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ABSTRACT
The well-known regenerative abilities of planarian flatworms are
attributed to a population of adult stem cells called neoblasts that
proliferate and differentiate to produce all cell types. A characteristic
feature of neoblasts is the presence of large cytoplasmic
ribonucleoprotein granules named chromatoid bodies, the function of
which has remained largely elusive. This study shows that histone
mRNAs are a common component of chromatoid bodies. Our
experiments also demonstrate that accumulation of histone mRNAs,
which is typically restricted to the S phase of eukaryotic cells, is
extended during the cell cycle of neoblasts. The planarian PIWI
homologs SMEDWI-1 and SMEDWI-3 are required for proper
localization of germinal histone H4 (gH4) mRNA to chromatoid
bodies. The association between histone mRNA and chromatoid
body components extends beyond gH4 mRNA, since transcripts of
other core histone genes were also found in these structures.
Additionally, piRNAs corresponding to loci of every core histone type
have been identified. Altogether, this work provides evidence that links
PIWI proteins and chromatoid bodies to histone mRNA regulation in
planarianstemcells. Themolecular similarities betweenneoblasts and
undifferentiated cells of other organisms raise the possibility that PIWI
proteins might also regulate histone mRNAs in stem cells and germ
cells of other metazoans.
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INTRODUCTION
Substantial changes in gene expression programs are required to
balance self-renewal and differentiation of stem cells (He et al.,
2009; Smith, 2001). Planarian flatworms have become a popular
model system for analyzing events in stem cell proliferation and
differentiation because of the abundance of pluripotent stem cells
present throughout their soma (Elliott and Sánchez Alvarado, 2012;
Newmark and Sanchez Alvarado, 2002). Somatic stem cells, known
as ‘neoblasts’, can be observed during the adult life of this organism
and give rise to all other somatic cells, which become terminally
differentiated and replaced by neoblast progeny upon their death
(Newmark and Sanchez Alvarado, 2000; Wagner et al., 2011).
Neoblasts proliferate continuously and this process is accelerated in
response to nutritional intake or amputation to allow for growth
and for regeneration, respectively (Baguñà, 1976; Newmark and
Sanchez Alvarado, 2000; Wenemoser and Reddien, 2010). Thus,

the anatomical integrity and function of every planarian tissue
depends on the proper proliferation and differentiation of neoblasts.

Accumulating evidence shows that factors present in germ cells
across metazoans play a prominent role in regulating neoblast gene
expression post-transcriptionally (Guo et al., 2006; Juliano et al.,
2011, 2010; Palakodeti et al., 2008; Reddien et al., 2005; Rink,
2013; Rouhana et al., 2010; Salvetti et al., 2005; Shibata et al., 2010,
1999). A shared post-transcriptional regulatory network between
planarian neoblasts and metazoan germ cells is also suggested by
the presence of large cytoplasmic ribonucleoprotein (RNP) granules
(Shibata et al., 2010). In planarians, these membrane-less organelles
are known as ‘chromatoid bodies’, and their function has remained
elusive for decades (Auladell et al., 1993; Coward, 1974; Hori,
1982; Morita et al., 1969). Planarian chromatoid bodies contain
homologs of the RNA helicase DHH1/RCK (Yoshida-Kashikawa
et al., 2007), Tudor (Solana et al., 2009), SmB (Fernandez-Taboada
et al., 2010) and methylated substrates of the protein arginine
methyltransferase 5 (PRMT5) (Rouhana et al., 2012). PRMT5
catalyzes the synthesis of symmetrical dimethylated arginines
(sDMA) on SmB, Vasa and PIWI homologs (Blackwell and Ceman,
2012). These sDMA modifications are binding sites for Tudor
domain-containing proteins and contribute to the aggregation
and function of these granules (Gao and Arkov, 2012; Siomi
et al., 2010).

Noncoding RNAs have come to light as major regulators of gene
expression (Ghildiyal and Zamore, 2009). PIWI-interacting RNAs
(piRNAs) represent an intriguing family of small (24-31 nucleotide
long) non-coding RNAs (Siomi et al., 2011). Regulation by piRNA
involves base-pairing with target RNA in a PIWI-containing
complex that leads to the cleavage of target RNA and production
of new piRNAs (Ishizu et al., 2012). Growing evidence for a second
mode of action indicates that piRNAs also serve as guides for
epigenetic mark deposition and for silencing of specific loci. This
double-mode mechanism for gene silencing secures germline
survival, where piRNAs repress the expression of transposons that
would otherwise cause genomic instability (Siomi et al., 2011).
PIWIs and piRNAs also regulate genes with specific roles in
stem cell maintenance (Cox et al., 1998; Klenov et al., 2011),
spermatogenesis (Aravin et al., 2006; Grivna et al., 2006), somatic
cells of ovaries (Malone et al., 2009; Robine et al., 2009; Saito et al.,
2009) and synaptic plasticity (Rajasethupathy et al., 2012).

Planarianmembers of the PIWI protein family are transcriptionally
abundant in neoblasts and routinely used as planarian stem cell
markers (Guo et al., 2006; Reddien et al., 2005; Rossi et al., 2007;
Sanchez Alvarado et al., 2002). Two PIWI homologs in Schmidtea
mediterranea (Smedwi-2 and Smedwi-3) are required for proper
neoblast maintenance and function (Palakodeti et al., 2008; Reddien
et al., 2005). In order to gain a better perspective of which genes these
PIWIs might regulate, deep sequencing efforts have identified
planarian piRNAs (Friedlander et al., 2009; Palakodeti et al., 2008).
Surprisingly, only 20-30%of sequencedpiRNAsmap to transposableReceived 22 July 2013; Accepted 25 April 2014
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elements (Resch and Palakodeti, 2012). The targets and function of
the remainder of these small RNAs remain to be elucidated.
Here,we present evidence for regulationof histonemRNAbyPIWI

homologs in planarian stem cells. Histone gene expression in most
eukaryotic cells is regulated post-transcriptionally by the conserved
stem-loopbindingprotein (SLBP) andby interacting factors (Marzluff
and Duronio, 2002; Marzluff et al., 2008). These ensure that histone
mRNAs only accumulate and are translated exclusively during S
phase (when DNA is replicated and packaged into chromatin).
Although histonemRNA processing by the SLBP pathway appears to
be partially conserved in S. mediterranea, an additional level of
histone mRNA regulation by PIWI homologs is present in planarian
stem cells. We find that transcripts representative of each canonical
core histone are present in neoblasts throughout the cell cycle and
localize to chromatoid bodies. Knockdown of Smedwi-1 and Smedwi-
3 leads to loss of histone mRNA localization to chromatoid bodies.
Increased levels of histone mRNAs and other neoblast markers are
also observed after simultaneous knockdown of these PIWI
homologs. Altogether, this work uncovers a connection between the
piRNA pathway, chromatoid bodies and histone mRNA regulation in
planarian stem cells.

