic blood vessels via ECM-rich vascular basement
membranes to modulate patterns of endothelial cell growth and
sprouting (Engelhardt and Sorokin, 2009). Integrins are receptors
for many ECM protein ligands (Kim et al., 2011), and integrin-
mediated adhesion and signaling pathways promote CNS vascular
development and homeostasis (del Zoppo and Milner, 2006;
McCarty, 2009). In particular, the neuroepithelial-expressed αvβ8
integrin and its ECM protein ligands, the latent TGFβs, are key
regulators of angiogenesis in the developing CNS (McCarty et al.,
2005b, 2002; Proctor et al., 2005; Zhu et al., 2002). Cells produce
TGFβs as latent, inactive complexes that are sequestered in the ECM
prior to activation (Worthington et al., 2011). αvβ8 integrin adheres

to RGD sequences within the latency-associated protein (LAP) of
TGFβs and mediates cytokine release from the ECM and activation
of TGFβ receptor signaling pathways (Allinson et al., 2012; Arnold
et al., 2012; Cambier et al., 2005; Hirota et al., 2011). Point
mutations in latent TGFβ1 that inhibit integrin binding lead to
developmental defects that phenocopy those in Tgfb1−/− mice
(Yang et al., 2007). Combined loss of TGFβ1 and TGFβ3 activation
lead to brain angiogenesis pathologies that phenocopy those in αv
and β8 integrin mutant mice (Mu et al., 2008), highlighting the
in vivo significance of integrin control of TGFβ activation and
signaling. We have shown, using Cre-lox mouse models, that
ablation of TGFβR2 or Alk5 (also known as TGFβR1) in
endothelial cells, but not neuroepithelial cells, results in brain
vascular pathologies that are similar to phenotypes that develop in
β8 integrin and TGFβ1/3 mutant mice (Nguyen et al., 2011). TGFβ
receptors phosphorylate various intracellular signaling effectors,
including Smad transcription factors (Massagué, 2012). Genetic
deletion of Smad4 in endothelial cells leads to angiogenesis defects
and intracerebral hemorrhage, revealing that canonical TGFβ
receptor signaling is essential for normal brain vascular
development (Li et al., 2011). Proteins that negatively regulate
αvβ8 integrin-mediated activation of latent TGFβs and subsequent
TGFβ signaling have remained largely unknown.

Nrp1 is a 130 kDa transmembrane protein expressed in
endothelial cells as well as some neurons and glia (Eichmann
et al., 2005). Nrp1 is a receptor for multiple ligands including
semaphorins (He and Tessier-Lavigne, 1997), vascular endothelial
growth factor-A (Vegfa) (Soker et al., 1998), hepatocyte growth
factor (Hu et al., 2007), and hedgehog proteins (Hillman et al.,
2011). Mice genetically null for Nrp1 in all cells develop vascular
pathologies including impaired cerebral angiogenesis and die
embryonically (Gerhardt et al., 2004). Selective ablation of Nrp1
in endothelial cells leads to angiogenic sprouting defects (Gu et al.,
2003) that occur independently of semaphorins (Gu et al., 2005),
suggesting that impaired Nrp1 binding to Vegfa is the primary
defect. However, genetic ablation of Vegfa in the neuroepithelium
does not phenocopy the vascular defects in Nrp1 mutant mice
(Haigh et al., 2003), and antibody-mediated inhibition of Nrp1-
Vegfa interactions does not block angiogenesis (Pan et al., 2007).
Genetic ablation of Nrp1 in neuroepithelial cells or macrophages
does not lead to developmental vascular pathologies (Fantin et al.,
2013). Furthermore, mice expressing an engineered point mutation
in the Nrp1 extracellular region (Y297A) that abrogates Vegfa
binding do not develop obvious brain pathologies (Fantin et al.,
2014). Hence, the mechanisms by which Nrp1 in endothelial cells
controls cerebral angiogenesis independently of Vegfa and
semaphorin signaling remain enigmatic.

Here, we have generated and analyzed various mouse and
zebrafish mutant models to demonstrate that Nrp1 and β8 integrin
cooperatively regulate cerebral angiogenesis. Paracrine interactionsReceived 27 February 2015; Accepted 6 November 2015
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between β8 integrin and Nrp1 couple the neuroepithelium to blood
vessels and balance TGFβ signaling via Smad family members in
the endothelium. Mice lacking any component of the β8 integrin-
Nrp1-TGFβ signaling pathway develop brain vascular pathologies,
including impaired sprouting angiogenesis and hemorrhage.
Collectively, these results identify novel components of an
adhesion and signaling axis that couples neuroepithelial cells
and endothelial cells to fine-tune sprouting angiogenesis during
embryonic brain development.

RESULTS
We analyzed spatial patterns of Nrp1 protein expression in the
developing mouse brain by labeling embryonic sections with
antibodies that recognize the Nrp1 extracellular domain. Nrp1
protein was expressed in brain endothelial cells (Fig. 1A), with
lower levels of Nrp1 protein detected in neuroepithelial cells
(Fig. S1A), which is consistent with published reports (Fantin et al.,
2013). Because whole body deletion of Nrp1 results in embryonic
lethality by embryonic day (E) 11 (Kawasaki et al., 1999), we
selectively ablated Nrp1 using an engineered mouse model in which
the endogenous Alk1 (also known as Acvrl1) promoter drives
expression of Cre in vascular endothelial cells (Nguyen et al., 2011).
The Alk1 gene encodes a type 1 receptor for members of the TGFβ

superfamily that is expressed in endothelial cells during
development (Park et al., 2008). Alk1-Cre is active at early stages
of brain angiogenesis, as revealed by intercrosses with the Rosa26-
loxSTOPlox-lacZ reporter strain (Fig. 1B). Compared with other
endothelial promoters such as Tie1 or Tie2, the Alk1 promoter drives
Cre expression in the developing yolk sac vasculature 24 to 48 h
later in development (Nguyen et al., 2011). This temporal
expression of Cre via the Alk1 promoter is crucial, as
requirements for genes in yolk sac angiogenesis are largely
circumvented. For example, genetic ablation of the murine gene
encoding TGFβR2 (Tgfbr2) using Tie1-Cre leads to lethality by
E10.5 resulting from heart and yolk sac vascular defects (Carvalho
et al., 2007). In contrast, Alk1-Cre deletion of Tgfbr2 allows for
survival until E15 (Nguyen et al., 2011), providing an opportunity
to analyze related signaling pathways in brain vascular
development.

