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ABSTRACT
RNA-Seq enables the efficient transcriptome sequencing of many
samples from small amounts of material, but the analysis of these
data remains challenging. In particular, in developmental studies,
RNA-Seq is challenged by the morphological staging of samples,
such as embryos, since these often lack clear markers at any
particular stage. In such cases, the automatic identification of the
stage of a sample would enable previously infeasible experimental
designs. Here we present the ‘basic linear index determination of
transcriptomes’ (BLIND) method for ordering samples comprising
different developmental stages. The method is an implementation of
a traveling salesman algorithm to order the transcriptomes according
to their inter-relationships as defined by principal components
analysis. To establish the direction of the ordered samples, we show
that an appropriate indicator is the entropy of transcriptomic gene
expression levels, which increases over developmental time. Using
BLIND, we correctly recover the annotated order of previously
published embryonic transcriptomic timecourses for frog, mosquito,
fly and zebrafish. We further demonstrate the efficacy of BLIND by
collecting 59 embryos of the sponge Amphimedon queenslandica
and ordering their transcriptomes according to developmental stage.
BLIND is thus useful in establishing the temporal order of samples
within large datasets and is of particular relevance to the study of
organisms with asynchronous development and when morphological
staging is difficult.

KEY WORDS: Amphimedon transcriptomic timecourse, Single-
embryo RNA-Seq, Developmental timecourse, Large-scale
datasets, Principal components analysis, Traveling salesman
problem

INTRODUCTION
High-throughput sequencing methods have produced two important
innovations for the analysis of transcriptomes: the amount of RNA
starting material required has dropped to as little as a single cell or
lower (Hashimshony et al., 2012; Islam et al., 2011; Ramsköld et al.,
2012) and the number of samples that may be affordably processed
is dramatically higher owing to the inherent multiplexed nature of
the available methods (Hashimshony et al., 2012; Islam et al., 2011).
These innovations allow for high-resolution analysis of gene
expression, but also markedly impact on how these high-throughput
experiments are designed.
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The construction of a coherent transcriptomic timecourse typically
requires a staging process in which the developmental stages of the
samples must first be determined and then, typically, collected as
pools to increase the starting amounts (Levin et al., 2012; Yanai et
al., 2011). For synchronous processes, staging relies on the sampling
time, whereas for asynchronous processes it is necessary to stage by
morphology, which can be difficult and time consuming. These
constraints limit the use of transcriptomic timecourse analyses in
biological processes missing either visual morphological markers or
synchronous development. In these cases, a method is required
allowing for the random collection of many transcriptomes (i.e.
embryos) followed by the determination of their developmental
order at the analysis stage. Here, we present BLIND, a method for
the analysis of large and complex transcriptomes and demonstrate
its ability to accurately infer developmental ordering of
transcriptomic timecourses.

RESULTS AND DISCUSSION
Developmental transcriptomes form a path in the principal
components plane
From an analysis of previously published transcriptomic
developmental timecourses of frog, mosquito, fly and zebrafish
(Akbari et al., 2013; Lott et al., 2011; Yanai et al., 2011; Yang et al.,
2013), we observed that the samples can be ordered from the
transcriptomes alone (Fig. 1; supplementary material Fig. S1). For
each timecourse we applied principal components analysis (PCA), a
linear method that enables the reduction of the dataset dimensionality
to a few ‘principal components’ that capture as much of the variation
as possible. Fig. 1A shows the first two principal components of 14
transcriptomes from embryonic stages of the frog Xenopus laevis. The
position of the samples in the PCA plane can be viewed as a path
representing the progress of embryonic development. The same
phenomenon is observed for developmental transcriptomes in the
timecourses of the other species (supplementary material Fig. S1).

Based upon this observation, we developed BLIND for the basic
linear index determination of transcriptomes. BLIND considers the
distance between every two samples on the principal components
plane as the developmental distance between the samples. If the
distances are faithfully representative then the shortest path through
the samples corresponds to the developmental progress across the
samples. Finding the shortest path on the principal components
plane is an instance of the general traveling salesman problem (Held
and Karp, 1970). This problem has been shown to be a non-
deterministic polynomial-time hard problem (NP-hard) and therefore
the optimal solution cannot be retrieved in polynomial time
(Papadimitriou, 1977). For an approximation, BLIND invokes a
genetic algorithm that ‘evolves’ a path by starting with a random set
of possible paths and iteratively selecting the shorter ones to
combine and generate a new set (Larrañaga et al., 1999). The
resulting path is inferred as the developmental order of the samples
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(see Materials and Methods for a full description of the algorithm).
Fig. 1A shows the concordance between the BLIND path through
the samples and their published developmental order. BLIND also
recovers the correct order in the other published timecourses
(Table 1). In summary, BLIND starts with unordered transcriptomes
(Fig. 1C) and sorts them according to a genetic algorithm pathfinder
on the principal components of the transcriptomes (Fig. 1D).