RESULTS
Characterization of Histone H4 transcripts and their
localization to chromatoid bodies
We previously identified a sequence with perfect homology to
human Histone H4 from a S. mediterranea cDNA clone collection
(Zayas et al., 2005). This sequence was named germinal histone H4
(gH4) and has been used as a marker for planarian neoblasts and
germ cells (Collins et al., 2010; Wang et al., 2010, 2007). Unlike
many other neoblast-enriched transcripts, gH4 transcripts localize
to chromatoid bodies (Rouhana et al., 2012), as judged by
colocalization of fluorescent in situ hybridization (FISH) signals
with Y12 antibody (Lerner et al., 1981) labeling of chromatoid
bodies (Fig. 1A,B; supplementary material Fig. S1). Y12 binds
specifically to symmetrical dimethylarginine (sDMA), a post-
translational modification that has been detected in RNA-
processing factors, such as Sm proteins (Brahms et al., 2000) and
PIWI homologs (for full characterization, see Rouhana et al., 2012).
It is important to note that gH4 mRNA is also observed away from
chromatoid bodies in the cytoplasm of neoblasts (Fig. 1A). Also of
interest is the observation that gH4 transcripts were not detected in
all chromatoid bodies (72-89% of Y12-labeled chromatoid bodies),
revealing molecular heterogeneity in chromatoid bodies and their
RNA components.
The S. mediterranea genome contains numerous Histone H4 loci

(supplementary material Table S1). Of these, sequence with the
greatest identity to gH4 corresponds to a locus that contains a gH4
sequence duplication, flanking transposon remnants and piRNA
islands (Rouhana et al., 2012). The transcript that resulted in the
gH4 cDNA clone used in our studies is predicted to originate from a
spliced and polyadenylated product from this locus, which contains
a long 3′UTR (supplementary material Fig. S2A). Both splicing and
polyadenylation areRNA-processing events that are rarelyobserved in
histonemRNAs (Marzluff et al., 2008). Thus, we questioned whether
the transcripts detected by our riboprobes were representative of our
gH4 cDNA clone, bona fide histone mRNAs, pseudogene transcripts
or some run-on transcript originating from the transposable element
present in this locus. To test this, we synthesized riboprobes covering
different fragments of this cDNA. FISH analyses showed that only
probes corresponding to the open reading frame (ORF) of the gH4
cDNA sequence, and not to the long 3′UTR, hybridized to transcripts

in planarian neoblasts and chromatoid bodies (supplementarymaterial
Fig. S2B). Furthermore, northern blot analyses to verify the size and
polyadenylation status of these transcripts confirmed that non-
polyadenylated material, which migrates as a single band of
approximately 350 nucleotides, was detected from irradiation-
sensitive cells (supplementary material Fig. S2C-E). Altogether,
these results suggest that the originalgH4 cDNAmust have come from
a rare transcript detected by priming with oligo(dT) during cDNA
cloning, and demonstrate that the vast majority of gH4RNA detected
in planarian neoblasts exhibits the size and polyadenylation status
expected of canonical histone mRNAs. These findings imply that
chromatoid bodiesmay be involved in regulation of canonical Histone
H4 mRNAs.

Canonical core histone mRNAs are normally restricted to the S
phase of the cell cycle, where they are translated and then degraded
once DNA replication is complete (Marzluff and Duronio, 2002).
Thus, we hypothesized that the presence of planarian histone
mRNA would be restricted to the subset of neoblasts undergoing
DNA replication. To test this, we analyzed the temporal distribution
of Histone H4 mRNAs recognized by gH4 riboprobes by
performing double FISH with commonly used planarian stem
cell markers. Surprisingly, we observed an almost complete (>96%)
overlap in detection of Histone H4 transcripts with neoblast
markers, such as Smedwi-1 (Fig. 1C) and Smed-bruno-like
(Fig. 1D), in stem cells of S. mediterranea. Given that all dividing
cells in adult planarians express Smedwi-1 (Guo et al., 2006;
Reddien et al., 2005; Wagner et al., 2011), and that only a fraction of
SMEDWI-1(+) cells are in S phase [∼35% are labeled by BrdU
4 hours after BrdU injection (Guo et al., 2006)], we concluded that
expression of histone genes is not restricted to S phase and seems to
extend throughout the cell cycle of neoblasts. We further validated
this notion by labeling S phase neoblasts with BrdU and checking
for expression of gH4 directly. As expected, a large portion of gH4-
expressing cells (∼37%) did not colabel with BrdU following a
2 hour BrdU pulse and 1 hour chase (Fig. 1E). Significantly, no
BrdU(+)/gH4(−) cells were found during our analyses. These
observations indicate that the presence of histone mRNAs is not
limited to the S phase of the cell cycle in planarian neoblasts.

SLBP is required for neoblast maintenance and proper
histone mRNA processing in planarians
The regulation of canonical histone mRNAs by the SLBP is a
conserved feature of cellular proliferation in eukaryotes (Marzluff and
Duronio, 2002). Co-transcriptional 3′-end processing of most pre-
mRNAs is mediated by recognition of the AAUAAAmotif in their 3′
UTR by components of the cleavage and polyadenylation specificity
factor complex (Wahle and Keller, 1992; Zarkower and Wickens,
1987).However, 3′-end processingof histonepre-mRNAs is normally
mediated by a separate, but conserved,mechanism that involves SLBP
recognition of a stem-loop structure just downstream of the stop codon
(Marzluff et al., 2008). The characterization of Histone H4mRNA by
gH4 northern blot analysis displays characteristics of SLBP-processed
transcripts. However, the presence of Histone H4mRNA outside of S
phase in neoblasts is contrary to what is expected from mRNAs
regulated by SLBP. To address this paradox, we tested the effect of
SLBPRNA-interference (RNAi) on Histone H4mRNA. SLBPRNAi
led to a gradual loss of gH4 signals in both FISH and northern blot
analyses (Fig. 2A-E).Analysis of neoblast distribution inSLBP(RNAi)
samples by Smedwi-1 FISH revealed a severe loss of neoblasts
(Fig. 2A-D). Furthermore, Smedwi-1(+)/gH4(−) neoblasts (or vice
versa) were not detected in SLBP knockdowns (Fig. 2D-D″). These
results suggest that SLBP RNAi results in rapid loss of neoblasts,
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which is not preceded by a detectable reduction in neoblast histone
mRNA levels. Albeit surprising, these results corroborate previous
studies in other systems in which compromised SLBP levels led to
reduced cellular proliferationwithout anysubstantial effects onhistone
mRNA levels (Sullivan et al., 2009; Zhao et al., 2004).
Loss of SLBP function inDrosophila and mice leads to detection

of longer polyadenylated histone mRNAs, which result from
transcriptional continuation through stem-loop processing signals
and eventual processing by canonical cleavage and polyadenylation
signals downstream in their 3′UTR (Sullivan et al., 2009; Zhao
et al., 2004). Although accumulation of longer histone transcripts
after SLBP RNAi was not detected by gH4 northern blot analyses
(Fig. 2E), we hypothesized that their detection might be limited
due to the rapid loss of neoblasts harboring such transcripts.
Thus, in order to enhance detection of aberrant histone mRNA-
processing events, we performed a PCR-based analysis selective for
polyadenylated transcripts with gH4 sequence (Fig. 2F). Total RNA
was extracted from planarians subjected to control or SLBP RNAi.
A DNA oligonucleotide was ligated to the 3′-end of the RNA, and a
primer of complementary sequence was used to initiate reverse
transcription. The complementary primer possessed four
thymidines at its 3′-terminus, and thus would only extend reverse
transcription of mRNAs ending in minimally four adenosines.

