RESEARCH ARTICLE

Spalt-like 4 promotes posterior neural fates via repression of pou5f3 family members in Xenopus

John J. Young*, Rachel A. S. Kjolby, Nikki R. Kong, Stefanie D. Monica and Richard M. Harland ${ }^{\ddagger}$

Abstract

Amphibian neural development occurs as a two-step process: (1) induction specifies a neural fate in undifferentiated ectoderm; and (2) transformation induces posterior spinal cord and hindbrain. Signaling through the Fgf, retinoic acid (RA) and Wnt/ β-catenin pathways is necessary and sufficient to induce posterior fates in the neural plate, yet a mechanistic understanding of the process is lacking. Here, we screened for factors enriched in posterior neural tissue and identify spalt-like 4 (sall4), which is induced by Fgf. Knockdown of Sall4 results in loss of spinal cord marker expression and increased expression of pou5f3.2 (oct25), pou5f3.3 (oct60) and pou5f3. 1 (oct91) (collectively, pou5f3 genes), the closest Xenopus homologs of mammalian stem cell factor Pou5f1 (Oct4). Overexpression of the pou5f3 genes results in the loss of spinal cord identity and knockdown of pou5f3 function restores spinal cord marker expression in Sall4 morphants. Finally, knockdown of Sall4 blocks the posteriorizing effects of Fgf and RA signaling in the neurectoderm. These results suggest that Sall4, activated by posteriorizing signals, represses the pou5f3 genes to provide a permissive environment allowing for additional $\mathrm{Wnt} / \mathrm{Fg} /$ /RA signals to posteriorize the neural plate.

KEY WORDS: Oct4, Sall4, Xenopus, Gene regulation, Neural patterning

INTRODUCTION

Nieuwkoop and Eyal-Giladi suggested that development of the amphibian central nervous system arises by 'activation and transformation' (Nieuwkoop, 1952; Nieuwkoop et al., 1952a, 1952b; Eyal-Giladi, 1954) whereby neural tissue is induced as an anterior state by the organizer and then posteriorized by additional signals from the mesoderm to specify the anterior-posterior (A-P) pattern of the neural plate. Activation, or neural induction, requires bone morphogenetic protein (Bmp) antagonists, such as Noggin (Lamb et al., 1993), Chordin (Sasai et al., 1994) and Follistatin (Hemmati-Brivanlou et al., 1994), from the organizer to induce the neural fate (Khokha et al., 2005). Indeed, any manipulation that blocks Bmp signaling in ectoderm results in anterior neural fates (Hemmati-Brivanlou and Melton, 1994). Caudalization, or transformation, occurs via signaling by retinoic acid (RA) (Durston et al., 1989; Sive et al., 1990; Ruiz i Altaba and Jessell, 1991; Blumberg et al., 1997; Kolm et al., 1997), Fgf (Cox and Hemmati-Brivanlou, 1995; Kengaku and Okamoto, 1995; Lamb and Harland, 1995; Ribisi et al., 2000; Fletcher et al., 2006) and

[^0]Wnt/ß-catenin (McGrew et al., 1995; Itoh and Sokol, 1997; Domingos et al., 2001; Erter et al., 2001; Kiecker and Niehrs, 2001). Despite the identification of these secreted factors as mediators of A-P neural patterning, the mechanism by which transduction of these signals results in the adoption of posterior fates remains poorly understood.
Given the interest in axial patterning, a few transcription factors that mediate A-P differentiation have been identified. The homeobox gene $g b x 2$ is a direct target of canonical Wnt signaling and primarily serves to localize the isthmus and induce neural crest (Simeone, 2000; Li et al., 2009). The meis 3 gene, which is required for hindbrain and neuronal differentiation, is directly activated by Wnt3a from the dorsal lateral marginal zone (Elkouby et al., 2010, 2012). The caudal homologs $C d x 1$ and $C d x 4$ are direct Wnt targets in the mouse (Prinos et al., 2001; Pilon et al., 2006, 2007) and have overlapping roles in posterior development of the three germ layers (Isaacs et al., 1998; Faas and Isaacs, 2009; van de Ven et al., 2011). In the neural plate of Xenopus, simultaneous knockdown of Cdx 1 , Cdx2 and Cdx4 is required to block adoption of the most posterior neural fates (Faas and Isaacs, 2009).

The Spalt-like (Sall) proteins are vertebrate homologs of the Drosophila protein Spalt. The four members of the Sall family of zinc-finger transcription factors in vertebrates contain an N -terminal C 2 HC zinc-finger domain followed by variable numbers of doublet and triplet C 2 H 2 zinc-finger domains (Sweetman and Münsterberg, 2006; de Celis and Barrio, 2009). Sall1 and Sall4 function as either transcriptional repressors (Lauberth and Rauchman, 2006; Lauberth et al., 2007; Lu et al., 2009; Yang et al., 2012) or activators (Kiefer et al., 2002; Zhang et al., 2006; Yang et al., 2007; Lim et al., 2008). Mutations in human SALL1 and SALL4 cause the autosomal dominant Townes-Brocks and Okihiro syndromes, respectively, both characterized by limb and cognitive defects (Kohlhase et al., 1998, 2002). Sall4 knockout mice fail to maintain a pluripotent inner cell mass (Sakaki-Yumoto et al., 2006); null embryos lack Pou5f1 (Oct4) expression in the ICM, increase Cdx2 expression and replace epiblast with trophectoderm (Wu et al., 2006; Zhang et al., 2006). Furthermore, knockdown of Sall4 inhibits induction of induced pluripotent stem cells (iPSCs) (Tsubooka et al., 2009).
Previously, sall2, sall3 and sall4 were shown to be expressed during early Xenopus embryogenesis (Hollemann et al., 1996; Onuma et al., 1999; Onai et al., 2004) and, with the exception of sall2 (Onai et al., 2004), were expressed in posterior neural regions. Conditional knockouts of Sall1, Sall2 and Sall4 result in mouse embryos with neural tube closure defects (Böhm et al., 2008), revealing a role for these genes in neural differentiation or morphogenesis. Despite their expression in posterior neural regions of vertebrate embryos, a role for the Sall genes in caudalization has not been elucidated.
Here we describe the results of an expression screen designed to discover targets of canonical Wnt signaling that determine neural posteriorization in Xenopus. This screen identified sall1 and sall4 as targets in neuralized tissue. We show that sall4 is required for
caudalization and, importantly, spinal cord differentiation of neural tissue. Finally, we show that sall4 represses the stem cell factor pou5f3 to release cells from an undifferentiated state.

RESULTS

Screen to identify posterior neural patterning genes

We used the inducible β-catenin analog TVGR (TCF/LEF DNA-binding domain fused to both the VP-16 transactivation domain and growth hormone receptor) to mimic a posteriorizing Wnt signal (Darken and Wilson, 2001). Having confirmed that this treatment effectively activates Wnt signaling in response to DEX using ventral vegetal injections (supplementary material Fig. S1A), we tested the activity of TVGR in posteriorizing neural tissue using ectodermal explants treated at later stages. Animal caps overexpressing Noggin expressed the anterior neural marker otx2 but not epidermal keratin, demonstrating that the explants had adopted a neural fate. By contrast, neuralized caps, which were injected with TVGR and induced with DEX, expressed the posterior markers krox20 and hoxb9. Ethanol vehicle did activate the hindbrain marker krox20, but DEX was required to induce spinal cord fates as assayed by hoxb9 expression (supplementary material Fig. S1B). Consistent with these results, activation of TVGR in neuralized animal caps induced convergent extension-like morphogenesis consistent with differentiation into spinal cord (Elul et al., 1997) (supplementary material Fig. S1C).

Next, we validated the use of activated TVGR in neuralized animal caps to enrich for transcriptional targets of Wnt signaling (supplementary material Fig. S2A). Treatment with the translational inhibitor cycloheximide (CHX) did not prevent activation of the direct target meis 3 (Elkouby et al., 2010) but did block the indirect target hoxb9 (Domingos et al., 2001) (supplementary material Fig. S2B). Thus, these conditions induce neural tissue and posteriorize it via Wnt activation.

To screen for posterior neural genes, we harvested total RNA from animal caps treated with noggin alone (anterior neural), neuralized caps with activated TVGR (posteriorized neural), and neuralized animal caps treated with or without CHX prior to TVGR activation (enriched target sample). The RNAs from these samples were used for Illumina sequencing. The resulting reads were mapped to a collection of non-redundant full-length Xenopus laevis cDNA sequences (Xenopus Gene Collection, http://xgc.nci. nih.gov). By comparing read quantities between anterior neural tissue and tissue treated to enrich for direct targets, we found over 200 genes with expression that was increased greater than 2-fold (supplementary material Table S2). Importantly, the set included the direct targets meis 3 (Elkouby et al., 2010) and $c d x 2$ (Wang and Shashikant, 2007). To determine whether the expression of these genes was consistent with a posteriorizing Wnt signal, we stained Xenopus tropicalis embryos by in situ hybridization to identify candidates expressed in the posterior neurectoderm (Fig. 1A). Several candidates were expressed in dorsal tissues of gastrula embryos and posteriorly in early and mid-neurula stage embryos, consistent with the expression domains of known Wnt targets. Of particular note, the transcription factors spalt-like 1 (sall1) and sall4 showed strong expression in posterior neurectoderm (Fig. 1A).

We confirmed the results of our screen by qPCR (Fig. 1B). Incubation with CHX prior to activation of TVGR in neuralized caps resulted in increased $c d x 2$ (supplementary material Fig. S3A), sall1 (supplementary material Fig. S4A) and sall4 (Fig. 1B) expression. Incubation with CHX alone did result in an increase in sall4 expression, but this was not statistically different from caps
treated with noggin alone. However, injection of $f g f 8 a$ RNA [a posteriorizing spliceform of $f g f 8$ (Fletcher et al., 2006)] was sufficient to significantly induce sall4 expression in neuralized animal caps (Fig. 1C).
The activation of sall4 by TVGR in the presence of CHX prompted us to examine whether β-catenin binds to the genomic locus of sall4. We overexpressed a C-terminal FLAG-tagged version of X. laevis β-catenin and confirmed expression by immunoblotting (supplementary material Fig. S5A). Co-injection of FLAG-tagged β-catenin RNA restored dorsal structures in embryos injected with β-catenin morpholinos (MOs) (Heasman et al., 2000), demonstrating both the specificity and activity of this construct (supplementary material Fig. S2B). Consistent with a previous report (Yost et al., 1996), injection of 500 pg RNA encoding tagged β-catenin did not significantly alter dorsal structures as measured by the dorsoanterior index (Kao and Elinson, 1985) (supplementary material Fig. S2C). The sall4 locus in X. laevis contains four exons and three introns (supplementary material Fig. S2D), with six putative TCF/LEF binding sites (Elkouby et al., 2010; McKendry et al., 1997) within the first intron (supplementary material Fig. S6). Three of these sites are tightly clustered within a 150 bp span at positions $+2347,+2387$ and +2456 (relative to the predicted transcription start site) and are conserved in X. tropicalis. Using FLAG antibodies for ChIP, this region was found to be significantly enriched compared with a negative control (Xmlc2) region (supplementary material Fig. S2E). A -2.7 kb region upstream of meis 3 was used as a positive control for β-catenin binding (Elkouby et al., 2010). Anti-FLAG pulldowns in uninjected control embryos resulted in negligible enrichment of any loci assayed. A 500 bp fragment containing these three TCF/LCF sites was cloned and used in luciferase reporter assays. This fragment was not sufficient to enhance expression upon Wnt activation alone (supplementary material Fig. S2F) but was found to be significantly responsive to Fgf (Fig. 1D). Additional experiments demonstrated that Fgf and Wnt did not result in synergistic activation of this fragment.
Taken together, these results suggest that sall4 is likely to be primarily regulated by the posterior Fgf signal and that Wnt signaling may play a minor or negligible role in its regulation.

sall4 and sall1 expression in X. laevis

During gastrulation, sall4 is expressed throughout the marginal zone and the animal pole (Fig. 2A). At stage 10, sall4 is restricted to the sensorial neurectodermal cells in animal dorsal regions (Fig. 2E). At the onset of neurulation, sall4 continues to be expressed in the sensorial neurectoderm (Fig. 2B,F,G). Neural expression of sall4 in stage 15 (mid-neurula) embryos is in the hindbrain and spinal cord anlage (Fig. 2C,H,I). In later stage neurulae (stage 18), sall4 spreads through the posterior neural tube, hindbrain, developing placodes and epidermis (Fig. 2D,J,K).

Similarly, sall1 is expressed in the dorsal ectoderm and involuting mesoderm during gastrulation (supplementary material Fig. S4B, B^{\prime}). Expression becomes restricted to the notochord and circumblastoporal collar at the early neurula stage (supplementary material Fig. S4C-C"). Like sall4, sall1 is expressed in the spinal cord anlage at mid- and late neurula stages (supplementary material Fig. S4D-E").