Alk1-Cre/+;Nrp1fl/+ male mice were bred to Nrp1fl/fl females to
generate control (Alk1-Cre/+;Nrp1fl/+) or mutant (Alk1-Cre/+;
Nrp1fl/fl) progeny. Genotyping of newborn mice [n=27 postnatal
day (P) 0 mice from six different litters] revealed no viable Alk1-
Cre/+;Nrp1fl/fl mutant pups. Therefore, we analyzed embryos at
E11.5, E13.5 and E16.5. Expected Mendelian ratios of control and
knockout embryos were found at E11.5 (n=33 embryos, 9 viable

Fig. 1. Genetic ablation of Nrp1 in endothelial cells leads to brain vascular pathologies and embryonic lethality. (A) E13.5 horizontal brain sections were
labeled with anti-Nrp1 (green) and anti-CD31 (red) antibodies. Note that Nrp1 protein is expressed at robust levels in endothelial cells as revealed by co-
localization with CD31 (arrows). (B) Alk1-Cre knock-in mice were crossed to the Rosa26-loxSTOPlox-lacZ reporter strain and E10.5 brain sections were stained
with X-Gal (blue) and Hematoxylin (red). TheAlk1 promoter drives Cre expression primarily in cerebral blood vessels (arrows in lower panel). (C,D) Alk1-Cremice
were crossed to mice harboring a conditional floxed Nrp1 gene (Nrp1fl/fl). Control (left panels) and mutant (right panels) embryos were analyzed at E13.5 (C) and
E16.5 (D), revealing edema and hemorrhage in Alk1-Cre;Nrp1fl/fl mutants. (E) Genotypes of embryos at E13.5 as identified by genomic PCR. (F) Immunoblots
of brain lysates from control and Alk1-Cre;Nrp1fl/fl embryos. Residual Nrp1 protein levels are likely a result of expression in the neuroepithelium. (G) Brains
were dissected from E14.5 control (top) and mutant (bottom) embryos. Note the focal area of hemorrhage in the mutant brain (arrow). (H,I) Horizontal sections
through brains ofAlk1-Cre (H), orAlk1-Cre;Nrp1fl/fl (I) embryos, with arrows revealing cavitations and punctate microhemorrhagewithin the ganglionic eminences
(upper panel) and thalamus (lower panel) of mutant brains (I).
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mutants or 27%) and E13.5 (n=27 embryos, 6 viable mutants or
22%). All E13.5 mutant embryos were viable and appeared
developmentally normal, although some knockouts displayed
microhemorrhages in the head and body (Fig. 1C). By contrast,
Alk1-Cre/+;Nrp1fl/fl mutants at E16.5 (n=3 embryos) were growth-
impaired and displayed widespread edema and hemorrhage
(Fig. 1D). Two non-viable mutants were discovered at E16.5 that
showed extensive necrosis (data not shown). All genotypes were
confirmed by PCR with genomic DNA isolated from tissue snips
(Fig. 1E). Immunoblots of brain lysates from mutant animals
showed a significant reduction in total Nrp1 protein (Fig. 1F).
Unlike controls, all Alk1-Cre/+;Nrp1fl/fl conditional mutant
embryos analyzed displayed focal regions of brain hemorrhage
(Fig. 1G). More detailed analyses of brain sections revealed
cavitations and areas of hemorrhage primarily within the developing
ganglionic eminences and thalamus (Fig. 1H-I).
Vascular pathologies in Nrp1 conditional knockouts appeared

strikingly similar to phenotypes that have been reported in mice
lacking αv or β8 integrin in the neuroepithelium (McCarty et al.,
2005b; Proctor et al., 2005). Indeed, side-by-side comparisons of
brains from Alk1-Cre/+;Nrp1fl/fl mutants, with Nestin-Cre;β8fl/fl

and β8 integrin null (β8−/−) mutants revealed similar pathologies
within the ganglionic eminences and thalamus (Fig. S1B-C). Blood
vessel patterning defects and hemorrhage were detected in mouse
embryos lacking αv integrin in the neuroepithelium via Nestin-Cre
(Fig. S2), revealing that specific loss of the αvβ8 integrin
heterodimer in the neuroepithelium contributes to these vascular
defects.
We next analyzed microscopic blood vessel morphologies in

control and mutant mice by labeling brain slices with fluorescently
conjugated Isolectin B4 to visualize vascular endothelial cells.
Blood vessels in control embryos showed radial patterns of invasion
throughout the brain parenchyma (Fig. 2A). By contrast, blood

vessels in Nrp1 and β8 integrin mutant brains showed aberrant
patterning and formed glomeruloid-like tufts, as well as hemorrhage
(Fig. 2B-D). Interestingly, in Alk1-Cre/+;Nrp1fl/fl conditional
knockout embryonic brains we detected blood vessels that failed
to properly sprout and form more elaborate networks near the
subventricular zone. By contrast, sprouting blood vessels in β8−/−

embryos reached subventricular regions but formed abnormal
glomeruloid-like tufts (Fig. 2E; Fig. S3), which is consistent with a
prior study showing hyperactive angiogenic sprouting in β8 integrin
mutant brains (Arnold et al., 2014). To determine if the phenotypes
in β8−/− mice were linked to integrin control of Nrp1 protein
expression, control and β8−/− brain sections were immunolabeled
with anti-Nrp1 antibodies. Nrp1 protein was expressed at
comparable levels in cerebral blood vessels of control and β8−/−

embryos (Fig. S4A,B). By contrast, Nrp1 protein was absent in
cerebral blood vessels in Alk1-Cre/+;Nrp1fl/flmutant mice owing to
gene ablation (Fig. S4C). Similarly, Nrp1 protein was expressed in
detergent-soluble brain lysates from control and β8−/− mutant
embryos (Fig. S4D).

Pericytes are essential for cerebral angiogenesis and endothelial
barrier formation (Armulik et al., 2010; Daneman et al., 2010),
which prompted us to determine if vascular pericytes were absent in
Nrp1 conditional knockout mice. Immunofluorescence with anti-
NG2 antibodies revealed that endothelial cells were associated with
pericytes in control as well as Alk1-Cre/+;Nrp1fl/fl and β8−/−mutant
mice (Fig. S5). Similar results were found with an antibody
targeting the pericyte-enriched protein desmin (data not shown).
Analysis of murine gene expression databases revealed that Itgb8
mRNA is expressed primarily in the embryonic neuroepithelium
(Fig. S6A). Nrp1 showed a broader pattern of expression, although
within the brain parenchyma Nrp1mRNAwas present most notably
in blood vessels (Fig. S6B-C). Immunofluorescence labeling of
brain sections revealed αv integrin protein expression in the

Fig. 2. Analysis of brain vascular
pathologies in mice lacking Nrp1 in
endothelial cells or β8 integrin in
neuroepithelial cells. (A-D) Horizontal
sections through the ganglionic
eminences of control (A),Alk1-Cre;Nrp1fl/fl

(B), Nestin-Cre;β8fl/fl (C), or β8−/− (D)
embryos labeled with Isolectin B4-Alexa
Fluor 488 to reveal blood vessels. Lower
panels are digitally magnified images of
boxed areas in upper panels. Note the
abnormal blood vessel patterning in the
mutant brains (arrows). (E) Horizontal
sections through the thalamus of control
(left), Alk1-Cre;Nrp1fl/fl (middle) and β8−/−

(right) E13.5 brains were labeled with anti-
CD31 antibodies. Shown are
representative three-dimensional
reconstructions of the brain vasculature.
At this developmental age, note that Nrp1
mutant blood vessels fail to sprout
normally and do not reach the
subventricular zone (dashed line),
whereas blood vessels in the β8−/− brain
display abnormal hyper sprouting near
subventricular regions.
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neuroepithelium and Nrp1 expression in blood vessels, with co-
localization at points of neuroepithelial-blood vessel contacts
(Fig. S6D). Consistent with these in vivo expression patterns, we
have shown previously that β8 integrin, which dimerizes
exclusively with the αv subunit, is expressed in cultured
neuroepithelial cells (Mobley et al., 2009). In addition, the
immortalized mouse brain endothelial cell line bEND.3
(Montesano et al., 1990) and primary endothelial cells isolated
from the human umbilical vein (HUVECs) expressed robust levels
of Nrp1 protein (Fig. S7).
We hypothesized that the similar brain vascular pathologies in