Gene-specific primers in the gH4 ORF were used to prime second-
strand synthesis. After PCR, the lengths of Histone H4 transcripts
were deduced from the length of DNA fragments. Histone H4
transcripts became progressively longer in planarians subjected to
SLBP RNAi, with transcriptional termination of transcripts
occurring up to 800 nucleotides downstream from that observed
in control RNAi samples (Fig. 2G). Taken together, these results
demonstrate that SLBP is required for neoblast maintenance and
proper Histone H4 mRNA 3′-end processing in planarians.

mRNAs encoding core histones localize to chromatoid
bodies
The accumulation of longer polyadenylated transcripts with
homology to gH4 sequence in SLBP(RNAi) planarians provided
further evidence that transcripts recognized by gH4 riboprobes in
chromatoid bodies are core Histone H4mRNAs. Since expression of
Histone H4 in other systems is synchronized with that of other core
histones during the cell cycle, we tested whether other histone
mRNAs also localize to chromatoid bodies. We identified and
obtained cDNA clones representative of every major histone family
(Histone H1, H2A, H2B and H3; supplementary material Table S1).
Each of these sequences contains a stem-loop structure 22-31
nucleotides downstream from the stop codon, suggesting that they

Fig. 1. germinal histone H4 transcripts are found in the vast
majority of neoblasts and localize to chromatoid bodies.
(A-B‴) germinal histone H4 (gH4) transcripts specifically localize to
chromatoid bodies. Confocal microscopy analyses focused on the
neoblast-rich area located posterior to the pharynx (red square).
Fluorescent in situ hybridization (FISH) analyses of gH4 mRNA
(magenta; A,A″,A‴) and Smed-bruli mRNA (magenta; B,B″,B‴)
followed by Y12 immunolabeling of chromatoid bodies (green;
A′,A‴,B′,B‴) of neoblasts. On average, ∼74±5.9% of neoblasts in a
single confocal plane (n>100 neoblasts from four biological
replicates) contain chromatoid bodies with gH4mRNA (filled yellow
arrowheads; A″,A‴). gH4 mRNA is not detected in all chromatoid
bodies (empty arrowheads; A″,A‴). Smed-bruli mRNA is not
detected in chromatoid bodies (empty arrowheads; B″,B‴). Note
that gH4 mRNA is also detected in the cytoplasm outside of
chromatoid bodies (A″,A‴). Asterisks (A‴,B‴) indicate cell nuclei
labeled with DAPI. (C-D″) gH4 expression (green; C′,C″,D′,D″) in
neoblasts is co-detected by double FISH in a field of cells
expressing neoblast markers (magenta) Smedwi-1 (C,C″) and
Smed-bruli (D,D″). Nuclei are visualized by DNA stain DAPI (blue).
Merged images (C″,D″) reveal gH4 transcript detection in virtually
all neoblasts (>96%, n=308 for C; >98%, n=191 for D), some are
pointed out (arrowheads). (E-E‴) Approximately 63% of gH4-
expressing cells (magenta; E′) were colabeled with BrdU (green;
E″) following a 2 hour pulse and 1 hour chase (arrowheads; n>200
cells from six biological replicates). Significantly, ∼37% of gH4(+)
cells were not colabeled by BrdU (arrows), showing gH4 expression
outside of S phase. No BrdU(+)/gH4(−) cells were detected. DAPI
staining of nuclei (E) andmerged images (E‴) are shown. Scale bar
in B‴ (applies to A-B‴): 10 μm; in D″ (applies to C-D″): 40 μm; in
E‴ (applies to E-E‴): 50 μm.
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represent canonical histone mRNAs (supplementary material
Figs S3, S4). To examine whether these histone mRNAs also
localize to chromatoid bodies, we performed FISH combined with
immunolabeling of chromatoid bodies using the Y12 antibody as
described previously (Fig. 1) (Rouhana et al., 2012). Indeed, we
observed enrichment in chromatoid bodies for transcripts
corresponding to core Histone H2A and H3 (∼74% and 56% of
chromatoid bodies, respectively), and to a lesser extent for
transcripts corresponding to Histone H1 (∼40%) and H2B (∼34%)
mRNAs (Fig. 3; supplementary material Fig. S3). Localization of
these mRNAs to chromatoid bodies overlapped extensively with
gH4 signals (Fig. 3A-D). Histone mRNA localization to chromatoid
bodies was also observed in single FISH (supplementary material
Fig. S3B-F), demonstrating that localization to chromatoid bodies
and partial overlap with gH4 signals is not a technical artifact of the
double FISH procedure. These results suggest that, in addition to
mRNA encoding Histone H4, transcripts encoding Histones H1,
H2A, H2B and H3 also localize to chromatoid bodies. To our
knowledge, these are the only mRNAs thus far shown to localize to
chromatoid bodies of planarian stem cells. It is plausible that post-
transcriptional regulation of histone mRNAs by chromatoid body
components serves as an alternative pathway for their regulation
during the cell cycle, which could explain the presence of histone
mRNAs in all neoblasts and not only cells transitioning through S
phase (Fig. 1C-E).
The localization of histone mRNAs to chromatoid bodies of

planarian stem cells raises questions such as: What is the fate of
histone transcripts localized to chromatoid bodies? What is the
machinery involved in the localization of histone mRNAs to
chromatoid bodies? A natural candidate for involvement in

histone mRNA localization to chromatoid bodies is SLBP,
which is required for transcriptional termination and post-
transcriptional regulation of histones via the shared stem-loop
structure present in the 3′UTR of histone mRNAs. Analysis of
gH4 FISH signals from remaining neoblasts in planarians
subjected to SLBP RNAi still showed localization of Histone
H4 mRNA to chromatoid bodies (supplementary material Fig.
S4A,B). Although it is possible that robust SLBP RNAi was not
achieved in cells with remaining gH4 signals, this result suggests
that disrupting SLBP function does not directly interfere
with localization of histone mRNAs to chromatoid bodies.
Additionally, riboprobes corresponding to transcripts of histone
H3 loci that contain single or multiple changes in the stem-loop
sequence still recognize transcripts found in chromatoid bodies
(supplementary material Fig. S4C-F). Nevertheless, whether
planarian SLBP binding specificity allows for such changes in
stem-loop sequence has not been established.

SMEDWI-1 and SMEDWI-3 are required for regulation of
histone mRNA and localization to chromatoid bodies
Chromatoid bodies have been visualized in this and previous studies
(Rouhana et al., 2012) by their immunoreactivity to the Y12
antibody (Lerner et al., 1981). Y12 binds specifically to sDMA, a
post-translational modification long known to be present in Sm
proteins (Brahms et al., 2000). Although Y12 does recognize
planarian material expected to be Sm proteins by western blot
analysis, it does not effectively label the nuclei of planarian cells
under our current immunofluorescence protocol (Rouhana et al.,
2012). Instead, this antibody is completely absorbed by chromatoid
bodies, which is partly attributed to the fact that Y12 also recognizes

Fig. 2. SLBP is required for neoblastmaintenance
and gH4 mRNA 3′-end processing. (A) Illustration
indicating the neoblast-rich area (red box) analyzed
by FISH and confocal microscopy. (B) The number of
neoblasts is significantly reduced in SLBP(RNAi)
planarians compared with controls between 2 and
3 weeks after the first of two dsRNA feedings (n=4
per group; error bars indicate s.d.; t-test P<0.05).
(C-D″) Representative double FISH of cells co-
expressing Smedwi-1 (magenta; C,D) and gH4
(green; C′,D′) mRNAs reveals a dramatic loss of
neoblasts (arrowheads) in SLBP(RNAi) (D)
compared with control (C) planarians 2 weeks after
the first of two dsRNA feedings. Nuclei were
observed by DAPI staining (blue, C″,D″). Scale bar:
40 μm. (E) Northern blot analysis reveals the loss of
gH4 signal from total RNA extracts after 3 weeks of
SLBP RNAi. rRNA levels are shown as loading
control. (F) PCR-based 3′-end length analysis
modified for selection of polyadenylated RNA (see
Materials and Methods for details). (G)
Electrophoretic analysis reveals longer 3′-ends in
Histone H4 transcripts from animals subjected to 2
weeks of SLBP RNAi compared with controls. This
assay only requires four terminal adenosines for
signal amplification and does not necessarily
represent bona fide poly(A) tails. Ladder units: base
pairs.
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sDMA deposited on PIWI homologs (Kirino et al., 2009; Rouhana
et al., 2012; Vagin et al., 2009). The physical association between
PIWI homologs and Tudor domain-containing proteins is facilitated
by sDMA and is crucial for RNP granule integrity and piRNA
function (Gao and Arkov, 2012; Siomi et al., 2010).
To examine whether compromising the function of PIWI

homologs affects histone mRNA localization to chromatoid

bodies, we quantified the number of chromatoid bodies
containing Histone H4 mRNA, as visualized by the percentage of
Y12 immunofluorescence foci containing gH4 FISH signals in
neoblasts of control and Smedwi-1, Smedwi-2 or Smedwi-3
knockdown planarians (Fig. 4A-C). We found a decrease of
colocalization from 72±5% (n=267) in neoblasts of control animals
to 52±8% (n=522) in Smedwi-1(RNAi) and 45±6% (n=470) in