Sall4 is required for posterior neural differentiation but not for induction or maintenance of neural identity

Given its neural expression, we hypothesized that loss of Sall4 would affect neural patterning. To test this, we knocked down Sall4 function with MOs. Morphant embryos had neural tube

Fig. 1. Expression screen for direct transcriptional targets of Wnt signaling in neural tissue.
(A) X. tropicalis embryos stained for transcripts identified as Wnt targets by RNA-seq. Stage 10.5 embryos show dorsovegetal views with the dorsal lip toward the top. Stage 12 and 15 embryos show dorsal views with anterior toward the top. (B,C) qPCR on 15-25 animal caps treated as indicated on the x-axis. The y-axis shows expression relative to odc. $n=4$ experiments.
(D) Luciferase reporter assays in HEK293 cells treated with or without mouse Fgf. $n=3$ experiments. Error bars indicate s.e.m. All means were compared by one-way ANOVA followed by Tukey post-hoc analyses (${ }^{*} P<0.05$).
closure defects and began to disintegrate at mid-tailbud stages. The closure defect is consistent with defects in neural patterning, so we assayed several markers of neural differentiation. The pan-neural marker sox2 was expressed in the neural plate in uninjected and Sall4 morphants, demonstrating that the dorsal ectoderm of morphants still retained a neural identity (Fig. 3A,B). Conversely, the expression of n-tub, a marker for differentiating neurons, was markedly reduced although still present in the morphants,
suggesting that Sall4 is required for the second wave of neurogenesis in the tailbud tadpole (Fig. 3C,D). Another marker for early motor neuron differentiation, $n k x 6.1$, was expressed in the central nervous system of morphants, and neural crest cells were still induced as determined by the expression of snai2 (Fig. 3E,F). Although present, these markers were expressed in a pattern more similar to that of early neurulae, suggesting either a delay or failure of terminal differentiation. Sall4 morphants expressed the dorsal

Fig. 2. sall4 is expressed in the neurectoderm. (A) Stage 10 embryo stained for sall4 RNA; dorsovegetal view with the dorsal lip of the blastopore toward the top. (B-D) Dorsal views of neurula stage embryos with anterior toward the top.
(E) Sagittal section of stage 10 embryo stained for sall4 expression; animal pole is to the top and dorsal to the right. (F-K) Transverse sections at anterior (F,H,J) or posterior ($\mathrm{G}, \mathrm{I}, \mathrm{K}$) of embryos stained for sall4 as indicated in B-D. (E-K) $50 \mu \mathrm{~m}$ sections, with ($F-K$) dorsal uppermost. SNE, sensorial neurectoderm; No, notochord; S, somite; PM, paraxial mesoderm; PSM, presomitic mesoderm.
mesoderm marker myoD in a similar pattern to uninjected control embryos, and therefore the neural defects were not secondarily due to a loss of paraxial mesoderm (Fig. 3G,H).

As sall4 was identified in a screen for posterior neural genes, we predicted that Sall4 morphants would lose posterior neural identity. To test for this, we injected Sall4 MOs into one animal dorsal (A/D) cell of 4-cell stage embryos to allow for comparison between injected and uninjected sides. The injected side of embryos showed a posterior shift in expression of the hindbrain markers $g b x 2$ (Fig. 4A,B), mafb (Fig. 4D,E) and pax2 (Fig. 4J,K). Sall4 loss resulted in loss of meis 3 rhombomere expression and a reduction of its spinal cord expression domain (Fig. 4J,K). Surprisingly, overexpression of sall4 did not result in a change or shift in any of these markers (Fig. 4C,F,I,L), nor was it sufficient to rescue defects associated with Dkk1 overexpression (supplementary material Fig. S7).

The posterior shift of brain markers observed in Sall4 morphants suggested that knockdown of Sall4 results in an expansion of anterior neural identity at the expense of posterior neural differentiation. Accordingly, otx2 is expanded and krox20 is significantly shifted relative to the control side (Fig. 5A-C). Strikingly, the injected side had a significant reduction in the expression domain of the spinal cord markers hoxb9 (Fig. 5D-F), hoxcl0 (Fig. 5G-I) and hoxd10
(Fig. 5J-L). However, Sall4 knockdown does not reduce expression of the Wnt target $c d x 2$ to the same extent (supplementary material Fig. S3B,C).

Loss of Sall4 in the neural plate increases expression of the Pou5f1 homologs pou5f3.1, pou5f3.2 and pou5f3.3

The failure of Sall4 morphants to induce posterior neural identity suggested that the caudal tissue remained in an undifferentiated state. In mouse embryos, Sall4 positively regulates the stem cell factor Pou5f1 (Oct4) to maintain pluripotency (Zhang et al., 2006). One explanation for our results is that Sall4 negatively regulates the Pou5f1 homologs in neural tissue. In Xenopus, there are three class 5 Pou-domain genes that show similar sequence and ancient synteny to mammalian Pou5f1 (Morrison and Brickman, 2006). However, eutherian mammals and frogs retain different copies of the locus from the last tetrapod whole-genome duplication, and their Pou5 genes are not the simple orthologs of Pou5f1. Here, we use the term pou5f3 (as used by Xenbase.org, zfin.org) (Morrison and Brickman, 2006; Frankenberg et al., 2010).

If Sall4 negatively regulates pou5f3, then morphants should increase their expression. Indeed, knockdown of Sall4 in unilateral and bilateral injections resulted in ectopic expression of pou5f3.2 (oct25) (Fig. 6A-C), pou5f3.3 (oct60) (Fig. 6D-F)

Fig. 3. Loss of Sall4 results in a loss of neural differentiation. Whole-mount in situ hybridizations of (A,C,E,G) uninjected control (UC) embryos and (B,D,F,H) embryos injected bilaterally with 40 ng Sall4 MO ($20 \mathrm{ng} /$ blastomere at the 2-cell stage), showing expression of sox2 (A, B), n-tub (C,D), snai2 and nkx6.1 (E,F) and myoD (G,H). Dorsal views with anterior to the top. The number of embryos showing the illustrated expression pattern among the total examined is indicated top right.

Fig. 4. Expression of hindbrain markers is altered in Sall4 morphants. Whole-mount in situ hybridization of (A,D,G,J) uninjected control embryos, (B,E,H,K) embryos injected with 20 ng Sall4 MO into the right animal-dorsal (A/D) blastomere, and (C,F,I,L) embryos injected with 250 pg sall4 RNA into the right A/D blastomere, showing expression of gbx2 (A-C), mafb (D-F), pax2 (G-I) and meis3 (J-L). Dorsal views with anterior to the top.

Fig. 5. Sall4 knockdown results in a loss of spinal cord differentiation. (A-H) Whole-mount in situ hybridization of (A,C,E,G) uninjected control embryos and (B,D,F,G) embryos injected with 20 ng Sall4 MO into the right A / D blastomere. (A, B) Expression of otx2, krox20 and hoxb9. Arrows indicate the relative anteriorposterior (A-P) position of krox20 and the anterior limit of hoxb9. Dorsal views with anterior to the top. (C-H) Posterior views of hoxb9 (C,D), hoxc10 (E,F) and hoxd10 (G,H) expression. (I-L) Quantification of A-P patterning defects associated with Sall4 knockdown. (I) Distance between the anteriormost expression of otx2 and the first krox20 stripe in arbitrary units (AU). $(\mathrm{J}-\mathrm{L})$ Length of the hoxb9 (J), hoxc10 (K) and hoxd10 (L) expression domains (AU). Error bars indicate s.e.m. Means were compared between left and right sides by Student's t-test (${ }^{*} P<0.05$, ${ }^{* *} P<0.01$, ${ }^{* * *} P<0.001$). Data were generated from analyzing all embryos shown in A-H.
and pou5f3.1 (oct91) (Fig. 6G-I). Accordingly, the increase in expression of pou5f3.2 and pou5f3.1 was greatest in the neural tube, where sall4 is normally expressed. pou5f3 expression in Sall4 morphants relative to control embryos was quantified by qPCR and displayed a significant increase in all three pou5f3 genes (Fig. 6J-L). Co-injection of X. tropicalis sall4 RNA that is not targeted by the Sall4 MO resulted in a partial rescue of the pou5f3.2 expression level and a full rescue of the pou5f3.3 and pou5f3.1 expression levels.

Next, we asked whether ectopic pou5f3 expression is sufficient to block posterior neural differentiation by injecting RNA for the three pou5f3 genes unilaterally into embryos and assaying A-P neural gene expression. Neural plate cells expressing ectopic pou5f3 (as traced by β-galactosidase) had altered otx2 expression and failed to express krox20 (Fig. 7A,B), hoxb9 (Fig. 7C,D) and hoxc10 (Fig. 7E,F). This loss in A-P neural marker expression cannot be attributed to a loss of neural identity as the pou5f3-injected side of embryos broadly expresses sox2 (Fig. 7G,H).

The loss of spinal cord identity in Sall4 morphants is attributable to the overexpression of pou5f3

The observed pou5f3 increase following knockdown of Sall4 suggested a mechanism for the loss of posterior neural identity whereby the ectopic pou5f3 expression prevents differentiation of neural tissue into spinal cord. We reasoned that knocking down pou5f3 in Sall4 morphants would restore posterior neural identity. To this end, we co-injected MOs targeting the three pou5f3 homologs (Morrison and Brickman, 2006; Livigni et al., 2013) along with Sall4 MOs. Consistent with the results described above, knockdown of Sall4 resulted in loss of posterior hoxb9 (Fig. 8A,E),
hoxcl0 (Fig. 8B,F) and hoxd10 (Fig. 8C,G) but not in a loss of pan-neural sox2 (Fig. 8D,H). Co-injection of the Pou5f3 MOs with Sall4 MOs restored the spinal cord marker expression lost by Sall4 knockdown alone (Fig. 8I-K). Knockdown of Pou5f3 in Sall4 morphants did not restore krox20 stripe expression, consistent with previous work showing that Pou5f3 MOs inhibit krox20 expression (Morrison and Brickman, 2006). Although reduced, sox2 was expressed in the neural plate of Pou5f3 morphants (Fig. 8N) and Sall4-Pou5f3 double morphants (Fig. 8L). Finally, measuring the Hox gene expression domains of Sall4 and Sall4-Pou5f3 morphants revealed a significant rescue of all three spinal cord markers (Fig. 8M).

Sall4 is required for neural posteriorization by the caudalizing factors Fgf and RA

Our results demonstrate that posteriorizing factors induce Sall4 expression, which represses pou5f3, thereby allowing posterior neural differentiation. Fgf and RA signaling also posteriorize the neural plate. Therefore, we tested whether repression of pou5f3 via Sall4 is required for both Fgf- and RA-induced caudalization. We treated embryos with either $f g f 8 a$ RNA or incubation in RA. Again, Sal14 knockdown resulted in loss of hoxb9 (Fig. 9A,B) without major alterations to sox2 (Fig. 9E,F). Overexpression of $f g f 8 a$ in the dorsal ectoderm resulted in expansion of sox2 and hoxb9, a lateral expansion of krox20, and repression of otx2 (Fig. 9C) (Fletcher et al., 2006). These expansions are due to the long-range effects of overexpressing the secreted Fgf ligand. However, overexpressing $f g f 8 a$ in Sall4 morphants still resulted in otx2 (brain) repression, but hoxb9 (spinal cord) was lost (Fig. 9D). krox20 expression in rhombomere 5 was severely reduced in the Sall4 morphants despite $f g f 8 a$ overexpression,

Fig. 6. Knockdown of Sall4 causes an increase in pou5f3 expression. (A-I) Whole-mount in situ hybridization of (A,D,G) uninjected control embryos, (B,E,H) embryos injected with 20 ng Sall4 MO into the right A/D blastomere, and (C,F,I) embryos injected bilaterally with $40 \mathrm{ng} \mathrm{Sall} 4 \mathrm{MO}(20 \mathrm{ng} / \mathrm{blastomere}$ at the 2-cell stage), showing expression of (A-C) pou5f3.2, (D-F) pou5f3.3 and (G-I) pou5f3.1. Dorsal views, anterior to the top. (J-L) qPCR for pou5f3.2 (J), pou5f3.3 (K) or pou5f3.1 (L) in uninjected embryos, embryos injected with 40 ng Sall4 MO ($20 \mathrm{ng} / \mathrm{blastomere}$ at the 2-cell stage), and embryos injected with 40 ng Sall4 MO ($20 \mathrm{ng} / \mathrm{blastomere}$ at the 2-cell stage) plus 500 pg X. tropicalis sall4 RNA ($250 \mathrm{pg} /$ animal-dorsal blastomere at the 4 -cell stage). The expression is relative to odc. Error bars indicate s.e.m. Means compared with uninjected control by one-way ANOVA followed by Tukey post-hoc analyses (${ }^{*} P<0.05$). $n=4$ experiments.
whereas rhombomere 3 expression remained expanded, probably owing to the specific posteriorizing effects of Sall4. Morphants typically had a posterior shift and reduction in rhombomere 5 krox20 expression, whereas expression in rhombomere 3 was shifted but not reduced (Fig. 5B).

Increasing RA signaling results in severe loss of anterior neural tissue and expansion of posterior identities (Durston et al., 1989; Sive et al., 1990; Ruiz i Altaba and Jessell, 1991; Blumberg et al., 1997; Shiotsugu et al., 2004). To test whether Sall4 is required for posteriorization via RA, we treated control embryos and Sall4 morphants with all-trans retinoic acid (ATRA). Uninjected control embryos treated with $1 \mu \mathrm{M}$ ATRA lacked otx2 and krox20 but sustained hoxb9 expression (Fig. 9I). However, $1 \mu \mathrm{M}$ ATRA treatment of Sall4 morphant embryos repressed otx2 and krox20 but also failed to induce the caudally expressed marker hoxb9 (Fig. 9J). The reduction of these markers was not due to a loss of neural tissue as sox2 expression was similar between control embryos, embryos treated with ATRA, and Sall4 morphant embryos treated with ATRA (Fig. 9E,K,L).

DISCUSSION

Wnt, Fgf and RA signaling are caudalizing factors required for posteriorization of the neural plate. However, the transcription factors identified as mediating the patterning signals from these pathways have largely been restricted to those specifying midbrain and hindbrain fates. In this study, we identify sall4 as a posteriorizing factor target required for spinal cord differentiation. The primary role of Sall4 in neural patterning is to repress pou5f3 (oct4). This repression is necessary for spinal cord differentiation; Sall4 knockdown (Fig. 5E,H,K), as well as pou5f3 overexpression
(Fig. 7D,F), results in loss of spinal cord fate. Furthermore, the posterior defects in Sall4 morphants can be rescued via pou5f3 knockdown (Fig. 8I-K). We suggest that repression of pou5f3 via Sall4 provides a permissive environment allowing cells in the neural plate to respond to instructive signals from Fgf, RA and Wnt. This model fits with the observation that overexpression of sall4 did not result in a perturbation of A-P hindbrain marker expression (Fig. 4). If the main role of Sall4 in neural patterning is to repress pou $5 f 3$, then overexpression is unlikely to have a significant effect on otherwise normal embryos. Further, this model predicts that Sall4 would not rescue a Wnt loss-of-function phenotype since it is functioning as a permissive and not as an instructive signal. Another prediction is that Sall4 is required for adoption of posterior fates by multiple posteriorizing signals. Therefore, an increase in pou5f3 expression after Sall4 knockdown would inhibit differentiation induced by other caudalizing factors. Indeed, we found Sall4 knockdown prevented induction of hoxb9 by Fgf or RA (Fig. 9D,J).