Nrp1 and β8 integrin mutant mice were a result of defective
adhesion and signaling between Nrp1 in endothelial cells and αvβ8
integrin in the neuroepithelium. Therefore, we performed
immunofluorescence experiments to visualize interactions
between blood vessels and neuroepithelial cells. Cerebral blood
vessels in control brains showed close juxtaposition with the
surrounding neuroepithelium (Fig. 3A). By contrast, neuroepithelial
cells in Alk1-Cre/+;Nrp1fl/fl and β8−/− brains did not closely
juxtapose blood vessels (Fig. 3B,C) and appeared fragmented,
especially at perivascular contact points. Interactions between Nrp1
and β8 integrin were found in protein complexes in wild-type mouse
brain lysates, as revealed by co-immunoprecipitation (Fig. 3D). We
also analyzed protein-protein interactions using in vitro assays.
Protein complexes were detected in HEK-293 cells transiently
expressing V5-tagged human β8 integrin or full-length rat Nrp1
(Fig. 3E). These immunoprecipitation experiments did not discern
whether Nrp1 and β8 integrin proteins interact via mechanisms
involving cis (the same cell) or trans (different cells) binding.
Therefore, we analyzed Nrp1-β8 integrin interactions in cells
expressing each protein alone or in different combinations. When
cells expressing human NRP1 were mixed with cells expressing β8
integrin we did not detect protein-protein interactions by co-
immunoprecipitation. However, when rat Nrp1 was co-expressed

with β8 integrin, trans interactions between β8 integrin and human
NRP1 were detected using species-specific anti-Nrp1 antibodies
(Fig. 3F). These data reveal that Nrp1 in adjacent cell types is
important for the formation of trans Nrp1-β8 integrin protein
complexes. These in vitro results support our in vivo data showing
that Nrp1 is expressed in endothelial cells and closely juxtaposed
neuroepithelial cells (Fig. 1; Fig. S1), whereas αvβ8 integrin is
expressed only in neuroepithelial cells (Fig. S6). These results are
also consistent with a prior report showing that Nrp1 can signal via
both cis and trans mechanisms (Koch et al., 2014).

To identify Nrp1 domains that mediate binding to β8 integrin we
generated various Nrp1 deletion constructs lacking the cytoplasmic
tail or different extracellular domains involved in dimerization or
ligand binding (Fig. S8A). However, deletion of the entire Nrp1
cytoplasmic tail or various extracellular domains (A, B and MAM
domains) did not block binding to β8 integrin (Fig. S8B-D),
suggesting the involvement of more than one Nrp1 domain in
mediating integrin interactions. Using transfection strategies in
HEK-293T cells, we also detected protein complexes containing
Nrp1 and TGFβR2, which is consistent with a recent report showing
that Nrp1 suppresses TGFβ receptor signaling in sprouting
endothelial cells (Aspalter et al., 2015). These interactions could
not be blocked by deletion of the Nrp1 cytoplasmic domain or
various extracellular domains (Fig. S8E-G).

If Nrp1 and β8 integrin interact physically we expected that they
would also display a genetic interaction. A decrease in expression of
both genes should reveal a phenotype, whereas decreasing
expression of either gene individually will not. However,
revealing this interaction might require decreasing the level of
each below that found in heterozygotes for either gene. Indeed,
Nrp1/β8 integrin double heterozygotes, which express 50% of each
gene product, do not display obvious brain vascular defects (data
not shown). To further investigate genetic interactions we used the
zebrafish Danio rerio, which contains a neurovascular unit

Fig. 3. β8 integrin andNrp1 form protein complexes and promote neuroepithelial-endothelial cell adhesion. (A-C) E13.5 control (A) andmutant (B,C) brain
sections were immunostained with anti-CD31 (green) and anti-Nestin antibodies (red) to visualize endothelial cells and neuroepithelial cells, respectively. Note
the defective cell-cell interactions and disorganized patterns of perivascular neuroepithelial cells in mutant samples (arrows in B,C upper panels). (D) Nrp1 and
β8 integrin proteins co-immunoprecipitate in detergent-soluble protein lysates from wild-type neonatal mouse brains. By contrast, protein-protein interactions are
not detected in β8−/− brain lysates. (E) HEK-293 cells were transfected with plasmids expressing full-length rat Nrp1 and human β8 integrin containing a V5
epitope tag at the C-terminus. Detergent-soluble lysates were immunoprecipitatedwith anti-V5 antibodies and immunoblotted with anti-Nrp1 antibodies. Note that
β8 integrin and Nrp1 protein complexes are detected only in cells forcibly expressing both proteins. (F) Cells expressing human NRP1 were mixed with cells
expressing rat Nrp1, V5-tagged human β8 integrin, or rat Nrp1 and human V5-tagged β8 integrin in combination. Detergent-soluble lysates were
immunoprecipitated with anti-V5 antibodies and then immunoblotted with species-specific anti-Nrp1 antibodies to distinguish binding with human NRP1 (trans) or
rat Nrp1 (cis and trans). Note that β8 integrin and human NRP1 interact in trans, but only when rat Nrp1 is co-expressed with β8 integrin.
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cytoarchitecture that is structurally and functionally similar to
mammals (Ulrich et al., 2011). Zebrafish are also amenable to the
use of morpholino antisense oligonucleotides (MOs), which repress
the expression of genes by directly blocking translation and/or
splicing. This technology allows us to titrate single doses of MOs to
the lowest effective level required to observe phenotypes, and then
test the effects of combinations of MOs. Injection of low amounts of
either translation blocking (Fig. 4A) or splice blocking (Fig. 4B)
MOs targeting itgb8 or nrp1a resulted in a rate of cranial
hemorrhage of 2-4%. Injection of both MOs in combination
resulted in a significant increase in cranial hemorrhage to a rate up to
16% (Fig. 4C). The rate observed for the double injections is larger
than the sum of the single injections, suggesting synergy in the
genetic interaction (Fig. 4D). The efficacy of the control and
targeting MOs was tested by PCR spanning the affected intron,
revealing a nearly 50% reduction in itgb8 expression and a complete
loss of nrp1a expression (data not shown).
αvβ8 integrin controls angiogenesis by triggering activation of