Fig. 3. Core histone mRNAs localize to chromatoid bodies.
Double FISH analysis of histone H1, H2A, H2B or H3 mRNA
(gold; A-D) with gH4 (magenta; A′-D′) followed by Y12
immunofluorescence (green; A″-D″) shows that mRNAs
representative of each histone are detected in chromatoid bodies.
Merged images and visualization of nuclei by DAPI staining (blue)
are shown (A‴-D‴). Arrowheads indicate chromatoid bodies
containing the mRNA of tested histones and gH4. Scale bar: 10 μm.

Fig. 4. SMEDWI-1 and SMEDWI-3 are necessary for regulating
Histone H4mRNA localization to chromatoid bodies. (A-B‴) FISH
of gH4 mRNA (magenta; A,B) followed by Y12 immunofluorescence
(green; A′,B′) in control (A-A‴) and Smedwi-1;-3(RNAi) planarians
(B-B‴). Merged images (A″,B″) show reduced gH4 mRNA
localization to chromatoid bodies in Smedwi-1;-3(RNAi) samples.
DAPI was used to visualize nuclei (blue; A‴,B‴). Filled arrowheads
indicate signal colocalization; empty arrowheads represent Y12
signal that does not colocalize with gH4 mRNA. (C) Smedwi-1,
Smedwi-3 and Smedwi-1;-3 knockdowns lead to a significant
reduction in the percentage of chromatoid bodies containing gH4
mRNA [n≥3 biological replicates; ±s.d.; t-test P<0.05 for Smedwi-1
(RNAi) and P<0.01 for Smedwi-3(RNAi) and Smedwi-1;-3(RNAi)].
(D) Northern blot analysis reveals increased gH4mRNA levels in total
RNA from Smedwi-1;-3(RNAi) extracts compared with controls.
Ribosomal RNA (rRNA) was used as loading control. (E) Relative
abundance of histone and neoblast marker mRNAs in Smedwi-1;
-3(RNAi) planarians (light gray) relative to controls (dark gray) as
measured by RT-qPCR. Transcript levels of genes listed in the y-axis
were normalized to a Smed-β-tubulin internal control. Reduced
Smedwi-1 mRNA levels show effective RNAi in Smedwi-1;-3(RNAi)
samples. Columns represent averaged values from three biological
replicates. Error bars represent s.d. Analyses were performed on
planarians 11-12 days after the first of two dsRNA feedings. The
second feeding occurred on day 5. Scale bar: 10 μm.
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Smedwi-3(RNAi) (Fig. 4C). Neoblasts of planarians subjected to
simultaneous Smedwi-1 and Smedwi-3 RNAi [Smedwi-1;-3(RNAi)]
displayed an even more severe decrease in Y12/gH4 signal
colocalization, which fell to 29±3% (n=486) (Fig. 4A-C).
Smedwi-2(RNAi) animals showed homeostatic defects on days
11-13 of RNAi treatment, whereas no homeostatic defects were
observed in Smedwi-1(RNAi), Smedwi-3(RNAi) or Smedwi-1;-3
(RNAi) at this time point. The observed homeostatic state of single
knockdowns is equivalent to previous observations from studies of
homeostatic integrity and neoblast loss dynamics of PIWI homolog
knockdowns reported by Palakodeti et al. (2008). Indeed, analysis
of neoblast distribution revealed a severe loss of neoblasts in all
Smedwi-2(RNAi) planarians; however, no significant reduction in
gH4 mRNA localization to chromatoid bodies was observed in
lingering neoblasts of Smedwi-2(RNAi) at this time point (Fig. 4C).
Our attempts at simultaneous RNAi for all three PIWI homologs
(Smedwi-1, -2 and -3) resulted in variable phenotypes, some of
which displayed a severe loss of neoblasts. As RNAi efficiency
might be compromised in attempted triple knockdowns we decided
to discontinue their analysis. In conclusion, the PIWI homologs
SMEDWI-1 and SMEDWI-3 are required for proper localization of
Histone H4 transcripts to chromatoid bodies.
The observed reduction in histone mRNA localization in

chromatoid bodies after Smedwi-1 and/or Smedwi-3 RNAi raised
questions about the effect of PIWI function on histone mRNA
stability. Thus, we analyzed Histone H4 mRNA levels in planarians
subjected to simultaneous Smedwi-1 and Smedwi-3RNAi by northern
blot analysis. The levels of Histone H4mRNA increased in total RNA
extracts of Smedwi-1;-3(RNAi) planarians compared with those of
control animals (Fig. 4D,E), suggesting a correlation between
delocalization from chromatoid bodies and increased Histone H4
mRNA levels. A similar trend was observed for the levels of other
histone gene mRNAs in Smedwi-1;-3(RNAi) planarians compared
with controls (H2A andH3; Fig. 4E). However, whenwe analyzed the
relative levels of mRNA between control and Smedwi-1;-3(RNAi)
samples for non-histone genes expressed in neoblasts, we also
observed an increase in transcript levels (i.e. Smedwi-2 and PCNA;
Fig. 4E). These results demonstrate that PIWI homologs are required
for regulating the localization of Histone H4 mRNA to chromatoid
bodies of planarian stem cells, which correlates with increased levels
of this and other neoblast transcripts.
PIWI proteins are conventionally guided by piRNAs that base-pair

with respective target mRNAs. Targeted transcripts are cleaved by the
‘slicer’ activity of PIWI, which in turn generates secondary piRNAs
(Siomi et al., 2011). We hypothesized that direct regulation of histone
mRNAs by PIWI proteins would require and/or result in piRNAs of
histone sequences. In an attempt to elucidate the mechanism by
which planarian PIWI proteins regulate histone mRNAs, we searched
the S. mediterranea genome for previously mapped piRNAs
corresponding to histone loci (Friedlander et al., 2009; Palakodeti
et al., 2008;Robbet al., 2008). Indeed,we foundover 50piRNA island
sequences that correspond to loci representing every core histone
family (Fig. 5A; supplementary material Table S1). The identified
piRNA sequences matched both intragenic and intergenic sequences,
pseudogenes and bona fide histone mRNA coding sequences.
Surprisingly, most of the histone piRNA sequences corresponded to
the sense orientation of the analyzed histone genes (n=40/50;
supplementary material Table S1). These data support the notion
that direct contact between PIWI proteins and histone transcripts
occurs at somepoint during the regulation of expression of core histone
genes, as piRNAs of histone sequences are likely to be produced by
PIWI slicing activity on histone mRNAs.