Our findings build upon previously described mechanisms of posterior neural patterning. Wnt activates $c d x 1$ (Prinos et al., 2001; Pilon et al., 2007) and, in frogs, Cdx1 represses pou5f3 gene expression at the onset of gastrulation (Rousso et al., 2011). However, knockdown of Cdx1 does not result in a loss of spinal cord differentiation, and combinatorial knockdown of $\mathrm{Cdx} 1 / 2 / 4$ is required before hoxb9 and hoxc10 are reduced (Faas and Isaacs, 2009). There is, however, a dramatic loss of hoxb9, hoxc10 and hoxd10 in Sall4 morphants. In the absence of Sall4, pou5f3 expression remains high, resulting in neural cells being unable to commit to a posterior neural fate and differentiate into spinal cord. Several studies have shown that Cdx factors regulate posterior Hox gene expression in vertebrates (Isaacs et al., 1998; van den

Akker et al., 2002; Gaunt et al., 2004, 2008). Therefore, Wnt acts as an instructive signal through the activation of Cdx genes to induce posterior Hox genes and thereby transform the neural precursors into a posterior fate. Here, we find that sall4 represses pou5f3, providing a parallel, permissive signal for posterior Hox gene expression. Wnt still signals in the posterior neural regions of Sall4 morphants, activating Cdx genes (supplementary material Fig. S3B,C), but the prolonged expression of pou5f3 prevents Hox gene expression. Conversely, it is likely that sall4 is still expressed in Cdx morphants, priming the neural plate to respond to other instructive signals. This could explain why knockdown of individual Cdx homologs results in unexpectedly mild phenotypes.

Posteriorizing signals regulate sall4 expression

Our work found sall4 to be activated by Fgf signaling in the neurectoderm. However, our finding that a 500 bp fragment in the first intron of sall4 is enriched in β-catenin ChIP is consistent with it being a Wnt target (supplementary material Fig. S2E). However, this region does not mediate a Wnt-induced signal. Interestingly, we found that this region does show responsiveness to Fgf signaling. Taken together, these experiments show that Fgf is the primary posteriorizing signal that regulates sall4 expression and that Wnt either plays a minor role or does not regulate sall4 during early neural patterning.

The broad expression of sall4 at early neurula stages (Fig. 2B) and later in limbs during Xenopus development and regeneration (Neff et al., 2011) suggests regulation through different enhancers, each responsible for discrete expression domains. This is the case with the neural expression of Sox2 in the chick, which is regulated by five different enhancers, each responsible for a portion of the full expression domain (Uchikawa et al., 2003). Fgf signaling is sufficient to posteriorize neurectoderm (Kengaku and Okamoto, 1995; Lamb and Harland, 1995; Christen and Slack, 1997; Fletcher et al., 2006), and we found that this activity requires Sall4. Therefore, it is possible that Fgf and Wnt signaling converge on other, as yet unidentified, enhancers to regulate sall4 expression. Indeed, Fgf and Wnt signaling converge on one enhancer in the chick sox2 gene to mediate the most posterior expression of sox2 in the neural plate (Takemoto et al., 2006). Likewise, Wnt and Fgf response elements in the enhancers of pax3 and zic genes cooperatively regulate their expression (Garnett et al., 2012), and both pathways mediate expression of these genes at the neural plate border (Monsoro-Burq et al., 2005).

A-P neural patterning requires downregulation of pluripotency factors

In amphibians, caudalization of the neural plate via Fgf and canonical Wnt signaling induces undifferentiated neural precursors to commit to posterior fates. This induction requires repression of stem cell factors and the activation of differentiation factors. pou5f3 (oct4) genes are first expressed animally in cleavage stages and throughout the mesoderm and ectoderm of amphibian gastrulae (Frank and Harland, 1992; Morrison and Brickman, 2006). Knockdown of Pou91 (Pou5f3.1), Pou60 (Pou5f3.3) and Pou25 (Pou5f3.2) results in precocious cell fate commitment in the three germ layers (Morrison and Brickman, 2006; Snir et al., 2006). Accordingly, pou5f3 overexpression prolongs the undifferentiated state (Morrison and Brickman, 2006; Archer et al., 2011). Our results suggest that pou5f3 expression must be downregulated in the neurectoderm to allow for cells to respond to instructive Wnt/Fgf/ RA signals and commit to posterior fates.

Fig. 7. Overexpression of pou5f3 represses neural differentiation. Whole-mount in situ hybridization of (A,C,E,G) uninjected control embryos and (B,D,F,H) embryos injected with 150 pg pou5f3 RNA (50 pg each of pou5f3.2, pou5f3.3 and pou5f3.1 RNAs) into the right A/D blastomere. Red staining is β-galactosidase used as a tracer for RNA injection. ($C^{\prime}-F^{\prime}$) Higher magnification views of the boxed regions in C-F. (A-D) otx2, krox20 and hoxb9 expression in anterior (A,B) or dorsal (C,D) view. (E-H) hoxc10 (E,F) and sox2 (G,H) expression in dorsal view.

Several studies have demonstrated the role for the pou5f3 genes in maintaining pluripotency in Xenopus. In the early embryo, Oct25 (Pou5f3.2) and Oct60 (Pou5f3.3) were found to antagonize VegT and Wnt/ β-catenin signaling to prevent precocious germ layer fates (Cao et al., 2007) and overexpression of Oct25 activates Xvent-2B, resulting in a failure of neurectoderm to differentiate (Cao et al., 2004). Further, the histone methyltransferase Suv4-20h has been demonstrated to directly repress oct 25 to allow for neural differentiation in Xenopus eye development (Nicetto et al., 2013). These studies all support a conserved role of pou5f3 genes in pluripotency (Morrison and Brickman, 2006; Cao et al., 2007). Our results are consistent with the model; we find that the ectopic expression of pou5f3 following knockdown of Sall4 results in the neurectoderm failing to differentiate in response to transforming signals.
Injection of pou5f3 RNA results in more severe anterior defects than does Sall4 knockdown. This is likely to be due to higher levels of pou5f3 expression following RNA injection (Fig. 7). Indeed, since the Pou5f3 family inhibits Fgf signaling (Cao et al., 2006; Snir

Fig. 8. Loss of spinal cord in Sall4 morphants is due to an increase in pou5f3 expression. (A-L) Whole-mount in situ hybridization of (A-D) uninjected control embryos, (E-H) embryos injected with 40 ng Sall4 MO ($20 \mathrm{ng} /$ blastomere at the 2 -cell stage), or (I-L) embryos injected with 40 ng Sall4 MO, 20 ng Pou5f3.2 MO, 10 ng Pou5f3.3a MO, 10 ng Pou5f3.3b MO, and 20 ng Pou5f3.1 MO. (N) Embryos injected with 20 ng Pou5f3.2 MO, 10 ng Pou5f3.3a MO, 10 ng Pou5f3.3b MO and 20 ng Pou5f3.1 MO. Expression is shown for (A,E,I) otx2, krox20 and hoxb9, (B,F,J) hoxc10, (C,G,K) hoxd10 and (D,H,L,N) sox2. Dorsal views with anterior to the top. (M) Quantification of posterior neural gene expression as measured by expression domain length in arbitrary units (AU). White, uninjected control embryos. Gray, embryos injected with 40 ng Sall4 MO ($20 \mathrm{ng} /$ blastomere at the 2-cell stage). Black, embryos injected with 40 ng Sall4 MO, 20 ng Pou5f3.2 MO, 10 ng Pou5f3.3a MO, 10 ng Pou5f3.3b MO and 20 ng Pou5f3.1 MO. Error bars indicate s.e.m. Means compared with uninjected control by one-way ANOVA followed by Tukey post-hoc analyses (*** $P<0.001$). Data were generated from analyzing all embryos shown in $\mathrm{A}-\mathrm{C}, \mathrm{E}-\mathrm{G}$, and $\mathrm{I}-\mathrm{K}$.
et al., 2006), the disruption of krox20 expression in the pou5f3injected embryos is likely to be due to ectopic Pou5f3 inhibiting hindbrain patterning mediated by Fgf from the isthmus.

The class 5 Pou-domain factors play a conserved role in maintaining pluripotency in Xenopus. Here, we show that Sall4 mediates the transition between pluripotency maintenance and differentiation in the neural plate via repression of pou5f3. How Sall4 regulates pou5f3and whether this is a general role for Sall4 or specific to the neurectoderm remains to be elucidated.

MATERIALS AND METHODS

Embryo and explant culture

X. laevis embryos were obtained (Sive et al., 2010) and staged (Nieuwkoop and Faber, 1967) as described previously. Ectodermal explants (animal caps) were cut using fine watchmaker's forceps from stage 9 embryos and cultured in $0.75 \times$ NAM (Sive et al., 2010).

Cloning and DNA constructs

A cDNA clone of X. tropicalis sall4 (CT025472) was identified in a full-length cDNA collection generated from gastrula embryos (Gilchrist et al., 2004). The coding sequence was subcloned into CS-108 (DQ649433.1) with SaII and XhoI using primers ($5^{\prime}-3^{\prime}$): forward, CGATGTCGACGGACCATGTCGAGGCGAAAGCAGCC; and reverse, ATCGATCCTCGAGTTActtatcgtcgtcatcettgtaatcGTTCACCGCAATATTTT. The coding sequence of X. laevis β-catenin was amplified with a FLAG epitope using: forward, GCATGAATTCCCACCATGGCAACTCAAGCAGATCT; and reverse, GCTA GCGGCCGCTTActtatcgtcgtcatcettgtaatcCAAGTCAGTGTCAAACCAGG; it was then subcloned into CS-108 with EcoRI and NotI. Lowercase sequence delineates the FLAG epitope and underlined sequences are restriction sites. X. laevis sall4 was PCR amplified with primers: forward, CTTGGTGCGCACTTATCTCA; and reverse, GCCTCAGATTGTGTGGGACT; it was then cloned into pCR TOPO II (Invitrogen) for the generation of antisense RNA probes.

RNA and MO microinjections

Capped RNAs were synthesized using mMessage mMachine (Ambion). sall4 CS-108, fgf8a CS-108, noggin CS-108 and β-catenin CS-108 were linearized with AscI and transcribed with SP6 RNA polymerase. The pou5f3 plasmids (a gift from Joshua Brickman, University of Copenhagen), TVGR (Darken and Wilson, 2001) and nuclear β-galactosidase CS2+ were linearized with NotI and transcribed with SP6. All RNAs were injected in 5 or 10 nl bursts along with $G F P$ and lacZ RNAs, which served as tracers.

The Sall4 MO oligonucleotide (5^{\prime}-GCCAATTATTCCCTTTCTCCACC-AC-3'; Gene Tools) and the Pou5f3 MOs (a gift from Joshua Brickman) (Livigni et al., 2013; Morrison and Brickman, 2006) were injected in 5 or 10 nl along with fluoresceinated control MO (Gene Tools) to serve as a tracer.

Cycloheximide and dexamethasone treatments

noggin (10 pg) and TVGR (4 pg), an inducible Wnt agonist (Darken and Wilson, 2001), RNAs were injected animally into both blastomeres of 2-cell embryos (Fig. 1A). At stage 9, animal caps were cultured with or without $10 \mu \mathrm{M}$ dexamethasone (DEX) (Sigma) to activate Wnt signaling (Darken and Wilson, 2001). To block translation, caps were pre-treated with $5 \mu \mathrm{M}$ cycloheximide (CHX) (Sigma) for 1.5 h prior to DEX addition (Obrig et al., 1971). Animal caps were cultured until stage 15 equivalent and total RNA was harvested using Trizol (Invitrogen).

Whole-mount in situ hybridization

Embryos were stained by in situ hybridization as described (Harland, 1991). β-galactosidase staining was as described (Fletcher et al., 2006). Embryos for sectioning were mounted in a PBS solution containing 20% sucrose, 30% BSA and 4.9% gelatin, and fixed with 1.5% glutaraldehyde. Embedded embryos were sectioned on a Pelco 101 vibratome.

RT-PCR and qPCR

RNA was isolated from whole embryos or animal caps using Trizol and $1 \mu \mathrm{~g}$ total RNA was reverse transcribed with either MMLV reverse transcriptase

Fig. 9. Fgf and RA signaling fail to posteriorize Sall4 morphants. Whole-mount in situ hybridization of (A,E) uninjected control embryos, (B,F) embryos injected with 40 ng Sall4 MO ($20 \mathrm{ng} /$ blastomere at the 2-cell stage), (C,G) embryos injected with 50 pg fgf8a RNA into the right A/D blastomere, (D,H) embryos injected with 40 ng Sall4 MO ($20 \mathrm{ng} / \mathrm{blastomere}$ at the 2-cell stage) and 50 pg fgf8a RNA into the right A/D blastomere, (I, K) embryos treated with $1 \mu \mathrm{M}$ all-trans retinoic acid (ATRA) and (J,L) embryos injected with 40 ng Sall4 MO ($20 \mathrm{ng} / \mathrm{blastomere}$ at the 2 -cell stage) and treated with $1 \mu \mathrm{M} \mathrm{ATRA}$. Expression is shown for (A-D,I,J) otx2, krox20 and hoxb9 or (E-H,K,L) sox2. Arrowheads indicate the posterior limit of otx2 expression. Dorsal views, anterior to the top.
(Promega) for semi-quantitative PCR or iScript (Bio-Rad) for quantitative PCR (qPCR). Semi-quantitative PCRs included [$\left.{ }^{32} \mathrm{P}\right]$ dCTP (PerkinElmer) in the reaction and were analyzed during the \log phase of amplification. qPCR reactions were amplified on a CFX96 light cycler (Bio-Rad). ornithine decarboxylase (odc) and elongation factor 1al (eeflal) were used for internal controls. All primers annealed at $60^{\circ} \mathrm{C}$ and are listed in supplementary material Table S1.