ECM-bound latent TGFβs and stimulating TGFβ receptor
intracellular signaling in endothelial cells (Arnold et al., 2012;
Hirota et al., 2011). To study potential links between Nrp1 and the
TGFβ signaling pathway during angiogenesis, we interbred Alk1-
Cremicewith mice harboring a conditional Tgfbr2 gene (Tgfbr2fl/fl)
(Chytil et al., 2002) to generate control (Alk1-Cre) and mutant
(Alk1-Cre;Tgfbr2fl/fl) embryos. Alk1-Cre;Tgfbr2fl/fl mutant mice
developed massive intracerebral hemorrhage (Fig. 5A-D), and no
viable embryos were found beyond E16 as we have reported
previously (Nguyen et al., 2011). The brain vascular pathologies in
Tgfbr2 mutants were not a result of loss of blood vessel-associated
pericytes (Fig. 5E,F), but did correlate with defective adhesion
between endothelial cells and the surrounding neuroepithelium
(Fig. 5G,H). Alk1-Cre;Tgfbr2fl/flmutant endothelial cells within the
ganglionic eminences and thalamus contained less phosphorylated
Smad3 (pSer423/425) protein (Fig. 5I-L). Tgfbr2 mutant mice did
not show diminished Nrp1 protein levels in blood vessels (Fig. S7),
and differences in β8 integrin protein expression were not detected
in Alk1-Cre;Nrp1fl/fl brain lysates (Fig. 1F).
To further link Nrp1 and β8 integrin to TGFβ signaling in vivo,

we labeled brain sections from control and mutant embryos with
antibodies recognizing phosphorylated Smad3 and CD31 (also
known as Pecam1), respectively. We focused on blood vessels

within the developing ganglionic eminences and thalamus, where
angiogenesis defects were evident but severe hemorrhage was
absent. Phosphorylated Smad3 protein was detected in endothelial
cells of control cerebral blood vessels. A significant decrease in
Smad3 phosphorylation in endothelial cells was detected in β8−/−

brains (Fig. 6A,B), similar to the lower levels in Alk1-Cre;Tgfbr2fl/fl

mutant embryos (Fig. 5). By contrast, Alk1-Cre;Nrp1fl/fl knockout
brains showed three-fold higher levels of pSmad3 in endothelial
cells (Fig. 6C,D). A similar increase in pSmad1/5/8 levels was
detected in cerebral endothelial cells in Alk1-Cre;Nrp1fl/fl mutant
embryos (Fig. S9). In support of the in vivo data, silencing Nrp1
gene expression in cultured endothelial cells using lentiviral-
expressed shRNAs caused significantly enhanced baseline levels of
phosphorylated Smad3 and Smad1/5/8. Addition of TGFβ1 to cells
expressing Nrp1 shRNAs led to higher levels of Smad
phosphorylation in comparison to controls (Fig. 6E,F). A similar
increase in phosphorylation of Erk1 and Erk2 (also known as
Mapk3 and Mapk1, respectively) was detected (Fig. 6E), revealing
that Nrp1 suppresses Smad-dependent and Smad-independent
signaling events.

Endothelial tip cells are essential for normal sprouting
angiogenesis and blood vessel patterning, and Nrp1 protein is
enriched in these cells (Fantin et al., 2013). Alk1-Cre;Nrp1fl/fl

mutant mice displayed defects in endothelial tip cell polarity, with
blood vessels forming glomeruloid-like tufts with reduced numbers
of filopodia (Fig. 7A). Actin cytoskeletal dynamics, particularly
within endothelial tip cell filopodia, are important for sprouting
angiogenesis (Gerhardt et al., 2003). Therefore, we next analyzed
how loss of Nrp1 impacts the actin cytoskeleton in cultured
endothelial cells. When endothelial cells expressing Nrp1 shRNAs
were plated on ECM, we detected defects in cell spreading and
organization of the F-actin network (Fig. 7B-D). Unlike control
cells (Movie 1), cells expressing Nrp1 shRNAs exhibited faster
spreading when compared with control cells. Nrp1 shRNA cells
showed poorly developed lamellipodia, presenting irregular edges
that lacked active actin polymerization in the periphery (Movie 2).
Furthermore, the presence of actin aggregates rather than incipient
actin fibers was observed in the lamella of endothelial cells lacking
Nrp1. These actin aggregates appeared to collapse into ring-like
structures in the perinuclear region. At later time points the actin
filaments initially observed in the lamella bundled into transverse

Fig. 4. itgb8 and nrp1a genetically interact to
promote normal brain vascular development in
zebrafish. (A,B) Zebrafish embryos injected with
control MOs orMOs designed to block itgb8 or nrp1a
translation (A) or splicing (B). No hemorrhage or
other vascular defects were obvious at 3 days post-
fertilization in embryos injected with control MOs.
However, hemorrhage (arrows) is observed in the
heads of fish injected with itgb8 or nrp1a translation
or splice blocking MOs. In addition, double injection
of itgb8 and nrp1a MOs leads to a higher incidence
of cranial hemorrhage (arrows in lower right panels).
(C) Quantitation of cerebral hemorrhage phenotypes
in embryos injected with single translation blocking
(ATG) MOs, splice blocking MOs, or both MOs
injected in combination. Numbers of embryos
analyzed for each MO are indicated. Translation
blocking itgb8 versus itgb8/nrp1a, P=0.0003;
translation blocking nrp1a versus nrp1a/itgb8,
P=0.002; splice blocking itgb8 versus itgb8/nrp1a,
P=0.004; splice blocking nrp1a versus nrp1a/itgb8,
P=0.04.
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arcs in control cells (Movie 3). Perpendicular actin fibers
resembling stress fibers anchoring the cytoskeleton to sites of
cell-substrate adhesion were also clearly distinguishable. By
contrast, Nrp1-silenced cells showed a collapsed cytoskeleton
with the presence of F-actin aggregates throughout the cell body
and shorter, poorly organized actin bundles (Movie 4). Endothelial

cells expressing Nrp1 shRNAs did not show apparent defects in
proliferation (data not shown) or formation of focal adhesions
(Fig. S10). These data, showing Nrp1 functions in cultured
endothelial cells, combined with our molecular genetic and
biochemical results, reveal that the αvβ8 integrin-Nrp1 adhesion
pathway balances TGFβ signaling to control proper sprouting

Fig. 5. TGFβ signaling in endothelial cells is essential for brain vascular development. (A,B) Alk1-Cre/+ control (A) and Alk1-Cre/+;Tgfbr2fl/fl mutant (B)
embryos were analyzed at E13.5, revealing severe intracerebral hemorrhage in conditional knockouts (arrow in B). (C,D) Horizontal sections through the
ganglionic eminences of E13.5 control (C) and mutant (D) embryos were stained with H&E, revealing hemorrhage and blood vessel patterning defects in mutant
brains (arrows in D). (E,F) Control (E) andmutant (F) brain sections were immunostained with anti-CD31 and anti-NG2 antibodies. Note that mutant blood vessels
display glomeruloid-like morphologies but contain pericytes (arrows in F). (G,H) Control (G) and mutant (H) brain sections were labeled with anti-CD31 (red) and
anti-Nestin (green) antibodies, revealing aberrant contacts between endothelial cells and surrounding neuroepithelial cells (arrows in H). (I,J) Alk1-Cre (I)
and mutant (J) brain sections were labeled with anti-CD31 and anti-pSmad3 antibodies. Note the diminished Smad3 activation in mutant endothelial cells
(asterisks in J). (K,L) Higher magnification images from panels I and J, respectively, showing diminished levels of phosphorylated Smad3 within endothelial nuclei
in mutant brains. Arrows in C,E,I indicate the wild-type condition for comparison with mutant abnormalities in D,F and J, respectively.