DISCUSSION
Here, we characterized core histone mRNAs as components of
chromatoid bodies in planarian neoblasts. Planarian histone mRNA
3′-end processing is mediated by a conserved mechanism involving
SLBP. However, surprising events in histone mRNA biology were
observed in planarian stem cells, including a prolonged presence
throughout the cell cycle and PIWI-dependent localization to
chromatoid bodies. The added complexity of histone mRNA
regulation observed in neoblasts might be linked to the unique
physiology of planarians, in which all somatic cells (other than
neoblasts) are non-proliferative and terminally differentiated.
However, histone mRNA post-transcriptional regulation in neoblasts

Fig. 5. Regulation of planarian histone mRNAs by the PIWI/piRNA
pathway. (A) A subset of histone loci with corresponding piRNA islands.
SmedGD locus name is shown (mk.00####.##). Histone ORF coding
sequences are depicted as colored boxes and predicted transcripts as black
arrows. Location and name of sense (green) or antisense (red) orientation
piRNAs with respect to histone gene mRNAs are depicted as lines. Histone
mRNA 3′UTR stem-loop sequences are present in some loci (top), but
unrecognizable in others (bottom). (B) Working model. Histone mRNAs
localize to chromatoid bodies in a PIWI-dependent manner. Chromatoid
bodies lacking histone mRNAs are also present in neoblasts. Histone mRNAs
found outside chromatoid bodies are translated to provide histones for DNA
replication. Chromatoid bodies and histone mRNAs are lost during
differentiation. The loss of histone mRNAs during differentiation and the
maintenance of histone gene silencing in differentiated cells could involve
‘slicing’ of histone mRNAs by PIWI proteins. This mechanism would allow
degradation of neoblast histone transcripts no longer required after
differentiation, and simultaneous production of secondary piRNAs capable of
repressing de novo transcription of histone genes by piRNA-mediated gene
silencing in differentiated cells.
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could also be reflective of cells in the germline or of early embryos of
certain metazoans, in which tight coupling between histone mRNA
accumulation and S phase is not observed (Lanzotti et al., 2002;
Rouget et al., 2010; Woodland, 1980; Woodland and Adamson,
1977), and where piRNA activity has already been shown to regulate
the stability of maternal mRNAs (Rouget et al., 2010).
Histone mRNA regulation by PIWI proteins could also be a

common theme in cells in which expression of PIWI proteins is
abundant, such as a number of cancer cells (Siddiqi and
Matushansky, 2012) and stem cells of basal organisms (Funayama
et al., 2010; Juliano et al., 2011). Indeed, recent analysis of the small
RNA repertoire in Hydra uncovered a population of piRNAs
corresponding to sequences along the length of several histone
mRNAs (Krishna et al., 2013). Furthermore, Krishna et al. (2013)
observed an increase in transcript levels of Late Histone H2A2.2
and Histone H4 mRNAs when corresponding piRNAs were
downregulated. Furthermore, work by Juliano et al. (2014)
reported that two PIWI homologs are expressed in Hydra somatic
stem cells and localized to cytoplasmic ribonucleoprotein granules
similar to chromatoid bodies. These findings support the idea that an
ancestral mechanism of histone mRNA regulation by PIWI proteins
is conserved in stem cells of bilaterian and non-bilaterian animals.
SLBP is central to ensuring timely translation and turnover of

histone mRNAs within S phase of somatic cells. However,
accumulation of histone transcripts and DNA replication are not
always coupled. For example, maternal histone mRNA and protein
are deposited during oogenesis to provide for early rounds of
embryonic division, which require an exponentially increasing
number of histones (Marzluff and Duronio, 2002). Although
maternal histone mRNAs are regulated differently and protected
throughout multiple rounds of proliferation, their 3′-end structure
and processing by SLBP are no different from those of somatic cells
(Lanzotti et al., 2002; Sullivan et al., 2001). Akin to planarian
neoblasts, cells of early embryos rely heavily on post-transcriptional
regulation (Wickens et al., 2000), so it is reasonable to assume that
similar surrogate pathways of histone mRNA regulation could also
be present in stem cells of other metazoans. Supporting this idea,
histone mRNA half life is longer in induced pluripotent stem cells
than in somatic cells (Neff et al., 2012).
Recently, it has been reported that components of the RNAi

pathway in Caenorhabditis elegans are required for maintaining
sufficient histone mRNA levels and for 3′-end formation
downstream of the stem-loop sequence (Avgousti et al., 2012).
Indeed, we found piRNAs potentially produced from PIWI slicing
immediately downstream of planarian histone mRNA stem-loop
sequences (Fig. 5A). However, several lines of evidence indicate
that if flatworm PIWIs are indeed involved in regulating the levels of
histone mRNA, it would be by a different mechanism from that
observed in nematodes. First, the proteins involved in histone 3′-end
processing in nematodes belong to the AGO subfamily, whereas
planarian histone mRNAs are regulated by PIWI proteins. Second,
compromising the levels of the responsible Argonaute in C. elegans
(CSR-1) by RNAi results in a large reduction in histone mRNA
levels, whereas increased levels in histone mRNAs are observed in
planarians after Smedwi-1;-3 RNAi (Fig. 4D,E). Lastly, the endo-
siRNAs associated with histone mRNA 3′-end formation in
C. elegans contain sequences capable of forming base pairs
downstream of the stem-loop sequence, whereas planarian histone
piRNAs contain sequences found upstream and downstream of the
stem-loop, as well as the 5′-end, ORF and intergenic sequences
(Fig. 5A). Furthermore, most planarian histone piRNAs correspond
to the sense orientation of histone transcripts, although it is possible

that unstable antisense piRNAs exist but are barely detectable. How
(and if ) regulation of histone mRNAs by Argonaute family
members occurs in other systems remains to be elucidated.

Since their unveiling by electron microscopy, chromatoid bodies
have been postulated to be hubs of RNA regulation. Their presence in
neoblasts and their disappearance during differentiation (Coward,
1974) suggest a role for chromatoid bodies inmaintaining the stem cell
functions of proliferation and/or pluripotency. Chromatoid bodies
contain substrates of PRMT5, which include sDMA-SMEDWI-3
(Rouhana et al., 2012), as well as proteins containing the sDMA-
binding Tudor domain (Solana et al., 2009). Disruption of PRMT5
expression leads to reduced chromatoid body integrity, increased
transposable element transcript levels and, ultimately, loss of neoblasts
and regeneration (Rouhana et al., 2012). Thus, the interaction between
sDMA and Tudor domain-containing proteins might be the glue that
stabilizes chromatoid body structure and function, as is the case in
other organisms (Gao and Arkov, 2012). Our observation that histone
mRNA levels increase in Smedwi-1;-3 knockdowns, which correlates
with a decrease in histone mRNA localization to chromatoid bodies,
could be explained by a model in which these RNP granules serve as
sites for priming substrates of PIWI-mediated decay. A different, but
plausible, model would be that histonemRNAs are stabilized while in
chromatoid bodies, as has been observed for some transcripts in RNA
granules in Drosophila and C. elegans (Bashirullah et al., 1999;
Updike and Strome, 2010). Protection of histone mRNAs from
degradationbychromatoid bodies could explain the extendedpresence
of these transcripts during the cell cycle of neoblasts (Fig. 1). In this
model, the presence of piRNAs corresponding to histone sequences
would be the result of degradation of histone mRNAs that have
diffused through the cytoplasm or of chromatoid bodies disappearing
during differentiation. The increase in histone mRNA levels observed
duringSmedwi-1;-3RNAicould also result from indirect effects on the
transcription of histone genes or from subtle increases in neoblast
numbers. Nevertheless, the increase in levels of transposable element
RNA observed after PRMT5 RNAi (Rouhana et al., 2012) and the
effects on Histone H4 mRNA localization after Smedwi-1;-3
knockdown both point to PIWI proteins as integral mediators of
chromatoid body function. However, chromatoid bodies are
heterogeneous, for histone mRNA is only detected on a fraction of
these granules and current data do not indicate that all of them contain
PIWI proteins (Fig. 1A and Fig. 5B) (Rouhana et al., 2012). Future
studies will uncover additional components of chromatoid bodies as
well as their connection to proteins, such as the snRNP component
SmB (Fernandez-Taboada et al., 2010) and the DEAD box helicase
CBC-1/DHH1 (Yoshida-Kashikawa et al., 2007), the functions of
which in chromatoid bodies remain to be elucidated.