RNA-seq

RNA-seq was performed as described (Dichmann and Harland, 2012). Single-end 76-bp reads were sequenced on an Illumina Genome Analyzer II. All reads were mapped to an index created from a collection of full-length X. laevis mRNA sequences (NCBI, http://xgc.nci.nih.gov) using TOPHAT and BOWTIE (Langmead et al., 2009; Trapnell et al., 2009). Analysis of transcript abundance employed CUFFDIFF (Trapnell et al., 2010).

Chromatin immunoprecipitation (ChIP)

FLAG- β-catenin RNA-injected embryos were prepared for ChIP as described (Blythe et al., 2009). Chromatin shearing used a Branson Model 450 digital sonifier with a Model 102C probe for 24 ten-second bursts set at 30% amplitude. ChIP DNA was quantified with SYBR Green PCR mix (Bio-Rad) on a CFX96 light cycler (Bio-Rad). Enrichment was calculated by comparing the percentage input among ChIP samples. Uninjected embryos served as a control for non-specific binding. Xmlc2 (Blythe et al., 2009) and meis3 (Elkouby et al., 2010) served as negative and positive controls, respectively, for β-catenin binding.

Luciferase assays and mutagenesis

A 500 bp fragment containing three putative TCF/LEF sites in sall4 intron 1 (Scaffold 1115: 234, 269-234, 644) was cloned into the pGL4. 23 luciferase reporter (Promega) with $S a c \mathrm{I}$ and $X h o \mathrm{I}$ (NEB). Each of the three sites was mutagenized using $P f x$ polymerase (Invitrogen) according to the manufacturer's instructions. HEK293 cells were transfected with $0.1 \mu \mathrm{~g}$ each of pGL4.23 and pLR-CMV (Promega) and treated with $0.1 \mu \mathrm{~g}$ mouse Fgf or $50 \mu \mathrm{M} \mathrm{BIO}$ (Cayman). Relative luciferase units were measured on a Turner Design TD-20/20 luminometer using the Dual Luciferase Assay Kit (Promega).

Acknowledgements

We thank Joshua Brickman for the Pou5f3 MOs and plasmids; Elena Casey for the pou91 clone; Rakhi Gupta and Julie Baker for technical assistance with ChIP; and Darwin Dichman and Sofia Medina-Ruiz for computational assistance.

Competing interests

The authors declare no competing financial interests.

Author contributions

J.J.Y. and R.M.H. designed the experiments with contributions from R.A.S.K. and N.R.K. J.J.Y., R.A.S.K., N.K.R. and S.D.M. carried out all experiments. J.J.Y., R.A.S.K., N.R.K., S.D.M. and R.M.H. analyzed all data generated from the experiments. J.J.Y. and R.M.H. wrote the paper incorporating comments from R.A.S.K., N.R.K. and S.D.M.

Funding

This work was supported by a National Institutes of Health grant [GM42341] to R.M.H. Deposited in PMC for release after 12 months.

Supplementary material

Supplementary material available online at
http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.099374/-/DC1

References

Archer, T. C., Jin, J. and Casey, E. S. (2011). Interaction of Sox1, Sox2, Sox3 and Oct4 during primary neurogenesis. Dev. Biol. 350, 429-440.
Blumberg, B., Bolado, J., Moreno, T. A., Kintner, C., Evans, R. M. and Papalopulu, N. (1997). An essential role for retinoid signaling in anteroposterior neural patterning. Development 124, 373-379.
Blythe, S. A., Reid, C. D., Kessler, D. S. and Klein, P. S. (2009). Chromatin immunoprecipitation in early Xenopus laevis embryos. Dev. Dyn. 238, 1422-1432.
Böhm, J., Buck, A., Borozdin, W., Mannan, A. U., Matysiak-Scholze, U., Adham, I., Schulz-Schaeffer, W., Floss, T., Wurst, W., Kohlhase, J. et al. (2008). Sall1, sall2, and sall4 are required for neural tube closure in mice. Am. J. Pathol. 173, 1455-1463.
Cao, Y., Knöchel, S., Donow, C., Miethe, J., Kaufmann, E. and Knöchel, W. (2004). The POU factor Oct-25 regulates the Xvent-2B gene and counteracts terminal differentiation in Xenopus embryos. J. Biol. Chem. 279, 43735-43743.
Cao, Y., Siegel, D. and Knöchel, W. (2006). Xenopus POU factors of subclass V inhibit activin/nodal signaling during gastrulation. Mech. Dev. 123, 614-625.
Cao, Y., Siegel, D., Donow, C., Knöchel, S., Yuan, L. and Knöchel, W. (2007). POU-V factors antagonize maternal VegT activity and beta-Catenin signaling in Xenopus embryos. EMBO J. 26, 2942-2954.
de Celis, J. F. and Barrio, R. (2009). Regulation and function of Spalt proteins during animal development. Int. J. Dev. Biol. 53, 1385-1398.
Christen, B. and Slack, J. M. W. (1997). FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus. Dev. Biol. 192, 455-466.
Cox, W. G. and Hemmati-Brivanlou, A. (1995). Caudalization of neural fate by tissue recombination and bFGF. Development 121, 4349-4358.
Darken, R. S. and Wilson, P. A. (2001). Axis induction by wnt signaling: target promoter responsiveness regulates competence. Dev. Biol. 234, 42-54.

Dichmann, D. S. and Harland, R. M. (2012). fus/TLS orchestrates splicing of developmental regulators during gastrulation. Genes Dev. 26, 1351-1363.
Domingos, P. M., Itasaki, N., Jones, C. M., Mercurio, S., Sargent, M. G., Smith, J. C. and Krumlauf, R. (2001). The Wnt/beta-catenin pathway posteriorizes neural tissue in Xenopus by an indirect mechanism requiring FGF signalling. Dev. Biol. 239, 148-160.
Durston, A. J., Timmermans, J. P. M., Hage, W. J., Hendriks, H. F. J., de Vries, N. J., Heideveld, M. and Nieuwkoop, P. D. (1989). Retinoic acid causes an anteroposterior transformation in the developing central nervous system. Nature 340, 140-144.
Elkouby, Y. M., Elias, S., Casey, E. S., Blythe, S. A., Tsabar, N., Klein, P. S., Root, H., Liu, K. J. and Frank, D. (2010). Mesodermal Wnt signaling organizes the neural plate via Meis3. Development 137, 1531-1541.
Elkouby, Y. M., Polevoy, H., Gutkovich, Y. E., Michaelov, A. and Frank, D. (2012). A hindbrain-repressive Wnt3a/Meis3/Tsh1 circuit promotes neuronal differentiation and coordinates tissue maturation. Development 139, 1487-1497.
Elul, T., Koehl, M. A. R. and Keller, R. (1997). Cellular mechanism underlying neural convergent extension in Xenopus laevis embryos. Dev. Biol. 191, 243-258.
Erter, C. E., Wilm, T. P., Basler, N., Wright, C. V. and Solnica-Krezel, L. (2001). Wnt8 is required in lateral mesendodermal precursors for neural posteriorization in vivo. Development 128, 3571-3583.
Eyal-Giladi, H. (1954). Dynamic aspects of neural induction in amphibia. Arch. Biol. (Liege) 65, 179-259.
Faas, L. and Isaacs, H. V. (2009). Overlapping functions of Cdx1, Cdx2, and Cdx4 in the development of the amphibian Xenopus tropicalis. Dev. Dyn. 238, 835-852.
Fletcher, R. B., Baker, J. C. and Harland, R. M. (2006). FGF8 spliceforms mediate early mesoderm and posterior neural tissue formation in Xenopus. Development 133, 1703-1714.
Frank, D. and Harland, R. M. (1992). Localized expression of a Xenopus POU gene depends on cell-autonomous transcriptional activation and induction-dependent inactivation. Development 115, 439-448.
Frankenberg, S., Pask, A. and Renfree, M. B. (2010). The evolution of class V POU domain transcription factors in vertebrates and their characterisation in a marsupial. Dev. Biol. 337, 162-170.
Garnett, A. T., Square, T. A. and Medeiros, D. M. (2012). BMP, Wnt and FGF signals are integrated through evolutionarily conserved enhancers to achieve robust expression of Pax3 and Zic genes at the zebrafish neural plate border. Development 139, 4220-4231.
Gaunt, S. J., Cockley, A. and Drage, D. (2004). Additional enhancer copies, with intact cdx binding sites, anteriorize Hoxa-7/lacZ expression in mouse embryos: evidence in keeping with an instructional cdx gradient. Int. J. Dev. Biol. 48, 613-622.
Gaunt, S. J., Drage, D. and Trubshaw, R. C. (2008). Increased Cdx protein dose effects upon axial patterning in transgenic lines of mice. Development 135, 2511-2520.
Gilchrist, M. J., Zorn, A. M., Voigt, J., Smith, J. C., Papalopulu, N. and Amaya, E. (2004). Defining a large set of full-length clones from a Xenopus tropicalis EST project. Dev. Biol. 271, 498-516.
Harland, R. M. (1991). In situ hybridization: an improved whole-mount method for Xenopus embryos. Methods Cell Biol. 36, 685-695.
Heasman, J., Kofron, M. and Wylie, C. (2000). Beta-catenin signaling activity dissected in the early Xenopus embryo: a novel antisense approach. Dev. Biol. 222, 124-134.
Hemmati-Brivanlou, A. and Melton, D. A. (1994). Inhibition of activin receptor signaling promotes neuralization in Xenopus. Cell 77, 273-281.
Hemmati-Brivanlou, A., Kelly, O. G. and Melton, D. A. (1994). Follistatin, an antagonist of activin, is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77, 283-295.
Hollemann, T., Schuh, R., Pieler, T. and Stick, R. (1996). Xenopus Xsal-1, a vertebrate homolog of the region specific homeotic gene spalt of Drosophila. Mech. Dev. 55, 19-32.
Isaacs, H. V., Pownall, M. E. and Slack, J. M. (1998). Regulation of Hox gene expression and posterior development by the Xenopus caudal homologue Xcad3. EMBO J. 17, 3413-3427.
Itoh, K. and Sokol, S. Y. (1997). Graded amounts of Xenopus dishevelled specify discrete anteroposterior cell fates in prospective ectoderm. Mech. Dev. 61, 113-125.
Kao, K. R. and Elinson, R. P. (1985). Alteration of the anterior-posterior embryonic axis: the pattern of gastrulation in macrocephalic frog embryos. Dev. Biol. 107, 239-251.
Kengaku, M. and Okamoto, H. (1995). bFGF as a possible morphogen for the anteroposterior axis of the central nervous system in Xenopus. Development 121, 3121-3130.
Khokha, M. K., Yeh, J., Grammer, T. C. and Harland, R. M. (2005). Depletion of three BMP antagonists from Spemann's organizer leads to a catastrophic loss of dorsal structures. Dev. Cell 8, 401-411.
Kiecker, C. and Niehrs, C. (2001). A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128, 4189-4201.

Kiefer, S. M., McDill, B. W., Yang, J. and Rauchman, M. (2002). Murine Sall1 represses transcription by recruiting a histone deacetylase complex. J. Biol. Chem. 277, 14869-14876.
Kohlhase, J., Wischermann, A., Reichenbach, H., Froster, U. and Engel, W. (1998). Mutations in the SALL1 putative transcription factor gene cause Townes-Brocks syndrome. Nat. Genet. 18, 81-83.
Kohlhase, J., Heinrich, M., Schubert, L., Liebers, M., Kispert, A., Laccone, F., Turnpenny, P., Winter, R. M. and Reardon, W. (2002). Okihiro syndrome is caused by SALL4 mutations. Hum. Mol. Genet. 11, 2979-2987.
Kolm, P. J., Apekin, V. and Sive, H. (1997). Xenopus hindbrain patterning requires retinoid signaling. Dev. Biol. 192, 1-16.
Lamb, T. M. and Harland, R. M. (1995). Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior-posterior neural pattern. Development 121, 3627-3636.
Lamb, T. M., Knecht, A. K., Smith, W. C., Stachel, S. E., Economides, A. N., Stahl, N., Yancopolous, G. D. and Harland, R. M. (1993). Neural induction by the secreted polypeptide noggin. Science 262, 713-718.
Langmead, B., Trapnell, C., Pop, M. and Salzberg, S. L. (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25.
Lauberth, S. M. and Rauchman, M. (2006). A conserved 12-amino acid motif in Sall1 recruits the nucleosome remodeling and deacetylase corepressor complex. J. Biol. Chem. 281, 23922-23931.

Lauberth, S. M., Bilyeu, A. C., Firulli, B. A., Kroll, K. L. and Rauchman, M. (2007). A phosphomimetic mutation in the Sall1 repression motif disrupts recruitment of the nucleosome remodeling and deacetylase complex and repression of Gbx2. J. Biol. Chem. 282, 34858-34868.