Fig. 6. Nrp1 and β8 integrin cooperatively balance TGFβ signaling in brain endothelial cells. (A) Horizontal sections through the cerebral cortices of E12.5
wild-type and β8−/− embryonic brains were immunostained with anti-pSmad3 and anti-CD31 antibodies to visualize canonical TGFβ signaling in endothelial cells.
Arrows indicate blood vessels containing nuclear pSmad3, whereas asterisks denote blood vessels lacking pSmad3. Lower panels are digitally magnified images
of boxed areas in upper panels. (B) Quantitation of phosphorylated Smad3 levels in CD31+ endothelial cells within control and mutant cortical regions. Note the
reduction in Smad3 phosphorylation in the β8−/− brain samples, *P<0.05, error bars represent s.d. (C) Horizontal brain sections from E13.5 Alk1-Cre control and
Alk1-Cre;Nrp1fl/fl mutant embryos were immunostained with anti-pSmad3 and anti-CD31 to visualize TGFβ signaling in endothelial cells. Arrows indicate blood
vessels containing nuclear pSmad3. Lower panels are higher magnification images of boxed areas in upper panels. (D) Quantitation of phosphorylated Smad3
levels in CD31+ endothelial cells within control and mutant cortical brain regions. Note that endothelial cells lacking Nrp1 contain significantly elevated levels of
phosphorylated Smad3, *P<0.05, error bars represent s.d. (E) Endothelial cells infected with lentiviruses expressing GFP as well as non-targeting (NT) or Nrp1
shRNAs were stimulated with TGFβ1 for varying times and lysates were immunoblotted with the indicated antibodies. Note the higher levels of pSmad3, pSmad1/
5/8 and pErk1/2 at baseline and following TGFβ1 stimulation. Nrp1-dependent differences in phosphorylated Akt1 or p38α were not detected. (F) Quantitation of
Nrp1-dependent Smad3 phosphorylation levels before and after TGFβ1 stimulation based on the representative immunoblot in E, plotted as pSmad3 levels
normalized to actin (upper graph) or normalized to total Smad2/3 (lower graph). GE, ganglionic eminences; Thal, thalamus.
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angiogenesis. Targeting any component in this paracrine axis leads
to cell adhesion and sprouting defects resulting in similar brain
vascular pathologies (Fig. 8).

DISCUSSION
Here we report a new cell adhesion and signaling pathway
comprising Nrp1 in endothelial cells and αvβ8 integrin in

neuroepithelial cells that precisely controls sprouting angiogenesis
in the brain. Specifically, our experiments reveal the following novel
findings: (i) genetic ablation of Nrp1 in vascular endothelial cells
via Alk1-Cre leads to embryonic lethality associated with defective
sprouting angiogenesis and hemorrhage (Fig. 1); (ii) brain vascular
pathologies in Alk1-Cre;Nrp1fl/fl conditional knockouts are
microscopically distinct from those that develop in mice lacking

Fig. 7. Nrp1 controls F-actin dynamics in endothelial cells. (A) Horizontal brain sections through E13.5 ganglionic eminences from Alk1-Cre control (top
panel) or Alk1-Cre;Nrp1fl/fl mutants (lower panel) were immunolabeled with anti-CD31. Note the polarized endothelial tip cell filopodia in control brains (arrows).
By contrast, Nrp1mutant brains show defective tip cell sprouting and form glomeruloid-like tufts (asterisks). (B,C) Endothelial cells expressing NT shRNAs (upper
panels) or Nrp1 shRNAs (lower panels) were plated on fibronectin, allowed to spread for 10 min (B) or 20 min (C) and labeled with Phalloidin-Texas Red to
visualize the actin cytoskeleton. Cells expressing NT shRNAs form an elaborate cortical actin network at 10 min and transverse actin arcs at 20 min, whereas cells
expressing Nrp1 shRNAs display abnormalities in the cortical actin network and instead form F-actin aggregates. Arrows show actin arcs. (D,E) Quantitation of
endothelial cell spreading at 20 min post-adhesion (D), and actin aggregate formation at 10 min post-adhesion (E). Cells expressing Nrp1 shRNAs show subtle,
but statistically significant, increases in spreading, andmore obvious defects in organization of the F-actin network. Total numbers of endothelial cells analyzed (n)
are indicated, *P<0.05.

Fig. 8. Sprouting angiogenesis in the developing brain is coordinately regulated by the β8 integrin-TGFβ-Nrp1 signaling axis. (A) αvβ8 integrin is
expressed in the neuroepithelium where it controls angiogenesis by interacting with latent TGFβs in the ECM and Nrp1 in sprouting endothelial cells. Nrp1 is also
expressed at low levels in neuroepithelial cells, and our data reveal that it promotes trans interactions between αvβ8 integrin and Nrp1 in endothelial cells.
(B) Intercellular protein complexes between αvβ8 integrin and Nrp1 promote neuroepithelial-endothelial cell adhesion and modulate latent TGFβ activation and
signaling. Genetic ablation of β8 integrin in neuroepithelial cells or TGFβR2 in endothelial cells inhibits the initial steps in the latent TGFβ activation and signaling
cascade, leading to diminished Smad phosphorylation in endothelial cells. Deletion of Nrp1 in endothelial cells prevents normal suppression of αvβ8 integrin-
mediated latent TGFβ activation and signaling, leading to elevated Smad phosphorylation. These imbalances in canonical TGFβ signaling in endothelial cells
result in sprouting angiogenesis defects and intracerebral hemorrhage during development.
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β8 integrin in neuroepithelial cells (Fig. 2); (iii) Nrp1 and β8
integrin form intercellular/trans protein complexes and interact
genetically to promote adhesion between neuroepithelial cells and
endothelial cells in the developing brain (Figs 3,4); (iv) in contrast to
mice lacking TGFβR2 or β8 integrin, Nrp1 conditional knockouts
display elevated levels of phosphorylated Smads (Figs 5,6; Fig. S9),
and (v) Nrp1-dependent defects in Smad signaling and actin
cytoskeletal dynamics are detected in cultured endothelial cells
(Fig. 7). Collectively, these data identify a paracrine signaling
pathway that couples neuroepithelial cells to cerebral blood vessels
to balance levels of TGFβ signaling in endothelial cells and control
sprouting angiogenesis (Fig. 8).
Alterations in Smad phosphorylation in β8 integrin, TGFβR2,