The prevailing model for piRNA biogenesis, known as the ‘ping-
pong’ cycle, involves the continuous synthesis of sense and
antisense piRNAs by reciprocal association of PIWI paralog
complexes with guide and target RNAs (Siomi et al., 2011).
Given the compartmentalization and physical proximity of PIWI
proteins in chromatoid bodies of mammalian male germ cells
(Aravin et al., 2009; Shoji et al., 2009), these structures have been
postulated to be hubs of piRNA synthesis and function (Siomi et al.,
2011). The 3′UTRs of developmentally regulated mRNAs are also
substrates for novel piRNA production (Robine et al., 2009; Saito
et al., 2009). The regulation of mRNAs that are not related to
transposable elements by PIWI proteins could serve two functions.
First, the target mRNA is inactivated by endonucleolytic cleavage,
causing a reduced expression of the respective gene. Second,
secondary piRNAs are synthesized from cleavage of the target
mRNAs. Secondary piRNAs could direct downstream gene-
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silencing functions in the nucleus, such as epigenetic marks on
DNA and heterochromatin formation (Castel and Martienssen,
2013). We hypothesize that planarian histone gene silencing by
piRNAs could occur during neoblast differentiation (Fig. 5B), as
histone synthesis is not observed in the differentiated soma, which is
non-mitotic. Interestingly, a large fraction of piRNAs that map to
histone loci seem to be products of histone mRNA ‘slicing’ by PIWI
homologs (Fig. 5A; supplementary material Table S1). The fact that
only 20-30% of piRNAs found in S. mediterranea map to
transposable elements (Resch and Palakodeti, 2012) suggests that
additional groups of genes might be silenced by similar mechanisms
during neoblast differentiation. A remaining challenge is to identify
such genes and the mechanisms involved in balancing timely
synthesis of histones during the cell cycle of proliferating neoblasts.

MATERIALS AND METHODS
Planarian culture and irradiation
A clonal asexual line of S. mediterranea, CIW4 (Sanchez Alvarado et al.,
2002), was maintained in 0.5 g/l of Instant Ocean salts (Spectrum Brands) in
deionized water at 21°C and starved for at least 1 week before each
experiment. Planarians of ∼8 mm length were used for all experiments.
Neoblast depletion was achieved by 40 Gy of gamma irradiation using a
Gammacell-220 with a cobalt-60 source (Nordion).

DNA constructs, riboprobes and double-stranded RNA (dsRNA)
synthesis
The cDNAconstructs utilized for riboprobe anddsRNAsynthesis forgerminal
HistoneH4 (GenBankDN297663.1;Wang et al., 2007),Smedwi-1 (Guo et al.,
2006; Reddien et al., 2005), Smedwi-2 (Palakodeti et al., 2008; Reddien et al.,
2005) and Smedwi-3 (Palakodeti et al., 2008) have been described previously
(Rouhana et al., 2012). Constructs corresponding to Histones H1, H2A,
H2B, H3 and SLBP (PL04013A1A11, PL08007A2G03, PL030007A10F10,
PL05014A2G10 and PL06013B2C04) from the S. mediterranea EST
database (newmark13.life.illinois.edu/est) were obtained from cDNA clones
collected by Zayas et al. (2005). Characterization of Histone H2B of
identical sequence has been reported previously (Solana et al., 2012).
PL030012A10A05 was used as a representative for H3 with an aberrant
stem-loop and PL06005A1B05 as a representative for H3 with an imperfect
stem-loop (single nucleotide change). Histone and SLBP constructs have
been deposited in GenBank (accession numbers: KC916777-KC916784)
and plasmids are available through Addgene. Primers used for amplification
of templates for different gH4 cDNA fragment riboprobe synthesis are listed
in supplementary material Table S2.

RNAi
DsRNA feeding was performed as described in Rouhana et al. (2013).
Planarians were fed liver solution containing dsRNA (0.1 µg/µl). For double
or triple gene knockdowns the concentration of total dsRNAwas maintained
constant (0.1 µg/µl) and gene-specific dsRNA amounts were distributed
equally. The bacterial F episome ccdB sequence was used as control
dsRNA. The frequency and duration of RNAi feedings are specified in the
figure legends.

Analysis of chromatoid bodies by whole-mount double FISH and
immunofluorescence
Samples were processed for formaldehyde-based whole-mount FISH as
described (King and Newmark, 2013), followed by immunofluorescence
stainingwithY12antibody (Lerner et al., 1981;ThermoScientific, MS-450-P;
1:250) as previously described (Rouhana et al., 2012). For double FISH,
digoxigenin- and dinitrophenol-labeled probes were included during the
hybridization step and developed sequentially after a peroxidase inactivation
step,which included incubation in1%H2O2 inPBSTx for 20 min, followedby
4% formaldehyde in PBSTx for 40-60 min. A 1:500 dilution of Alexa-633-
labeled goat anti-mouse antibody (Life Technologies, A-21052) was used to
visualize Y12 signal after FISH. For analyses, images of single confocal

sections from the neoblast-rich regionposterior to the pharynx and betweengut
brancheswere acquired on aZeiss LSM710confocalmicroscope and analyzed
using ZEN 2011 software (Zeiss). Colocalization was scored based on
overlapping peaks in intensity between Y12 and FISH signals from single
confocal plane images and averaged from three or more biological replicates.

BrdU labeling and analysis
Animals were soaked in 20 mg/ml bromodeoxyuridine (BrdU) and 3%
dimethyl sulfoxide diluted in 10× Instant Ocean planarian salts for 2 hours.
Several washes in 10× planarian salts were then performed in an hour prior
to fixing and processing for FISH and BrdU detection, essentially as
described in King and Newmark (2013), with the exception that animals
were bleached in 6% H2O2 in methanol overnight. BrdU was detected using
mouse anti-BrdU (BD Biosciences, cat# 347580; dilution 1:25) and HRP-
anti-mouse (Invitrogen, cat# G-21040; at 1:1000) followed by tyramide
signal amplification and detection as described above.

Northern blot, RT-qPCR and PCR-based 3′-end polyadenylation
analysis
Northern blot analyses using DIG-labeled riboprobes were performed as
described (Miller and Newmark, 2012). Polyadenylated and non-
polyadenylated fractions for northern blot analysis were obtained using the
MicroPoly(A)Purist system (Ambion). PCR-based 3′-end length analyses of
polyadenylated RNAwere performed as previously described (Rouhana and
Wickens, 2007). Briefly, cDNA of polyadenylated RNA was obtained by
ligation of the P1 anchor oligo (5′-/5Phos/GGTCACCTTGATCTGAAGC/
3AmMO/-3′) to total planarian RNA using T4 RNA ligase (New England
BioLabs), reverse transcription primed by P1 antisense (5′-GCTTCA-
GATCAAGGTGACCTTTT-3′) and PCR using the gH4 internal primer
(5′-GGAAAATGTTATTAGAGACGCTGTGAC-3′) and the P1 antisense
primer. For RT-qPCR, total RNA was extracted from groups of three to five
planarians using TRIzol reagent (Invitrogen) and reverse transcribed using
random primers. Reverse transcription and PCR were performed using the
GoTaq 2-step RT-qPCR system (Promega) as directed by the manufacturer.
Primers for Smed-β-tubulin and Smedwi-1 have been described (Miller and
Newmark, 2012).Other primers are listed in supplementarymaterial Table S2.
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SUPPLEMENTARY MATERIAL 

Supplementary Tables 

Table S1. Analysis of piRNA distribution amongst histone loci in the 

Schmidtea mediterranea genome. 