Li, B., Kuriyama, S., Moreno, M. and Mayor, R. (2009). The posteriorizing gene Gbx2 is a direct target of Wnt signalling and the earliest factor in neural crest induction. Development 136, 3267-3278.
Lim, C. Y., Tam, W.-L., Zhang, J., Ang, H. S., Jia, H., Lipovich, L., Ng, H.-H., Wei, C.-L., Sung, W. K., Robson, P. et al. (2008). Sall4 regulates distinct transcription circuitries in different blastocyst-derived stem cell lineages. Cell Stem Cell 3, 543-554.
Livigni, A., Peradziryi, H., Sharov, A. A., Chia, G., Hammachi, F., Migueles, R. P., Sukparangsi, W., Pernagallo, S., Bradley, M., Nichols, J. et al. (2013). A conserved Oct4/POUV-dependent network links adhesion and migration to progenitor maintenance. Curr. Biol. 23, 2233-2244.
Lu, J., Jeong, H. W., Kong, N., Yang, Y., Carroll, J., Luo, H. R., Silberstein, L. E. and Yupoma, L. (2009). Stem cell factor SALL4 represses the transcriptions of PTEN and SALL1 through an epigenetic repressor complex. PLoS ONE 4, e5577.
McGrew, L. L., Lai, C.-J. and Moon, R. T. (1995). Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin. Dev. Biol. 172, 337-342.
McKendry, R., Hsu, S.-C., Harland, R. M. and GrosschedI, R. (1997). LEF-1/TCF proteins mediate wnt-inducible transcription from the Xenopus nodal-related 3 promoter. Dev. Biol. 192, 420-431.
Monsoro-Burq, A.-H., Wang, E. and Harland, R. (2005). Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction. Dev. Cell 8, 167-178.
Morrison, G. M. and Brickman, J. M. (2006). Conserved roles for Oct4 homologues in maintaining multipotency during early vertebrate development. Development 133, 2011-2022.
Neff, A. W., King, M. W. and Mescher, A. L. (2011). Dedifferentiation and the role of sall4 in reprogramming and patterning during amphibian limb regeneration. Dev. Dyn. 240, 979-989.
Nicetto, D., Hahn, M., Jung, J., Schneider, T. D., Straub, T., David, R., Schotta, G. and Rupp, R. A. W. (2013). Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene. PLoS Genet. 9, e1003188.
Nieuwkoop, P. D. (1952). Activation and organization of the central nervous system in amphibians. Part III. Synthesis of a new working hypothesis. J. Exp. Zool. 120, 83-108.
Nieuwkoop, P. D. and Faber, J. (1967). Normal Table of Xenopus Laevis (Daudin). New York: Garland Publishing.
Nieuwkoop, P. D., Boterenbrood, E. C., Kremer, A., Bloemsma, F. F. S. N., Hoessels, E. L. M. J., Meyer, G. and Verheyen, F. J. (1952a). Activation and organization of the central nervous system in amphibians. Part I. Induction and activation. J. Exp. Zool. 120, 1-31.
Nieuwkoop, P. D., Boterenbrood, E. C., Kremer, A., Bloemsma, F. F., Hoessels, E. L. M. J., Meyer, G. and Verheyen, F. J. (1952b). Activation and organization of the central nervous system in amphibians. Part II. Differentiation and organization. J. Exp. Zool. 120, 33-81.
Obrig, T. G., Culp, W. J., McKeehan, W. L. and Hardesty, B. (1971). The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes. J. Biol. Chem. 246, 174-181.
Onai, T., Sasai, N., Matsui, M. and Sasai, Y. (2004). Xenopus XsalF: anterior neuroectodermal specification by attenuating cellular responsiveness to Wnt signaling. Dev. Cell 7, 95-106.

Onuma, Y., Nishinakamura, R., Takahashi, S., Yokota, T. and Asashima, M. (1999). Molecular cloning of a novel Xenopus spalt gene (Xsal-3). Biochem. Biophys. Res. Commun. 264, 151-156.
Pilon, N., Oh, K., Sylvestre, J.-R., Bouchard, N., Savory, J. and Lohnes, D. (2006). Cdx4 is a direct target of the canonical Wnt pathway. Dev. Biol. 289, 55-63.

Pilon, N., Oh, K., Sylvestre, J.-R., Savory, J. G. A. and Lohnes, D. (2007). Wnt signaling is a key mediator of Cdx1 expression in vivo. Development 134, 2315-2323.
Prinos, P., Joseph, S., Oh, K., Meyer, B. I., Gruss, P. and Lohnes, D. (2001). Multiple pathways governing Cdx1 expression during murine development. Dev. Biol. 239, 257-269.
Ribisi, S., Mariani, F. V., Aamar, E., Lamb, T. M., Frank, D. and Harland, R. M. (2000). Ras-mediated FGF signaling is required for the formation of posterior but not anterior neural tissue in Xenopus laevis. Dev. Biol. 227, 183-196.
Rousso, S. Z., Ben-Haroush Schyr, R., Gur, M., Zouela, N., Kot-Leibovich, H., Shabtai, Y., Koutsi-Urshanski, N., Baldessari, D., Pillemer, G., Niehrs, C. et al. (2011). Negative autoregulation of Oct3/4 through Cdx1 promotes the onset of gastrulation. Dev. Dyn. 240, 796-807.
Ruiz i Altaba, A. and Jessell, T. M. (1991). Retinoic acid modifies the pattern of cell differentiation in the central nervous system of neurula stage Xenopus embryos. Development 112, 945-958.
Sakaki-Yumoto, M., Kobayashi, C., Sato, A., Fujimura, S., Matsumoto, Y., Takasato, M., Kodama, T., Aburatani, H., Asashima, M., Yoshida, N. et al. (2006). The murine homolog of SALL4, a causative gene in Okihiro syndrome, is essential for embryonic stem cell proliferation, and cooperates with Sall1 in anorectal, heart, brain and kidney development. Development 133, 3005-3013.
Sasai, Y., Lu, B., Steinbeisser, H., Geissert, D., Gont, L. K. and De Robertis, E. M. (1994). Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79, 779-790.
Shiotsugu, J., Katsuyama, Y., Arima, K., Baxter, A., Koide, T., Song, J., Chandraratna, R. A. S. and Blumberg, B. (2004). Multiple points of interaction between retinoic acid and FGF signaling during embryonic axis formation. Development 131, 2653-2667.
Simeone, A. (2000). Positioning the isthmic organizer where Otx2 and Gbx2meet. Trends Genet. 16, 237-240.
Sive, H. L., Draper, B. W., Harland, R. M. and Weintraub, H. (1990). Identification of a retinoic acid-sensitive period during primary axis formation in Xenopus laevis. Genes Dev. 4, 932-942.
Sive, H. L., Grainger, R. M. and Harland, R. M. (2010). Early Development of Xenopus Laevis. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Snir, M., Ofir, R., Elias, S. and Frank, D. (2006). Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates. EMBO J. 25, 3664-3674.
Sweetman, D. and Münsterberg, A. (2006). The vertebrate spalt genes in development and disease. Dev. Biol. 293, 285-293.

Takemoto, T., Uchikawa, M., Kamachi, Y. and Kondoh, H. (2006). Convergence of Wnt and FGF signals in the genesis of posterior neural plate through activation of the Sox2 enhancer N-1. Development 133, 297-306.
Trapnell, C., Pachter, L. and Salzberg, S. L. (2009). TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105-1111.
Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L., Wold, B. J. and Pachter, L. (2010). Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 28, 511-515.
Tsubooka, N., Ichisaka, T., Okita, K., Takahashi, K., Nakagawa, M. and Yamanaka, S. (2009). Roles of Sall4 in the generation of pluripotent stem cells from blastocysts and fibroblasts. Genes Cells 14, 683-694.
Uchikawa, M., Ishida, Y., Takemoto, T., Kamachi, Y. and Kondoh, H. (2003). Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev. Cell 4, 509-519.
van den Akker, E., Forlani, S., Chawengsaksophak, K., de Graaff, W., Beck, F., Meyer, B. I. and Deschamps, J. (2002). Cdx1 and Cdx2 have overlapping functions in anteroposterior patterning and posterior axis elongation. Development 129, 2181-2193.
van de Ven, C., Bialecka, M., Neijts, R., Young, T., Rowland, J. E., Stringer, E. J., van Rooijen, C., Meijlink, F., Nóvoa, A., Freund, J.-N. et al. (2011). Concerted involvement of $\mathrm{Cdx} /$ Hox genes and Wnt signaling in morphogenesis of the caudal neural tube and cloacal derivatives from the posterior growth zone. Development 138, 3451-3462.
Wang, W. C. H. and Shashikant, C. S. (2007). Evidence for positive and negative regulation of the mouse Cdx2 gene. J. Exp. Zool. B Mol. Dev. Evol. 308B, 308-321.
Wu, Q., Chen, X., Zhang, J., Loh, Y.-H., Low, T.-Y., Zhang, W., Zhang, W., Sze, S.-K., Lim, B. and Ng, H.-H. (2006). Sall4 interacts with Nanog and co-occupies Nanog genomic sites in embryonic stem cells. J. Biol. Chem. 281, 24090-24094.
Yang, J., Chai, L., Liu, F., Fink, L. M., Lin, P., Silberstein, L. E., Amin, H. M., Ward, D. C. and Ma, Y. (2007). Bmi-1 is a target gene for SALL4 in hematopoietic and leukemic cells. Proc. Natl. Acad. Sci. U.S.A. 104, 10494-10499.
Yang, J., Corsello, T. R. and Ma, Y. (2012). Stem cell gene SALL4 suppresses transcription through recruitment of DNA methyltransferases. J. Biol. Chem. 287, 1996-2005.
Yost, C., Torres, M., Miller, J. R., Huang, E., Kimelman, D. and Moon, R. T. (1996). The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 10, 1443-1454.
Zhang, J., Tam, W.-L., Tong, G. Q., Wu, Q., Chan, H.-Y., Soh, B.-S., Lou, Y., Yang, J., Ma, Y., Chai, L. et al. (2006). Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat. Cell Biol. 8, 1114-1123.

Supplementary Material

A

TVGR/Dex Induction of Wnt Signaling

B

Figure S1: TVGR activates canonical Wnt signaling. (A) Quantification of secondary axis induction by ventral vegetal injection of TVGR at the 4 -cell stage with representative tadpoles from each class. (B) RT-PCR on 5 whole embryos or 25 animal caps treated with the indicated reagents. -RT: reaction done in the absence of Reverse Transcriptase, epi. ker: epidermal keratin (epidermis), mus. act.: muscle actin (mesoderm) (C) Animal caps treated with the indicated reagents.

Figure S2: Intron 1 of sall4 binds $\boldsymbol{\beta}$-catenin but does not mediate a Wnt signal. (A) Using animal caps to screen for direct transcriptional targets of Wnt in neural tissue. (B) qPCR on 15-25 animal caps treated as indicated on the X -axis. The Y-axis shows expression relative to odc. meis3 and hoxb9 serve as controls for known direct and indirect targets of Wnt, respectively. (C) Quantification of dorsalization in uninjected embryos (open bars) and embryos injected animally with 500 pg FLAGtagged β-catenin RNA ($250 \mathrm{pg} /$ blastomere) at the 2-cell stage (filled bars) as scored by the dorsoanterior index (DAI). Error bars: 1 SEM. Images show a representative uninjected (UC) embryo with a DAI of 7 (normal) and a representative embryo with a DAI of 6 (kinked axis). (D) Schematic of the genomic locus of sall4 in Xenopus laevis (Xenbase.org). Blue boxes indicate exons and yellow circles indicate the location of putative TCF/LEF binding sites. Black ovals show the locations of the zinc-finger domains. Numbers indicate the position of putative binding sites relative to the transcription start site (TSS). (E) Chromatin immunoprecipitation of FLAG-tagged β-catenin in late gastrulae/early neurulae. Open bars represent uninjected embryos and closed bars represent embryos injected with 500 pg FLAGtagged β-catenin ($250 \mathrm{pg} /$ blastomere at the 2-cell stage). Error bars: 1 SEM per cent input for each measurement. (F) Luciferase reporter assays in HEK293 cells treated with or without BIO and/or mouse FGF. Error bars: 1 SEM. All means were compared by one-way ANOVA followed by Tukey post-hoc analyses (*: p<0.05).

Figure S3: $c d x 2$ is activated by canonical Wnt signaling and not affected by Sall4 knockdown (A) qPCR on 5 whole embryos or 15 to 25 animal caps treated according to the conditions indicated on the X-axis. The Yaxis shows expression relative to odc. Error bars: 1 SEM. (B-C) $c d x 2$ expression at stage 18 . Dorsal views with the anterior oriented towards the top. (B) Uninjected control embryo. (C) Embryo injected with 20 ng Sall4 MO in one animal-dorsal cell at the 4-cell stage.

Figure S4: sall1 is activated by canonical Wnt signaling and expressed during early embryogenesis. (A) qPCR on 5 whole embryos or 15 to 25 animal caps treated according to the conditions indicated on the X-axis. The Y-axis shows expression relative to odc. Error bars: 1 SEM. (B-E) Whole-mount in situ hybridizations of sall1 in Xenopus laevis embryos. (B) Whole mount stage 10 embryo stained for sall1, dorso-vegetal view with the dorsal lip of the blastopore oriented towards the top. (B') Sagittal section of stage 10.5 embryo stained for salll expression, animal pole is to the top and dorsal is to the right. (C-D) Dorsal views of indicated neurula stage embryos, anterior is oriented towards the top. (C'-C") Transverse sections of stage 12 embryos stained for sall1, (C') anterior and (C'") posterior. (D'-D") Transverse sections of stage 15 embryos stained for sall1, (D') anterior and ($\mathrm{D}^{\prime \prime}$) posterior. ($\mathbf{E}^{\prime}-\mathbf{E}^{\prime \prime}$) Transverse sections of stage 18 embryos stained for sall1, (E^{\prime}) anterior and ($\mathrm{E}^{\prime \prime}$) posterior. ($\left.\mathrm{B}^{\prime}, \mathrm{C}^{\prime}-\mathrm{E}^{\prime \prime}\right) 50 \mu \mathrm{M}$ sections, (C'-E") dorsal oriented towards the top. No: notochord, S: somite, PSM: presomitic mesoderm.

Figure S5: Injected embryos express functional FLAG-tagged $\boldsymbol{\beta}$-catenin. (A) Western blot for the FLAG epitope in injected embryos. Actin serves as the loading control. (B) Ventralization of embryos injected with β catenin MO and co-injection with FLAG-tagged β-catenin RNA. F- β cat: FLAG-tagged β-catenin.

Figure S6: Sequence of sall4 intron 1 in Xenopus laevis. Sequence from X. laevis genome (xenbase.org) coordinates: Scaffold1115:232,200..237,499. Putative TCF/LEF binding sites are indicated in red. Priming sites used for ChIP-qPCR are highlighted in yellow. Underlined sequences show TCF/LEF sites tested in ChIP.