and Nrp1 mutant mice suggest that these proteins functions at
distinct, yet interconnected nodes in the TGFβ activation and
signaling pathway. αvβ8 integrin is crucial for promoting TGFβ
signaling via Smads by adhesion to latent TGFβs in the ECM and
activating canonical receptor signaling in endothelial cells. Cell
type-specific deletion of integrin expression in the neuroepithelium
or TGFβR2 in endothelial cells leads to a major decrease in Smad
phosphorylation. Unexpectedly, deletion of Nrp1 in endothelial
cells results in increased levels of phosphorylated Smad3 and
Smad1/5/8, revealing that Nrp1 acts to suppress TGFβ signaling in
endothelial cells. Collectively, these results reveal that a precise
balance of TGFβ signaling is essential for normal control of
angiogenesis, with abnormally high or low levels of Smad3
activation in endothelial cells leading to similar defects in blood
vessel sprouting and brain hemorrhage. Our results differ from other
reports showing that Nrp1 promotes canonical TGFβ signaling in
non-endothelial cells (Glinka and Prud’homme, 2008; Glinka et al.,
2011), indicating cell-type specificity for Nrp1-TGFβ signaling,
perhaps resulting from functional connections with β8 integrin in
the brain. Along these lines, in cancer cells Nrp1 differentially
impacts TGFβ versus bone morphogenetic protein (BMP) signaling
via Smads, with RNAi-mediated Nrp1 silencing leading to
increased levels of pSmad1/5/8 and diminished levels of pSmad3
(Cao et al., 2010). These data suggest that Nrp1 might differentially
modulate TGFβ and BMP signaling in endothelial cells, perhaps by
altering the balance of receptor dimers and/or impacting ligand-
receptor affinities. Indeed, a recent study reported that Nrp1
suppresses TGFβ signaling via Alk1 and Alk5 in endothelial tip
cells to modulate sprouting angiogenesis (Aspalter et al., 2015).
Although TGFβR2 dimerizes with different type 1 receptors, the

brain vascular pathologies in Nrp1 mutant mice are most likely a
result of defective signaling via the TGFβR2/Alk5 complex. We
have reported that selective ablation of Alk5, but not Alk1,
phenocopies brain vascular pathologies in TGFβR2 mutants
(Nguyen et al., 2011). Although our data demonstrate that Nrp1
suppresses canonical TGFβ signaling, it remains possible that the
brain vascular pathologies are also due, in part, to defects in
additional Smad-independent signaling effectors. TGFβ receptors
activate non-canonical signaling proteins including Cdc42 (Davis
and Bayless, 2003; Edlund et al., 2002) and components of the Par
protein complex (Bose and Wrana, 2006; Feigin and Muthuswamy,
2009) that control cell polarity and cytoskeletal dynamics. Indeed,
our data reveal that Nrp1 regulates actin cytoskeletal dynamics in
cultured endothelial cells, and Nrp1−/− endothelial tip cells display
defects in actin-rich filopodia in vivo.
β8 integrin is expressed primarily in the developing

neuroepithelium, with integrin adhesion to latent TGFβs in the
ECM serving as a major pathway for TGFβ activation and signaling
in vivo (Yang et al., 2007). Nrp1 is robustly expressed in cerebral

endothelial cells and at lower levels in the neuroepithelium. Cell
type-specific knockout models reveal that endothelial cell-
expressed Nrp1 plays a predominant role over Nrp1 expressed in
the neuroepithelium (Fantin et al., 2013), which is consistent with
our Alk1-Cre results. However, our co-immunoprecipitation data
also reveal that Nrp1 in the neuroepithelium facilitates the formation
of trans interactions between neuroepithelial-expressed αvβ8
integrin and Nrp1 in the endothelium (Fig. 3), which likely affects
TGFβ activation and signaling. It remains unclear why angiogenesis
pathologies develop primarily in the brains of Alk1-Cre conditional
knockouts, as the endogenous Alk1 promoter is active in endothelial
cells of multiple organs (Nguyen et al., 2011), and Nrp1 and TGFβ
receptors are reportedly expressed in multiple non-neural vascular
beds (Iseki et al., 1995). In the developing brain β8 integrin and
Nrp1 are obviously crucial components of the latent TGFβ
activation and signaling pathway, with loss of either component
leading to overlapping angiogenesis pathologies. Perhaps in non-
neural tissues other TGFβ family members, for example BMPs,
compensate for loss of Nrp1 or TGFβ receptors in endothelial cells.
Nonetheless, in the embryonic brain cooperative interactions
between β8 integrin and Nrp1 are crucial for proper angiogenesis,
and it will be interesting to determine if vascular-related
developmental brain disorders are linked to defects in this
paracrine adhesion and signaling axis.

MATERIALS AND METHODS
Experimental mice
All animal procedures were conducted under Institutional Animal Care and
Use Committee-approved protocols. Generation of Alk1-Cre and Tgfbr2fl/fl

mice has been detailed elsewhere (Chytil et al., 2002; Nguyen et al., 2011).
The Nrp1fl/fl strain (Gu et al., 2003) was purchased from Jackson
Laboratories. Details for generating Nestin-Cre;β8fl/fl conditional
knockouts, Nestin-Cre;αvfl/fl conditional knockouts, and β8−/− whole
body knockouts have been reported previously (McCarty et al., 2005b;
Mobley et al., 2009; Proctor et al., 2005; Lee et al., 2015). The various
genetically engineered mice were bred on a mixed genetic background
(C57BL6/129S4) and occasionally mated with FVB mice to maintain
hybrid vigor. Genotypes of all control and mutant mice were determined
using PCR and genomic DNA-based methods. Embryo staging involved
timed mating, with noon on the plug date defined as E0.5.

Zebrafish experiments
All zebrafish embryos were injected at the one-cell stage with 2 ng p53MO
(GCGCCATTGCTTTGCAAGAATTG) (Robu et al., 2007) as well as
combinations of 0.67 ng itgb8 ATG MO (ATGCAGGAAGTCATAGCA-
GCTTGA), 0.67 ng nrp1a ATG MO (GAATCCTGGAGTTCGGAGTG-
CGGAA) (Lee et al., 2002), 1.33 ng itgβ8 SB e2i2 MO
(GCGCTCTGGCATACATTACCTCCTG) (Liu et al., 2012) and 1.33 ng
nrp1a SB e2i3 (AATGTTTTTTCCTTACCCGTTTTGA) (Dell et al.,
2013). All MOs were purchased from Gene Tools, LLC. At 24 h post-
fertilization, embryos were scored for survival/necrosis and the survivors
were treated with 1× PTU in E3 to prevent pigment formation and enable
visualization of the brain. Hemorrhages were observed microscopically
between 3 and 4 days post-fertilization. Individual hemorrhages were
counted once even if they persisted over multiple days. Only embryos with
robust circulation were scored. Statistical analysis of hemorrhage rate was
performed by N−1 two-proportion test. Genetic synergy was analyzed by
comparing the rate of hemorrhage in double injected embryos with the
additive rate according to the formula: itgb8 only+nrp1a only/average of the
two totals.

Immunoblotting and immunofluorescence
Embryonic and neonatal brain regions were lysed in 50 mM Tris, pH 7.4,
150 mMNaCl, 1%NP40, 1 mMEDTA containing a cocktail of protease and
phosphatase inhibitors (Roche). Detergent-soluble lysates were resolved by
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SDS-PAGE and then immunoblotted with anti-integrin rabbit polyclonal
antibodies at 1:3000 as described previously (McCarty et al., 2005a,b;Mobley
et al., 2009; Reyes et al., 2013; Tchaicha et al., 2010). The HRP-conjugated
mouse anti-rabbit IgG used for immunoblotting was purchased from Jackson
ImmunoResearch (1:1000; Jackson ImmunoResearch, cat. #211-035-109).