Human Histone H2A, H2B, H3, H4 and C. elegans Histone H1-like (HIL-1) 

protein homologes (GenBank I.D. provided) were found in the S. mediterranea 

Genome Database (SmedGD; Robb et al., 2008) via TBLASTN searches (E-

values provided). The top 20 homologs according to E-values, where further 

analyzed.  Genomic reads corresponding to cDNA clones utilized in this study 

were found by BLASTN and are indicated in the fifth column. The presence of 

piRNA islands and repetitive elements mapping within 1 kilobase of histone 

sequence genomic regions (according to SmedGD; smedgd.neuro.utah.edu) are 

indicated as absent (-), present (*). Codes for piRNA islands according to 

SmedGD within homology regions are included in the ninth column.  

Development | Supplementary Material



Table S2. Additional primer sequences. 

Forward (F) and reverse (R) primers used for measuring changes in histone and 

neoblast markers gene expression by RT-qPCR (top), and primers used for 

partial gH4 riboprobe template synthesis, are listed. The combination of primers 

gH4-F_37 with gH4-R_474, and gH4-F_474 with gH4-R_861, were used for 

riboprobe synthesis corresponding to the first and second halves of gH4 cDNA, 

respectively. For smaller sections of gH4 sequence we used the following 

combination of primers (5’ to 3’) gH4-F_37 and gH4-R_283; gH4-F_258 and 

gH4-R_474; gH4-F_474 and gH4-R_671;  gH4-F_647 and gH4-R_861. T3 

promoter sequence was included in the reverse primer where indicated by capital 

letters. 
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Supplementary Figure Legends 

Figure S1.  Germinal Histone H4 transcripts localize to chromatoid bodies, 

whereas transcripts for other neoblast marker genes do not. 

Representative analysis of FISH signal followed by Y12 immunofluorescence of 

chromatoid bodies from confocal sections of neoblasts using Zen 2011 software 

(Carl Zeiss, Germany). (A) gH4 transcripts (magenta) specifically localize to 

chromatoid bodies (green). Signal intensity (Y-axis; graph) for gH4 signals 

(magenta arrows) aligns with peaks from Y12 signals (green arrows). (B) Smed-

bruli FISH signal (magenta) peaks (magenta arrows) do not align with intensity 

peaks of Y12 (green arrows). Distance within line of analysis (red arrow on 

image) corresponds to X-axis in graph. (C) gH4 localization to chromatoid bodies 

is not affected by non-specific dsRNA feedings.  Percentage of chromatoid 

bodies containing gH4 mRNA foci are shown for animals 4 days after eating liver 

without dsRNA (control), or 1, 4, or 10 days (D1, D4, D10) after eating liver 

containing dsRNA of gH4 or transposable element TE10 sequence. Columns 

represent average from analyses of three of more biological replicates.  Error 

bars represent standard deviation.  Colocalization of gH4/Y12 signals was only 

affected by gH4 RNAi.  

Figure S2. gH4 transcripts in neoblasts and chromatoid bodies are 

canonical histone H4 mRNAs.  

(A) Representation of the original cDNA clone used as gH4 riboprobe template 

(top) and predicted canonical Histone H4 mRNA (bottom). Histone mRNA 3’-end 

processing is mediated by a conserved stem-loop structure shortly downstream 
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of the ORF; they are not polyadenylated. (B) FISH analyses suggest that gH4 

transcripts present in neoblasts and chromatoid bodies contain a short 3’UTR. 

Seven riboprobes (gray bars) corresponding to different portions of the original 

gH4 cDNA (Fig. S2A; top) were used for detection of chromatoid body material 

as in Fig. 1A. Only probes containing sequence corresponding to the ORF region 

detected transcripts in neoblasts and chromatoid bodies (green framed insets), 

whereas probes corresponding to 3’UTR sequence showed only background-

level signals in neoblasts (unframed insets). (C-E) Northern blot analyses verify 

that transcripts detected by gH4 riboprobes in planarian neoblasts are canonical 

histone mRNAs. (C) Northern blot analysis using full-length gH4 riboprobe 

reveals a single band of approximately 350 nucleotides in total asexual planarian 

RNA. (D) Northern blot analysis of total RNA, RNA retained in oligo-(dT) 

sepharose (p(A)+) and non-polyadenylated RNA (p(A)-) confirmed that the 

material recognized by the gH4 riboprobe lacks a poly(A) tail. Smedwi-1 mRNA is 

detected in poly(A)+ fraction and served as control for polyadenylated mRNA 

recovery. For this assay, oligo-(dT) retention performed at room temperature and 

requires a stretch of at least 12 adenosines, therefore mRNAs detected in the 

p(A)+ fraction are believed to carry a bona fide poly(A) tail. The slight difference 

in migration of Smedwi-1 mRNA in p(A)+ and total RNA fractions is believed to 

be an artifact due to the oligo-(dT) fractionation process, which has been 

observed with other mRNAs. Ribosomal RNA (rRNA) was used as a non-

polyadenylated control. (E) Northern blot analysis of RNA from planarians 

untreated (control) and four days post-irradiation (irradiated) confirm that gH4 
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transcripts are stem cell specific. rRNA levels are shown as loading controls. 

Figure S3. Planarian histone mRNAs localize to chromatoid bodies. 

(A) Stem loop sequence structures representative of metazoan, parasitic 

flatworm Schistosoma mansoni, and analyzed Schmidtea mediterranea histone 

mRNAs. S. mansoni structure adapted from (Anderson et al., 2012). R = A or G 

(purine); Y = C or U (pyrimidine); B = C, G, or U; N = A, C, G, or U. (B-F) Single 

FISH analysis of histone H1, H2A, H2B, H3 and gH4 mRNA (magenta; B-F), 

followed by Y12 immunofluorescence (green; B’-F’) shows that mRNAs 

representative of each histone are present in chromatoid bodies. Merged images 

(B’’-F’’) and visualization of cell nuclei by DAPI staining (gray; B’’’-F’’’) are shown. 

Yellow arrows denote chromatoid bodies containing the mRNAs of various tested 

histones. 

Figure S4. Planarian histone mRNA localization to chromatoid appears to 

be independent of SLBP. 

(A and B) gH4 FISH (magenta; A and B) followed by Y12 immunofluorescence 

(green; A’ and B’) performed on control planarians (A-A’’’) and SLBP(RNAi) (B-

B’’’). Merged images (A’’ and B’’) reveal that gH4 mRNA still localizes to 

chromatoid bodies in the lingering neoblasts after two weeks of SLBP 

knockdown. DAPI staining of nuclei is shown in blue (A’’’ and B’’’). Solid yellow 

arrows indicate gH4 FISH and Y12 immunofluorescence colocalized signals. 

Scale bar = 10 μm. (C) Predicted RNA stem-loop structures from different 

histone H3 loci and respective cDNA clones determined using mfold 

(mfold.rna.albany.edu). (D-F) FISH analyses performed using probes 
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corresponding to gH4 mRNA (magenta) and three different histone H3 loci with 

varying degrees of stem-loop sequence conservation (gold; see Table S1 for 

more information) followed by Y12 immunofluorescence (green). All tested 

varieties of histone H3 transcripts were detected in chromatoid bodies, 

regardless of carrying a perfectly conserved stem-loop sequence (D), single 

nucleotide changes in the stem sequence (imperfect; E), or several changes in 

stem and loop structure sequence (aberrant; F). FISH signals from probes 

corresponding to transcripts with variations in stem loop structures (E-F) are 

believed to be specific, since their closest paralogs with normal loop structures 

present in the S. mediterranea genome are below 84% identical, which is below 

the threshold for cross-hybridization observed in our and previous studies 

(Lecuyer et al., 2007). DAPI was used to visualize nuclei (blue). Scale bar = 10 

μm. 
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Table S1. Analysis of piRNA distribution among histone loci in the Schmidtea mediterranea genome. 
 