GAGTCGCACTTTGCTTCTCTGGCTGCGCTTTATAGAGCGCAAGTGGCATTTAAACCCGAGAGGAGCGTGGCTGC TGCGCTCCATTCCCTTCCGAGCTGTCCCACCGGCCAAGGTGATCGAATACAGGGCTGGATTGTCTTCCCTCTCA
 АТTATTATTATTATTATGATTATTATTAATAGTATTATTATTTAATTGTAGCAATTCCAGGGTATATTGACCCC ACCTGTGGGGCTTATGGATCCATGTGATTGGAAGCACCTGTGGCTGTAATCATATATTTTTTTTTTTTTTTTTT TTTTTTTTTTTTTTTTTAATACCGTTGGTAGTGTGCTGCTTATTTCTAGTGTATAATTAAGCAAAGAAAGGAAG AAAACAGGGGTGACTAGTTAGTCAССССТСААССССТССССТСТСАСАСССССАСССТСССТТССАТССТТСАТ
 AGAGGGAACCAGCAGAAGCAGCAACCTGTGTGTCTGTGCTTGGTGTATGGGTAGGTTAATTATCCTTCATATAT TCTAGGGACTGGGGTTAATGTGTTTGTACCTGCTTCTTAATTCCGCTTATCGAAATAGCAGAAGGGGGTACACA AAGTTTTTATGTAGTATCTGTGTATATTCCTGTTATCTTATTAAATCTCTATTTTATATTGTGTATTTCATAAT СTCAATGAGGGGCACAGTCCTTGCCATTACATTCCTATTCATCTGCATNNNNNNNNNNNNNNNNNNNNNNNN NN NNNCCTCTATTTTCATTCGTTC TCСАССТTTAGTTCСАААТСТААТTAGСААТТСТАТGTСАСТСССТССССТТТАТТСССТTTATTACAATGCAA TTTTATTTTTGTTGTCTTGGAACATACTTGGTGACTAATTAACAATCCAGGAAACCAGCAGGTGGGGGAGTTGG AAGGTACAAAGCTACATATTGTAAATTATCATATGAACAAAGAGGTCGCCAATGCCTCTGTTTATCATCAGATA CTGGGATTGCCCCCCCTGTTAATCTCCAAGGTTAATCTTTCAAAGACTTCCATTTAGTGTTACTAGACCATTAA АТАТАтTTATTTTTCGTCTATTGTTTGGTTATAGAGTCTGATCTGGCAACTCTCAATTAATATAAACTGATAAA CAGAAGAGCTACAGATGTAAGAATTTGAAATCCGCAAAGCATTTCTTTCAAATGAATGTATGGGTACCAGTAGA GTTGTTTTGGGGGGGGGGCATGTTGGGTTTGTGTGTAGGTGGAAACATAGGGCAACAGTTGAATAGTAGGTGCT AGGACAAAATGGCATTTGTTGACCTTTGTTGAAGTTCAGACCCTAGAACCTTGTGACAGCCAAAGCATGGGAGT TGCAGTTTAACAGATGAAGGTTGAACAGTCTAGTCTAAATGGCTTGCAATAATGGGGCCTGCAATATCTATTCT TСССССТСАGAGTCCTTTACTAACAAAGCCCTTGGTATAGATCTGCAAATGGAACTTGCATATCCCCCTAACTT TACTTTTTTCTTTTTTTAAACTGGAAAAAAATGCTTCGTTTGTGGACCTTGTGCACGCTTGCAGTGTAGTGCCT AAGTACAGGCATAAACATAAACTATTTTATTTCCATTAAGTGGTCTGCAACAAAACTAATTCCTGGCTGGGCTG TTAACAAAGCTAATTCATCACAGCAGGGGTCGGGGCTGTCAGTAAGGTACTTGGGGCCAGATGGCTGCAAAACG GCAATCAGGAACTTGCTGGTGTGAGTGACACTCTATTAATCGTGGCGTTAAATATTAAACACACTTTAACAAAT

TATTTAAATGAGATAAATATCTATCTСТСТСТАТАТСТСТАAAGAGAAATCACACCACTTTTTGAAGATTTTTT ТАТААТСТАСТАТТТСАСССТТАСТТTTСТGGTTTTTATTATGAGTGTTGTCTAGAGGTTTATGTAATGATTTC ATCACTGGGCATATACACGTGGAGGAGGCTTCCTTAACTGGTGGGTTTTTCTTTAGCTAAGGGTCAGTTGGGAT TTGGATGCGGCGACTAGGTTAACCACACAGTCCTTATCTGTTACAGGTGAAGGGTTAAACGAGGCCAAACTGGT TTTTGTAGTTGTCCTTTTGTACAGTGTAAGGTGCCGGTGGGCCTGCTGGTATAACCTCTGGCTCCTTAGTGTGG GTGGCAGGTTAATGTCAGGACTGATCCCAGTAGGGTTTGTCCATTGCCAATTATGTGACTATTGGTGACCGATT TTGTTCACCTCCGATCTGTTGTGGAGACCAGAAAGATTCTGATGATTTTTCTTTAGTGGTTTGTCTTTTTAGAG GCAGTTTTGCTTCAGTAAAAATATTTCTTGCTCAATGTGAAATTTCGACTGACAATGAGGAATAGATATGGGCT GGGCCAGGCAGCTCTGAGTCAAGTGGGGTCCACATAATTTTTTTTTTTTTTTCATTAATTAAAATGTTTCCATA CCTCCAATGCTGCCTTTTGCCTGGTGCAGGGAAGGATTTGTATAGAATATATGCCAGCTTAATGGCTGTACAGA AGTTGGTCAGCATACAGGGCATGTTCATCTGTGCTGCTGAATAAGATCCGTTTTTTGGGTTTACTTTTCTGTAG TCCCTCAGTGATCTTTGTGTAAATCCACGTGTAGTATTTACCATACATGTGCTGAGCACTAACACAGGATGAGT GAATCAGAAAAGGAACTGACTGTAGCTGTGAATAGATGGCCTCAAGCATCTGCTCTGGGAGATGGGGGTAAGTG ATCGGCCGCTTCTCATTTTTAGAGCAGGGATGATCGGTGCTTCACTAAACCAAATACTCCCACCAGCAATGGCT GAGAGTTATACCCAACATTTAAGTGCAGGCTCACATATTGTACAACTTGAGTTTTTAGGTGTCAAGTGAACTTC СTGCTAGAATAAATTTATTTTTTTTTAGAGGGAGAATTAATATTTTACCTGCAAAGGGTCTGTATAATATTACA TTTTGCATAATTGGCACGGAAGGCTCTCAATCACTTTTAACACATCAACATAACTGACAATAGGCTTGCATCTC СССТССССААТССАТTTGTTAGTGATTTAATCTAAACCCCTGCTGACTTCACTGCATTCTTCTAACTTATTGGA TAAATAGATGCTGAGATAACATTCCTGAGATTCAGCAGTGGAGATGCACCCATGTACAGTATCCCCCCTGCTCT TTGTTTTTTTTTTTGTTTTTTTATTAGCATTATTTAAGATCCCCTTCACTGTTTTATTTTTAATTTCATTGAAA TTACCAATTTCATCACTGAAACTACAGGAGATATTGTTGATGGAATAAAGTGTAGGTTTTATTTTCAAGTTACT ACTGCTAGAACTATCAATGGATCTTTACATTTAGTACTTTTTAGGTAGAGTTATTGTTTTCTGCAGAGATGTCA GCAAAAGAGCGTGTATGTACTATTGCAGAAACAAGAAAAATAAAGAAATTGCATCCTGCCCGTGGGACCTTAAG CGTTAACGCCGGTTATGCTCAGCTTGTTTGGAAACCACTGGAGGCCAACTTAAGATATTTTGCGACATAAAATC AGACTCСTTAAAAGAGAGATGAATTAAAGCTAGCCATAGACGTGCAGATTAGACAAACGAACGTCTTTTCCAAT АСТССТАССТGСАAATAACCATTCAGATTAATATAAAGTTGCAAAGAGAACAAATTGCACGATCGGGCCATTTA TTGACTGGCGGCAATCGTATGAAAGTTATGTTTGACAAACGGTAGTTACTGTCTCCCATTGATAGCTGTAGCCG АТСТАААТСТTTTAACCTGTCCGATTGACCGCGTGAAACGAAAAATGTCTTAACATTCCACAGTTTCTGAAAAT CGTACAAAACTTTTTCATGTGATCGTATCTGTGTGTCTAGGGCGGCGATGCGGGACATGATTTTGTATAGAATT GTTCCAGTACAATTGCCCATAATTGTCTATTCAAATGTGGTTGCTGCAATTGTGCAGCTAATAAATTAGCTCTT GTATCTTCTAGCAATGGTGAATCTGTTGGGTATAGGACCTGTAAGTTCTATTAATTGGCCAAACAATATCTGGT TAACTTTTTTTTTTTTTAACCTTTTACAG

Figure S7: Sall4 does not rescue Dkk1-induced anteriorization. (A-D) Anterior views of whole-mount in situ hybridazations for otx2 and krox20 on Xenopus laevis embryos. (A) Uninjected control (UC). (B) Embryo injected with 400pg $d k k l$ RNA. (C) Embryo injected with 400pg $d k k l$ and 500pg sall4 RNA. (D) Embryo injected with 500 pg sall4 RNA.

Table S1: List of all primers used. RT-PCR: Conventional RT-PCR. qPCR: quantitative PCR. WMISH: Used to make a probe for whole mount in situ hybridization. ChIP: Used for qPCR on immunoprecipitated chromatin.

Gene	Forward	Reverse
$c d x 2$ (qPCR)	5'-ACATACCGGGATCCAAGACA-3'	5'-CAGCCTGAGTCTGCTGGATT-3'
eeflal (RT-PCR/qPCR)	5'-CCCTGCTGGAAGCTCTTGAC-3'	5'-GGACACCAGTCTCCACACGA-5'
en2 (RT-PCR)	5'-CAGCCTGGGTCTACTGCAC-3'	5-CTTTGCCTCCTCTGCTCAGT-3'
epidermal keratin (RTPCR)	5'-GACCTGGAAGGGAAGATCC-3'	5'-GAAGAGCCAGCTCATTCTCAA-3'
hoxb9 (qPCR)	5'-TACTTACGGGCTTGGCTGGA-3'	5'-AGCGTGTAACCAGTTGGCTG-3'
hoxb9 (RT-PCR)	5'-CTCCAGCAGCCAAATTCTCT-3'	5'-CAGTTGGCTGAGGGGTTG-3'
krox20 (RT-PCR)	5'- CCAGTGACTTTTGGTAGTTTTGTG-3	5'-TGGACGAGTAGGAGAAATCCA-3'
meis3 (ChIP)	5’- CACTGTAAGTTATTGCCTCAAAGG-3	5'-AGCTTGTAATACTTGTGGGCTTT-3'
meis3 (qPCR)	5'-CAGGATACAGGGCTCACGAT-3'	5'-CTTGGGGCTGCTGTGTAATC-3'
meis3 (RT-PCR)	5'-ATGATCGTGATGGCTCTTCC-3'	5'-CCCTGTGCGATTAGATTGGT-3'
muscle actin (RT-PCR)	5'-GACTCTGGGGATGGTGTGAC-3'	5'-AGCAGTGGCCATTTCATTCT-3'
$\boldsymbol{o d c}$ (RT-PCR/qPCR)	5'-GGGCTGGATCGTATCGTAGA-3'	5'-TGCCAGTGTGGTCTTGACAT-3'
otx2 (RT-PCR)	5'-TATCTCAAGCAACCGCCATA-3'	5'-AACCAAACCTGGACTCTGGA-3'
pou25 (qPCR)	5'-GGGCCACCACTATCCCTAAT-3'	5'-GTGTGTAGCCCAGGGACACT-3'
pou60 (qPCR)	5'-AGTTTGCCAAGGAGCTGAAA-3'	5'-GGACTCAAAGCGGCAGATAG-3'
pou91 (qPCR)	5'-ACTTATTTGCCCCGTCTCCT-3'	5'-CCCCATTCAGATCACTTGCT-3'
sall1 (qPCR)	5'-GAGAGGGGTCAAATCCATCG-3'	5'-GGAGGTGGTGGATTTTCATTC-3'
sall (WMISH probe)	5'-CTTTCAAAGCATGGTGAGCA-3'	5'-ATGGCACGATGGACACTGTA-3'
sall4 (qPCR)	5'-TGTCAAAGGATGAGCATTCG-3'	5'-CATGCGGTCAGAGGGTACTT-3'
sall4 (WMISH probe)	5'-CTTGGTGCGCACTTATCTCA-3'	5'-GCCTCAGATTGTGTGGGACT-3'
sall4 intron 1 (ChIP)	5'- GGGAGTTGGAAGGTACAAAGC-3’	5'-AACCAAACAATAGACGAAAAATAAA-3'
xmlc2 (ChIP)	5'- TGGGATATTTTACTGAACACAATG-3'	5'-CGTCCTGTGCCACCTAATG-3'

Gene	Forward	Reverse
WT sall4 intron 1 (Luciferase assay)	5'- CACTCCCTCCCCTTTATTCC -3'	5'-САСТСССТССССТТТАТТСС-3'
sall4 intron 1 TCF/ LEF site $\mathbf{+ 2 3 4 7}$ (mutagenesis)	5'GGAGTTGGAAGGTACGGG GCTACATATTG-3'	5'- CAATATGTAGCCCCGTACCTTCC AACTCC-3'
sall4 intron 1 TCF/ LEF site $+\mathbf{2 3 8 7}$ (mutagenesis)	5'- CATATGAACGGGGAGGTC GCCAATG-3'	```5'- CATTGGCGACCTCCCCGTTCATAT G-3'```
sall4 intron 1 TCF/ LEF site +2465 (mutagenesis)	5'- GGTTAATCTTTCGGGGACT TCCATTTAGTG-3'	5'- CACTAAATGGAAGTCCCCGAAA GATTAACC-3'

Table S2: Genes with >2-fold expression (direct Wnt activation vs. anterior neural) found by RNA-Seq. The data represents cold increase as measured by fragments per kilobase of exon per million reads (FPKM). The nature of this quantification can lead to high fold changes in lowly expressed genes and likely accounts for the massive fold increases calculated in genes with the highest differential expression.