Embryos were fixed in cold 4% PFA/PBS for 12-16 h and then embedded
in paraffin or agarose and sectioned. The following primary antibodies used
for immunofluorescence were purchased from commercial sources: rabbit
anti-laminin (1:300; Sigma, cat. #L9393), rat anti-CD31 (1:100; BD
Pharmingen, cat. #55370), rabbit anti-NG2 (1:250; EMD Millipore, cat.
#AB5320), goat anti-rat Nrp1 (1:100; R&D Systems, cat. #AF566), rabbit
anti-Erk1/2 (pThr202/pTyr204; 1:1000; Cell Signaling Technologies, cat.
#9101), anti-pSmad3 (pSer423/425; 1:200; Abcam, cat. #ab52903),
pSmad1/5/8 (pSer463/465; 1:100; Cell Signaling Technologies, cat.
#9511S), rabbit anti-total Smad2/3 (1:100; Cell Signaling Technologies,
cat. #3102S) and chicken anti-Nestin (1:500; Neuromics, cat. #CH23001).
The anti-β8 integrin polyclonal antibody has been described elsewhere (Jung
et al., 2011). Alexa Fluor 488-conjugated Isolectin B4 was purchased from
Life Technologies (1:500; cat. #I21411). Commercial antibodies used for
immunoblotting include rabbit anti-actin (1:1000; Sigma, cat. #A2066), goat
anti-rat Nrp1 (1:1000; R&D Systems, cat. #AF566), goat anti-human Nrp1
(1:1000;R&DSystems, cat. #sc-7239),mouse anti-myc (1:3000; Invitrogen,
cat. #R950-25) and rabbit anti-TGFβR2 (1:1000; Santa Cruz Biotech, cat.
#sc-1700). Secondary antibodies include biotinylated swine anti-rabbit IgG
(1:250; DAKO, cat. #E0353), biotinylated rabbit anti-rat IgG (1:250; Vector
Laboratories, cat. #BA-4000), biotinylated rabbit anti-goat IgG (1:250;
Jackson ImmunoResearch, cat. #305-005-045), and goat anti-rabbit Alexa
Fluor 488 IgG (1:500; Jackson ImmunoResearch, cat. #111-545-144).
Embryo sections were then analyzed using a Zeiss Axio Imager Z1
microscope. To quantify pSmad3 in CD31+ endothelial cells in vivo, ratios of
the total fluorescence intensity (total intensity of pSmad3/total intensity of
CD31) was determined in representative regions of the ganglionic eminence
and thalamus (n=3 images per region) in control and knockout brain sections
(100-150 µm, n=3 samples per genotype) prepared with a vibratome. Brain
sections were analyzed using a Zeiss confocal microscope.

Cell culture systems and immunoprecipitation
HUVECs and growth media were purchased from ScienCell. HEK-293 and
bEND.3 cells were purchased from ATCC. Serum-starved HUVECs were
incubated with TGFβ1 (5 ng/ml) for varying times at 37°C. The pGIPZ
lentiviral vectors expressing shRNAs targeting mouse or human Nrp1 were
purchased from Dharmacon. To quantify cell adhesion, HUVECs were
plated on dishes coated with collagen I (Corning) and stained with crystal
violet. Alternatively, adherent HUVECs were fixed, permeabilized, and
labeled with Texas Red-conjugated Phalloidin (1:500; Thermo Fisher
Scientific, cat. T7471). All HUVECs were analyzed prior to passage 8.

Co-immunoprecipitation experiments to test for cis versus trans
interactions between Nrp1 and β8 integrin were performed in HEK-293T
cells. V5-tagged human β8 integrin in pcDNA3.1A, full-length rat Nrp1 in
pcDNA3.1A, or full-length human NRP1 in pcDNA3.1 were forcibly
expressed in HEK-293T cells using Effectene (Qiagen) according to
manufacturers’ instructions. Twenty-four hours after transfection cells were
trypsinized, mixed in various combinations, and co-cultured for an
additional 48 h. Detergent-soluble lysates were prepared and
immunoprecipitated with anti-V5 antibodies. Antibodies used to
distinguish human versus rat Nrp1 were goat anti-rat Nrp1 (1:1000; R&D
Systems, cat. #AF566) and goat anti-human NRP1 (1:1000; Santa Cruz
Biotechnology, cat. #sc-7239). Alternatively, Nrp1 mutant constructs with
various deletions in the extracellular or cytoplasmic domains in pMT21 or
pcDNA3.1A mammalian expression plasmids were generated by site-
directed mutagenesis. HEK-293 cells were transfected with mammalian
expression plasmids using Effectene and lysed in RIPA buffer containing
phosphatase and protease inhibitor cocktails (Roche). Plasmids encoding
V5-tagged β8 integrin and wild-type rat Nrp1 have been described
elsewhere (Gu et al., 2002; Tchaicha et al., 2011).

For cell spreading assays acid-washed coverslips were coated with
10 µg/ml of fibronectin (Millipore) or 5 µg/ml collagen IV (Sigma) in PBS
for 1 h at 37°C. Cells were added to coverslips, incubated at 37°C, and then

permeabilized with 0.1%Triton X-100 at room temperature for an additional
10 min. Staining was performed with Texas Red-Phalloidin (Life
Technologies) and NucBlue Live Cell Stain ReadyProbes (Life
Technologies) to visualize the actin cytoskeleton and nuclei, respectively.
Statistical analyses were performed using Minitab. Within the same set of
images, population analysis of cells with actin accumulation was performed
using ImageJ (National Institutes of Health). For quantitative analysis,
background corrected images were thresholded to measure intensity of each
individual image. Actin accumulation was determined using the masking
tool and image statistics tools available in ImageJ. Areas of each individual
cell with actin accumulation were normalized to total cell area. Mann–
Whitney non-parametric analysis was performed when comparing cells
expressing control or Nrp1 shRNAs.
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Fig. S1. Selective ablation of 8 integrin in neuroepithelial cells leads to brain vascular 

pathologies. (A) A horizontal section through the E13.5 mouse brain cortex was stained with 

an anti-Nrp1 antibody. Note that Nrp1 protein is expressed predominantly in cerebral blood 

vessels (arrow heads), and at lower levels in neuroepithelial cell processes (arrows). (B-C) 

Horizontal sections (100-200 m) through the brains of Nestin-Cre/+;8fl/fl (B, E12.5), or 8-/- (C, 

E13.5) embryos were cut with a vibratome. Note the cavitations and punctate microhemorrhage 

within the ganglionic eminences (arrows, upper panels) and thalamus (arrows, lower panels).  
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Fig. S2. Selective ablation of v integrin in neuroepithelial cells leads to defective brain 

angiogenesis. (A) Images of representative E12.5 control (left) and Nestin-Cre/+;vfl/fl mutant 

embryos (right). Note the focal hemorrhage in the mutant brain (arrow). (B) Horizontal sections 

thorough E12.5 control (left) and Nestin-Cre/+;vfl/fl (right) mutant brains were immunolabeled 

with anti-laminin antibodies. Note the abnormal morphologies of cerebral blood vessels in v 

integrin conditional knockouts.  
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Fig. S3. Genetic ablation of Nrp1 in endothelial cells leads to defective cerebral blood 

vessel sprouting. (A-C) Horizontal sections thorough the ganglionic eminences of E13.5 

control (A), Alk1-Cre/+;Nrp1fl/fl (B), and 8-/- (C) brains were immunolabeled with anti-CD31 mAb. 