Transcriptomic entropy increases over developmental time
The path extracted by the traveling salesman algorithm does not
indicate the direction of development. We found, however, that for
developmental timecourses the direction of time can be deduced by
computing for each transcriptome the entropy, which is a measure
of the variability in total gene expression levels. As shown in
Fig. 1B, entropy in expression levels increases with developmental
time in the Xenopus laevis timecourse. The rise in transcriptomic
entropy with developmental time was also observed in two of the
four other previously published timecourses (supplementary material

Fig. S2). In the remaining timecourses entropy was not dynamic,
perhaps owing to the restricted span of the timecourse.

From a developmental perspective, the rise in entropy suggests
that the maternal deposit of RNA present in the single-cell embryo
is relatively ordered, whereas the increasingly complex embryo

RESEARCH REPORT Development (2014) doi:10.1242/dev.105288

Table 1. Performance of BLIND in previously published
timecourses 
Species N R2 P-value

Xenopus laevis 14 1 –
Xenopus tropicalis 14 1 –
Drosophila melanogaster (female) 12 0.99 <10–9

Drosophila melanogaster (male) 12 0.91 <10–6

Aedes aegypti 24 0.98 <10–19

Danio rerio 9 1 –

BLIND-ordered samples were compared with the published order by
computing Pearson’s correlation coefficient between the two ordered vectors. 

Fig. 1. The BLIND method for ordering transcriptomic timecourses. (A) Principal components analysis (PCA) on a developmental timecourse for X. laevis
(Yanai et al., 2011). Each circle represents the transcriptome of a single embryo, where the color indicates the relative developmental stages of the samples. The
connecting line is the developmental path calculated by BLIND. (B) Entropy of gene expression levels across developmental time in the X. laevis timecourse. The
inset distributions show the gene expression levels at the indicated stages. The line is a linear fit. (C,D) Pairwise similarities between the X. laevis transcriptomes
when samples are randomized (C) and BLIND ordered (D).
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contains a more homogenous array of expression levels from many
cells of many cell types. Indeed, the initial transcriptome is
markedly different in distribution from the final transcriptome in the
Xenopus timecourse according to its restriction of medium
expression levels, thus leading to lower entropy (Fig. 1B, insets).
This notion is also supported by the recent observation that
individual cells have a bimodal distribution of expression levels,
whereas for a complex collection of cells the expression levels are
normally distributed because of the effect of averaging across many

cells (Hebenstreit and Teichmann, 2011). The overall rise in
expression entropy is exploited by BLIND to determine the polarity
of the timecourse.

A high-resolution Amphimedon queenslandica timecourse
To demonstrate the capacity of BLIND to accurately infer
developmental ordering we collected 59 single embryo and larvae
samples of the sponge Amphimedon queenslandica. The brood
chambers of A. queenslandica contain embryos at different
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Fig. 2. BLIND-ordered samples in a single-embryo high-resolution developmental timecourse of the sponge A. queenslandica. (A) Micrographs of 
A. queenslandica embryos and larvae at the indicated developmental stages. (B) PCA on the transcriptomes of 59 samples from a developmental timecourse of 
A. queenslandica. Each circle is a sample colored according to the relative developmental stage as inferred upon collection. The samples are connected by lines
representing the BLIND-deduced path. (C) Pairwise similarities between the transcriptomes comprising the A. queenslandica developmental timecourse. The
embryos are ordered according to morphological staging. (D) Same as C, following the ordering of the samples by BLIND. Black boxes indicate observable
transcriptome periods that are consistent with morphological transitions. (E) Gene expression profiles for the six indicated genes involved in Wnt signaling.
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developmental stages (Fig. 2A) and morphologically staging them
requires skilled assessment of individual embryos. Even then, at
best, embryogenesis can be divided into a small number of broad
stages. We thus asked whether BLIND could order the samples
without such information. For each sample, the mRNA expression
levels of all genes were measured using CEL-Seq (Hashimshony et
al., 2012), which is an RNA-Seq method, resulting in a 29,883×59
gene expression matrix. Fig. 2B shows PCA of this dataset and the
BLIND path among them. As the figure indicates, both the ordering
and direction of the BLIND-ordered timecourse showed a strong
correlation with those determined morphologically (Fig. 2D,E;
supplementary material Figs S3, S4).

Examining the pairwise correlations among transcriptomes
revealed five distinct transcriptomic periods that had a general
agreement with morphological stages. The agreement decreases in
the transition points between the stages (Fig. 2C,D), suggesting that
subtle transcriptomic differences between samples might not be
reflected at the morphological level. We also confirmed that the
BLIND-ordered timecourse faithfully captured known gene
expression programs. For example, Fig. 2E shows the gene

expression profiles for six genes involved in the wnt pathway,
consistent with their previously characterized developmental roles
(Adamska et al., 2010).