Gene	Clone ID	Fold Increase		
hnRNP H3	gi\|52138902	gb	BC082630.1	$1.51235 \mathrm{E}+11$
H3 histone, family 3B	gi\|27503243	gb	BC042290.1	$1.03963 \mathrm{E}+11$
Glutamate ammonia ligase	gi\|49256010	gb	BC073448.1	39422399227
Protein phosphatase type 1 alpha, catalytic subunit	gi\|27695193	gb	BC041730.1	2824225487
Ki-67	gi\| $115527315\|\mathrm{gb}\| \mathrm{BC} 124560.1$	1131777.541		
copper chaperone for superoxide dismutase	gi\|50418348	gb	BC077488.1	3919.698435
FoxI4.2	gi\| $50418055\|\mathrm{gb\mid}\|$ BC078036.1	1329.542265		
Ephrin-A4	gi\| $183985625\|\mathrm{gb}\| \mathrm{BC} 166129.1$	1297.844383		
smad4	gi\| $54037962\|\mathrm{gb\mid}\| \mathrm{BC} 084196.1$	1053.601949		
Cdx-2	gi\|84105446	gb	BC111473.1	600.0062069
Eukaryotic translation initiation factor 3 subunit 10	gi\|35505403	gb	BC057711.1	414.3164277
Churchill	gi\|114107852	gb	BC123207.1	369.3076365
pip4k2a	gi\| $120537387\|\mathrm{gb}\|$ BC129059.1	328.1431677		
hnRNPk	gi\|27882468	gb	BC044711.1	319.4817015
MGC83026	gi\|49118646	gb	BC073670.1	226.469437
tpno2	gi\| $54673692\|\mathrm{gb}\| \mathrm{BC} 084978.1$	222.1449285		
nol12	gi\|114107789	gb	BC123345.1	151.6234281
epithelial V-like antigen 1	gi\| $50415563\|\mathrm{gb}\| \mathrm{BC} 077583.1$	147.2011472		
sfrs6	gi\|28422194	gb	BC044265.1	126.0892513
XIRG protein-like	gi\|213623421	gb	BC169722.1	87.788455
prickle1	gi\|68533725	gb	BC098954.1	83.19938866
ZFN384	gi\|50415185	gb	BC077403.1	69.76482898

Gene	Clone ID	Fold Increase		
RAC-beta serine/threonine-protein kinase B	gi\|47939912	gb	BC072041.1	62.12571541
ccbl-2	gi $\|30046518\| \mathrm{gb} \mid \mathrm{BC} 051239.1$	44.93558411		
p80 katanin	gi\|66910749	gb	BC097654.1	40.55422632
zeb2	gi\|54648610	gb	BC084972.1	33.47771521
Zmiz1	$\mathrm{gi}\|51513014\| \mathrm{gb} \mid \mathrm{BC} 080428.1$	30.23438945		
Angiopoietin 4/5	gi\| $189442243\|\mathrm{gb}\| \mathrm{BC} 167504.1$	27.19110778		
HCF-1	gi\|52138923	gb	BC082658.1	26.78440995
CCR4-NOT transcription complex, subunit 10	gi\|50416369	gb	BC077237.1	21.48403283
fam107a/b MGC78851	gi\|51261937	gb	$\mathrm{BC}^{\text {c }} 079918.1$	21.17179772
Nucleoporin Seh1B MGC82845 protein	gi\|49118558	gb	BC073561.1	19.13482551
PI3K related SMG1 hypothetical protein MGC98890	gi\|68226704	gb	BC098320.1	17.94963894
Epsin-2 hypothetical protein MGC81482	gi\|46249599	gb	BC068837.1	16.4173713
srsf7	gi\|50603926	gb	BC077393.1	16.33581603
sf3b4	gi\|28374169	gb	BC045264.1	15.37049865
PPTC7 MGC81279 protein	gi $\|49257211\| \mathrm{gb} \mid \mathrm{BC} 071109.1$	13.98198898		
meis3	gi\|54673770	gb	$\mathrm{BC}^{\text {c }} 084920.1$	13.07065969
origin recognition complex, subunit 6 homolog-like	gi\|50603595	gb	BC077746.1	13.01809093
DAXX ? hypothetical protein LOC446279	gi\|86577707	gb	BC112947.1	12.67764239
ACSL4 hypothetical protein LOC100174803	gi\|189442239	gb	BC167498.1	11.62060714
Necap2 MGC83534 protein	gi\|50927256	gb	BC079728.1	10.9853218
Timp3 tissue inhibitor of metalloproteinases-3	gi\|38014484	gb	BC060423.1	10.67580536
frizzled homolog 7	gi\|27503170	gb	$\mathrm{BC}^{\text {c }} 042228.1$	9.299494092
Serine/threonine/tyrosine-interacting protein B	$\mathrm{gi}\|54311224\| \mathrm{gb} \mid \mathrm{BC} 084791.1$	9.188383287		
UBADC1 hypothetical protein MGC115132	gi\|62471528	gb	BC093557.1	8.970846126

Gene

Cdca A7L transcription factor RAM2
Klf10 ? hypothetical protein MGC98877 ivns1abp influenza virus NS1A binding protein

MGC80567 protein
LCHN? hypothetical protein MGC114999

RABGAP1L hypothetical protein MGC52980

PTN1 pleiotrophin MGC84465 protein arrb1 arrestin, beta 1

Txnrd3 Thioredoxin reductase 2 MGC81848 protein

Foxil or Foxi4.2a fork head protein
LIMS1-b LIM domain hypothetical protein MGC81174

LMO7 LIM domain containing cDNA clone MGC:180040
arrdc3 arrestin containing hypothetical protein MGC131006

CANT1 Calcium activated nucleotidase similar to $\mathrm{Ca} 2+$-dependent endoplasmic reticulum nucleoside diphosphatase

D7 protein
Dact1 dapper 1 Antagonist of beta-catenin FRODO

RASSF7 Ras assiciation domain containing MGC78972 protein

Sox11 XLS13B protein
Myt1 cDNA clone MGC: 196991
zmiz2 MGC86475 protein
ZC3H7B zinc-finger CCCH-containing 7B MGC80522 protein

SAP130 HDAC MGC83894 protein

Clone ID

| gi\|116487713|gb|BC126014.1 | 8.574819986 |
| :---: | :---: |
| gi\|62089536|gb|BC092147.1 | 7.695378855 |
| gi\| $49898869\|\mathrm{gb}\| \mathrm{BC} 076641.1$ | 7.664198955 |
| gi\| $50417996\|\mathrm{gb}\| \mathrm{BC} 077854.1$ | 7.544735234 |
| gi\| $71050977\|\mathrm{gb}\| \mathrm{BC} 098994.1$ | 7.224153034 |
| gi\|27694685|gb|BC043775.1 | 7.11745345 |
| gi\|49257697|gb|BC074426.1 | 6.911246415 |
| gi\| $49904092\|\mathrm{gb}\| \mathrm{BC} 076815.1$ | 6.832358987 |
| gi\|51704105|gb|BC081053.1 | 6.824096832 |
| gi\| $51258369\|\mathrm{gb}\| \mathrm{BC} 080044.1$ | 6.805288292 |
| gi\|47939771|gb|BC072204.1 | 6.795291868 |
| gi\|197245592|gb|BC168520.1 | 6.755182581 |
| gi\| $80476391\|\mathrm{gb}\| \mathrm{BC} 108545.1$ | 6.57050044 |
| gi\|27370857|gb| $\mathrm{BC}^{\text {c }} 041215.1$ | 6.486609662 |
| gi\| $58702035\|\mathrm{gb}\| \mathrm{BC} 090198.1$ | 6.413210477 |
| gi\| $50418314\|\mathrm{gb}\| \mathrm{BC} 077380.1$ | 6.403341734 |
| gi\|84105479|gb|BC111512.1 | 6.017970041 |
| gi\|47124741|gb|BC070707.1 | 5.989392572 |
| gi\|213626262|gb|BC170264.1 | 5.974437792 |
| gi\| $51513014\|\mathrm{gb}\| \mathrm{BC} 080428.1$ | 5.658053905 |
| gi\| $50418254\|\mathrm{gb}\| \mathrm{BC} 077837.1$ | 5.638059804 |
| gi\| $50415582\|\mathrm{gb}\| \mathrm{BC} 077587.1$ | 5.587991945 |

Gene

PCNA similar to proliferating cell nuclear antigen

Stx 19 syntaxin 19 hypothetical LOC494752

HMG-box protein HMG2L1
Kif20a hypothetical LOC495414
slc 7 a 3 solute carrier family 7 (cationic amino acid transporter, $\mathrm{y}+$ system), member 3

Lmo7 cDNA clone MGC:180040
Mark2 MAP/microtubule affinityregulating kinase 2

Anp32b MGC80871 protein cyclin A2

PPPDE2 peptidase domain containing MGC84710 protein

CTDP1 FCP1 serine phosphatase ornithine decarboxylase-2

Ube2c hypothetical LOC496302
Efr3a MGC83628 protein
Dlg7 discs large hypothetical protein MGC116559

STXBP3 hypothetical protein MGC115462 syntaxin binding protein 3 (stxbp3)

Acy-3 aspartoacylase-3
PTDSS2 cDNA clone MGC:179871
Tcf-7 transcription factor 7 (T-cell specific, HMG-box)

1sp1 lymphocyte specific protein 1hypothetical protein LOC100158340

NPHP3 nephronophthisis 3 MGC80264 protein

Med 15 Mediator complex subunit 15 ARC105 protein

Clone ID

gi|27371152|gb|BC041549.1
gi|52354747|gb|BC082852.1
gi|213625180|gb|BC169998.1
gi|54648449|gb|BC084922.1
gi|27503399|gb|BC042222.1
gi| $197245592|\mathrm{gb}| \mathrm{BC} 168520.1$
gi|27694574|gb|BC043730.1
gi|49118408|gb|BC073408.1 4.77985399
gi|50417439|gb|BC077260.1
gi|49256350|gb|BC074444.1
gi| $62185666|\mathrm{gb}| \mathrm{BC} 092306.1$
gi|28838468|gb|BC047954.1
gi|57032917|gb|BC088818.1
gi|51950039|gb|BC082437.1
gi| $68534624|\mathrm{gb}| \mathrm{BC} 099363.1$
gi| $72679360|\mathrm{gb}| \mathrm{BC} 100235.1$
gi| $116487526|\mathrm{gb}| \mathrm{BC} 125990.1$
gi| $197246680|\mathrm{gb}| \mathrm{BC} 168517.1$
gi|51261404|gb|BC079972.1
gi| $115528236|\mathrm{gb}| \mathrm{BC} 124864.1$
gi|50603779|gb|BC077320.1
gi|47123916|gb|BC070536.1

Fold Increase

5.340877685
5.239206209
5.171640761
5.055010856
4.989471538
4.861028301
4.821716572
4.76329664
4.724302826
4.712553945
4.690222394
4.676640452
4.653269077
4.501586994
4.472242676
4.452697089
4.234011971
4.200569032
4.124150256
4.066245125
4.029208683

Gene

cyclin E3
Fam60a hypothetical protein MGC115222
AHCTF1 AT hook containing transcription factor 1 MGC83673 protein Rhebl1 Ras homolog enriched in brain like 1 hypothetical LOC495056

RNF8a ring finger protein (C3HC4 type) 8

CCNT2 cyclin T2 MGC81210 protein
Tmed2 transmembrane emp24 domain trafficking protein 2 coated vesicle membrane protein, mRNA (cDNA clone MGC:52758 IMAGE:4684109

Mta1 metastatic associated 1 MGC83916 protein

MAPK8/Jnk1 mitogen-activated protein kinase 8

PSMD4 26S proteasome subunit
Poldip3 polymerase delta interaction protein 3 hypothetical protein MGC114944

DNAJC5B HSP cDNA clone MGC: 83536

NCBP2 Nuclear cap binding protein 2
FXDY FXDY domain containing ion transport

Ano5 Anoctamin 5 or Tmem16e
Not Annotated
Ttc30a tetratricopeptide repeat domain 30a

F2rll Coagulation factor 2 receptor like 1
CSDA cols shock protein domain containing A

FUS Fused in Sarcoma?
Exol exonuclease 1
Cfp complement factor properdin

Clone ID

| gi\|58701930|gb|BC090214.1 | 3.970372822 |
| :---: | :---: |
| gi\|66910763|gb|BC097689.1 | 3.940864045 |
| gi\| $49903664\|\mathrm{gb}\| \mathrm{BC} 076775.1$ | 3.892143367 |
| gi\| $54037975\|\mathrm{gb}\| \mathrm{BC} 084211.1$ | 3.882231045 |
| gi\|28279439|gb|BC046256.1 | 3.801782364 |
| gi\| $51895950\|\mathrm{gb}\| \mathrm{BC} 081000.1$ | 3.755306852 |
| gi\|28277265|gb|BC044095.1 | 3.747391508 |
| gi\| $51950045\|\mathrm{gb}\| \mathrm{BC} 082445.1$ | 3.743645989 |
| gi\|28422153|gb|BC046834.1 | 3.733178442 |
| gi\|66910701|gb|BC097551.1 | 3.729782795 |
| gi\|62471555|gb|BC093543.1 | 3.720246762 |
| gi\|51703523|gb|BC081115.1 | 3.720172358 |
| gi\|49117074|gb|BC072902.1 | 3.701358817 |
| gi\|125859119|gb|BC129686.1 | 3.694185141 |
| gi\| $50418049\|\mathrm{gb}\| \mathrm{BC} 077486.1$ | 3.642280513 |
| gi\|62739385|gb|BC094151.1 | 3.628720112 |
| gi\| $47938700\|\mathrm{gb}\| \mathrm{BC} 072174.1$ | 3.547737229 |
| gi\|57033014|gb|BC088935.1 | 3.518659172 |
| gi\| $161611734\|\mathrm{gb}\| \mathrm{BC} 155913.1$ | 3.51654861 |
| gi\|49522197|gb|BC074437.1 | 3.505453855 |
| gi\|54035217|gb|BC084102.1 | 3.494289274 |
| gi\| $50415018\|\mathrm{gb}\| \mathrm{BC} 077925.1$ | 3.468804465 |

Fold Increase

3.970372822

3.940864045
3.892143367
3.743645989
3.733178442
3.729782795
3.720246762
3.720172358
3.701358817
3.694185141
3.642280513
3.628720112
3.547737229
3.518659172
3.51654861
3.505453855
3.494289274
3.468804465