 

 
Histone Type 

 
GenBank I.D. 

 
Genomic Locus 

 
TBLASTN E-value 

 
Corresponding cDNA 

sense 
piRNA 

antisense 
piRNA 

Repetitive 
Elements 

 
piRNA Islands 

 
Comments 

H1-like CAB01632.1 (Ce) v31.004990 1.00E-07 Histone H1 *** - * 175415, 175416, 175417    
v31.018508 1.00E-04  

- - *     
v31.017587 1.00E-04  

- - *     
v31.007255 2.00E-04  

- - * 194602, 194603, 194604 inverted duplication w/intergenic piRNAs 

                    H2A AAN59974.1 (Hs) v31.003169 3.00E-48  
- - *     

v31.000031 1.00E-46 Histone H2A *** - * 5797-5817; 5784-5791 tandem duplication w/intergenic and intragenic piRNAs 

  
v31.000124 9.00E-46  

*** - * 18297-18299 (>100 more) tandem duplication w/intergenic and intragenic piRNAs 

  
v31.001314 5.00E-45  

- - *     
v31.002596 7.00E-45  

- - -     
v31.000610 1.00E-44  

** - - 62893, 62894    
v31.002922 7.00E-44  

- - *     
v31.000688 1.00E-43  

- - *     
v31.001438 2.00E-41  

- - *     
v31.008399 2.00E-39  

- - -     
v31.002385 8.00E-38  

- - *     
v31.045984 8.00E-38  

- - *     
v31.002800 3.00E-35  

* - * 144912    
v31.003116 2.00E-30  

- - *     
v31.009608 1.00E-28  

- - *     
v31.019624 1.00E-27  

* - * 235041    
v31.001713 5.00E-27  

- - *     
v31.049150 5.00E-27  

- - *     
v31.018961 8.00E-27  

- - *     
v31.004866 1.00E-26  

- - *     
v31.003804 1.00E-26  

- - *     
> 400 more 3.00E-26 to 8.1                           H2B CAA41051.1 (Hs) v31.014939 8.00E-43  

- - *     
v31.005020 1.00E-42  

- - -     
v31.000688 4.00E-41  

- **** * 68320-68331; 68337-68342 tandem duplication w/intergenic and intragenic piRNAs 

  
v31.000124 4.00E-41 Histone H2B * * * 18296; 18348    
v31.000572 2.00E-40  

- - * 60148; 60159-60162 tandem duplication w/intergenic piRNAs 

  
v31.002212 2.00E-40  

- - *     
v31.001736 5.00E-40  

- - *     
v31.008285 9.00E-40  

- - *     
v31.045597 9.00E-40  

- - *     
v31.000756 2.00E-37  

** * * 72002-72003; 71973    
v31.006479 1.00E-29  

- - -     
v31.023146 1.00E-28  

- - -     
v31.021105 2.00E-28  

- - *     
v31.026089 8.00E-28  

- - *     
v31.000063 1.00E-26  

***** - - 10419-10423    
v31.011360 8.00E-24  

- - *     
v31.015823 5.00E-23  

- - *     
v31.018852 1.00E-22  

- - -     
v31.013070 7.00E-22  

- - *     
v31.012806 6.00E-16  

- - *     
v31.010181 4.00E-15  

- - *     
... 44 more 1.00E-14 to 8.4                           H3 AAN39284.1 (Hs) v31.000688 2.00E-70  

* - * 68334-68341; 68331-68325 inverted duplication w/intergenic and intragenic piRNAs 

  
v31.002008 2.00E-70 H3 imperfect stem - - *     
v31.005767 2.00E-70  

* - * 183508    
v31.003741 2.00E-70  

* - * 160380    
v31.005509 2.00E-70 H3 perfect stem-loop * - * 180581    
v31.003583 2.00E-69 H3 aberrant stem-loop * - * 158060    
v31.001027 2.00E-64  

- - *     
v31.002106 6.00E-60  

* - - 127184    
v31.001251 3.00E-52  

- - *     
v31.009630 2.00E-48  

- - -     
v31.000503 2.00E-46  

- - -     
v31.003160 1.00E-36  

* - - 151719    
v31.000192 2.00E-32  

- - *     
v31.006511 1.00E-30  

- - *     
v31.012775 2.00E-23  

- - *     
v31.002039 3.00E-23  

- - *     
v31.005153 2.00E-22  

- * * 177006 possible pseudogene 

  
v31.000876 1.00E-21  

- - *     
v31.020820 2.00E-21  

** * * 237202; 237217-237230 inverted duplication w/intergenic and intragenic piRNAs 

  
v31.014377 5.00E-20  

- - *     
v31.009200 7.00E-20  

- - *     
... 12 more 8.00E-20 to 6.5                           H4 AAA52652.1 (Hs) v31.006602 5.00E-40  

- - *     
v31.013216 5.00E-40  

- - *     
v31.000809 5.00E-40  

** - - 74551-74552    
v31.003127 5.00E-40  

- - -     
v31.017320 5.00E-40  

* * * 230639; 230640    
v31.001066 6.00E-40 germinal histone H4 * - * 89245-89247 inverted duplication w/intergenic and intragenic piRNAs 

  
v31.003066 7.00E-40  

- - *     
v31.002433 2.00E-28  

- - *     
v31.004713 6.00E-26  

- - -     
v31.001345 4.00E-24  

**** - - 101368-101371    
v31.006244 4.00E-16  

* - - 187328    
v31.000411 1.00E-14  

- - -     
v31.000702 2.00E-12  

- - *     
v31.005770 2.00E-12  

* * - 183514 ;183517    
v31.005158 3.00E-12  

- - -     
v31.000858 2.00E-11  

- - -     
v31.021260 3.00E-10  

- - -     
v31.020257 6.00E-09  

- - -     
v31.023734 6.00E-09  

- - -     
v31.003761 9.00E-09  

- - *     
v31.000148 3.00E-07  

- - -     
... 31 more 2.00E-06 to 7.3                  

(Hs) Homo sapiens 
(Ce) Caenorhabditis elegans 
* sense and antisense piRNAs within 1 kb locus 
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Table S2. Additional primer sequences 
 
Primers used in RT-qPCR 
H1-F tggcaacaaaggaaaaggtg 
H1-R ttggtgctggcttctttgag 
H2A-F ttcccagtgggtcgtattca 
H2A-R aacggcagccaaatataccg 
H2B-F tggaatttctggcaaagcaa 
H2B-R tagcctccgaagcgattctt 
H3-F tggtggaaaagctccacgta 
H3-R gcgacagttccaggacgata 
gH4-F aggaaaaggtggagcaaagc 
gH4-R tctgattgctggctttgtga 
Smedwi2-F gagccacgtgaaagattgga 
Smedwi2-R ccagttgccgcatcactatt 
PCNA-F tgaaagccgctgattcaagt 
PCNA-R aagtgatctccatccaagtcca 
Primers used in partial gH4 riboprobe synthesis 
gH4-F_37 ataacattcaagggtatccacaaag 
gH4-R_283 TATAATTAACCCTCACTAAAGGGAGAttatttaacctccaaaaccgtacaa 
gH4-F_258 tttgtacggttttggaggttaaata 
gH4-R_474 TATAATTAACCCTCACTAAAGGGAGAtaatgcgagacaaatcacgttacta 
gH4-F_474 tagtaacgtgatttgtctcgcat 
gH4-R_671 TATAATTAACCCTCACTAAAGGGAGAtacatcgcttgattaaaatggatct 
gH4-F_647 agatccattttaatcaagcgatgta 
gH4-R_861 TATATTTAACCCTCACTAAAGGGAGAatgtcacagaaaaatgcaaatacaa 
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