Performance of the BLIND method
We next sought to test BLIND robustness to its two parameters: the
number of principal components at the disposal of the traveling
salesman algorithm and the number of dynamically expressed genes
considered. Fig. 3A shows BLIND performance on the Amphimedon
timecourse for different numbers of principal components, ranging
from one to ten. For each number of principal components we
invoked BLIND for ten replicates, each time recording its accuracy
as the correlation between the BLIND order and the annotated
morphological order. We found that running BLIND with a single
principal component yields poor accuracy (R=0.11). However, for
two principal components or more, the accuracy is R≥0.97,
indicating that using at least two principal components is sufficient
for robust performance. The coherence of the ten replicates in each
set further reflects the reproducibility of BLIND despite its
inherently heuristic nature.

RESEARCH REPORT Development (2014) doi:10.1242/dev.105288

Fig. 3. Performance of the BLIND method. (A) Effect of the number of principal components used for BLIND ordering on performance. For each number of
PCs, ten replicates (rows) are shown, where the annotated morphological order is indicated by color. BLIND accuracy, which is computed as the mean
Pearson’s correlation (n=59) between BLIND and morphological ordering, is indicated on the right. (B) Effect of the number of genes included on BLIND
analysis performance (same format as A). (C) Performance of BLIND on simulated gene expression datasets. The inset shows two simulated datasets of two
and four genes (see Materials and Methods). The boxplot shows the distribution of BLIND accuracies for independent simulations of a given number of genes.
(D) Performance of BLIND on partial timecourses. The Amphimedon timecourse was examined using BLIND for the indicated overlapping partial windows. The
accuracy of the BLIND ordering of the entire timecourse is shown on the left.
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We also found that BLIND is robust to the number of genes
included in analysis. As demonstrated in Fig. 3B, examining the
10% most dynamic genes, or any higher fraction, produced good
behavior. To gain insight into why few genes are apparently
sufficient for BLIND performance, we tested BLIND on simulated
temporal gene expression profiles (Fig. 3C, insets; see Materials and
Methods). Invoking BLIND on these simulated datasets, we found
that using even a few simulated profiles is sufficient to faithfully
recover the ordering. The boxplots shown in Fig. 3C indicate that
when using only a single simulated gene, BLIND generally gave
poor results; however, with four genes it was already highly accurate
(median R>0.85). From these simulations we conclude that the
continuous nature of gene expression provides the crucial clue for
the sorting of samples by BLIND. In contrast to the simulated
profiles, which are perfectly continuous by their definition, invoking
BLIND on only the ten most dynamic genes of the Amphimedon
timecourse did not produce accurate results (Fig. 3B), indicating that
the strength of the method is in its integration of information from
many dynamically expressed genes, however noisy.

Finally, we inquired whether BLIND is expected to produce
accurate results on partial timecourses. The maternal and zygotic
transcriptomes of animals are dramatically distinct (Levin et al.,
2012; Yanai et al., 2011) suggesting that BLIND performance might
be dependent upon overlap with the transition between these two.
We tested different regions of the timecourse using overlapping
windows, each of only 20 samples. If BLIND is dependent on early
development it would be expected to fail for subsets of the data that
include only the later time points. By contrast, we found that BLIND
performed with fairly uniform accuracy across all subregions of the
timecourse (Fig. 3D), suggesting its general applicability to
development, in datasets with at least ten samples (supplementary
material Figs S5, S6).

BLIND has some important limitations that may serve as points for
its future development. As samples are randomly collected, BLIND
may be modified to combine embryos that are extremely similar in
age and appear essentially as replicates along the PCA path. Samples
that fall beyond the natural PCA path might correspond to anomalous
embryonic developments, perhaps accounting for dead embryos, and
on this basis can be excluded from analysis. Finally, the BLIND
method can be used to identify gaps along the PCA path that might
correspond to developmental stages.

BLIND-ordered sampling of large-scale experiments has several
important applications. Most readily, the method enables analysis of
randomly collected embryos whose relative developmental stages
are unknown. This is perhaps most advantageous for asynchronous
embryos such as Nematostella (Fritzenwanker et al., 2007) and, in
addition, to embryos that lack observable morphological markers
(e.g. opaque embryos) or have to be acquired by environmental
sampling (e.g. plankton tows). Large-scale transcriptomic
approaches will perhaps be most valuable when studying processes
at the single-cell level (Shapiro et al., 2013), such as tumor
populations and B-cell maturation. Such scaling up to studying >103

samples will enable the high-resolution view necessary for
understanding the gene regulation of complex processes.