Gene	Clone ID	Fold Increase		
Ferritin light chain	gi\|34785676	gb	BC057216.1	3.464575104
cdc 25 c	gi\|213626377	gb	BC169346.1	3.456754005
SLC44a1 solute carrier family 44 member 1	gi\|52354612	gb	BC082837.1	3.306234736
PCF11 cleavage and poly-adenylation factor	gi\|50414592	gb	BC077233.1	3.277333059
Slc9a1 or NHE3 solute carrier family 9 member 3	gi\| $157422994\|\mathrm{gb}\| \mathrm{BC} 153791.1$	3.274941479		
Anksla Ankyrin repeat and sterile alpha motif domain containing la	gi $\|47682305\| \mathrm{gb} \mid \mathrm{BC} 070831.1$	3.249886264		
ap2b1 adaptor-related protein complex 1 beta 1 subunit	gi\| $120538239\|\mathrm{gb}\| \mathrm{BC} 129531.1$	3.240669681		
Not Annotated	gi $\|76780224\| \mathrm{gb} \mid \mathrm{BC} 106027.1$	3.21623043		
Ctnnd1 Catenin (Cadherin associated protein) delta-1	$\mathrm{gi}\|213623207\| \mathrm{gb} \mid \mathrm{BC} 169434.1$	3.210767484		
GCAT Glycine C-acetyltransferase	gi\|28704125	gb	BC047258.1	3.210735376
beta arrestin	gi $\|49256118\| \mathrm{gb} \mid \mathrm{BC} 072973.1$	3.173896459		
slc9a3r2	gi\| $55778573\|\mathrm{gb}\| \mathrm{BC} 086464.1$	3.167840103		
CTDP1 (carboxy-terminal domain, RNA polymerase II, polypeptide A) phosphatase, subunit 1	gi $\|51950263\| \mathrm{gb} \mid \mathrm{BC} 082378.1$	3.162965383		
MAX bHLH	gi\|47123961 $\|\mathrm{gb}\| \mathrm{BC} 070710.1$	3.144295944		
MPV171	gi $\|51261416\| \mathrm{gb} \mid \mathrm{BC} 079982.1$	3.11285403		
Fibronectin 1	gi $\|49114986\| \mathrm{gb} \mid \mathrm{BC} 072841.1$	3.110364743		
Spicing factor (sfrs5)	gi $477717980\|\mathrm{gb}\| \mathrm{BC} 070967.1$	3.1059201		
transmembrane protein 45B	gi\| $120538262\|\mathrm{gb}\| \mathrm{BC} 129609.1$	3.030355684		
lysine (K)-specific demethylase 6A (kdm6a)	gi\|50603932	gb	BC077424.1	3.026903047
RalGDS/AF-6	gi\| $84105479\|\mathrm{gb}\| \mathrm{BC} 111512.1$	2.963378492		
Mek-2	gi\|27694983	gb	BC043913.1	2.955122189
calpain 2, (m/II) large subunit (capn2)	gi\|39645066	gb	BC063733.1	2.924548179
PHD finger protein 12 (phf12)	gi\|46249573	gb	BC068803.1	2.89562217
pax interacting (with transcriptionactivation domain) protein 1 (paxip1)	gi\| $50417566\|\mathrm{gb}\| \mathrm{BC} 077588.1$	2.822971349		

Gene

mediator complex subunit 16 (med16)
xRMD-2 microtubule-associated protein tyrosine kinase 2 (tyk2)
methyltransferase like 3 (mettl3)
glycine amidinotransferase (Larginine:glycine amidinotransferase) (gatm) syntaxin 5 (stx5)
inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta (ikbkb) G-2 and S-phase expressed 1 (gtse1)

RBL1
nucleoporin 93 kDa (nup93)
embryonic ectoderm development (eed) ring finger and CCCH-type domains 1 (rc3h1)
integrin, beta 5
$\operatorname{ataxin} 2(\operatorname{atxn} 2)$
chromosome 19 open reading frame 2 (c19orf2)

PRP4 pre-mRNA processing factor 4 homolog (prpf4)
protein phosphatase methylesterase 1 (ppme1)
orthodenticle homeobox 2 (otx2-a)
chromosome 13 open reading frame 34 (c13orf34)

DAZAP1
FSHD region gene $1(\mathrm{frg} 1)$
serine/threonine kinase 11 interacting protein (stk11ip)
carboxy-terminal kinesin 2
survival of motor neuron 2 , centromeric (smn2)

Clone ID

| gi\|62471580|gb|BC093546.1 | 2.822152806 |
| :---: | :---: |
| gi\|58702063|gb|BC090235.1 | 2.803700074 |
| gi\|49118136|gb|BC073112.1 | 2.790804764 |
| gi\|46249483|gb|BC068672.1 | 2.782222309 |
| gi\|28838491|gb|BC047973.1 | 2.746369891 |
| gi $\|76779222\| \mathrm{gb} \mid \mathrm{BC} 106704.1$ | 2.704962367 |
| gi\|47939754|gb|BC072192.1 | 2.686442963 |
| gi\|62471553|gb|BC093540.1 | 2.683239948 |
| gi $\|47123210\| \mathrm{gb} \mid \mathrm{BC} 070856.1$ | 2.680418663 |
| gi\|27924241|gb|BC045089.1 | 2.672333338 |
| gi\| $50603665\|\mathrm{gb}\| \mathrm{BC} 077425.1$ | 2.655016847 |
| gi $\|46250191\| \mathrm{gb} \mid \mathrm{BC} 068669.1$ | 2.646867856 |
| gi\|49899756|gb|BC076844.1 | 2.636182901 |
| gi\|66910767|gb|BC097692.1 | 2.634583223 |
| gi\| $50415135\|\mathrm{gb}\| \mathrm{BC} 077366.1$ | 2.630865817 |
| gi\|51703477|gb|BC081044.1 | 2.62131998 |
| gi\|50418398|gb|BC077600.1 | 2.617432826 |
| gi\|50417481|gb|BC077357.1 | 2.616883223 |
| gi\|49523107|gb|BC075159.1 | 2.599294339 |
| gi\|50604139|gb|BC077252.1 | 2.585999275 |
| gi\|49256477|gb|BC074376.1 | 2.555875944 |
| gi\|47682952|gb|BC070809.1 | 2.553165597 |
| gi $\|54038135\| \mathrm{gb} \mid \mathrm{BC} 084431.1$ | 2.538623487 |
| gi\|46249513|gb|BC068721.1 | 2.535840144 |

Gene	Clone ID	Fold Increase		
sall1 (Sal-like 1)	gi\|37590272	gb	BC059284.1	2.505331347
NIMA (never in mitosis gene a)-related kinase 2 (nek2)	gi\|27696903	gb	BC043822.1	2.503175185
ZF-containing (posterior protein)	gi\|213623475	gb	BC169799.1	2.493496644
drebrin-like (dbnl)	gi\|49257631	gb	BC074277.1	2.479066307
jumonji domain containing 6 (jmjd6-b)	gi\|28277358	gb	BC045252.1	2.4687995
inhibitor of DNA binding 3, dominant negative helix-loop-helix protein (id3-a)	gi\|27696824	gb	BC044039.1	2.448101925
chaperonin containing TCP1, subunit 8 (theta) (cct8)	gi\|67678231	gb	BC097574.1	2.447348026
LIM domain containing preferred translocation partner in lipoma (lpp)	gi\|62740239	gb	BC094110.1	2.445439839
cytochrome c-1 (cyc1)	gi\|71052231	gb	BC099350.1	2.442233526
KIAA0182 (kiaa0182)	gi\| $120537359\|\mathrm{gb}\| \mathrm{BC} 129052.1$	2.438699731		
5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (atic)	gi\|76779775	gb	$\mathrm{BC}^{\text {c }} 06381.1$	2.42732299
ribonucleoprotein A1a (hnrnpa1)	gi\|47938743	gb	BC072090.1	2.419006697
caspase 3 , apoptosis-related cysteine peptidase casp3	gi\|68533747	gb	BC098991.1	2.408087828
ubiquitin-conjugating enzyme E2G 1 (UBC7 homolog) (ube2g1)	gi\|28839012	gb	BC047985.1	2.407955386
drebrin-like (dbnl)	gi\|49257631	gb	BC074277.1	2.388809202
PTK7 protein tyrosine kinase 7 (ptk7)	gi\| $148922111\|\mathrm{gb}\| \mathrm{BC} 146640.1$	2.387741643		
integrator complex subunit 2 (ints2)	gi\|47125091	gb	BC070524.1	2.387717766
PRP4 pre-mRNA processing factor 4 homolog B (prpf4b)	gi\| $125858002\|\mathrm{gb}\| \mathrm{BC} 129065.1$	2.375801846		
Transmembrane protein 33 (tmem33)	gi\|49903380	gb	BC076764.1	2.371301594
non-SMC condensin II complex, subunit D3 (ncapd3)	gi\|49116983	gb	BC073714.1	2.363179599
SIN3 homolog B, transcription regulator $(\sin 3 b)$	gi\| $120538596\|\mathrm{gb}\| \mathrm{BC} 129063.1$	2.353559822		
splicing factor, arginine/serine-rich 18 (sfrs 18)	gi\|47940261	gb	BC072160.1	2.350873591
mediator complex subunit 23 (med23)	gi\|39645714	gb	BC063725.1	2.349851184

Gene	Clone ID	Fold Increase		
phospholipase A2-activating protein (plaa)	gi\| $115528262\|\mathrm{gb}\| \mathrm{BC} 124847.1$	2.344309729		
minichromosome maintenance complex component 4 (mcm4-b)	gi\|49115033	gb	BC072870.1	2.342847336
NOP2/Sun domain family, member 2 (nsun2)	gi\|66912075	gb	BC097814.1	2.339817652
general transcription factor IIE, polypeptide 2, beta 34 kDa (gtf2e2)	gi\|58403335	gb	BC089287.1	2.320004209
Rho GTPase activating protein 19 (arhgap19)	gi\|48734660	gb	BC072338.1	2.309370554
CCR4-NOT transcription complex, subunit 10 (cnot10-b)	gi\| $46250097\|\mathrm{gb}\| \mathrm{BC} 068748.1$	2.298100702		
lysine (K)-specific demethylase 3A (kdm3a-a)	gi $477506877\|\mathrm{gb}\| \mathrm{BC} 070982.1$	2.296984096		
zinc finger and BTB domain containing 44 (zbtb44)	gi $\|47124748\| \mathrm{gb} \mid \mathrm{BC} 070714.1$	2.293259115		
phosphatidylinositol glycan anchor biosynthesis, class T (pigt)	gi\|52354598	gb	BC082818.1	2.284755462
heterogeneous nuclear ribonucleoprotein A3 (hnrnpa3)	gi\|213625122	gb	BC169881.1	2.283526595
Putative ortholog of von Hippel-Lindau binding protein 1 (Prefoldin subunit 3)	gi\| $163916339\|\mathrm{gb}\| \mathrm{BC} 157499.1$	2.278221284		
nucleoporin 37 kDa (nup37)	gi\|51703531	gb	BC081128.1	2.271537693
activating transcription factor 1 (ATF1)	gi\|61403334	gb	BC092037.1	2.266325959
Nedd4 family interacting protein 2 (ndfip2)	gi\|50924805	gb	BC079714.1	2.262854343
	gi\|33416619	gb	BC055957.1	2.260893298
proteasome (prosome, macropain) 26 S subunit, ATPase, 3 (psmc3)	gi\|28422358	gb	BC046948.1	2.253753391
family with sequence similarity 109 , member B (fam109b)	gi $47722977\|\mathrm{gb}\| \mathrm{BC} 070645.1$	2.237428018		
translation initiation factor 4E family member 3 (eif4e3-a)	gi\|49257962	gb	BC071126.1	2.230893103
ets variant gene 4	gi $\|50417509\| \mathrm{gb} \mid \mathrm{BC} 077414.1$	2.224884491		
G kinase anchoring protein 1 (gkap1-a)	gi\|49118875	gb	BC073450.1	2.208726268
zinc finger transcription factor SALL4	gi\|52138969	gb	BC082637.1	2.190818022

Gene

chromobox homolog 5 (cbx5)
CCR4-NOT transcription complex, subunit 6-like (cnot6l-a)
uridine-cytidine kinase 2 (uck2)
YY1 transcription factor (yyl-b)
karyopherin alpha 4 (importin alpha 3) (kpna4)
syntaxin 5 (stx5)
PRP4 pre-mRNA processing factor 4 homolog B (prpf4b)
oxoglutarate (alpha-ketoglutarate) dehydrogenase (lipoamide) (ogdh)
acidic (leucine-rich) nuclear phosphoprotein 32 family, member B (anp32b)
AT hook containing transcription factor (ahctf1)
proline-rich nuclear receptor coactivator (pnrc2-b)
YY1 transcription factor
Ptk7
H3 histone, family 3B (H3.3B) (h3f3b)
bromodomain containing 1 (brd1)
mllt6
RAS oncogene family (rab18)
RAB6A, member RAS oncogene family (rab6a)
transcription factor 3 (E2A immunoglobulin enhancer binding factor E12/E47) (tcf3)
cell division cycle 20 homolog (cdc20)
sema domain, transmembrane domain (TM), and cytoplasmic domain, (semaphorin) 6D (sema6d)
lethal giant larvae homolog 1 (llgl1)

Clone ID

```
2.18484743
2.17052701
2.153018907
2.144522678
2.143067042
2.132374185
2.120332678
2.110063412
2.104752746
gi \(|55250536| \mathrm{gb} \mid \mathrm{BC} 086281.1 \quad 2.095665156\)
gi \(|54038003| \mathrm{gb} \mid \mathrm{BC} 084247.1 \quad 2.080782448\)
\(\begin{array}{ll}\text { gi }|50415555| \mathrm{gb} \mid \mathrm{BC} 077581.1 & 2.079401267 \\ \text { gi }|38014809| \mathrm{gb} \mid \mathrm{BC} 060500.1 & 2.074966481\end{array}\)
2.074966481
2.05094159
2.046475407
2.041361526
2.03028667
2.027277987
2.026584776
2.012178568
2.010828849
2.000831812
```

Fold Increase

[^0]: Department of Molecular \& Cell Biology, University of California, Berkeley, CA 94720, USA.
 *Present address: Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
 ${ }^{\ddagger}$ Author for correspondence (harland@berkeley.edu)