Note the abnormal vascular patterning in the Nrp1 and 8 integrin mutants. Blood vessels in 

Nrp1 mutants form glomeruloid-like tufts prior to reaching subventricular regions, whereas blood 

vessels in 8-/- brains reach subventricular regions and form glomeruloid-like tufts. The dashed 

lines indicate boundaries between brain tissue and ventricles. 
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Fig. S4. Analysis of Nrp1 and 8 integrin levels in knockout mouse models reveals lack of 

reciprocal regulation of protein expression. (A-C) Brain sections from control (A); 8-/- (B) 

and Alk1-Cre/+;Nrp1fl/fl embryos (C) were fluorescently labeled with anti-Nrp1 (green) and anti-

CD31 (red) antibodies. Note that Nrp1 protein expression in endothelial cells is significantly 

diminished in Alk1-Cre/+;Nrp1fl/fl samples, but is not impacted in 8-/- samples. (D) Brain lysates 

from control and 8-/- embryos were immunoblotted for Nrp1 and 8 integrin antibodies. Ablation 

of 8 integrin in the neuroepithelium does not alter Nrp1 protein expression. 
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Fig. S5. Analysis of endothelial-pericyte interactions in Nrp1 and 8 integrin mutant 

mouse models. (A-C) Horizontal sections through the brain ganglionic eminences of control 

(A), Alk1-Cre/+;Nrp1fl/fl mutant (B) and 8-/- embryos (C) labeled with CD31 (green) and NG2 

(red) to reveal endothelial cells and pericytes. Note that vascular pericytes are associated with 

endothelial cells in both the control and mutant samples. 
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Fig. S6. In vivo gene expression patterns of mouse 8 integrin and Nrp1. (A, B) 

Genepaint.org was queried for itgb8 (A) or nrp1 (B) expression patterns in E14.5 mouse 

embryos. Note that Itgb8 mRNA is expressed mainly in neuroepithelial cells adjacent to the 

brain ventricles (arrows, A), whereas nrp1 (B) is expressed within and outside the CNS (B). (C) 

Nrp1 mRNA expression patterns from analysis in the gensat.org, revealing robust gene 

expression in cerebral blood vessels (arrows). (D) Horizontal sections through the E13.5 mouse 

brain were stained with antibodies recognizing v integrin (green) and Nrp1 (red). Note that v 

integrin protein is expressed in neuroepithelial cells that closely juxtapose endothelial cells 

expressing Nrp1 protein (arrows).  
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Fig. S7. Genetic deletion of Tgfbr2 in endothelial cells does not impact Nrp1 protein 

expression. (A) Horizontal brain sections from Alk1-Cre/+;Tgfbr2fl/fl embryos were labeled with 

anti-Nrp1 (green) and anti-CD31 (red) antibodies. Note that Nrp1 protein is expressed in 

endothelial cells. (B) Detergent-soluble lysates from HUVECs or bEND.3 cells were then 

immunoblotted with antibodies recognizing human or rodent Nrp1 protein or pan-species 

antibody recognizing 8 integrin. 
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Fig. S8. Nrp1 forms protein complexes with 8 integrin and TGFR2. (A) Schematic 

diagram showing domain composition of full-length, wild type rat Nrp1 (FL) and various 

constructs containing deletions in the extracellular region or cytoplasmic domain. (B, C) HEK-

293 cells were transfected with a pcDNA3.1A plasmid expressing V5-tagged human 8 integrin 

in combination with pcDNA3.1 expression plasmids expressing full-length Nrp1 or cDNA 

constructs containing deletions in the cytoplasmic tail or Mam domain (B). Alternatively, cells 

were transfected with plasmids expressing V5-tagged human 8 integrin with the full-length 

Nrp1 cDNA or cDNAs encoding various extracellular domain deletions in the pMT21 expression 

plasmid (C). Detergent-soluble lysates were then immunoprecipitated with anti-V5 antibodies 

and then immunoblotted with anti-Nrp1 antibodies recognizing the full-length control or mutated 

proteins. (D) HEK-293 cells were transfected with plasmids expressing V5-tagged human 8 

integrin alone, rat Nrp1 alone, or both plasmids in combination. Lysates were 

immunoprecipitated with mouse IgGs or anti-V5 mAb and then immunoblotted with anti-Nrp1 

antibodies. Note that immunoprecipitation with anti-V5, but not negative control IgGs, reveal a 
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specific interaction between Nrp1 and 8 integrin. (E, F) HEK-293 cells were transfected with a 

pcDNA3.1A plasmid expressing myc-tagged human TGFR2 in combination with pcDNA3.1 

expression plasmids expressing full-length Nrp1 or cDNA constructs containing deletions in the 

cytoplasmic tail or Mam domain (E). Alternatively, cells were transfected with plasmids 

expressing myc-tagged human TGFR2 with the full-length Nrp1 cDNA or cDNAs encoding 

various extracellular domain deletions in the pMT21 expression plasmid (F). Detergent-soluble 

lysates were then immunoprecipitated with anti-myc antibodies and then immunoblotted with 

anti-Nrp1 antibodies recognizing the full-length control or mutated proteins. (G) Cells were 

transfected with plasmids expressing rat Nrp1 alone, myc-tagged human TGFR2 alone, or 

Nrp1 and TGFR2-myc in combination. Lysates were then immunoprecipitated with goat IgGs 

or anti-Nrp1 antibodies and then immunoblotted with anti-myc antibodies. Note that Nrp1 and 

TGFR2 interactions are detected only when specific anti-Nrp1 antibodies are used for 

immunoprecipitation, but not with negative control goat IgGs. 
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Fig. S9. Genetic deletion of Nrp1 in endothelial cells in vivo leads to enhanced 

phosphorylation of Smad1/5/8. (A, B) Horizontal sections through the cerebral cortices of 

E13.5 Alk1-Cre/+;Nrp1fl/+ (A) and Alk1-Cre/+;Nrp1fl/fl (B) embryonic brains were immunostained 

with anti-pSmad1/5/8 and anti-CD31 antibodies. Note the increased levels of pSmad1/5/8 within 

Nrp1-/- endothelial cell nuclei.  
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Fig. S10. Silencing Nrp1 in human endothelial cells does not impact focal adhesion 

formation. (A) Detergent-soluble lysates from HUVECs expressing control or Nrp1 shRNAs 

were immunoblotted with various antibodies recognizing focal adhesion and signaling proteins. 

(B, C) HUVECs on collagen I-coated dishes were labeled with anti-vinculin antibodies (B) and 

numbers of focal adhesions were quantified (C). 
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Movies 1-4. Nrp1 contributes to the organization of the actin cytoskeleton during cell spreading. 

Cells were starved for 1 h, suspended, and re-plated on fibronectin-coated surfaces for various 
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intervals. Following fixation, cells were permeabilized and stained with fluorescent phalloidin 

(red) and a nuclear dye (blue) to visualize the actin cytoskeleton and nuclei, respectively. Fiji 

was used for the three-dimensional rendering and animation of confocal Z-stacks consisting of 

0.5m optical sections collected at 0.25 m Z-steps. (1) Control cells 10 minutes after plating, 

(2) Nrp1 shRNA cells 10 minutes after plating, (3) Control cells 20 minutes after plating, (4) Nrp1 

shRNA cells 20 minutes after plating. Scale bars represent 20 m. 
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