MATERIALS AND METHODS
The BLIND method
The method begins with a gene expression matrix in which the rows
correspond to genes and the columns to samples. Normalized expression
values are transformed to log10 scale and then filtered to contain only the X
most dynamically expressed genes, where X is a parameter set by the user.
X is set to 10% throughout the analyses shown here, unless noted otherwise.

Expression dynamics is computed as the range of expression values for each
gene. In order to avoid outlier effects the range is taken as the difference
between the second lowest and the second highest values. PCA is computed
on the filtered expression matrix using the Matlab library function princomp.
The first Y principal components were used to represent the samples, where
Y is set by the user (Y=2 by default). The Y principal components are
normalized and scaled by percentage of explained variance. The order of
samples in the normalized PCA plane is determined using an
implementation of a genetic algorithm for the traveling salesman problem
(Kirk, 2008) in which, given a list of cities and the distances between each
city-city pair, the task is to determine the shortest possible route visiting each
city exactly once. The specific parameters used for this are: XY, a matrix
containing the normalized first Y principal components of the samples;
DMAT, an Euclidean distance matrix of the samples; POPSIZE, 100;
NUMITER: 104; SHOWPROG, 0; SHOWRESULT, 0.

Transcriptomic entropy
Shannon’s entropy was computed for each sample as ∑G

i=1p(ki) log(p(ki)),
where p(ki) indicates the expression level of gene i divided by the sum of
the expression levels of all genes. The samples’ entropy across the traveling
salesman problem-ordered dataset was then fitted using linear regression to
identify the trend. In the case of a negative trend, the order was flipped to
arrive at the final BLIND sample ordering.

BLIND web server
The BLIND method is available online at blind.technion.ac.il. Users can
upload gene expression matrices, compute BLIND using selected parameters,
view the ordering process and download the BLIND-ordered dataset. 

A. queenslandica transcriptomics
Embryos, larvae and post-larvae were collected individually at Heron Island,
the Great Barrier Reef, Australia. These were staged by morphology and
imaged before being stored in 20 μl RNA later (Invitrogen). RNA was
isolated using TRIzol as previously described (Levin et al., 2012). 5 ng total
RNA was used as input for the CEL-Seq protocol (Hashimshony et al.,
2012) using the published A. queenslandica genome and gene models
(Srivastava et al., 2010). As previously described in the CEL-Seq protocol
(Hashimshony et al., 2012), the resulting read counts were normalized to
transcripts per million (TPM). The complete dataset has been deposited in
the Gene Expression Omnibus with accession code GSE54364.

Gene expression simulations
Gene expression profiles were simulated using polynomial functions with
degrees randomly selected from the range of zero (constant expression) to
5. A set of coefficients was then randomly generated from the range −10 to
10. Noise was added to each time point from a normal distribution (mean=0;
standard deviation=0.5). For a given dataset of size N, N gene profiles were
generated independently.
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Supplementary Information for “ ‘BLIND’ ordering of large-scale transcriptomic time-

courses”  

 

 

 

 
Figure S1. Developmental transcriptomes form a path in the principal components plane in 

mosquito, zebrafish and fly. (A-D) Same format as Figure 1A for mosquito (A), zebrafish (B), 

female fly (C) and male fly (D). (Akbari et al., 2013; Lott et al., 2011; Yang et al., 2013) 
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Figure S2. Entropy increases in the developmental time-courses of mosquito and zebrafish. 

(A-B) Same format as Figure 1B for mosquito (A) and zebrafish (B). (Akbari et al., 2013; Yang 

et al., 2013) 

 

 

Figure S3. BLIND ordered time-course of A. queenslandica shows a high correlation with 

ordering by morphology. Each point represents a sample where the X- and Y- axes represent 

the morphological and BLIND index, respectively. The black line represents a linear fit on the 

data and the 𝑅2 value of the linear model is indicated. 
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Figure S4. Entropy increases in the developmental time-course of A. queenslandica. Same as 

Figure 1B, for the BLIND ordered A. queenslandica time-course. 

 

 

 

Figure S5. The effect of the number of samples in the dataset on BLIND performance. The 

boxplots show the distributions of accuracies for independent sampling of different numbers of 

samples from the A. queenslandica dataset. Note that running BLIND on datasets smaller than 10 

samples results in noisy and inaccurate ordering. 
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We did find, however, that BLIND’s performance is sensitive to the number of samples in the 

time-course. While BLIND showed accurate and robust results on large and medium datasets, 

running BLIND on smaller datasets (10 samples or less) resulted in noisy and inaccurate 

ordering (Fig. S5).  

 

Figure S6. The number of samples affects BLIND’s accuracy. Smaller datasets show higher 

sensitivity to the composition of samples. Same as Figure 3D with a window size of 5 samples. 

When examining different regions of the Amphimedon time-course using overlapping windows 

containing five samples each, we found that the accuracies are much lower than those of the 

larger windows and that there is higher variability in BLIND’s accuracy throughout the dataset. 
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